WO2018131335A1 - 端末、基地局、無線通信システム及び回線状態情報取得方法 - Google Patents

端末、基地局、無線通信システム及び回線状態情報取得方法 Download PDF

Info

Publication number
WO2018131335A1
WO2018131335A1 PCT/JP2017/043722 JP2017043722W WO2018131335A1 WO 2018131335 A1 WO2018131335 A1 WO 2018131335A1 JP 2017043722 W JP2017043722 W JP 2017043722W WO 2018131335 A1 WO2018131335 A1 WO 2018131335A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
terminals
information
state information
Prior art date
Application number
PCT/JP2017/043722
Other languages
English (en)
French (fr)
Inventor
加藤 修
紀之 志水
秀樹 新宮
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018561852A priority Critical patent/JP7126165B2/ja
Priority to US16/466,628 priority patent/US10715224B2/en
Publication of WO2018131335A1 publication Critical patent/WO2018131335A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to a terminal, a base station, a wireless communication system, and a line state information acquisition method that acquire line state information indicating a state of a propagation path in wireless communication from a transmission side to a reception side.
  • MIMO Multi-Input Multi-Output
  • MIMO Multi-Input Multi-Output
  • Beam forming is a technique that allows each antenna to control the amplitude and phase of a transmitted signal and a received signal, thereby imparting directivity to the transmitted / received beam and changing the shape of the beam.
  • the maximum signal power can be obtained at the receiving side after estimating the propagation path state at the receiving side (eg, terminal) where the signal sent from the transmitting side (eg, base station) is received.
  • a signal is sent as follows.
  • CSI Channel State Information
  • the CSI indicates line state information (channel state information), and is measured on the receiving side based on quality information when, for example, a reference symbol (RS) sent from the transmitting side is received on the receiving side.
  • the transmitting side Based on the CSI fed back from the receiving side, calculates a channel estimation matrix whose component is a transfer function from each antenna on the transmitting side to each antenna on the receiving side, and uses this channel estimation matrix. Perform beamforming.
  • the transmission side for example, a base station
  • Wireless communication that is, spatial multiplexing transmission called MU (Multiple ⁇ User) -MIMO is possible.
  • Patent Document 1 has been proposed as a prior art related to sending a data signal using beamforming in a communication system to which MIMO is applied.
  • a downlink reference signal for example, channel state measurement
  • CSI-RS an appropriate reference signal
  • CSI estimation result
  • a transmitting side for example, a base station
  • a plurality of receiving sides for example, terminals
  • MU-MIMO the upper limit value of the spatial multiplexing number on the transmission side (for example, base station) in the above-described MU-MIMO
  • M is used as a letter indicating the upper limit value for convenience
  • M is as large as about 2 to 8, for example.
  • the base station switches the data transmission target terminal every data transmission cycle, thereby realizing wireless communication with 100 terminals.
  • the reception side (eg, terminal) of the connection side with the transmission side (eg, base station) is considered. If the number is large, problems may occur in the following points.
  • every 100 transmission terminals report CSI (that is, channel state information of a propagation path between each antenna of the terminal and each antenna of the base station) to the base station every data transmission cycle. Since an optimum terminal combination can be selected from among the terminals in the middle, it is ideal in terms of maximizing downlink frequency utilization efficiency. However, there is a problem that the traffic on the uplink (in other words, the terminal to the base station) is wasted by a huge number of CSIs.
  • the upper limit value M of the spatial multiplexing number in MU-MIMO is a constant value, and the CSI is measured for each data transmission period even though only some of the terminals are selected for data signal transmission. If it continues to report to the base station, there is a problem that power consumption in the terminal increases. Since such a problem is not considered in Patent Document 1, it can still be said that it is still unsolved.
  • the present disclosure has been devised in view of the above-described conventional circumstances, and measures line state information indicating a state of a propagation path between each antenna of a connected base station and reports the line state information to the base station.
  • the purpose is to do.
  • the present disclosure relates to a base station capable of wireless communication with a plurality of terminals, a memory that holds information about P (P: an integer of 3 or more) terminals connected to the base station, and data Based on the information on the P terminals for each transmission period, L (L: L) that reports the line state information indicating the state of the propagation path with the base station from the P terminals. Based on the determination unit that determines 2 ⁇ L ⁇ P) terminals and the report of the channel state information from the L terminals, M (M : Integer satisfying 2 ⁇ M ⁇ L) and a communication unit that transmits data using the spatial multiplexing communication with the M terminals via a plurality of antennas. And providing a base station.
  • P an integer of 3 or more
  • the present disclosure also relates to a method for acquiring channel state information in a base station capable of wireless communication with a plurality of terminals, and relates to P (P: an integer of 3 or more) terminals connected to the base station.
  • P an integer of 3 or more
  • L integer satisfying 2 ⁇ L ⁇ P
  • M integer satisfying 2 ⁇ M ⁇ L
  • the present disclosure is a wireless communication system in which a plurality of terminals and a base station can perform wireless communication, and the base station relates to P (P: an integer greater than or equal to 3) terminals connected to the base station.
  • P an integer greater than or equal to 3
  • Information is held, and for each data transmission period, a report of channel state information indicating a state of a propagation path to the base station is selected from the P terminals based on the information on the P terminals.
  • L (L: integer satisfying 2 ⁇ L ⁇ P) terminals to be performed are determined, and further, a report instruction of the channel state information is transmitted to the P terminals, and the terminal transmits from the base station
  • the line state information is measured based on the received line state information report instruction, and the measurement result of the line state information is reported to the base station.
  • the base station receives the L terminal from the L terminals.
