WO2017146097A1 - マーカ - Google Patents

マーカ Download PDF

Info

Publication number
WO2017146097A1
WO2017146097A1 PCT/JP2017/006595 JP2017006595W WO2017146097A1 WO 2017146097 A1 WO2017146097 A1 WO 2017146097A1 JP 2017006595 W JP2017006595 W JP 2017006595W WO 2017146097 A1 WO2017146097 A1 WO 2017146097A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
convex surface
convex
detected
image
Prior art date
Application number
PCT/JP2017/006595
Other languages
English (en)
French (fr)
Inventor
齊藤 共啓
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201780010920.3A priority Critical patent/CN108603748A/zh
Priority to JP2018501736A priority patent/JPWO2017146097A1/ja
Priority to US16/079,658 priority patent/US10663293B2/en
Priority to EP17756535.5A priority patent/EP3421927A4/en
Publication of WO2017146097A1 publication Critical patent/WO2017146097A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/342Moiré effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing

Definitions

  • the present invention relates to a marker.
  • An image display sheet having a lenticular lens and an image forming layer is known as an image display body (marker) using a combination of a lens and a pattern.
  • the lenticular lens has a configuration in which a plurality of cylindrical lenses are arranged in parallel.
  • the image forming layer has a pattern corresponding to each of the cylindrical lenses.
  • the image display body is useful as a marker for recognizing the position and posture of an object in fields such as augmented reality (AR) and robotics.
  • AR augmented reality
  • Various studies have been made on the arrangement of patterns in each application (see, for example, Patent Document 1 and Patent Document 2).
  • the detection angle of the image display body is preferably wide.
  • the detection angle of the marker it is conceivable to reduce the focal length of the cylindrical lens by reducing the radius of curvature of the cylindrical lens.
  • An object of the present invention is to provide a marker that can be downsized and have a wide detection angle.
  • the marker of the present invention is formed of a light-transmitting material, and is arranged at least on a plurality of convex surfaces arranged along the first direction and on the positions of the plurality of convex surfaces and the front and back sides, and is optically detectable.
  • the plurality of convex surfaces that are the farthest points (focal positions) from the convex surface are disposed on the same virtual surface that is located on the convex surface side from the focal point of each of the convex surfaces and that is perpendicular to the height direction of the marker. ing.
  • the present invention can provide a marker having a small detection angle and a wide detection angle.
  • FIG. 1A and 1B are diagrams schematically showing a configuration of a marker according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining field curvature.
  • FIG. 3 is a diagram for explaining the position of the detected portion in the height direction.
  • FIG. 4 is a diagram for explaining the operation of the marker.
  • FIG. 5 is a diagram for explaining simulation conditions.
  • 6A to 6I are diagrams showing simulation results.
  • FIG. 7 is a diagram showing a spot diagram by simulation from the height of the focal point F to the height of the point closest to the convex surface in the curvature of field.
  • 8A to 8C are diagrams schematically showing the configuration of the marker according to Embodiment 2 of the present invention.
  • FIG. 9A to 9C are diagrams schematically showing the configuration of the marker according to Embodiment 3 of the present invention.
  • 10A to 10C are diagrams schematically showing the configuration of the marker according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram schematically showing the configuration of the marker according to Embodiment 5 of the present invention.
  • FIG. 12A is a plan view schematically showing a marker according to Embodiment 6 of the present invention
  • FIG. 12B is a hatching schematically showing a part of the marker cut along line BB in FIG. 12A.
  • FIG. 12C is a bottom view schematically showing a bottom surface of the marker
  • FIG. 12D is a side view schematically showing a side surface of the marker.
  • FIG. 13A is a plan view schematically showing a marker according to Embodiment 7 of the present invention
  • FIG. 13B is a hatching schematically showing a part of the marker cut along line BB in FIG. 13A
  • FIG. 13C is a bottom view schematically showing the bottom surface of the marker
  • FIG. 13D is a side view schematically showing the side surface of the marker.
  • 14A is a plan view schematically showing a marker according to Embodiment 8 of the present invention
  • FIG. 14B is a hatching schematically showing a part of the marker cut along line BB in FIG. 14A
  • FIG. 14C is a bottom view schematically showing the bottom surface of the marker
  • FIG. 14D is a side view schematically showing the side surface of the marker.
  • FIG. 1A and 1B are diagrams showing the configuration of the marker 100 according to Embodiment 1 of the present invention.
  • FIG. 1A is a plan view of the marker 100
  • FIG. 1B is a front view.
  • the marker 100 has a front surface (first surface) 120 and a back surface (second surface) 140.
  • the material of the marker 100 has translucency.
  • Examples of the material of the marker 100 include transparent resins such as polycarbonate, acrylic resin, cycloolefin polymer (COP), and cycloolefin copolymer (COC), glass, and the like.
  • the material of the marker 100 is a cycloolefin copolymer (COC) having a refractive index nd of 1.54.
  • the surface 120 includes a plurality of convex surfaces 121.
  • the back surface 140 includes a plurality of detected portions 141.
  • the plurality of convex surfaces 121 are arranged along at least the first direction (X direction in FIG. 1).
  • the plurality of convex surfaces 121 extend in a third direction (Y direction in FIG. 1) perpendicular to the first direction and the height direction (second direction; Z direction in FIG. 1) of the marker 100, respectively.
  • the convex surface 121 is a curved surface that includes a ridge line 122 extending linearly in the third direction and has a curvature only in the first direction. That is, the marker 100 has a lenticular structure.
  • the two adjacent convex surfaces 121 may be arranged apart from each other or may be arranged without a gap. In the present embodiment, two adjacent convex surfaces 121 among the plurality of convex surfaces 121 are arranged without a gap.
  • the plurality of convex surfaces 121 have the same size.
  • the radius of curvature R of one convex surface 121 is 246 ⁇ m and the focal length is 460 ⁇ m.
  • Width W1 (length in the first direction) of one of the convex surface 121 is the same as the pitch P CL of a plurality of convex surfaces 121.
  • the “pitch” is a distance between the ridge lines 122 (the optical axis LA or the central axis CA) in the first direction of the adjacent convex surfaces 121 and is also the length (width) of the convex surface 121 in the first direction. .
  • the optical axis LA of the convex surface 121 or “the central axis CA of the convex surface 121” is the center of the convex surface 121 when the convex surface 121 is viewed in plan, and the first direction and the third direction. Means a straight line along a second direction (Z direction in FIG. 1) perpendicular to both.
  • the shape of the convex surface 121 may be an arc or an arc.
  • the “arc” is a curve other than an arc, for example, a curve formed by connecting arcs having different curvature radii R.
  • the arc is preferably a curve whose radius of curvature R increases as the distance from the ridgeline 122 of the convex surface 121 increases.
  • the plurality of detected portions 141 are arranged on the front and back positions with respect to the plurality of convex surfaces 121, and are projected onto the plurality of convex surfaces 121 as optically detectable images, respectively.
  • the detected portion 141 is disposed along the third direction when the marker 100 is viewed in plan.
  • the configuration of the detected portion 141 can be determined as appropriate within a range in which each of the plurality of convex surfaces 121 is projected as an optically detectable image.
  • the detected part 141 may be a concave part or a convex part.
  • the detected part 141 is a recess.
  • the shape of the recess can be determined as appropriate within a range having a predetermined width when the marker 100 is viewed in plan.
  • coating a coating material may be arrange
  • the planar view shape of the detected portion 141 is a rectangle having the third direction as the longitudinal direction.
  • the height (position) of the detected portion 141 in the height direction (second direction) is one of the main features of the present invention, and will be described in detail later.
  • the depth of the concave portion for constituting the detected portion 141 can be determined as appropriate within a range in which the paint can be easily applied and the intended function (image display) can be exhibited.
  • the depth of the concave portion for constituting the detected portion 141 can be appropriately determined from the range of 10 to 100 ⁇ m.
  • the ratio (W2 / P CL ) of the width W2 of the detected portion 141 to the pitch P CL is preferably 1/100 to 1/5 from the viewpoint of obtaining a sufficiently clear image.
  • the detected part 141 When the detected part 141 observes the marker 100 at the center in the first direction and the third direction of the convex surface 121 from the surface 120 side, the image by the detected part 141 should be observed at the central part of the convex surface 121. Placed in position.
  • ) between the centers of the detected portions 141 corresponding to the adjacent convex surfaces 121 in the first direction is represented by P CL + nG ( ⁇ m).
  • PCL represents the distance between the ridge lines 122 in the first direction of the adjacent convex surfaces 121 as described above.
  • G indicates a predetermined distance from PCL in the first direction for expressing the optical effect of the image.
  • n indicates the n-th convex surface 121 in the first direction when the central convex surface 121 is 0.
  • a coating film 142 is formed on the detected portion 141.
  • the coating film 142 is, for example, a solidified product of black liquid paint.
  • the coating film 142 is produced by applying and solidifying a paint.
  • the black liquid paint has fluidity, and is, for example, a liquid composition or a powder.
  • the method of applying or solidifying the paint can be appropriately determined from known methods according to the paint.
  • examples of black liquid paint application methods include spray application and screen printing.
  • Examples of the solidification method of the black liquid paint include drying of the black liquid paint, curing of a curing component (such as a radical polymerizable compound) in the black liquid paint, and baking of the powder.
  • the coating film 142 forms an optically distinguishable portion.
  • Optically distinguishable means that the coating film 142 and other portions have a clear difference in optical characteristics.
  • “optical characteristics” means, for example, hue such as brightness, saturation, hue, or the like, or light intensity such as luminance.
  • the difference can be appropriately determined according to the use of the marker. For example, the difference can be visually confirmed, or can be confirmed by an optical detection device. Further, the difference may be a difference that can be directly detected from the coating film 142, or a further operation such as irradiation of a UV lamp, for example, when the coating film 142 is a transparent film that emits fluorescence. It may be a difference that can be detected.
  • the marker 100 When the marker 100 is placed on a white object, of the light incident on each convex surface 121, the light that has reached the detected part 141 is absorbed by the coating film 142, and the light that has reached the other part is Reflects roughly on the surface of the object. For this reason, the image of the color (black) line of the coating film 142 is projected onto the convex surface 121 on the white background.
  • the to-be-detected part 141 is arrange
  • the black collective image is observed at the center in the first direction.
  • the collective image is observed at different positions in the first direction according to the angle. Therefore, the angle of the observation position of the marker 100 is determined from the position in the first direction of the collective image.
  • FIG. 2 is a diagram for explaining field curvature.
  • FIG. 3 is a diagram for explaining the position of the detected portion 141 in the height direction.
  • FIG. 4 is a diagram for explaining the operation of the marker 100.
  • a curvature of field occurs on a convex surface configured by a curved surface such as the convex surface 121 of the marker 100.
  • field curvature occurs in all optical systems that use light collection by a positive lens such as the convex surface 121.
  • FIG. 2 when a light beam L1 parallel to the optical axis LA of the convex surface 121 is incident on the convex surface 121, the light beam L1 is condensed toward the focal point F of the convex surface 121.
  • the light beams L2 and L3 inclined with respect to the optical axis LA are collected at a position (see F2 and F3) closer to the convex surface 121 than the focal point F in the height direction.
  • the fact that the position (height) at which a light beam is condensed varies depending on the inclination angle of the light beam incident on the convex surface 121 in a single convex surface is called field curvature.
  • a surface including a point where the light rays are collected is referred to as an image plane B.
  • the image plane B On the convex surface of the marker 100, the image plane B has a substantially U-shaped groove shape along the third direction.
  • the image plane B is partitioned by one optical unit including one convex surface, and the marker 100 is a surface having the focal point F as the center and the width of one convex surface 121 in the first direction. expressed.
  • the amount of field curvature is generally calculated by a value in air (air conversion length). Therefore, in this specification as well, in principle, the amount of field curvature will be described with the air equivalent length.
  • the actual marker thickness is determined by the refractive index of the material used.
  • the marker 100 can be miniaturized by utilizing this curvature of field, and the observation angle can be widened. More specifically, as shown in FIG. 3, the bottoms of the plurality of detected portions 141 are points farthest from the convex surface 121 among the image planes B of the plurality of convex surfaces 121 curved by the curvature of field. The plurality of convex surfaces 121 are located on the convex surface 121 side from the respective focal points F. Further, the bottom of the detected portion 141 is disposed on the same virtual plane (virtual plane) A perpendicular to the height direction of the marker 100.
  • virtual plane virtual plane
  • the “focus F” means a point where the optical axis LA and the light beam intersect when a light beam (light beam) parallel to the optical axis LA is incident on the convex surface 121. This means a point calculated from the focal length of the first surface (lens).
  • the virtual surface A is located farther from the convex surface 121 than the point (F ′) closest to the convex surface 121 among the image surfaces B of the plurality of convex surfaces 121 curved by the curvature of field. Further, the virtual surface A may be located on the convex surface 121 side from the focal point F of each of the plurality of convex surfaces 121 by a length of 5% or more of the focal length of the convex surface 121 on each optical axis LA of the plurality of convex surfaces 121. More preferred. As described above, in this embodiment, since the focal length is 460 ⁇ m, the length of 5% of the focal length is 23 ⁇ m.
  • the virtual surface A is located on the 50 ⁇ m convex surface 121 side from the focal point F.
  • the virtual surface A is positioned closer to the convex surface 121 than the point closest to the convex surface 121 among the image surfaces B of the plurality of convex surfaces 121 curved by the curvature of field, the black collective image cannot be appropriately observed. There is a fear.
  • FIG. 4 shows an example in which the end portion of the convex surface 121 and the detected portion 141 are arranged at the same position in the first direction (X direction).