  • the data transmission cycle M (M: integer satisfying 2 ⁇ M ⁇ L) capable of spatial multiplexing communication is selected and the spatial multiplexing communication is used with the M terminals via a plurality of antennas.
  • a wireless communication system for transmitting data is provided.
  • the present disclosure is a terminal capable of communicating with a base station, and a memory that holds information about the terminal, and the base station based on the information about the terminal for each data transmission cycle
  • a determination unit that determines whether it is necessary to report line state information indicating a state of a propagation path between, a measurement unit that measures the line state information based on a decision to report the line state information, and
  • a communication unit that reports a measurement result of channel state information to the base station, and the communication unit performs spatial multiplexing with the base station in the data transmission period based on the measurement result of the channel state information.
  • M M: a predetermined value of 2 or more
  • the present disclosure is a line state information acquisition method in a terminal capable of communicating with a base station, the step of holding information on the own terminal, and for each data transmission cycle, based on the information on the own terminal , Determining whether or not to report line state information indicating a state of a propagation path with the base station, and measuring the line state information based on the decision to report the line state information A step of reporting the measurement result of the channel state information to the base station, and M capable of spatial multiplexing communication with the base station in the data transmission period based on the measurement result of the channel state information And (M: a predetermined value equal to or greater than 2) receiving the data transmitted from the base station when the number of terminals is selected.
  • M a predetermined value equal to or greater than 2
  • the present disclosure is a wireless communication system in which a plurality of terminals and a base station can perform wireless communication, the terminal holding information on the terminal, and based on the information on the terminal for each data transmission cycle. Determining whether or not to report the line state information indicating the state of the propagation path with the base station, and measuring the line state information based on the decision to report the line state information, The measurement result of the channel state information is reported to the base station, and the base station can perform spatial multiplexing communication in the data transmission period based on the measurement result report of the channel state information from the terminal (M ( M: an integer satisfying 2 ⁇ M ⁇ L), and transmitting data using the spatial multiplexing communication with the M terminals via a plurality of antennas, Based on the measurement result of the line status information.
  • M M: an integer satisfying 2 ⁇ M ⁇ L
  • the base station using the spatial multiplexing communication when selected as M (M: a default value of 2 or more) terminals capable of spatial multiplexing communication with the base station in the data transmission cycle.
  • M a default value of 2 or more terminals capable of spatial multiplexing communication with the base station in the data transmission cycle.
  • M a default value of 2 or more terminals capable of spatial multiplexing communication with the base station in the data transmission cycle.
  • M a default value of 2 or more terminals capable of spatial multiplexing communication with the base station in the data transmission cycle.
  • M a default value of 2 or more
  • an increase in uplink traffic caused by measurement of channel state information indicating the state of a propagation path between individual antennas of a connected base station and reporting of channel state information to the base station An increase in power consumption in the terminal can be adaptively suppressed, and a comfortable MU-MIMO communication environment can be realized.
  • FIG. 1 is a diagram illustrating an example of a system configuration of a wireless communication system according to each embodiment.
  • FIG. 2 is a block diagram showing in detail an example of the internal configuration of the base station according to the first embodiment.
  • FIG. 3 is a block diagram showing in detail an example of the internal configuration of the terminal according to the first embodiment.
  • FIG. 4A is a schematic diagram illustrating a first example of a connection terminal list held by a base station.
  • FIG. 4B is a schematic diagram illustrating a second example of the connection terminal list held by the base station.
  • FIG. 5 is a flowchart illustrating in detail an example of each operation procedure of the base station and the terminal according to the first embodiment.
  • FIG. 6 is a block diagram illustrating in detail an example of the internal configuration of the base station according to the second embodiment.
  • FIG. 7 is a block diagram showing in detail an example of the internal configuration of the terminal according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of terminal-related information for each terminal connected to the base station.
  • FIG. 9 is a flowchart illustrating in detail an example of each operation procedure of the base station and the terminal according to the second embodiment.
  • the base station determines a part of terminals that measure and report the channel state information (CSI) from all terminals connected to the base station.
  • FIG. 1 is a diagram illustrating an example of a system configuration of a wireless communication system 10 according to each embodiment.
  • the radio communication system 10 includes a single base station BS1 and a plurality of terminals TM1, TM2,.
  • the base station BS1 and individual terminals can be connected and wirelessly communicated via a wireless communication line.
  • Wireless communication lines widely include various public lines, mobile phone lines, wide area wireless lines, and the like.
  • the base station BS1 uses a multiplex communication (in other words, MU-MIMO (Multiple User Multi Input Multi Output) communication) to transmit a predetermined number of downlink (DL) data (see below).
  • MU-MIMO Multiple User Multi Input Multi Output
  • An example of transmission to a terminal will be described.
  • the downlink (DL) is a radio channel from the base station BS1 to the terminal
  • the uplink is a radio channel from the terminal to the base station BS1.
  • the base station BS1 has a plurality of antennas Ab1, Ab2,.
  • the number of antennas installed in the base station BS1 is 100, but is not limited to 100. Needless to say, the number may be a power of 2, such as 128, 1024, or the like.
  • the base station BS1 is connected with a predetermined number of terminals (hereinafter referred to as M (M: a predetermined integer value of 2 or more)) capable of simultaneous spatial multiplexing on the same frequency for each data transmission cycle.
  • Downlink data (hereinafter referred to as “DL transmission data”) is transmitted via antennas Ab1 to Ab100. That is, M indicates the maximum value of the spatial multiplexing number in one data transmission cycle.
  • M is an integer value of about 2 to 8, for example.