  • the surface (detected position) of the detected part 141 is located at the same height as the focal point F, the detected part if the angle with respect to the optical axis LA is within the range of ⁇ 1. It can be seen that 141 can be observed.
  • the surface of the detected portion 141 (detected position) is located closer to the convex surface 121 than the focal point F of the convex surface 121, if the angle with respect to the optical axis LA is within the range of ⁇ 2.
  • the detected portion 141 can be observed. That is, when the detected part 141 is located on the convex surface 121 side with respect to the focal point F of the convex surface 121, the detected part 141 can be observed even when the angle with respect to the optical axis LA is large. That is, the detection angle of the marker 100 can be widened in the first direction as compared with the marker in which the detected portion 141 is disposed on the focal point F of the convex surface 121.
  • the detected portion 141 is arranged closer to the convex surface 121 than the focal point F of the convex surface 121, so that the angle with respect to the optical axis LA is large.
  • the detected part 141 can be observed. That is, the detection angle of the marker 100 can be widened also in the third direction.
  • the position (height) of the detected portion 241 in the height direction is the same height h1 as the focal point of the convex surface 221, the height h2 moved to the convex surface 221 side by 50 ⁇ m from the convex surface 221, and 50 ⁇ m from the focal point of the convex surface 221.
  • the height h3 moved in the direction away from the convex surface 221 was set.
  • the height h2 in this simulation is included in the range of the preferred height of the virtual surface A described above (a length of 5% or more of the focal length of the convex surface 121 and a position on the convex surface 121 side from the focal point F).
  • FIG. 5 is a ray diagram for explaining the position of the detected portion 241 in the height direction.
  • FIG. 6 is a spot diagram at each position. 6A is a spot diagram of the light beam L4 at the height h2, FIG. 6B is a spot diagram of the light beam L5 at the height h2, and FIG. 6C is a spot diagram of the light beam L6 at the height h2. Is a spot diagram of ray L4 at height h1, FIG. 6E is a spot diagram of ray L5 at height h1, FIG. 6F is a spot diagram of ray L6 at height h1, and FIG. FIG. 6H is a spot diagram of the light beam L5 at the height h3, and FIG.
  • 6I is a spot diagram of the light beam L6 at the height h3. In FIG. 5, only two light beams that pass through both of the convex surfaces 221 and a light beam that passes through an intermediate position between two straight lines that pass through both the portions are shown.
  • the outer diameters of the spots in the light rays L5 and L6 were almost the same. This is because, in the present invention, the position of the detected part 241 is moved from the focal point to the convex surface 221 side, so that the set of blacks depending on the observation angle is compared with the case where the detected part 241 is located at the same height as the focal point. This means that the variation in image appearance has been improved.
  • the spot diagram corresponding to the spot diagrams of FIGS. 6A to 6I extends only in the vertical direction on the paper surface of FIG. This is because the convex surface 121 of the marker 100 according to Embodiment 1 has a curvature only in the first direction.
  • the convex surface 221 of the marker 200 according to the second embodiment described above when the detected portion 141 is at the same height h1 as the focal point of the convex surface 121, the light beam L4 parallel to the optical axis LA is collected at the focal point. I found it shining.
  • the distance at which the spots of the light beams L5 and L6 are dispersed increases as the angle with respect to the optical axis LA increases due to curvature of field and other aberrations.
  • the detected portion 141 is at a height h3 moved in a direction away from the convex surface 121 by 50 ⁇ m from the focal point of the convex surface 121, the spot is dispersed as the angles of the light beam L4, the light beam L5, and the light beam L6 with respect to the optical axis LA increase. It can be seen that the distance increases.
  • the light beam (light beam) incident on the convex surface 121 has a similar spot diameter within a predetermined inclination angle range. Condensed to Thereby, it can be seen that the detected portion 141 is stably observed as the blackest aggregate image within a predetermined angle range in which the inclination angle is inclined with respect to the optical axis LA. A black collective image can be observed within a predetermined angle range from the maximum value and the minimum value of the inclination angle.
  • the detection angle can be widened.
  • the detected portion 141 is installed within the focal height range of the convex surface 121 that changes within a predetermined angle range. Therefore, the detected portion 141 is always focused at one or more angles within a predetermined angle range.
  • “h” represents the distance (height, ⁇ m) from the focal point F to the convex surface side in the second direction
  • “L4”, “L5”, and “L6” represent light rays.
  • the substantial size of the L6 spot is smaller than the substantial size of the L4 spot (the size of the darkly displayed portion in FIG. 7). It is smaller than + 20% of the substantial size of the L4 spot.
  • the distance h from the focal point F increases, the difference in the substantial size of the spots corresponding to L4, L5, and L6 decreases.
  • the larger the distance h from the focal point F the thinner the L6 spot with respect to the darkness of the L4 spot.
  • the difference ⁇ ( ⁇ 2 ⁇ 2s) from (26.4 °) is shown in Table 1.
  • the lens thickness T is the distance from the convex surface of the lens in the second direction to the upper surface of the detected part.
  • the position of the focal point F in the marker can be obtained from the curvature radius and refractive index of the convex surface, and from the height of the focal point F of the convex surface to the height of the highest position (F ′) in the field curvature.
  • the distance hg (maximum value of h) can be calculated by a known method.
  • the above hg is calculated from the equations (4.34) and (4.37) (pages 106 and 107) described in Toshiro Kishikawa, “Introduction to Optics for User Engineers” (Optonics Co., Ltd.). be able to.
  • the maximum value ⁇ 2 of the detection angle can be calculated from the above hg and the structure of one optical unit in the marker.
  • the air-converted length can be calculated from the equations (2.44) and (2.45) described in the same document.
  • the position of the detected portion in the second direction in the marker can be determined as appropriate according to various requirements such as the size of the image, the sharpness of the image, and the detection range. .
  • the position of the detected portion in the second direction is preferably as high as possible.
  • 0.55 hg or more from the height of the focus F The position is preferably 0.75 hg or more, more preferably 0.94 hg or more.
  • the image of the detected portion is 120% of the image size when the position of the detected portion is the height of the focus F, which is the clearest. It is possible to align within the range, and when it is 0.75 hg or more, it is possible to align the sizes of the detected images of the detected portions to be substantially the same.
  • the position of the detected portion is preferably smaller than a certain value, for example, 0.9 hg or less. It is more preferably 85 hg or less, still more preferably 0.8 hg or less, and even more preferably 0.75 hg or less. Further, from the viewpoint of achieving both the size and the clearness of the image of the detected portion to be detected, the position of the detected portion is preferably 0.66 hg to 0.85 hg, and preferably 0.7 hg to 0.8 hg. More preferably.
  • the position of the detected portion is preferably 0.53 hg or more, more preferably 0.66 hg or more, and further preferably 0.77 hg or more.
  • 0.89 hg or more is even more preferable.
  • the maximum value ⁇ 2 of the detection angle can be increased by 2.0 ° or more compared to ⁇ 2s, and if it is 0.66 hg or more, 2.5 ° or more, If it is 0.77 hg or more, it can be 3.0 ° or more, and if it is 0.89 hg or more, it can be 3.5 ° or more.
  • the position of the detected portion is preferably 0.68 hg or more, and more preferably 0.98 hg or more. If the position of the detected part is 0.68 hg or more, ⁇ 2 can be made 110% or more of ⁇ 2s, and if it is 0.98 hg or more, ⁇ 2 can be made 115% or more of ⁇ 2s.
  • the marker 100 is arranged such that the position of the detected portion 141 in the height direction is closer to the convex surface 121 than the focal point F of the convex surface 121. Therefore, the marker 100 can be reduced in size in the height (thickness) direction of the marker 100 and the detection angle can be widened.
  • the marker 200 according to the second embodiment is different from the marker 100 according to the first embodiment only in the configuration of the convex surface 221 and the detected part 241. Therefore, the same components as those of the marker 100 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 8A to 8C are diagrams showing the configuration of the marker 200.
  • FIG. 8A is a plan view schematically showing the configuration of the marker 200
  • FIG. 8B is a diagram schematically showing a cross section of the marker 200 along the line BB in FIG. 8A
  • FIG. It is a bottom view showing typically the composition of.
  • the marker 200 has a front surface (first surface) 220 and a back surface (second surface) 240.
  • the surface 220 includes a plurality of convex surfaces 221.
  • the back surface 240 includes a plurality of detected parts 241.
  • the planar view shape of the convex surface 221 is circular, and all have the same size.
  • the diameter of the convex shape of the convex surface 221 is 350 ⁇ m
  • the pitch P CL of the convex surface 221 is 370 ⁇ m in both the first direction and the third direction.
  • pitch means the distance between the centers of adjacent convex surfaces 221.
  • the shape of the convex surface 221 may be an arc or an arc.
  • the shape of the cross section of the convex surface 221 is an arc.
  • the arc is a curved surface having a radius of curvature that increases as the distance from the central axis CA of the convex surface 221 increases. That is, in the present embodiment, the shape of the convex surface 221 is an aspherical surface.
  • the aspherical surface is a curved surface having a radius of curvature that increases as the distance from the central axis CA of the convex surface 221 increases.
  • the central axis CA of the convex surface 221 or “the optical axis LA of the convex surface 221” means a straight line passing through the center of the convex surface 221 when the marker 200 is viewed in plan and along the second direction.
  • the planar view shape of the detected portion 241 is a circle.
  • the cross-sectional shapes of the detected part 241 in the first direction and the third direction are both rectangular.
  • ) of the detection target parts 241 adjacent in the first direction is P CL + nG ( ⁇ m), and the detection target parts 241 adjacent in the third direction are adjacent to each other.
  • ) is P CL + mG ( ⁇ m).
  • n indicates the n-th convex surface 221 in the first direction when a certain convex surface 221 is numbered 0.
  • m indicates the m-th convex surface 221 in the third direction when a certain convex surface 221 is numbered 0.
  • the “image plane” in the present embodiment is partitioned by one optical unit including one convex surface 221. That is, the image plane is a convex curved surface that protrudes on the opposite side of the convex surface 221 with the focal point of the convex surface 221 as the center, and has a one-plane (rectangular) planar shape including one convex surface 221. .
  • the lattice is a rectangular portion surrounded by a line representing the midpoint (equal distance point) of adjacent convex surfaces 221 in the extending direction (X direction and Y direction).
  • One optical unit in this embodiment includes one convex surface 221 as a top surface, and is represented by a substantially quadrangular prism-shaped region having a planar shape of the lattice corresponding thereto.
  • the highest position (F ′) in the field curvature of the optical unit is located at a rectangular corner when the optical unit is viewed in plan.
  • Each of the detected parts 241 is located on one plane on the convex surface 221 side with respect to the focal point in the second direction, and more preferably, both of the focal point and the image plane in the second direction. It is located on one plane between the periphery.
  • the marker 200 when observing from the convex surface 221 side, a collective image in which black point images by the detected part 241 projected on the convex surfaces 221 are collected is observed. The position of this collective image changes according to the angle seen from the convex surface 221 side. Therefore, the marker 200 is used as a rotation angle marker in which an image moves in a plane direction according to a viewing angle.
  • planar view shape of the convex surface 221 may be a rectangle in addition to the circle described above, and can be appropriately determined within a range of shapes that can function as a convex lens.
  • shape of the detected portion in plan view may also be a shape other than the circle described above, for example, a rectangle.
  • the simulation result using the convex surface 221 of the marker 200 is as described above.
  • the marker 200 has the same effect as the marker 100.
  • it may be arranged on the inner side in the first direction with respect to the central axis CA of the convex surface 121.
  • it may be arranged more inside than the central axis CA of the convex surface 221 in the first direction and the third direction.
  • the detected portions 141 and 241 are formed as concave portions, but may be formed as convex portions.
  • the coating film 142 may be formed on the top surface of the convex portion.
  • the coating film 142 in the first and second embodiments may be a colored seal.
  • the coating film 142 is formed only in the recesses, but the coating film 142 may be formed in a region other than the recesses and the recesses.
  • the concave portion and the region other than the concave portion may be a coating film or a seal configured in different colors.
  • the detected portions 141 and 241 may be a reflecting surface such as an unevenness by a pyramid-shaped microprism formed in one or both of the concave portion and the region other than the concave portion or a metal vapor deposition film.
  • the marker 300 according to the third embodiment differs from the configuration of the marker 200 according to the second embodiment in the shape of the convex surface 321, the shape of the first region 341, and the shape of the second region 342. Therefore, the same components as those of the marker 200 according to Embodiment 2 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 9A to 9C are diagrams showing the configuration of the marker 300.
  • FIG. 9A is a plan view of the marker 300
  • FIG. 9B is a partially enlarged cross-sectional view in which hatching is omitted
  • FIG. 9C is a bottom view.
  • the marker 300 has a first surface 320 and a second surface 340.
  • the first surface 320 includes a plurality of convex surfaces 321.
  • the second surface 340 includes a plurality of first regions 341 and a second region 342.
  • the planar view shape of the convex surface 321 is circular, and all have the same size.
  • the diameter of the convex shape of the convex surface 321 is 440 ⁇ m
  • the pitch P CL of the convex surface 321 is 440 ⁇ m in both the first direction (X direction) and the third direction (Y direction).
  • the “convex surface 321 pitch” means a distance between the centers (vertex 323 or central axis CA) of adjacent convex surfaces 321.
  • the “center axis CA of the convex surface 321” means a straight line passing through the center of the convex surface 321 and extending along the second direction (Z direction) when the convex surface 321 is viewed in plan.
  • the vertex 323 of the convex surface 321 is an intersection of the convex surface 321 and the central axis CA.