  • a terminal TM1 having a terminal identification number “# 1” and a terminal TM100 having a terminal identification number “# 100” are connected to each other by spatial multiplexing communication in the same data transmission cycle.
  • the terminal identification number is a number that can identify the terminal, and may be a telephone number of the terminal or a manufacturing number of the terminal, for example.
  • the base station BS1 Before transmitting the DL transmission data to the terminal TM1 or the terminal TM100, the base station BS1 transmits each antenna j (j of the terminal TM1 or the terminal TM100 from each antenna i (i: an integer of 1 to 100) of the base station BS1.
  • 1 is an integer of 1 to 400), and the channel matrix A having the transfer function aij as a component is grasped.
  • j has a maximum value of 400 when the number of antennas installed in the terminal is 4 and the number of terminals is 100.
  • multi-user spatial multiplexing transmission that is, MU-MIMO transmission
  • the base station BS1 since the transfer function aij varies with time, the base station BS1 needs to update and acquire the transfer function aij, for example, every data transmission period (for example, 1 msec or 10 msec).
  • the base station BS1 transmits a propagation path between the base station BS1 and some terminals determined by the base station BS1 for each data transmission cycle. Measurement of the line state information (CSI) indicating the state and an instruction to execute the measurement are transmitted.
  • the terminal When receiving an execution instruction from the base station BS1, the terminal measures channel state information (CSI) indicating a state of a propagation path with the base station BS1, and reports the measurement result to the base station BS1.
  • CSI channel state information
  • the base station BS1 uses the channel state information (CSI) reported from some of the corresponding terminals to determine a maximum of M terminals to be downlink transmission target, and the channel state information from the M or less terminals
  • CSI channel state information
  • a wireless standard method used between the base station BS1 and individual terminals is a high frequency band (for example, a 28 GHz band under consideration for use in 5G (fifth generation mobile communication system)).
  • the wireless communication system mainly applied in each embodiment has, for example, a base station having a large number of antennas and a spatial multiplexing communication function between the base station and a plurality of terminals.
  • a typical example is a generation mobile communication system.
  • base stations and terminals in the wireless communication system 10 are different wireless communication standards (for example, LTE (Long Term Evolution), wireless LAN (Local Area Network), DECT (Digital Enhanced Cordless Telecommunication), 3G (third generation mobile communication).
  • Wireless communication standards such as (system).
  • the network configured by the wireless communication system 10 may not be a C / U separation type network or a C / U separation type network.
  • a network that is not a C / U separation type is illustrated. That is, in the radio communication system 10, control data communication and user data communication are performed by the same base station BS1.
  • the base station BS1 is a small cell base station or a macro cell base station that can provide high-speed throughput based on the above-described 28 GHz band, for example.
  • the communicable range of the base station BS1 is determined according to the position of the base station BS1 and the cell radius, for example.
  • the base station BS1 is disposed in a large conference room such as a factory, a construction site, a stadium, a theme park, an international conference hall, or the like.
  • the terminal also communicates control data and user data with the base station BS1.
  • the control data includes data related to C (Control) -Plane.
  • the user data includes data related to U (User) -Plane.
  • the user data includes, for example, image data (for example, moving images and still images) and audio data, and may include data with a large data amount.
  • C-plane is a communication protocol for communicating control data for call connection and radio resource allocation in radio communication.
  • U-plane is a communication protocol for actual communication (for example, video communication, voice communication, data communication) between a terminal and the base station BS1 using an assigned radio resource.
  • FIG. 2 is a block diagram showing in detail an example of the internal configuration of the base station BS1 of the first embodiment.
  • the base station BS1 shown in FIG. 2 includes a processor PRB1, a memory MB1, a DL radio transmission unit 17, a UL radio reception unit 18, and antennas Ab1 to Ab100.
  • 1 and 2 exemplify that the number of antennas owned by the base station BS1 is 100, it is needless to say that the number is not limited to 100.
  • the processor PRB1 is configured using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor).
  • the processor PRB1 performs various processes and controls in cooperation with the memory MB1.
  • the processor PRB1 refers to a program and data stored in the memory MB1 and executes the program to realize the functions of the following units.
  • Each unit includes a DL transmission target terminal determination unit 11, a DL transmission weight determination unit 12, a DL transmission signal generation unit 13, a CSI report request designation terminal determination unit 14, a CSI acquisition unit 15, and a UL reception signal decoding unit. 16 and the like.
  • DL (Down Link) transmission target terminal determination unit 11 receives DL transmission data from a higher-level device (for example, a core network device) to base station BS1.
  • DL transmission data is the above-described user data, for example, image data or audio data.
  • M number of terminals that can simultaneously perform spatial multiplexing communication (MU-MIMO communication) on the same frequency for each data transmission cycle
  • MU-MIMO communication spatial multiplexing communication
  • An instruction to determine a designated terminal for which a report of channel state information (CSI) indicating a state of a propagation path between the two is requested is output to the CSI report request designated terminal determination unit 14.
  • CSI channel state information
  • the DL transmission target terminal determining unit 11 causes the CSI report request designating terminal determining unit 14 to select a part of the terminals (all of the terminals connected to the base station BS1) that measure and report the channel state information (CSI) ( This is because the increase in traffic of UL (Up Link, that is, the terminal to the base station BS1) accompanying the CSI report is suppressed by limiting to L (specified later) designated terminals.
  • CSI channel state information
  • the DL transmission target terminal determination unit 11 as an example of the selection unit is based on the report of the measurement result of the line state information (CSI) from each designated terminal (L terminals described later) in the data transmission cycle. Then, M (pieces) terminals capable of simultaneously performing spatial multiplexing communication (MU-MIMO communication) on the same frequency are determined.
  • the DL transmission target terminal determination unit 11 outputs DL transmission data and information on M terminals to the DL transmission weight determination unit 12.
  • the DL transmission weight determination unit 12 performs MIMO based on the information on the M terminals and the measurement result of the line state information (CSI) from each designated terminal (L terminals described later) for each data transmission cycle. A transmission weight for forming the transmission beam directivity of the spatial multiplexing transmission signal is calculated and determined.
  • the DL transmission weight determination unit 12 outputs the transmission weight and DL transmission data to the DL transmission signal generation unit 13. Since the operation of the DL transmission weight determination unit 12 is a known technique, detailed description thereof is omitted.
  • the DL transmission signal generator 13 is broadcast information (CSI report request designating terminal to be described later) indicating which designated terminals (L terminals to be described later) are requested to measure and report the channel state information (CSI). Information) and a reference signal (RS: Reference Symbol), which is a fixed pattern for measuring line state information (CSI), and outputs the reference signal to the DL radio transmission unit 17.
  • CSI report request designation terminal information and reference signal (RS) are not beamforming transmissions from the base station BS1 to L terminals, but are common control common to all terminals connected to the base station BS1, for example. Sent on the channel.
  • the CSI report request specifying terminal information need not be transmitted from all the antennas of the base station BS1. Since the reference signal (RS) is a target of line state information (CSI) measurement, it needs to be transmitted from all of the base station antennas.
  • the DL transmission signal generation unit 13 uses M transmission units (MU-MIMO communication) that can simultaneously perform spatial multiplexing communication (MU-MIMO communication) on the same frequency by using transmission weights and DL transmission data for each data transmission period.
  • MU-MIMO communication M transmission units
  • MU-MIMO communication spatial multiplexing communication
  • a DL transmission signal that can be transmitted to the terminal is generated. That is, the DL transmission signal generation unit 13 generates a DL transmission signal capable of receiving DL transmission data in M terminals using the beamforming technique, and outputs the DL transmission signal to the DL radio transmission unit 17.
  • the CSI report request designated terminal decision unit 14 as an example of a decision unit is connected to the base station BS1 based on a designation instruction of a designated terminal for which a report of line state information (CSI) is requested for each data transmission cycle. Out of a total of P (P: an integer of 3 or more) terminals (pieces), L (an integer satisfying L: 2 ⁇ L ⁇ P) terminals (pieces) that report the line state information (CSI). To decide.
  • the CSI report request designating terminal determining unit 14 outputs information on the L designated terminals (hereinafter referred to as “CSI report request designating terminal information”) to which the line state information (CSI) is reported to the DL transmission signal generating unit 13. To do.
  • FIG. 4A is a schematic diagram showing a first example of a connection terminal list held by the base station BS1.
  • the connection terminal list T1 shown in FIG. 4A includes, as an example of information related to terminals connected to the base station BS1, information on the identification numbers (terminal identification numbers) of the respective terminals and the order in which the terminals are connected to the base station BS1 ( Information on the order).
  • the terminal identification information and the order (order) in which individual terminals are connected to the base station BS1 correspond to each other. Accordingly, for example, the base station BS1 is currently connected to a total of 60 terminals with terminal identification numbers “# 1” to “# 60”.
  • the terminal “# 1”, the terminal “# 2”, and “##” Connection is started in the order of “3” terminal,..., “# 53” terminal,..., “# 59” terminal, and “# 60” terminal.
  • information indicating the order of connection with the base station BS1 may further include time information when the terminal connects with the base station BS1, for example.
  • the CSI report request designation terminal determination unit 14 reads out the connection terminal list T1 held in the memory MB1 for each data transmission cycle, and sets L units in the order of terminal identification numbers in individual terminals connected to the base station BS1. L (number of integers satisfying L: 2 ⁇ L ⁇ P) terminals (pieces) for which status information (CSI) is to be reported are determined. As a result, the CSI report request designating terminal determination unit 14 can easily and quickly determine the L terminals that are to report the line state information (CSI) for each data transmission cycle.
  • FIG. 4B is a schematic diagram showing a second example of the connection terminal list held by the base station BS1.
  • the connection terminal list T2 illustrated in FIG. 4B includes, as an example of information related to the terminal connected to the base station BS1, information on the identification number (terminal identification number) of each terminal, and the DL that the base station BS should transmit to each terminal.
  • Transmission data amount information For example, the DL transmission data amount is shown from the left side to the right side in FIG. Accordingly, for example, the base station BS1 is currently connected to a total of 60 terminals having terminal identification numbers “# 1” to “# 60”.
  • the terminal “# 7”, the terminal “# 1”, and “# 1” 3,..., “# 60” terminal,..., “# 18” terminal, and “# 13” terminal are transmitted in a large amount in this order.
  • the DL transmission data amount is “27 MB” for the terminal “# 7”, “26.1 MB” for the terminal “# 1”, “25 MB” for the terminal “# 3”,.
  • the terminal “# 60” has “5.2 megabytes”,..., “2.5 megabytes” for the terminal “# 18”, and “1.1 megabytes” for the terminal “# 13”.
  • the CSI report request designating terminal determining unit 14 reads out the connected terminal list T2 held in the memory MB1 for each data transmission cycle, and gives priority to the L terminals in descending order of the amount of DL transmission data.
  • CSI is determined as L (L: integer satisfying 2 ⁇ L ⁇ P) terminals (pieces).