  • the shape of the plurality of convex surfaces 321 is substantially semicircular. That is, since the central axis CA of the convex surface 321 is a straight line parallel to the second direction (Z direction), the convex surface 321 is substantially hemispherical. That is, the convex surface 321 is rotationally symmetric with the central axis CA as the rotation axis. Further, the focal point F ⁇ b> 3 of the convex surface 321 is located farther than the first region 341 when viewed from the convex surface 321. In other words, the first region (detected portion) 341 is disposed closer to the convex surface 321 than the focal position of the surface (first surface) 320.
  • the marker 300 has the 1st area
  • the planar view shape of the first region 341 is a circle.
  • ) between the first regions 341 adjacent in the first direction (X direction) is P CL ⁇ nG ⁇ m, and is adjacent in the third direction (Y direction).
  • ) between the matching first regions 341 is P CL ⁇ mG ⁇ m.
  • n indicates the n-th convex surface 321 in the first direction (X direction) when a certain convex surface 321 is set to 0.
  • m indicates the m-th convex surface 321 in the third direction (Y direction) when a certain convex surface 321 is 0.
  • the interval between the centers of the adjacent first regions 341 is the interval between the vertices 323 of the adjacent convex surfaces 321. Narrower than. Also in the present embodiment, the width of the light beam formed by the convex surface 321 at the height at which the first region 341 having a cross section including the first direction (X direction) and the height direction (Z direction) is disposed. Is less than or equal to the width of the first region 341.
  • the first region 341 corresponds to a detected part.
  • the second regions 342 are arranged adjacent to each other in the X direction and the Y direction.
  • the planar shape of the image plane in the present embodiment is a shape surrounded by a line representing equidistant points of the second regions 342 arranged mutually, that is, a square circumscribing the second region 342.
  • the optical unit in the present embodiment is a substantially quadrangular prism-shaped region having the planar surface portion of the second surface 340 as a bottom surface and a convex surface 321 at the top.
  • the highest position (F ′) in the field curvature of the optical unit is located at a rectangular corner when the optical unit is viewed in plan.
  • the image of the first region 341 is observed as one image.
  • the image is observed so as to move in a direction approaching the observer.
  • the marker 300 has the same effect as the markers 100 and 200.
  • the marker 400 according to the fourth embodiment is different from the marker 300 according to the third embodiment only in the shape of the convex surface 421. Therefore, the same components as those of the marker 300 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 10A to 10C are diagrams showing the configuration of the marker 400.
  • FIG. 10A is a plan view of the marker 400
  • FIG. 10B is a partially enlarged cross-sectional view in which hatching is omitted
  • FIG. 10C is a bottom view.
  • the marker 400 has a first surface 420 and a second surface 340.
  • the first surface 420 includes a plurality of convex surfaces 421.
  • the second surface 340 includes a plurality of first regions 341 and a second region 342. Similar to that of the marker 300, the first region (detected portion) 341 is arranged closer to the convex surface 321 than the focal position of the surface (first surface) 420.
  • the planar view shape of the convex surface 421 is a square, and all have the same size. Further, for example, the length of one side of the convex surface 421 in the plan view shape is the same as the pitch P CL of the convex surface 421 in any of the first direction and the third direction.
  • the “convex surface 421 pitch” means the distance between the centers (vertex 423 or central axis CA) of adjacent convex surfaces 421.
  • the central axis CA of the convex surface 421 means a straight line passing through the center of the convex surface 421 and extending in the second direction when the convex surface 421 is viewed in plan.
  • the vertex 423 of the convex surface 421 is an intersection of the convex surface 421 and the central axis CA.
  • the plurality of convex surfaces 421 are curves whose radius of curvature increases with distance from the vertex 423.
  • the curvature radius may continuously increase as the distance from the vertex 423 increases, or may increase intermittently.
  • ) between the first regions 341 adjacent in the first direction (X direction) and the third direction (Y direction) is P CL ⁇ nG ⁇ m
  • ) between the first regions 341 adjacent in the direction 3 is P CL ⁇ mG ⁇ m.
  • n indicates the n-th convex surface 421 in the first direction when a certain convex surface 421 is numbered 0.
  • m indicates the m-th convex surface 421 in the third direction when a certain convex surface 421 is numbered 0.
  • the interval between the apexes 423 of the adjacent convex surfaces 421 is the interval between the centers of the adjacent first regions 341. Wider than. Also in the present embodiment, the width or diameter of the light beam formed by the convex surface 421 at the height at which the first region 341 having a cross section including the first direction and the height direction is disposed is the first region 341. Or less.
  • the first region 341 corresponds to the detected part.
  • the planar shape of the second region 342 is a square, and the second regions 342 are arranged adjacent to each other in the X direction and the Y direction.
  • the planar shape of the image plane in the present embodiment is the same as that of the second region 342.
  • the optical unit in the present embodiment is a substantially quadrangular prism-shaped region having the second region 342 as a bottom surface and the top surface as a convex surface 421.
  • the highest position (F ′) in the field curvature of the optical unit is located at a rectangular corner when the optical unit is viewed in plan.
  • the image of the first region 341 is observed as one image.
  • the marker 400 has the same effect as the marker 300.
  • the interval between the centers of the adjacent first regions 341 is narrower than the interval between the vertices 342 and 423 of the adjacent convex surfaces 341 and 421, but the center of the adjacent first region 341.
  • the interval between them may be wider than the interval between the vertices 342 and 423 of the adjacent convex surfaces 341 and 421.
  • the plurality of first regions 341 are arranged closer to the convex surfaces 321 and 421 than the focal positions of the plurality of convex surfaces 321 and 421.
  • the marker may have a gap between adjacent convex surfaces in the convex arrangement direction. Since the optical unit has a planar shape surrounded by a line representing the midpoint (equal distance point) of adjacent convex surfaces in the arrangement direction of the convex surfaces, when the marker has a gap between the convex surfaces, In the planar direction, it is a region up to the midpoint of the gap (the equidistant point from the center in the arrangement direction of the adjacent convex surfaces) in the arrangement direction of the convex surfaces. For example, as in the case of the marker 500 shown in FIG. 11, when there is a gap (plane portion) between the peripheral edges of the convex surfaces in the convex arrangement direction, the optical unit is along the first surface, the second surface, and the Z direction. It is represented by the part surrounded by a broken line.
  • FIG. 12A is a plan view of the marker 600
  • FIG. 12B is a partial cross-sectional view showing a part of the marker 600 cut along the line BB in FIG. 12A, with hatching omitted
  • FIG. 12D is a side view of the marker 600.
  • the marker 600 is configured in the same manner as the marker 300 except that the detected part is continuous in the Y direction.
  • the marker 600 has a plurality of convex surfaces 321, and the plurality of convex surfaces 321 are arranged side by side in the X direction and the Y direction orthogonal thereto.
  • the convex surfaces 321 form a row along the Y direction, and the rows of the convex surfaces 321 are arranged in the X direction.
  • the detected portion includes a concave portion 640 and a colored portion 650 accommodated therein.
  • the concave portion 640 is a rectangular concave portion that is elongated along the Y direction in the XY plane, and is formed at a position that spans all the convex surfaces 321 that form a row along the Y direction. Further, the recesses 640 are arranged in the X direction corresponding to the rows of the convex surfaces 321.
  • the detected parts are arranged corresponding to the rows of convex surfaces 321 in the X direction in the same manner as in the previous embodiment.
  • the pitch between adjacent convex surfaces 321 is the same as the center of the adjacent detected portion (recessed portion 640). Wider than the interval between.
  • the optical axes of the convex surfaces 321 arranged in a line in Y all extend in the same direction (Z direction).
  • the plurality of detected parts are the same in the XZ plane, located closer to the convex surface 321 than the focal point of the convex surface 321 and perpendicular to the height direction (Z direction) of the marker 600, as in the above-described embodiment. It is arranged to be located on the virtual plane.
  • the image plane is partitioned by one optical unit including one convex surface 321 as in the above-described embodiment.
  • the optical unit of the marker 600 includes, for example, one convex surface 321, and a substantially quadrangular prism-shaped region having a rectangular planar shape formed by a lattice that partitions the first surface for each convex surface 321. It is represented by
  • a linear image along the Y direction is observed as a set of individual images projected on each convex surface 321. Similar to the markers 300 and 400, this image is observed so that the marker 600 moves closer to the viewer as the marker 600 is tilted toward the viewer with respect to the X direction.
  • the convex surface 321 is curved not only in the X direction but also in the Y direction, the contrast of the image in the Y direction is higher than that of the marker 100. This is thought to be because the deviation of the focal length in the Y direction in the marker 600 is smaller than that in the marker 100.
  • the marker 600 is formed of a material having translucency, and is disposed at a plurality of convex surfaces 321 disposed along the X direction and the Y direction, and at the front and back positions of the plurality of convex surfaces 321 and optically. And a plurality of detected portions projected onto a plurality of convex surfaces 321 as detectable images.
  • the plurality of detected parts are positioned on the convex surface 321 side from the respective focal points of the plurality of convex surfaces 321 that are the farthest from the convex surface 321 among the image surfaces of the plurality of convex surfaces 321 curved by the curvature of field.
  • the image plane is defined by one optical unit including one convex surface 321.
  • the image plane is positioned on the same virtual plane perpendicular to the Z direction of the marker 600. Therefore, as with the markers 100 to 500, the marker 600 can be further reduced in size as compared with the marker in which the position of the detected portion is determined only in the direction along the second surface. , Have a wider detection angle.
  • FIG. 13A is a plan view of the marker 700
  • FIG. 13B is a partial cross-sectional view showing a part of the marker 700 cut along the line BB in FIG. 13A, with hatching omitted
  • FIG. FIG. 13D is a side view of the marker 700.
  • the marker 700 is configured in the same manner as the marker 600 except that the planar shape of the convex surface is rectangular, or is configured in the same manner as the marker 400 except that the detected part is continuous in the Y direction. .
  • the planar shape of the convex surface 421 is a square.
  • the shape of the convex surface 421 in the cross section along the optical axis is represented by a curve whose radius of curvature increases as the distance from the vertex of the convex surface 421 increases.
  • the plurality of detected parts are the same in the XZ plane, located closer to the convex surface 421 than the focal point of the convex surface 421 and perpendicular to the height direction (Z direction) of the marker 700, as in the above-described embodiment. It is arranged to be located on the virtual plane.
  • the optical unit of the marker 700 includes, for example, one convex surface 421, and has a rectangular (square) planar shape formed by a lattice that divides the first surface for each convex surface 421. Represented by the shape area.
  • the marker 700 can be further reduced in size as compared with the marker in which the position of the detected portion is determined only by the position in the direction along the second surface. Has a wide detection angle. Also, the marker 700 can increase the contrast in the Y direction of the detected image as compared with the marker 100, similarly to the marker 600.
  • the marker 700 can detect an image more clearly than the marker 600 regardless of the intensity of the incident light on the first surface. This is because when the incident light is strong, the reflected light at the marker 700, such as the reflected light at the first surface, becomes strong, and the image may be difficult to see, but the first surface of the marker 700 is substantially This is because it is composed only of a convex surface 421 (curved surface) and does not substantially include a flat surface, and therefore, compared to the marker 600, the reflected light on the first surface is less likely to occur and is weak.
  • FIG. 14A is a plan view of the marker 800
  • FIG. 14B is a partial cross-sectional view showing a part of the marker 800 cut along the line BB in FIG. 14A, with hatching omitted
  • FIG. 14D is a side view of the marker 800.
  • the marker 800 is configured in the same manner as the marker 600 except that the planar shape of the convex surface is a polygon.
  • the planar shape of the convex surface 821 is a regular hexagon.
  • the shape of the convex surface 821 in the cross section along the optical axis is represented by a curve whose radius of curvature increases as the distance from the vertex of the convex surface 821 increases.
  • the rows of convex surfaces 821 in the Y direction are arranged side by side in the Y direction so that each convex surface 821 is in contact with a pair of opposing sides.
  • the rows of the convex surfaces 821 are arranged so that the hexagonal corners of the convex surfaces 821 in the other row are in contact with the connecting portions of the convex surfaces 821 in one row, and are arranged in the X direction.
  • the entire first surface of the marker 800 is substantially constituted by a close-packed set of convex surfaces 821.
  • the plurality of detected parts are located on the convex surface 821 side with respect to the focal point of the convex surface 821 on the XZ plane, and are identical to the height direction (Z direction) of the marker 800. It is arranged to be located on the virtual plane.
  • the optical unit of the marker 800 includes, for example, one convex surface 821, and has a rectangular (square) planar shape formed by a lattice that divides the first surface for each convex surface 821. It is represented by a quadrangular prism region.
  • the rectangle is a shape defined by a straight line passing through the midpoint of one side shared by adjacent hexagons in the X direction and a straight line overlapping one side shared by adjacent hexagons in the Y direction.
  • the marker 800 can be further reduced in size as compared with the marker in which the position of the detected portion is determined only in the direction along the second surface, and more Has a wide detection angle. Also, the marker 800 can increase the contrast in the Y direction of the detected image as compared with the marker 100, similarly to the markers 600 and 700.
  • the image is clearly detected regardless of the intensity of the incident light on the first surface as compared with the marker 600 for the same reason as the marker 700.
  • the marker according to the present invention is useful as a position detection marker (or an angle detection marker) for recognizing the position and orientation of an object, and can reduce the size of the marker and widen the detection angle of the marker. Is effective in improving variation in the appearance of the collective image depending on the observation angle of the marker. Therefore, the present invention is expected to contribute to further development of the technical field of the marker.