  • the CSI report request specifying terminal determination unit 14 preferentially continues communication with a terminal that is a destination (destination) of data (for example, video data) having a large DL transmission data amount, so that the line state information (CSI L) designated terminals to be reported.
  • the CSI report request designation terminal determination unit 14 reads the connection terminal list T2 held in the memory MB1 for each data transmission cycle, and reports the line state information (CSI) according to the DL transmission data amount.
  • the selection frequency of L terminals to be changed may be changed.
  • the CSI report request designating terminal determining unit 14 determines that the current data transmission cycle over a predetermined number of data transmission cycles including the current data transmission cycle when a terminal having a large DL transmission data amount is a predetermined value or more. The same L terminals determined in step 1 may be selected in succession.
  • the CSI report request designating terminal determining unit 14 can determine a terminal having a large DL transmission data amount as a terminal capable of reporting the line state information (CSI) over a predetermined number of data transmission cycles. It is possible to support continuous continuation of communication between a terminal having a large base station BS1.
  • the memory MT1 stores information indicating whether or not a predetermined contract (SLA: Service Level Agreement) is concluded in a terminal connected to the base station BS1, and rank information or level information (hereinafter referred to as “contract”). Related information).
  • SLA Service Level Agreement
  • contract rank information or level information
  • the CSI report request designating terminal determining unit 14 reads out the contract related information (not shown) held in the memory MB1 for each data transmission cycle, is a terminal that has concluded the predetermined contract described above, and in the contract L terminals are preferentially selected from terminals having higher rank information or level information as L (integer) terminals (numbers satisfying L: 2 ⁇ L ⁇ P) for reporting line state information (CSI). To do.
  • the CSI report request designation terminal determination unit 14 gives priority to communication with, for example, some paying members who have entered into a predetermined contract, and even paying members belonging to a higher rank or level of the contract among the paying members. It is possible to determine L designated terminals for which the line status information (CSI) is reported.
  • CSI line status information
  • the CSI acquisition unit 15 acquires the measurement result of the line state information (CSI) transmitted from each of the L designated terminals from the output of the UL received signal decoding unit 16.
  • the CSI acquisition unit 15 outputs the measurement results of the line state information (CSI) respectively transmitted from the L designated terminals to the DL transmission target terminal determination unit 11 and the DL transmission weight determination unit 12.
  • the UL reception signal decoding unit 16 acquires and decodes the output of the UL wireless reception unit 18 (that is, the UL reception signal).
  • the decoded output of the UL received signal decoding unit 16 is obtained by measuring the line state information (CSI) transmitted from each of the L designated terminals or between the M terminals (that is, the base station BS in the data transmission cycle). And / or UL reception data transmitted from each of the terminals capable of MU-MIMO transmission in (1).
  • CSI line state information
  • the UL received signal decoding unit 16 When the UL reception signal decoding unit 16 obtains the measurement results of the line state information (CSI) transmitted from the L designated terminals, the UL received signal decoding unit 16 transmits the line state information (CSI) transmitted from the L designated terminals. CSI) measurement results are output to the CSI acquisition unit 15.
  • the UL received signal decoding unit 16 obtains UL received data respectively transmitted from M terminals (that is, terminals capable of MU-MIMO transmission with the base station BS in the data transmission period). Includes UL received data respectively transmitted from M terminals (that is, terminals capable of MU-MIMO transmission with the base station BS in the data transmission period) as upper devices (for example, a core network) of the base station BS1. Output to the device (not shown).
  • the DL radio transmission unit 17 as an example of a communication unit transmits the DL transmission signal generated by the DL transmission signal generation unit 13 using the beamforming technique from each of the antennas Ab1 to Ab100 to M terminals. Also, the DL radio transmission unit 17 transmits the reference signal (RS) generated by the DL transmission signal generation unit 13 from each of the antennas Ab1 to Ab100 to L terminals.
  • RS reference signal
  • the UL radio reception unit 18 as an example of a communication unit receives UL reception signals transmitted from M terminals via the antennas Ab1 to Ab100 and outputs them to the UL reception signal decoding unit 16.
  • the memory MB1 has, for example, a RAM (Random Access Memory) as a work memory used during processing of the base station BS1, and a ROM (Read Only Memory) that stores programs and data that define the operation of the base station BS1. Various data and information are temporarily stored in the RAM.
  • a program that defines the operation of the base station BS1 (for example, processing (step) performed as the line state information acquisition method according to the present embodiment) is written.
  • the memory MB1 stores (holds) the connection terminal list T1 shown in FIG. 4A or the connection terminal list T2 shown in FIG. 4B.
  • the memory MB1 is shown as a separate configuration from the processor PRB1, but may be built in the processor PRB1.
  • the memory MB1 may include a secondary storage device together with the primary storage device.
  • FIG. 3 is a block diagram showing in detail an example of the internal configuration of the terminal TM1 of the first embodiment.
  • FIG. 3 illustrates the terminal TM1 in detail.
  • Each of the terminals TM1 to TM100 is a terminal capable of wireless communication with the base station BS1, and is, for example, a mobile phone, a smartphone, or a tablet terminal.
  • the terminals TM1 to TM100 may have a telephone function or may not have a telephone function.
  • the terminal TM1 shown in FIG. 3 includes a processor PRT1, a memory MT1, a UL radio transmission unit 25, a DL radio reception unit 26, and antennas At11 to At14. 1 and 3 exemplify that the terminal TM1 has four antennas, it is needless to say that the number is not limited to four.
  • the processor PRT1 is configured using, for example, a CPU, MPU, or DSP.
  • the processor PRT1 performs various processes and controls in cooperation with the memory MT1.