Abstract

本発明のマーカは、透光性を有する材料で形成され、少なくともX方向に沿って配置された複数の凸面(121)と、複数の凸面(121)と表裏の位置に配置され、光学的に検出可能な像として複数の凸面(121)にそれぞれ投影される複数の被検出部とを有する。複数の被検出部は、マーカのZ方向に垂直な同一の仮想面上に位置するように配置されている。当該仮想面は、Z方向における凸面(121)の像面(B)上の焦点(F)からその最高点(F')の間に位置する。

Description

マーカ
 本発明は、マーカに関する。
 レンズと模様との組み合わせによる画像表示体(マーカ)には、レンチキュラーレンズと画像形成層とを有する画像表示シートが知られている。レンチキュラーレンズは、複数のシリンドリカルレンズが並列した構成を有している。また、画像形成層は、シリンドリカルレンズのそれぞれに対応する模様である。シリンドリカルレンズの凸面部側から画像表示体を見ると、見る位置に応じて模様の像が移動または変形して観察される。画像表示体は、拡張現実感(Augmented Reality:AR)やロボティクスなどの分野において、物体の位置や姿勢などを認識するためのマーカとして有用である。また、各用途における模様の配置などは、様々な検討がなされている(例えば、特許文献1および特許文献2参照)。
特開2013-025043号公報 特開2012-145559号公報
 特許文献1、2に記載の画像表示体をマーカとして使用する場合、画像表示体の検知角度は、広いことが好ましい。マーカの検知角度を広げるためには、シリンドリカルレンズの曲率半径を小さくして、シリンドリカルレンズの焦点距離を短くすることが考えられる。また、マーカとして使用される画像表示体は、射出成形により一体として製造することが考えられる。この場合、射出成形による画像表示体の生産性を向上させる観点から、シリンドリカルレンズの曲率半径は、大きいことが好ましい。
 このように、特許文献1、2に記載の画像表示体をマーカとして使用する場合、マーカとしての検知角度を広げることと、画像表示体の小型化とを両立することは、困難となっている。
 本発明は、小型化および検知角度を広くすることができるマーカを提供することを課題とする。
 本発明のマーカは、透光性を有する材料で形成され、少なくとも第1の方向に沿って配置された複数の凸面と、前記複数の凸面と表裏の位置に配置され、光学的に検出可能な像として前記複数の凸面に投影される複数の被検出部と、を有するマーカであって、前記複数の被検出部は、像面湾曲により湾曲した前記複数の凸面のそれぞれの像面のなかで前記凸面から最も遠い点(焦点位置)である前記複数の凸面のそれぞれの焦点より前記凸面側に位置し、かつ前記マーカの高さ方向に垂直な同一の仮想面上に位置するように配置されている。
 本発明は、小型化するとともに、検知角度が広いマーカを提供することができる。
図1A、Bは、本発明の実施の形態1に係るマーカの構成を模式的に示す図である。 図2は、像面湾曲を説明するための図である。 図3は、高さ方向における被検出部の位置を説明するための図である。 図4は、マーカの作用を説明するための図である。 図5は、シミュレーションの条件を説明するための図である。 図6A~Iは、シミュレーションの結果を示す図である。 図7は、焦点Fの高さから上記像面湾曲の中で凸面に最も近い点の高さまでのシミュレーションによるスポットダイヤグラムを示す図である。 図8A~Cは、本発明の実施の形態2に係るマーカの構成を模式的に示す図である。 図9A~Cは、本発明の実施の形態3に係るマーカの構成を模式的に示す図である。 図10A~Cは、本発明の実施の形態4に係るマーカの構成を模式的に示す図である。 図11は、本発明の実施の形態5に係るマーカの構成を模式的に示す図である。 図12Aは、本発明の実施の形態6に係るマーカを模式的に示す平面図であり、図12Bは、図12AにおけるB-B線で切断した上記マーカの一部を模式的に示す、ハッチングを省略した部分断面図であり、図12Cは、上記マーカの底面を模式的に示す底面図であり、図12Dは、上記マーカの側面を模式的に示す側面図である。 図13Aは、本発明の実施の形態7に係るマーカを模式的に示す平面図であり、図13Bは、図13AにおけるB-B線で切断した上記マーカの一部を模式的に示す、ハッチングを省略した部分断面図であり、図13Cは、上記マーカの底面を模式的に示す底面図であり、図13Dは、上記マーカの側面を模式的に示す側面図である。 図14Aは、本発明の実施の形態8に係るマーカを模式的に示す平面図であり、図14Bは、図14AにおけるB-B線で切断した上記マーカの一部を模式的に示す、ハッチングを省略した部分断面図であり、図14Cは、上記マーカの底面を模式的に示す底面図であり、図14Dは、上記マーカの側面を模式的に示す側面図である。
 以下、添付した図面を参照して、本発明の一実施の形態に係るマーカについて説明する。
 [実施の形態1]
 (マーカの構成)
 図1A、Bは、本発明の実施の形態1に係るマーカ100の構成を示す図である。図1Aは、マーカ100の平面図であり、図1Bは、正面図である。
 図1Aおよび1Bに示されるように、マーカ100は、表面(第1面)120と、裏面(第2面)140とを有する。マーカ100の材料は、透光性を有する。マーカ100の材料の例には、ポリカーボネート、アクリル樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)などの透明な樹脂やガラスなどが含まれる。マーカ100の材料は、屈折率ndが1.54のシクロオレフィンコポリマー(COC)である。表面120は、複数の凸面121を含む。また、裏面140は、複数の被検出部141を含む。
 複数の凸面121は、少なくとも第1の方向(図1におけるX方向)に沿って配置されている。複数の凸面121は、第1の方向およびマーカ100の高さ方向(第2の方向;図1におけるZ方向)に垂直な第3の方向(図1におけるY方向)にそれぞれ延在している。凸面121は、第3の方向に向かって直線状に延在する稜線122を含み、かつ第1の方向にのみ曲率を有する曲面である。すなわち、マーカ100は、レンチキュラーの構造を有する。
 複数の凸面121のうち、隣り合う2つの凸面121は、離間して配置されていてもよいし、隙間なく配置されていてもよい。本実施の形態では、複数の凸面121のうち、隣り合う2つの凸面121は、隙間なく配置されている。
 複数の凸面121の大きさは、全て同じである。例えば、1つの凸面121の曲率半径Rは、246μmであり、焦点距離は460μmである。1つの凸面121の幅W1(第1の方向における長さ)は、複数の凸面121のピッチPCLと同じである。ここで「ピッチ」とは、隣り合う凸面121の第1の方向における稜線122(光軸LAまたは中心軸CA)間の距離であり、凸面121の第1の方向における長さ(幅)でもある。ここで、「凸面121の光軸LA」または「凸面121の中心軸CA」とは、凸面121を平面視したときに、凸面121の中心であって、かつ第1の方向および第3の方向のいずれにも垂直な第2の方向(図1におけるZ方向)に沿う直線を意味する。
 第1の方向に沿う直線を含む第2の方向(高さ方向)の断面において、凸面121の形状は、弧であってもよいし、円弧であってもよい。ここで、「弧」とは、円弧以外の曲線であり、例えば、曲率半径Rが異なる円弧が連結してなる曲線を意味する。本実施の形態では、弧は、凸面121の稜線122から離れるに連れて曲率半径Rが大きくなる曲線であることが好ましい。
 複数の被検出部141は、複数の凸面121と表裏の位置に配置され、光学的に検出可能な像として複数の凸面121にそれぞれ投影される。被検出部141は、マーカ100を平面視した場合に、第3の方向に沿って配置されている。被検出部141の構成は、前述したように、光学的に検出可能な像として複数の凸面121にそれぞれ投影される範囲において適宜に決めることができる。たとえば、被検出部141は、凹部であってもよいし、凸部であってもよい。本実施の形態では、被検出部141は、凹部である。凹部の形状は、マーカ100を平面視したときに、所定の幅となる範囲において適宜に決めることができる。また、この凹部には、塗料を塗布して形成された塗膜142が配置されていてもよい。本実施の形態では、被検出部141の平面視形状は、第3の方向を長手方向とする矩形である。なお、被検出部141の高さ方向(第2の方向)における高さ(位置)は、本発明の主たる特徴の一つであるため、詳細は後述する。
 また、被検出部141を構成するための凹部の深さは、塗料の塗装の容易さおよび所期の機能(像の表示)を発揮できる範囲において適宜に決めることができる。たとえば、被検出部141を構成するための凹部の深さは、10~100μmの範囲から適宜決めることができる。被検出部141の幅W2をPCLに対して小さくすると、凸面121側で観察される像の見え方の角度に対する感度が向上する傾向がある。また、被検出部141の幅W2をPCLに対して大きくすると、被検出部141の作製が容易となる傾向がある。ピッチPCLに対する被検出部141の幅W2の比(W2/PCL)は、十分に明確な上記像を得る観点から1/100~1/5であることが好ましい。
 被検出部141は、表面120側から凸面121の第1の方向および第3の方向における中央でマーカ100を観察したときに、被検出部141による像が凸面121の中央部に観察されるべき位置に配置されている。
 例えば、第1の方向において、表面120の中央に位置する凸面121(図1Bにおけるn=0の凸面121)に対応する被検出部141は、その中心Cがn=0の凸面121の中心軸CAと重なる位置に配置される。
 第1の方向における隣り合う凸面121に対応する被検出部141の中心間の距離(|C-Cn-1|)は、PCL+nG(μm)で表される。PCLは、前述したように、隣り合う凸面121の第1の方向における稜線122間の距離を示している。また、Gは、像の光学的効果を発現させるための、第1の方向におけるPCLからの所定の間隔を示している。さらに、nは、中心の凸面121を0番としたときの第1の方向におけるn番目の凸面121であることを示している。
 このように、中心(n=0)の凸面121から離れた位置にある凸面121に対応する被検出部141は、その凸面121の中心軸CAよりも第1の方向において、より外側に配置されている。
 被検出部141には、塗膜142が形成されている。塗膜142は、例えば、黒色の液体塗料の固化物である。
 塗膜142は、塗料の塗布および固化により作製される。黒色の液体塗料は、流動性を有し、例えば液状の組成物であり、あるいは粉体である。塗料を塗布または固化する方法は、公知の方法の中から塗料に応じて適宜に決めることができる。たとえば、黒色の液体塗料の塗布方法の例には、スプレー塗布およびスクリーン印刷が含まれる。また、黒色の液体塗料の固化方法の例には、黒色の液体塗料の乾燥、黒色の液体塗料中の硬化成分(ラジカル重合性化合物など)の硬化、および粉体の焼き付けが含まれる。
 塗膜142は、光学的に区別可能な部分を形成する。光学的に区別可能とは、その塗膜142とそれ以外の部分とが光学的な特性で明らかな差を有することを意味する。ここで、「光学的な特性」とは、例えば、明度、彩度、色相などの色合いであり、あるいは、輝度などの光の強さを意味する。上記の差は、マーカの用途に応じて適宜に決めることができ、例えば、目視で確認可能な差であってもよいし、光学的な検出装置で確認可能な差であってもよい。また、上記の差は、塗膜142から直接検出可能な差であってもよいし、例えば塗膜142が蛍光を発する透明な膜である場合のように、UVランプの照射などのさらなる操作を伴って検出可能な差であってもよい。
 マーカ100を白色の物体上に載置した場合、それぞれの凸面121で入射した光のうち、被検出部141に到達した光は、塗膜142に吸収され、それ以外の部分に到達した光は、概ね物体の表面で反射する。このため、凸面121には、白色の背景上に塗膜142の色(黒色)の線の像が投影される。
 そして、被検出部141は、マーカ100の第1の方向における中心からの距離に応じて適宜に配置されているため、表面120側からマーカ100を観察すると、黒色の線の像が集合した黒色の集合像が観察される。
 黒色の集合像は、例えば、第1の方向における中央からマーカ100を見たときには、第1の方向における中央部に観察される。マーカ100を、第1の方向について角度を変えて観察すると、集合像は、角度に応じて、第1の方向における異なる位置に観察される。したがって、集合像の第1の方向における位置から、マーカ100の観察位置の角度が決まる。
 ここで、高さ方向(第2の方向)における被検出部141の位置(高さ)について説明する。図2は、像面湾曲を説明するための図である。図3は、被検出部141の高さ方向における位置を説明するための図である。図4は、マーカ100の作用を説明するための図である。