  • the processor PRT1 refers to a program and data held in the memory MT1 and executes the program, thereby realizing the functions of the following units.
  • Each unit includes a UL transmission signal generation unit 21, a DL reception signal decoding unit 22, a CSI report presence / absence determination unit 23, and a CSI measurement unit 24.
  • the UL transmission signal generation unit 21 acquires, for example, uplink data (hereinafter referred to as “UL transmission data”) generated in response to an operation on the user application of the terminal TM1.
  • the UL transmission signal generation unit 21 generates a UL transmission signal for transmitting UL transmission data to the base station BS1 and outputs the UL transmission signal to the UL wireless transmission unit 25.
  • the UL transmission data may be user data (for example, image data or audio data) or control data (for example, an image or audio distribution request).
  • the UL transmission signal generation unit 21 acquires channel state information (CSI: information indicating a state of a propagation path between the base station BS1 and the terminal TM1) measured by the CSI measurement unit 24.
  • the UL transmission signal generation unit 21 generates a UL transmission signal for transmitting the line state information (CSI) to the base station BS1 and outputs the UL transmission signal to the UL wireless transmission unit 25.
  • CSI channel state information
  • the DL reception signal decoding unit 22 acquires and decodes the output of the DL radio reception unit 26 (that is, the DL reception signal).
  • the decoded output of the DL received signal decoding unit 22 is either a reference signal (RS) transmitted from the base station BS1 or DL received data.
  • RS reference signal
  • the DL reception signal decoding unit 22 When the DL reception signal decoding unit 22 obtains the reference signal (RS) transmitted from the base station BS1, the DL reception signal decoding unit 22 outputs the reference signal (RS) to the CSI measurement unit 24 and data of the reference signal (RS).
  • the CSI report request designation terminal information included in the frame is output to the CSI report presence / absence determination unit 23.
  • the DL reception signal decoding unit 22 obtains DL reception data transmitted from the base station BS1
  • the DL reception signal decoding unit 22 outputs the DL reception data to an application (not shown).
  • the CSI report presence / absence determining unit 23 determines that its own terminal is connected to the line state information (CSI) based on the output of the DL received signal decoding unit 22 (that is, CSI report request specifying terminal information included in the data frame of the reference signal (RS)). Determine the need for measurement and reporting.
  • the CSI report presence / absence determination unit 23 outputs an on / off control signal for measurement of channel state information (CSI) to the CSI measurement unit 24 according to the determination result.
  • the CSI report presence / absence determination unit 23 determines that the CSI report request designation terminal information includes the identification number of the own terminal (terminal identification number)
  • the own terminal measures the line state information (CSI) and It decides to report, and outputs an ON / OFF control signal to that effect (that is, a control signal for measuring and reporting CSI) to the CSI measuring unit 24.
  • CSI line state information
  • the CSI report presence / absence determination unit 23 determines that the identification number of the own terminal (terminal identification number) is not included in the CSI report request specifying terminal information
  • the own terminal measures the line state information (CSI) and It decides not to report, and outputs an ON / OFF control signal to that effect (that is, a control signal for not performing CSI measurement and reporting) to the CSI measurement unit 24.
  • CSI line state information
  • the CSI measuring unit 24 When the ON / OFF control signal from the CSI report presence / absence determining unit 23 indicates that the channel state information (CSI) is measured and reported, the CSI measuring unit 24 outputs the DL received signal decoding unit 22 (that is, Based on the reference signal (RS)), line state information (CSI) indicating the state of the propagation path between the base station BS1 and the own terminal (for example, the terminal TM1) is measured.
  • the CSI measurement unit 24 measures line state information (CSI) for the reference signal (RS) transmitted from the base station BS1.
  • the CSI measurement unit 24 outputs the measurement result of the line state information (CSI) to the UL transmission signal generation unit 21.
  • the UL wireless transmission unit 25 uses the UL transmission signal generated by the UL transmission signal generation unit 21 (specifically, the UL transmission signal for transmitting UL transmission data to the base station BS1) as an antenna. Transmit from At11 to At14 toward the base station BS1. Also, the UL radio transmission unit 25 transmits the UL transmission signal generated by the UL transmission signal generation unit 21 (specifically, the UL transmission signal for transmitting the line state information (CSI) to the base station BS1) to the antenna At11. Transmit from At14 to the base station BS1.
  • the CSI line state information
  • the DL radio reception unit 26 as an example of a communication unit receives the DL reception signal transmitted from the base station BS1 via the antennas At11 to At14 and outputs the DL reception signal to the DL reception signal decoding unit 22.
  • the memory MT1 has, for example, a RAM as a work memory used at the time of processing of the terminal TM1, and a ROM that stores programs and data that define the operation of the terminal TM1. Various data and information are temporarily stored in the RAM. For example, the memory MT1 temporarily stores the measurement result of the line state information (CSI) measured by the CSI measurement unit 24.
  • CSI line state information
  • FIG. 5 is a flowchart illustrating in detail an example of each operation procedure of the base station BS1 and the terminal TM1 of the first embodiment.
  • the operation procedure of the terminal will be described using the terminal TM1 shown in FIG. 1 as an example.
  • Base station BS1 and terminal TM1 repeat each operation
  • the operation procedure of the terminal described in FIG. 5 shows an operation flow in the terminal determined as L terminals that perform measurement and reporting of the channel state information (CSI) in the base station BS1.
  • CSI channel state information
  • the base station BS1 performs measurement and reporting of line state information (CSI) from P (for example, 100) terminals currently connected to the base station BS1 for each data transmission cycle.