 一般的に、マーカ100における凸面121のような曲面で構成された凸面では、像面湾曲が生じることが知られている。像面湾曲は、原理的に凸面121のような正レンズによる集光を利用したすべての光学系において生じる。図2に示されるように、凸面121の光軸LAと平行な光線L1が凸面121に入射した場合、光線L1は、凸面121の焦点Fに向かって集光する。しかしながら、光軸LA(光線L1)に対して傾斜した光線L2、L3は、高さ方向において、焦点Fよりも凸面121側の位置(F2およびF3参照)において集光する。このように、単一の凸面において、凸面121に入射する光線の傾斜角により、光線が集光する位置(高さ)が異なることを像面湾曲という。そして、光線が集光する点を含む面を像面Bという。マーカ100の凸面において、像面Bは、第3の方向に沿った略U字溝状である。このように、像面Bは、一つの凸面を含む一光学ユニットで区画されており、マーカ100では、第1の方向において、焦点Fを中心とするとともに一つの凸面121の幅を有する面で表される。
 また、像面湾曲量は、一般的に、空気中での値(空気換算長)により算出される。したがって、本明細書においても、原則、空気換算長をもって像面湾曲量を説明する。なお、実際においては、使用される材料の屈折率により、実際のマーカの厚みが決定される。
 マーカ100は、この像面湾曲を利用して、小型化できるとともに、観察角度を広くすることができる。より具体的には、図3に示されるように、複数の被検出部141の底部は、像面湾曲により湾曲した複数の凸面121のそれぞれの像面Bのなかで凸面121から最も遠い点である複数の凸面121のそれぞれの焦点Fより凸面121側に位置している。また、被検出部141の底部は、マーカ100の高さ方向に垂直な同一の仮想面(仮想平面)A上に位置するように配置されている。ここで、「焦点F」とは、一般的に知られているとおり、光軸LAと平行な光線(光束)が凸面121に入射したとき、光軸LAと光線とが交差する点を意味し、第1面(レンズ)の焦点距離から算出される点を意味する。
 また、仮想面Aは、像面湾曲により湾曲した複数の凸面121のそれぞれの像面Bのなかで凸面121に最も近い点(F’)よりも凸面121から離れて位置することが好ましい。さらに、仮想面Aは、複数の凸面121のそれぞれの光軸LA上において凸面121の焦点距離の5%の長さ以上、複数の凸面121のそれぞれの焦点Fより凸面121側に位置することがより好ましい。前述したように、本実施の形態では、焦点距離が460μmであることから、焦点距離の5%の長さは23μmである。本実施の形態では、例えば、仮想面Aは、焦点Fから50μm凸面121側に位置している。一方、仮想面Aが像面湾曲により湾曲した複数の凸面121のそれぞれの像面Bのなかで凸面121に最も近い点よりも凸面121側に位置する場合、黒色の集合像を適切に観察できないおそれがある。
 図4では、第1の方向(X方向)において、凸面121の端部と被検出部141が同じ位置に配置されている例を示している。図4に示されるように、被検出部141の表面(被検出位置)が焦点Fと同じ高さに位置していると、光軸LAに対する角度がθ1の範囲内であれば、被検出部141を観察できることがわかる。一方、高さ方向において、被検出部141の表面(被検出位置)が凸面121の焦点Fより凸面121側に位置している場合には、光軸LAに対する角度がθ2の範囲内であれば、被検出部141を観察できることがわかる。すなわち、被検出部141が凸面121の焦点Fよりも凸面121側に位置している場合、光軸LAに対する角度が大きい場合であっても被検出部141を観察できる。すなわち、マーカ100は、第1の方向において、凸面121の焦点F上に被検出部141が配置されたマーカと比較して、検知角度を広くすることができる。
 また、第3の方向(図4の紙面垂直方向)においても同様に、被検出部141が凸面121の焦点Fよりも凸面121側に配置することによって、光軸LAに対する角度が大きい場合であっても被検出部141を観察できる。すなわち、第3の方向においても、マーカ100の検知角度を広くすることができる。
 (シミュレーション)
 次いで、高さ方向における被検出部141の位置と、被検出部141の位置におけるスポットダイヤグラムとの関係について調べた。本シミュレーションでは、後述する実施の形態2に係るマーカ200の凸面221を使用した。マーカ200の凸面221は、第1の方向および第3の方向において所定の曲率を有する。本シミュレーションでは、凸面221に入射する光線として、光軸LAと平行な光線L4と、光軸LAに対する傾斜角が13°の光線L5と、光軸LAに対する傾斜角が26°の光線L6と、を用いた。また、高さ方向における被検出部241の位置(高さ)は、凸面221の焦点と同じ高さh1と、凸面221より50μm凸面221側に移動した高さh2と、凸面221の焦点より50μm凸面221から離れる方向に移動した高さh3とした。本シミュレーションにおける高さh2は、前述した仮想面Aの好ましい高さ(凸面121の焦点距離の5%の長さ以上、焦点Fより凸面121側の位置)の範囲内に含まれる。
 図5は、高さ方向における被検出部241の位置を説明するための光線図である。図6は、各位置におけるスポットダイヤグラムである。図6Aは、高さh2における光線L4のスポットダイヤグラムであり、図6Bは、高さh2における光線L5のスポットダイヤグラムであり、図6Cは、高さh2における光線L6のスポットダイヤグラムであり、図6Dは、高さh1における光線L4のスポットダイヤグラムであり、図6Eは、高さh1における光線L5のスポットダイヤグラムであり、図6Fは、高さh1における光線L6のスポットダイヤグラムであり、図6Gは、高さh3における光線L4のスポットダイヤグラムであり、図6Hは、高さh3における光線L5のスポットダイヤグラムであり、図6Iは、高さh3における光線L6のスポットダイヤグラムである。なお、図5では、凸面221の両を通過する2本の光線と、当該両部を通る2本の直線の中間位置を通る光線のみを示している。
 図5、図6D~Fに示されるように、被検出部241が凸面221の焦点と同じ高さh1にある場合、光軸LAと平行な光線L4は、狙い通り、光軸LA上での光束の面積(幅)が最小になっていることが分かった。また、光線L5および光線L6は、像面湾曲やその他の収差により光軸LAに対する角度が大きくなるほど、スポットの外径が大きくなることが分かった。また、図5、図6G~Iに示されるように、被検出部241が凸面221の焦点より50μm凸面221から離れる方向に移動した高さh3にある場合、光線L4、光線L5および光線L6の光軸LAに対する角度が大きくなるほど、スポットの外径が大きくなることが分かった。一方、図5、図6A~Cに示されるように、被検出部241が凸面221の焦点より50μm凸面221側に移動した高さh2にある場合、光軸LAに対する角度に関わらず、光線L4、光線L5および光線L6におけるスポットの外径は、ほとんど同じ大きさであった。このことは、本発明において被検出部241の位置を焦点より凸面221側に移動したことにより、被検出部241が焦点と同じ高さに位置した場合と比較して、観察角度による黒色の集合像の見え方のばらつきが改善されていることを意味している。
 なお、本シミュレーションをマーカ100の凸面121に適用した場合、図6A~Iのスポットダイヤグラムに対応するスポットダイヤグラムは、図6の紙面上下方向にのみ延在する。これは、実施の形態1に係るマーカ100の凸面121は、第1の方向にのみ曲率を有するためである。そして、前述した実施の形態2に係るマーカ200の凸面221と同様に、被検出部141が凸面121の焦点と同じ高さh1にある場合、光軸LAと平行な光線L4は、焦点に集光していることが分かった。また、光線L5および光線L6は、像面湾曲やその他の収差により光軸LAに対する角度が大きくなるほど、スポットが分散する距離が大きくなることが分かる。また、被検出部141が凸面121の焦点より50μm凸面121から離れる方向に移動した高さh3にある場合、光線L4、光線L5および光線L6の光軸LAに対する角度が大きくなるほど、スポットが分散する距離が大きくなることが分かる。一方、被検出部141が凸面121の焦点より50μm凸面121側に移動した高さh2にある場合、光軸LAに対する角度に関わらず、光線L4、光線L5および光線L6におけるスポットが分散する距離は、ほとんど同じであった。
 このように、被検出部141を凸面121の焦点より凸面121側に配置したマーカ100において、凸面121に入射した光線(光束)は、所定の傾斜角の範囲内で同様のスポット径となるように集光する。これにより、被検出部141は、傾斜角が光軸LAに対して傾斜した所定の角度範囲内において最も黒色の集合像として安定的に観察されることが分かる。そして、当該傾斜角の最大値および最小値のそれぞれから所定の角度範囲内において、黒色の集合像が観察できる。よって、被検出部141を凸面121の焦点より凸面121側に配置したマーカ100では、検出角度を広げることができる。被検出部141は、所定の角度範囲内で変化する凸面121の焦点高さの範囲内に設置される。したがって、被検出部141には、所定の角度範囲内で必ず1つ以上の角度において、焦点が結ばれる。
 図7は、上記と同じ条件のシミュレーションによる焦点F(h=0μm)の高さから上記像面湾曲の中で凸面に最も近い点F’(h=53μm)の高さまでのスポットダイヤグラムを示す図である。図7中、「h」は、焦点Fからの第2の方向における凸面側への距離(高さ、μm)を表し、「L4」、「L5」、「L6」は、光線を表す。また、図中のそれぞれのスポットの隣りには、h=50、L4のときのスポットの長さと同じ長さを有する線が、スポットの大きさの比較のために配置されている。たとえば、図7中、h=0の三点のスポットダイヤグラムは、スポットの向きが異なる以外は、図6D~6Fのそれらに対応している。なお、「h」は、空気換算長で表されている。
 前述したように、焦点Fと同じ高さに被検出部がある場合には、光軸LA上での光束の面積(幅)が最小になり、光線の光軸LAに対する角度が大きくなるほど、スポットの外径が大きくなる。焦点Fから30μm離れた位置(h=30)では、L4のスポットの実質的な大きさ(図7中で濃く表示される部分の大きさ)に対してL6のスポットの実質的な大きさがL4のスポットの実質的な大きさの+20%以内まで小さくなっている。焦点Fからの距離hが大きくなる程、L4、L5、L6に対応するスポットの実質的な大きさの差は小さくなる。その一方で、焦点Fからの距離hが大きくなる程、L4のスポットの濃さに対してL6のスポットが薄くなる。
 また、上記シミュレーションにおけるhの値、そのときのレンズの厚さT、上記hの範囲における検知角度の最大値θ2、および、当該最大値θ2と焦点Fの高さでの検知角度の最大値θ2s(26.4°)との差Δθ(θ2-θ2s)を表1に示す。なお、レンズの厚さTは、第2の方向におけるレンズの凸面から被検出部の上面までの距離である。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、h=28μm以上であれば、検知角度の最大値θ2を焦点Fの高さにおけるそれに対して2.0°以上大きくすることができ、またh=35μm以上であれば2.5°以上、h=41μm以上であれば3.0°以上、h=47μm以上であれば3.5°以上、それぞれ大きくすることが可能である。また、h=36μm以上であれば、検知角度の最大値を、焦点Fの高さにおける検知角度の最大値θ2sの110%以上に、h=52μm以上であれば、θ2sの115%以上に、それぞれ大きくすることが可能である。
 なお、上記マーカにおける焦点Fの位置は、凸面の曲率半径と屈折率から求めることが可能であり、凸面の焦点Fの高さから、像面湾曲における最高の位置(F’)の高さまでの距離hg(hの最大値)は、公知の方法により算出することが可能である。たとえば、上記hgは、岸川利郎著「ユーザーエンジニアのための光学入門」(株式会社オプトニクス社)に記載の式(4.34)および式(4.37)(106、107頁)から算出することができる。また、検知角度の最大値θ2は、上記のhgと上記マーカにおける一光学ユニットの構造とから算出することができる。また、上記空気換算長は、同書に記載の式(2.44)および式(2.45)から算出することができる。
 以上より明らかなように、上記マーカにおける第2の方向での被検出部の位置は、像の大きさ、像の鮮明さ、検知範囲などの諸要件に応じて適宜に決めることが可能である。上記被検出部の位置は、前述のシミュレーションの結果のみに基づいて決めることも可能であるが、上記のシミュレーションの結果に加えて、像面湾曲以外の他の収差や、上記像の検出者または検出機器の感覚や感度などの他の因子の影響もさらに考慮して適宜に決めることも可能である。
 たとえば、個々の凸面に映し出される被検出部の像の大きさを揃える観点からは、第2の方向における被検出部の位置は、高い程好ましく、例えば、焦点Fの高さから0.55hg以上の位置であることが好ましく、0.75hg以上の位置であることがより好ましく、0.94hg以上であることがさらに好ましい。上記被検出部の位置が0.55hg以上であると、上記被検出部の像を、最も明瞭な、被検出部の位置が焦点Fの高さのときの像の大きさに対して120%以内の範囲内に揃えることが可能となり、0.75hg以上であると、検知される被検出部の像の大きさを実質的に同じに揃えることが可能となる。
 また、検知される被検出部の像の鮮明さを高める観点では、上記被検出部の位置は、ある程度の値よりも小さいことが好ましく、例えば、0.9hg以下であることが好ましく、0.85hg以下であることがより好ましく、0.8hg以下であることがさらに好ましく、0.75hg以下であることがより一層好ましい。また、検知される被検出部の像の大きさと鮮明さとを両立させる観点では、上記被検出部の位置は、0.66hg~0.85hgであることが好ましく、0.7hg~0.8hgであることがより好ましい。
 また、上記検知角度θ2を大きくする観点から、上記被検出部の位置は、0.53hg以上であることが好ましく、0.66hg以上であることがより好ましく、0.77hg以上であることがさらに好ましく、0.89hg以上であることがより一層好ましい。被検出部の位置が0.53hgであれば、検知角度の最大値θ2を、θ2sに比べて、2.0°以上大きくすることができ、0.66hg以上であれば2.5°以上、0.77hg以上であれば3.0°以上、0.89hg以上であれば3.5°以上、それぞれ大きくすることができる。
 あるいは、同様の観点から、上記被検出部の位置は、0.68hg以上であることが好ましく、0.98hg以上であることがより好ましい。被検出部の位置が0.68hg以上であれば、θ2をθ2sの110%以上にすることができ、0.98hg以上であればθ2をθ2sの115%以上にすることができる。
 (効果)
 以上のように、マーカ100は、高さ方向における被検出部141の位置を、凸面121の焦点Fより凸面121側に配置している。よって、マーカ100では、マーカ100の高さ(厚み)方向について小型化できるとともに、検知角度を広げることができる。
 [実施の形態2]
 実施の形態2に係るマーカ200は、凸面221および被検出部241の構成のみが実施の形態1に係るマーカ100と異なる。そこで、マーカ100と同じ構成については、同じ符号を付してその説明を省略する。
 図8A~Cは、マーカ200の構成を示す図である。図8Aは、マーカ200の構成を模式的に示す平面図であり、図8Bは、マーカ200の図8AにおけるB-B線に沿う断面を模式的に示す図であり、図8Cは、マーカ200の構成を模式的に示す底面図である。
 図8A~Cに示されるように、マーカ200は、表面(第1面)220と、裏面(第2面)240とを有する。表面220は、複数の凸面221を含む。また、裏面240は、複数の被検出部241を含む。
 凸面221の平面視形状は円形であり、いずれも同じ大きさである。例えば、凸面221の平面視形状の直径は、350μmであり、凸面221のピッチPCLは、第1の方向および第3の方向のいずれも370μmである。ここで、「ピッチ」とは、隣り合う凸面221の中心間距離を意味する。
 第1の方向に沿う直線および第2の方向に沿う直線を含む断面において、凸面221の形状は、弧であってもよいし、円弧であってもよい。なお、本実施の形態では、凸面221の断面の形状は、弧である。また、本実施の形態では、弧は、凸面221の中心軸CAから離れるに連れて曲率半径が大きくなる曲面である。すなわち、本実施の形態では、凸面221の形状は、非球面である。また、凸面221の中心軸CAは第2の方向に平行な直線であることから、非球面は、凸面221の中心軸CAから離れるに連れて曲率半径が大きくなる曲面である。ここで、「凸面221の中心軸CA」または「凸面221の光軸LA」とは、マーカ200を平面視したときの凸面221の中心を通り、かつ第2の方向に沿う直線を意味する。
 被検出部241の平面視形状は円形である。また、被検出部241の第1の方向および第3の方向における断面形状は、いずれも矩形である。
 第1の方向において隣り合う被検出部241の中心間距離(|C-Cn-1|)は、PCL+nG(μm)であり、第3の方向において隣り合う被検出部241間の中心間距離(|C-Cm-1|)は、PCL+mG(μm)である。nは、前述したように、ある凸面221を0番としたときの第1の方向におけるn番目の凸面221であることを示す。mは、ある凸面221を0番としたときの第3の方向におけるm番目の凸面221であることを示す。
 本実施の形態における「像面」は、一つの凸面221を含む一光学ユニットで区画されている。すなわち、上記像面は、凸面221による焦点を中心とする、凸面221とは反対側に突出する凸曲面であって、一つの凸面221を含む一格子(矩形)の平面形状を有している。当該格子は、その延出方向(X方向およびY方向)における隣り合う凸面221の中点(等距離点)を表す線で囲まれる矩形の部分である。この実施形態における一光学ユニットは、一つの凸面221を頂面として含み、それに対応する上記格子の平面形状を有する略四角柱形状の領域で表される。この光学ユニットにおける像面湾曲における最高の位置(F’)は、当該光学ユニットを平面視したときの矩形の角に位置する。被検出部241は、いずれも、第2の方向における上記焦点よりも凸面221側の一平面上に位置しており、より好ましくは、いずれも、第2の方向における上記焦点と上記像面の周縁との間の一平面上に位置している。
 マーカ200では、凸面221側から観察したときに、各凸面221に投影された被検出部241よる黒色の点の像が集合した集合像が観察される。この集合像の位置は、凸面221側から見る角度に応じて変化する。よって、マーカ200は、見る角度に応じて平面方向に像が移動する、回転角度用のマーカとして用いられる。
 なお、凸面221の平面視形状は、前述した円形の他、矩形でもよく、凸レンズとして機能し得る形状の範囲で適宜に決めることが可能である。さらに、被検出部の平面視形状もまた、前述した円形以外の形であってもよく、例えば矩形であってもよい。
 マーカ200の凸面221を用いたシミュレーション結果は、前述した通りである。
 (効果)
 以上のように、マーカ200は、マーカ100と同様の効果を有する。
 なお、実施の形態1では、中心(n=0)の凸面121から離れた位置にある凸面121に対応する被検出部141は、その凸面121の中心軸CAよりも第1の方向において、より外側に配置されているが、凸面121の中心軸CAよりも第1の方向において、より内側に配置されていてもよい。
 また、実施の形態2では、中心(n=0)の凸面221から離れた位置にある凸面221に対応する被検出部241は、その凸面221の中心軸CAよりも第1の方向および第3の方向において、より外側に配置されているが、凸面221の中心軸CAよりも第1の方向および第3の方向において、より内側に配置されていてもよい。
 なお、実施の形態1、2では、被検出部141、241は、凹部で形成したが、凸部で形成してもよい。この場合、凸部の頂面に塗膜142が形成されていてもよい。また、実施の形態1、2における塗膜142は、着色されたシールであってもよい。
 さらに、実施の形態1、2では、凹部にのみ塗膜142を形成したが、凹部および凹部以外の領域に塗膜142を形成してもよい。この場合、凹部および凹部以外の領域は、それぞれ異なる色で構成された塗膜やシールであってもよい。さらに、被検出部141、241は、凹部および凹部以外の領域の一方または両方に形成された角錐状の微小プリズムによる凹凸や金属の蒸着膜などによる反射面であってもよい。
 [実施の形態3]
 実施の形態3に係るマーカ300は、凸面321の形状と、第1領域341の形状と、第2領域342の形状とが実施の形態2に係るマーカ200の構成と異なる。そこで、実施の形態2に係るマーカ200と同じ構成については、同じ符号を付してその説明を省略する。
 図9A~Cは、マーカ300の構成を示す図である。図9Aは、マーカ300の平面図であり、図9Bは、ハッチングを省略した部分的拡大断面図であり、図9Cは、底面図である。
 図9A~Cに示されるように、マーカ300は、第1面320および第2面340を有する。第1面320は、複数の凸面321を含む。また、第2面340は、複数の第1領域341と、第2領域342とを含む。
 凸面321の平面視形状は円形であり、いずれも同じ大きさである。たとえば、凸面321の平面視形状の直径は、440μmであり、凸面321のピッチPCLは、第1の方向(X方向)および第3の方向(Y方向)のいずれも440μmである。ここで「凸面321ピッチ」とは、隣り合う凸面321の中心(頂点323または中心軸CA)間の距離を意味する。また、「凸面321の中心軸CA」とは、凸面321を平面視したときに、凸面321の中心を通り、かつ第2の方向(Z方向)に沿う直線を意味する。さらに「凸面321の頂点323」とは、凸面321と、中心軸CAとの交点である。
 マーカ300の高さ方向(Z方向)の断面において、複数の凸面321の形状は、ほぼ半円状である。すなわち、凸面321の中心軸CAは第2の方向(Z方向)に平行な直線であることから、凸面321は、ほぼ半球面である。すなわち、凸面321は、中心軸CAを回転軸とした回転対称である。また、凸面321の焦点F3は、凸面321からみたとき、第1領域341よりも遠くに位置している。言い換えれば、第1領域(被検出部)341は、表面(第1面)320の焦点位置よりも凸面321の近くに配置されている。
 また、マーカ300は、その裏面側に、凸面321のそれぞれに対応する位置に配置された第1領域341を有している。たとえば、第1領域341の平面視形状は円形である。
 第1の方向(X方向)において隣り合う第1領域341間の中心間距離(|C-Cn-1|)は、PCL-nGμmであり、第3の方向(Y方向)において隣り合う第1領域341間の中心間距離(|C-Cm-1|)は、PCL-mGμmである。nは、ある凸面321を0番としたときの第1の方向(X方向)におけるn番目の凸面321であることを示す。mは、ある凸面321を0番としたときの第3の方向(Y方向)におけるm番目の凸面321であることを示す。
 このように、中心(n=0)の凸面321から第1の方向(X方向)離れた位置にある凸面321に対応する第1領域341は、その凸面321の中心軸CAよりも第1の方向(X方向)において、より中心(n=0)の凸面321側に配置されている。また、中心(m=0)の凸面321から第3の方向(Y方向)離れた位置にある凸面321に対応する第1領域341は、その凸面321の中心軸CAよりも第3の方向(Y方向)において、より中心(n=0)の凸面321側に配置されている。すなわち、本実施の形態では、第1の方向(X方向)および第3の方向(Y方向)において、隣接する第1領域341の中心間の間隔は、隣接する凸面321の頂点323間の間隔よりも狭い。また、本実施の形態においても、第1の方向(X方向)および高さ方向(Z方向)を含む断面の第1領域341が配置された高さにおいて、凸面321により形成される光束の幅は、第1領域341の幅以下である。
 本実施の形態において、第1領域341は、被検出部に相当する。また、第2領域342は、互いにX方向およびY方向に隣接して配置されている。本実施の形態における像面の平面形状は、互いに配列する第2領域342の等距離点を表す線で囲まれた形状、すなわち第2領域342に外接する正方形、である。また、本実施の形態における光学ユニットは、第2面340における当該平面形状の部分を底面とし、頂部に凸面321を有する略四角柱形状の領域である。この光学ユニットにおける像面湾曲における最高の位置(F’)は、当該光学ユニットを平面視したときの矩形の角に位置する。
 特に図示しないが、マーカ300においても、観察角度を変化させた場合に、第1領域341の像が一つの像として観察される。マーカ300では、光軸に対してより大きな角度でマーカ300を観察すると、像は、観察者に近づく方向に移動するように観察される。
 以上のように、マーカ300は、マーカ100、200と同様の効果を有する。
 [実施の形態4]
 実施の形態4に係るマーカ400は、凸面421の形状のみが実施の形態3に係るマーカ300の構成と異なる。そこで、マーカ300と同じ構成については、同じ符号を付してその説明を省略する。
 図10A~Cは、マーカ400の構成を示す図である。図10Aは、マーカ400の平面図であり、図10Bは、ハッチングを省略した部分拡大断面図であり、図10Cは、底面図である。
 図10A~10Cに示されるように、マーカ400は、第1面420および第2面340を有する。第1面420は、複数の凸面421を含む。また、第2面340は、複数の第1領域341と、第2領域342とを含む。第1領域(被検出部)341は、マーカ300のそれと同様に、表面(第1面)420の焦点位置よりも凸面321の近くに配置されている。