  • P for example, 100
  • P for example, 100
  • P for example, 100
  • P for example, 100
  • S1 line state information
  • the determination method of the L terminals is, for example, a method of determining the order of connection to the base station BS1 based on the connection terminal list T1 held in the memory MB1, and the connection terminal list T2 held in the memory MB1. This is either a method of determining in descending order of terminals with the largest DL transmission data amount or a method of determining in order from terminals having a predetermined contract and having high rank information or level information in the contract.
  • the determination method of the L terminals may not be limited to these determination methods.
  • step S1 does not report CSI measurement results from all (P) terminals connected to the base station BS1 to the base station BS1, so that P terminals CSI measurement results are reported from some of the terminals (L terminals, L ⁇ P).
  • P terminals connected to the base station BS1
  • L ⁇ P the terminals
  • the base station BS1 uses broadcast information (that is, CSI report request designation terminal information) and line state information (CSI) indicating which of the L terminals determined in step S1 as a report instruction of the line state information (CSI).
  • a reference signal (RS) which is a fixed pattern for measuring the signal, is transmitted to P terminals (S2).
  • the CSI report request specifying terminal information and the reference signal are transmitted instead of beamforming transmission, for example, on the common control channel.
  • the CSI report request designating terminal information need not be transmitted from all the antennas of the base station BS1. Since the reference signal (RS) is an object for measuring the line state information (CSI), it is necessary to transmit it from all the antennas of the base station BS1.
  • the terminal (designated terminal) determined as the L terminals by the process of step S1 of the base station BS1 is itself the line status information (CSI) by the CSI report request designated terminal information transmitted from the base station BS1 in step S2. Know what to measure and report (S11). Then, these terminals (designated terminals) receive and process a reference signal (RS) transmitted from the base station BS1, thereby performing line state information (indicating the state of the propagation path between the base station BS1 and its own terminal) CSI) is measured (S12). The terminal (designated terminal) generates a measurement result of the line state information (CSI) and transmits (reports) it to the base station BS1 (S13).
  • RS reference signal
  • the base station BS1 receives the measurement result of the line state information (CSI) transmitted from the terminal (designated terminal) in step S13 (S3). In step S3, the base station BS1 receives the measurement results of the respective line state information (CSI) from a total of L terminals.
  • CSI line state information
  • the base station BS1 executes various types of signal processing for transmission of downlink transmission data (DL transmission data) using a beamforming technique (S4). For example, in the DL transmission target terminal determination unit 11, the base station BS1 determines the line state information (CSI) among the line state information (CSI) measurement results received from the total L terminals (designated terminals) received in step S3. M terminals are selected as terminals that are destinations (destinations) of UL transmission data in consideration of which M terminals are good or which M terminals are combined to increase the transmission speed of each MIMO stream.
  • CSI line state information
  • M terminals are selected as terminals that are destinations (destinations) of UL transmission data in consideration of which M terminals are good or which M terminals are combined to increase the transmission speed of each MIMO stream.
  • the base station BS1 performs MIMO spatial multiplexing transmission based on the information on the M terminals and the measurement results of the channel state information (CSI) from the respective designated terminals (L terminals).
  • the transmission weight for forming the transmission beam directivity of the signal is calculated and determined.
  • the base station BS1 uses a transmission weight and DL transmission data in the DL transmission signal generation unit 13 to transmit DL to M terminals that can simultaneously perform spatial multiplexing communication (MU-MIMO communication) on the same frequency.
  • a transmission signal is generated.
  • the base station BS1 transmits the DL transmission signal generated using the beamforming technique in step S4 from each antenna Ab1 to Ab100 to M terminals (S5).
  • the terminal selected as the destination (destination) of the downlink transmission data (DL transmission data) in step S4 (in other words, the terminal selected as a total of M terminals) was transmitted from the base station BS1 in step S5.
  • a DL transmission signal is received (S14). Note that even if the number of L terminals determined in step S1 is not selected as the destination (destination) of the downlink transmission data (DL transmission data) in step S4, the terminals from base station BS1 in step S5 The transmitted DL transmission signal is not received.
  • the base station BS1 stores information on all (specifically, P (P: integers of 3 or more)) terminals connected to the base station BS1.
  • Report of channel state information (CSI) indicating the state of the propagation path from the P terminals to the base station BS1 based on the information about the P terminals, held in MB1 for each data transmission cycle L terminals (L: integer satisfying 2 ⁇ L ⁇ P) are determined.
  • the base station BS1 transmits a channel state information (CSI) measurement and report execution instruction as CSI report request designation terminal information to each terminal connected to the base station BS1.
  • CSI channel state information
  • the L terminals to which the request for reporting the channel state information (CSI) is specified measures the channel state information (CSI) and reports the measurement result of the channel state information (CSI) to the base station BS1.
  • the base station BS1 uses M (M: integer satisfying 2 ⁇ M ⁇ L) units capable of spatial multiplexing communication in a data transmission cycle based on reports of measurement results of channel state information (CSI) from L terminals. Terminal is selected, and data is transmitted to the M terminals using spatial multiplexing through a plurality of antennas Ab1 to Ab100.
  • the radio communication system 10 determines, in a limited manner, L terminals as terminals that perform measurement and reporting of channel state information (CSI) from all terminals (P terminals) in the base station BS1. Thereby, the radio communication system 10 measures the line state information (CSI) indicating the state of the propagation path between the individual antennas Ab1 to Ab100 of the base station BS1 to which the terminal is connected and the individual antennas of the terminal, In addition, it is possible to adaptively suppress an increase in uplink (UL) traffic caused by reporting line state information (CSI) to the base station BS1.