 凸面421の平面視形状は正方形であり、いずれも同じ大きさである。また、たとえば、凸面421の平面視形状の一辺の長さは、第1の方向および第3の方向のいずれの方向における凸面421のピッチPCLと同じである。ここで「凸面421ピッチ」とは、隣り合う凸面421の中心(頂点423または中心軸CA)間の距離を意味する。また、「凸面421の中心軸CA」とは、凸面421を平面視したときに、凸面421の中心を通り、かつ第2の方向に沿う直線を意味する。さらに「凸面421の頂点423」とは、凸面421と、中心軸CAとの交点である。
 マーカ400の高さ方向(Z方向)の断面において、複数の凸面421は、その頂点423から離れるにつれて曲率半径が大きくなる曲線である。当該曲率半径は、その頂点423から離れるにつれて連続して大きくなってもよいし、断続的に大きくなってもよい。
 第1の方向(X方向)および第3の方向(Y方向)において隣り合う第1領域341間の中心間距離(|C-Cn-1|)は、PCL-nGμmであり、第3の方向において隣り合う第1領域341間の中心間距離(|C-Cm-1|)は、PCL-mGμmである。nは、前述したように、ある凸面421を0番としたときの第1の方向におけるn番目の凸面421であることを示す。mは、ある凸面421を0番としたときの第3の方向におけるm番目の凸面421であることを示す。
 このように、中心(n=0)の凸面421から第1の方向(X方向)離れた位置にある凸面421に対応する第1領域341は、その凸面421の中心軸CAよりも第1の方向(X方向)において、より中心(n=0)の凸面421側に配置されている。また、中心(m=0)の凸面421から第3の方向(Y方向)離れた位置にある凸面421に対応する第1領域341は、その凸面421の中心軸CAよりも第3の方向(Y方向)において、より内側に配置されている。すなわち、本実施の形態では、第1の方向(X方向)および第3の方向(Y方向)において、隣接する凸面421の頂点423間の間隔は、隣接する第1領域341の中心間の間隔よりも広い。また、本実施の形態においても、第1の方向および高さ方向を含む断面の第1領域341が配置された高さにおいて、凸面421により形成される光束の幅または径は、第1領域341の幅以下である。
 本実施の形態においても、第1領域341は、被検出部に相当する。また、本実施の形態において、第2領域342の平面形状は、正方形であり、第2領域342は、互いにX方向およびY方向に隣接して配置されている。本実施の形態における像面の平面形状は、第2領域342と同じである。また、本実施の形態における光学ユニットは、第2領域342を底面とし、頂面を凸面421とする略四角柱形状の領域である。この光学ユニットにおける像面湾曲における最高の位置(F’)は、当該光学ユニットを平面視したときの矩形の角に位置する。
 特に図示しないが、マーカ400においても、観察角度を変化させた場合に、第1領域341の像が一つの像として観察される。
 (効果)
 以上のように、マーカ400は、マーカ300と同様の効果を有する。
 なお、実施の形態3、4では、隣接する第1領域341の中心間の間隔は、隣接する凸面341、421の頂点342、423間の間隔よりも狭いが、隣接する第1領域341の中心間の間隔は、隣接する凸面341、421の頂点342、423間の間隔よりも広くてもよい。この場合も、複数の第1領域341は、複数の凸面321、421の焦点位置よりも凸面321、421の近くに配置される。
 [実施の形態5]
 上記マーカは、凸面の配列方向において隣り合う凸面間に隙間があってもよい。光学ユニットは、凸面の配列方向において隣り合う凸面の中点(等距離点)を表す線で囲まれる平面形状を有することから、マーカが凸面間に隙間を有する場合には、光学ユニットは、その平面方向において、凸面の配列方向における、当該隙間の中点(互いに隣り合う凸面の上記配列方向における中心からの等距離点)までの領域となる。たとえば、図11に示されるマーカ500のように、凸面の配列方向において凸面の周縁間に隙間(平面部)を有する場合には、光学ユニットは、第1面、第2面およびZ方向に沿う破線で囲まれる部分で表される。
 [実施の形態6]
 図12Aは、マーカ600の平面図であり、図12Bは、図12AにおけるB-B線で切断したマーカ600の一部を示す、ハッチングを省略した部分断面図であり、図BCは、マーカ600の底面図であり、図12Dは、マーカ600の側面図である。マーカ600は、被検出部がY方向に連続している以外は、マーカ300と同様に構成されている。
 マーカ600は、複数の凸面321を有しており、複数の凸面321は、X方向およびそれに直交するY方向のそれぞれに並んで配置されている。凸面321は、Y方向に沿って列をなし、この凸面321の列は、X方向に並んでいる。
 上記被検出部は、凹部640とそれに収容される着色部650により構成されている。凹部640は、XY平面におけるY方向に沿って細長な矩形の凹部であり、Y方向に沿って列をなす凸面321の全てに架け渡される位置に形成されている。また、凹部640は、凸面321の列に対応してX方向に並んで配置されている。
 上記被検出部は、X方向において、凸面321の列に対し、前述の実施の形態と同様に対応して配置されている。たとえば、マーカ600では、X方向において、マーカ300、400と同様に、隣接する凸面321間(隣り合う列同士の凸面321の間)のピッチが、同じく隣接する被検出部(凹部640)の中心間の間隔よりも広い。
 また、マーカ600のX方向に沿う断面(XZ平面)において、Yに一列に並ぶ凸面321の光軸は、いずれも同じ方向(Z方向)に延出している。また、複数の上記被検出部は、前述した実施の形態と同様に、XZ平面において、凸面321の焦点より凸面321側に位置し、かつマーカ600の高さ方向(Z方向)に垂直な同一の仮想面上に位置するように配置されている。上記像面は、前述した実施の形態と同様に、一つの凸面321を含む一光学ユニットで区画される。マーカ600の光学ユニットは、マーカ300と同様に、例えば、一つの凸面321を含み、凸面321ごとに前述の第1面を区画する格子が形成する矩形の平面形状を有する略四角柱形状の領域で表される。
 マーカ600では、各凸面321に投影される個々の像の集合として、Y方向に沿う線状の像が観察される。この像は、マーカ300、400と同様に、マーカ600をX方向に対して観察者側に傾ける程に当該観察者に近づく方向に移動するように観察される。マーカ600では、凸面321がX方向のみならずY方向にも湾曲していることから、マーカ100に比べて、上記像のY方向におけるコントラストが高い。これは、マーカ600におけるY方向での焦点距離のずれが、マーカ100におけるそれに比べて小さいため、と考えられる。
 このように、マーカ600は、透光性を有する材料で形成され、X方向およびY方向に沿って配置された複数の凸面321と、複数の凸面321と表裏の位置に配置され、光学的に検出可能な像として複数の凸面321に投影される複数の被検出部とを有する。そして、複数の被検出部は、像面湾曲により湾曲した複数の凸面321のそれぞれの像面のなかで凸面321から最も遠い点である複数の凸面321のそれぞれの焦点より凸面321側に位置し、かつマーカ600のZ方向に垂直な同一の仮想面上に位置するように配置されており、上記像面は、一つの凸面321を含む一光学ユニットで区画される。よって、マーカ600も、マーカ100~500と同様に、前述の第2面に沿う方向の位置のみで上記被検出部の位置が決められているマーカに比べて、さらなる小型化が可能であるとともに、より広い検知角度を有する。
 [実施の形態7]
 図13Aは、マーカ700の平面図であり、図13Bは、図13AにおけるB-B線で切断したマーカ700の一部を示す、ハッチングを省略した部分断面図であり、図13Cは、マーカ700の底面図であり、図13Dは、マーカ700の側面図である。マーカ700は、凸面の平面形状が矩形である以外は、マーカ600と同様に構成されており、あるいは、被検出部がY方向に連続している以外は、マーカ400と同様に構成されている。
 たとえば、凸面421の平面形状は、正方形である。また、例えば、凸面421の光軸に沿う断面における形状は、凸面421の頂点から離れるにつれて曲率半径が大きくなる曲線で表される。また、複数の上記被検出部は、前述した実施の形態と同様に、XZ平面において、凸面421の焦点より凸面421側に位置し、かつマーカ700の高さ方向(Z方向)に垂直な同一の仮想面上に位置するように配置されている。さらに、マーカ700の光学ユニットは、マーカ400と同様に、例えば、一つの凸面421を含み、凸面421ごとに第1面を区画する格子が形成する矩形(正方形)の平面形状を有する略四角柱形状の領域で表される。
 マーカ700も、マーカ100~600と同様に、前述の第2面に沿う方向の位置のみで上記被検出部の位置が決められているマーカに比べて、さらなる小型化が可能であるとともに、より広い検知角度を有する。また、マーカ700も、マーカ600と同様に、マーカ100に比べて、検出される像のY方向におけるコントラストを高くすることができる。
 さらに、マーカ700は、マーカ600に比べて、第1面への入射光の強度に関わらず、像が明確に検出される。これは、上記入射光が強いと、第1面での反射光のようなマーカ700における反射光も強くなり、上記像が見えにくくなることがあるが、マーカ700の第1面は、実質的には凸面421(曲面)のみで構成され、実質的には平面を含まないため、マーカ600に比べて、第1面での反射光が生じにくく、また弱いため、と考えられる。
 [実施の形態8]
 図14Aは、マーカ800の平面図であり、図14Bは、図14AにおけるB-B線で切断したマーカ800の一部を示す、ハッチングを省略した部分断面図であり、図14Cは、マーカ800の底面図であり、図14Dは、マーカ800の側面図である。マーカ800も、マーカ700と同様に、凸面の平面形状が多角形である以外は、マーカ600と同様に構成されている。
 たとえば、凸面821の平面形状は、正六角形である。また、例えば、凸面821の光軸に沿う断面における形状は、凸面821の頂点から離れるにつれて曲率半径が大きくなる曲線で表される。Y方向における凸面821の列は、それぞれの凸面821が対向する一対の辺で接するようにY方向に並んで構成されている。また、凸面821の列は、一方の列における凸面821同士の接続部に、他方の列における凸面821の六角形の一角が当接するように配置されて、X方向に並んでいる。このように、マーカ800では、マーカ800の第1面の全面が、凸面821の最密な集合によって実質的に構成されている。
 また、複数の上記被検出部は、前述した実施の形態と同様に、XZ平面において、凸面821の焦点より凸面821側に位置し、かつマーカ800の高さ方向(Z方向)に垂直な同一の仮想面上に位置するように配置されている。さらに、マーカ800の光学ユニットは、マーカ300、400と同様に、例えば、一つの凸面821を含み、凸面821ごとに第1面を区画する格子が形成する矩形(正方形)の平面形状を有する略四角柱形状の領域で表される。当該矩形は、X方向においては、隣接する六角形が共有する一辺の中点を通る直線と、Y方向においては、隣接する六角形が共有する一辺に重なる直線とによって区画される形状である。
 マーカ800も、マーカ100~700と同様に、前述の第2面に沿う方向の位置のみで上記被検出部の位置が決められているマーカに比べて、さらなる小型化が可能であるとともに、より広い検知角度を有する。また、マーカ800も、マーカ600、700と同様に、マーカ100に比べて、検出される像のY方向におけるコントラストを高くすることができる。
 さらに、マーカ800でも、マーカ700と同様に、マーカ700と同じ理由により、マーカ600に比べて、第1面への入射光の強度に関わらずに、像が明確に検出される。
 2016年2月24日出願の特願2016-032857、2016年3月31日出願の特願2016-071099、2016年8月9日出願の特願2016-156762、および、2016年10月25日出願の特願2016-208758、の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係るマーカは、物体の位置や姿勢などを認識するための位置検出用マーカ(あるいは角度検出用マーカ)として有用であり、マーカを小型化できるとともに、マーカの検知角度を広くでき、さらには、マーカの観察角度による集合像の見え方のばらつきを改善するのに有効である。よって、本発明は、上記マーカの技術分野のさらなる発展にも寄与することが期待される。
 100、200、300、400、500、600、700、800 マーカ
 120、220、320、420 第1面
 121、221、321、421、821 凸面
 122 稜線
 140、240、340 第2面
 141、241 被検出部
 142 塗膜
 323、423 頂点
 341 第1領域
 342 第2領域
 640 凹部
 650 着色部
 A 仮想面
 B 像面
 CA 中心軸
 LA 光軸
 R 曲率半径

Claims (3)

  1.  透光性を有する材料で形成され、少なくとも第1の方向に沿って配置された複数の凸面と、前記複数の凸面と表裏の位置に配置され、光学的に検出可能な像として前記複数の凸面に投影される複数の被検出部と、を有するマーカであって、
     前記複数の被検出部は、像面湾曲により湾曲した前記複数の凸面のそれぞれの像面のなかで前記凸面から最も遠い点である前記複数の凸面のそれぞれの焦点より前記凸面側に位置し、かつ前記マーカの高さ方向に垂直な同一の仮想面上に位置するように配置されており、
     前記像面は、一つの前記凸面を含む一光学ユニットで区画される、
     マーカ。
  2.  前記仮想面は、像面湾曲により湾曲した前記複数の凸面のそれぞれの像面のなかで前記凸面に最も近い点よりも前記凸面から離れて位置する、請求項1に記載のマーカ。
  3.  前記仮想面は、前記複数の凸面のそれぞれの光軸上において前記凸面の焦点距離の5%の長さ以上、前記複数の凸面のそれぞれの焦点より前記凸面側に位置する、請求項1または請求項2に記載のマーカ。
PCT/JP2017/006595 2016-02-24 2017-02-22 マーカ WO2017146097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780010920.3A CN108603748A (zh) 2016-02-24 2017-02-22 标志器
JP2018501736A JPWO2017146097A1 (ja) 2016-02-24 2017-02-22 マーカ
US16/079,658 US10663293B2 (en) 2016-02-24 2017-02-22 Marker formed of optically transparent material
EP17756535.5A EP3421927A4 (en) 2016-02-24 2017-02-22 MARKER PEN

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016032857 2016-02-24
JP2016-032857 2016-02-24
JP2016071099 2016-03-31
JP2016-071099 2016-03-31
JP2016-156762 2016-08-09
JP2016156762 2016-08-09
JP2016208758 2016-10-25
JP2016-208758 2016-10-25

Publications (1)

Publication Number Publication Date
WO2017146097A1 true WO2017146097A1 (ja) 2017-08-31

Family

ID=59686256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006595 WO2017146097A1 (ja) 2016-02-24 2017-02-22 マーカ

Country Status (5)

Country Link
US (1) US10663293B2 (ja)
EP (1) EP3421927A4 (ja)
JP (1) JPWO2017146097A1 (ja)
CN (1) CN108603748A (ja)
WO (1) WO2017146097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095258A (ja) * 2017-11-21 2019-06-20 凸版印刷株式会社 変位センサシート

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369949B1 (en) * 2000-04-12 2002-04-09 Kenneth E. Conley Optically anisotropic micro lens window
JP2010534352A (ja) * 2007-07-23 2010-11-04 リアルディー インコーポレイテッド レンチキュラースクリーンに対するソフトアパーチャ補正
JP2012145559A (ja) 2010-12-24 2012-08-02 National Institute Of Advanced Industrial & Technology マーカ
JP2013025043A (ja) 2011-07-20 2013-02-04 Grapac Japan Kk 画像表示体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642226A (en) * 1995-01-18 1997-06-24 Rosenthal; Bruce A. Lenticular optical system
DE102007026628B3 (de) * 2007-06-07 2008-08-14 Visumotion Gmbh Verfahren zur Ausrichtung eines Parallaxenbarriereschirms auf einem Bildschirm
WO2009085003A1 (en) * 2007-12-27 2009-07-09 Rolling Optics Ab Synthetic integral image device
BE1019207A5 (fr) * 2009-03-04 2012-04-03 Securency Int Pty Ltd Procedes de fabrication de reseaux de lentilles ameliores.
JP5656059B2 (ja) * 2010-08-25 2015-01-21 Nltテクノロジー株式会社 実装精度検査方法及びその検査方法を用いる検査装置
JP2012242588A (ja) * 2011-05-19 2012-12-10 Sumitomo Electric Ind Ltd レンズ部品および画像表示装置
GB201313362D0 (en) * 2013-07-26 2013-09-11 Rue De Int Ltd Security Devices and Methods of Manufacture
JP6512868B2 (ja) * 2014-03-18 2019-05-15 株式会社エンプラス 画像表示体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369949B1 (en) * 2000-04-12 2002-04-09 Kenneth E. Conley Optically anisotropic micro lens window
JP2010534352A (ja) * 2007-07-23 2010-11-04 リアルディー インコーポレイテッド レンチキュラースクリーンに対するソフトアパーチャ補正
JP2012145559A (ja) 2010-12-24 2012-08-02 National Institute Of Advanced Industrial & Technology マーカ
JP2013025043A (ja) 2011-07-20 2013-02-04 Grapac Japan Kk 画像表示体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"BASIC OPTICS FOR USER ENGINEER", OPTRONICS CO., LTD, pages: 106 - 107
See also references of EP3421927A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095258A (ja) * 2017-11-21 2019-06-20 凸版印刷株式会社 変位センサシート
JP7006171B2 (ja) 2017-11-21 2022-01-24 凸版印刷株式会社 変位センサシート

Also Published As

Publication number Publication date
US20190056219A1 (en) 2019-02-21
EP3421927A1 (en) 2019-01-02
US10663293B2 (en) 2020-05-26
CN108603748A (zh) 2018-09-28
EP3421927A4 (en) 2019-10-02
JPWO2017146097A1 (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
US20200228782A1 (en) Multiview camera array, multiview system, and method having camera sub-arrays with a shared camera
CN108603746B (zh) 标志器
TW202014761A (zh) 具有使用者追蹤功能的多視像顯示器、系統和方法
WO2017150130A1 (ja) マーカ
WO2017146097A1 (ja) マーカ
US10684454B2 (en) Marker suppressing aberration
JPWO2017110779A1 (ja) マーカ
WO2017212853A1 (ja) マーカ
WO2017163778A1 (ja) マーカ
US20190293841A1 (en) Marker
WO2017047334A1 (ja) マーカ、その製造方法および光学部品
US20200088913A1 (en) Marker
WO2019074036A1 (ja) マーカ
WO2018030063A1 (ja) マーカ
JP6689713B2 (ja) マーカ
WO2020009035A1 (ja) マーカ
WO2018096848A1 (ja) マーカおよびマーカセット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756535

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756535

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756535

Country of ref document: EP

Kind code of ref document: A1