  • CSI channel state information
  • the radio communication system 10 does not need to perform measurement and reporting of the line state information (CSI) in the terminals that have not been determined by the L terminals in the base station BS1, thereby increasing the power consumption in those terminals. It can be suppressed adaptively. Accordingly, the radio communication system 10 can provide a good and comfortable downlink (DL) MU-MIMO between the base station BS1 and a total of M terminals selected based on the measurement result of the channel state information (CSI).
  • DL downlink
  • M terminals selected based on the measurement result of the channel state information (CSI).
  • the information regarding the P terminals that the base station BS1 holds in the memory MB1 includes terminal identification information for each terminal connected to the base station BS1.
  • the base station BS1 determines L terminals for each data transmission period according to the terminal identification numbers corresponding to the order of the terminals connected to the base station BS1.
  • the L numbers selected for each data transmission cycle are shifted and cycled (returns to number 1 after the last number).
  • the base station BS1 can easily and quickly determine L terminals for which the line state information (CSI) is reported for each data transmission cycle.
  • CSI line state information
  • the information regarding the P terminals that the base station BS1 holds in the memory MB1 includes information regarding the downlink data amount transmitted to the individual terminals by the base station BS1.
  • the base station BS1 determines L terminals with priority given to terminals having a large downlink data amount. As a result, the base station BS1 reports line state information (CSI) so that communication with a terminal that is a destination (destination) of data (for example, video data) having a large DL transmission data amount can be preferentially continued. L designated terminals can be determined.
  • CSI line state information
  • the information regarding the P terminals held by the base station BS1 in the memory MB1 has rank information in a predetermined contract. Based on the rank information in a predetermined contract, the base station BS1 prioritizes the terminals with higher rank information and determines L terminals. As a result, the base station BS1 is able to give priority to communication with, for example, some paying members who have signed a predetermined contract, and even the paying members belonging to a higher rank or level of the contract among the paying members. It is possible to determine L designated terminals for which status information (CSI) is to be reported.
  • CSI status information
  • a terminal that performs measurement and reporting of channel state information (CSI) is determined by the base station BS1.
  • the terminal itself connected to the base station determines whether or not it is necessary to measure and report channel state information (CSI).
  • the radio communication system 10 includes a single base station BS1a and a plurality of terminals TM1a, TM2a,..., TM100a.
  • the internal configuration of the base station BS1a and each terminal is partially different from the internal configuration of the base station BS1 and each terminal in the first embodiment.
  • FIG. 6 is a block diagram showing in detail an example of the internal configuration of the base station BS1a of the second embodiment.
  • the base station BS1a shown in FIG. 6 includes a processor PRB1a, a memory MB1a, a DL radio transmission unit 17, a UL radio reception unit 18, and antennas Ab1 to Ab100.
  • a processor PRB1a PRB1a
  • memory MB1a a DL radio transmission unit 17
  • UL radio reception unit 18 antennas Ab1 to Ab100.
  • 1 and 6 exemplify that the number of antennas owned by the base station BS1a is 100, it is needless to say that the number is not limited to 100.
  • the processor PRB1a is configured using, for example, a CPU, MPU, or DSP.
  • the processor PRB1a performs various processes and controls in cooperation with the memory MB1a.
  • the processor PRB 1a refers to a program and data held in the memory MB1a and executes the program, thereby realizing the functions of the following units.
  • Each unit includes a DL transmission target terminal determination unit 11, a DL transmission weight determination unit 12, a DL transmission signal generation unit 13, a CSI acquisition unit 15, and a UL reception signal decoding unit 16. Since the operation is almost the same as that of the first embodiment, the description is omitted.
  • a reference signal (RS: Reference Symbol, for example, fixed pattern data) that enables measurement of line state information (CSI) and a control signal that specifies L terminals (that is, CSI report specifying terminal information) )
  • CSI line state information
  • a control signal that specifies L terminals (that is, CSI report specifying terminal information)
  • CSI channel state information
  • the memory MB1a has, for example, a RAM as a work memory used at the time of processing of the base station BS1a, and a ROM for storing a program and data defining the operation of the base station BS1a. Various data and information are temporarily stored in the RAM.
  • FIG. 7 is a block diagram showing in detail an example of the internal configuration of the terminal according to the second embodiment.
  • FIG. 7 illustrates the terminal TM1a in detail.
  • the terminal TM1a has four antennas, it is needless to say that the number is not limited to four.
  • the processor PRT1a is configured using, for example, a CPU, MPU, or DSP.
  • the processor PRT1a performs various processes and controls in cooperation with the memory MT1a.
  • the processor PRT1a refers to a program and data held in the memory MT1a and executes the program, thereby realizing the functions of the following units.
  • Each unit includes a UL transmission signal generation unit 21, a DL reception signal decoding unit 22, a CSI report presence / absence determination unit 23a, a CSI measurement unit 24, a DL reception scheduled data amount determination unit 27, and a DL reception presence / absence history measurement unit. 28, the operations of the UL transmission signal generation unit 21, the DL reception signal decoding unit 22, and the CSI measurement unit 24 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the decoded output of the DL reception signal decoding unit 22 is a reference signal (RS) and DL reception data transmitted from the base station BS1a. There may be no DL received data addressed to you.
  • RS reference signal
  • the DL reception signal decoding unit 22 outputs the reference signal (RS) transmitted from the base station BS1a to the CSI measurement unit 24.
  • the DL reception signal decoding unit 22 obtains DL reception data transmitted from the base station BS1a
  • the DL reception signal decoding unit 22 outputs the DL reception data to an application (not shown) and receives data in the data transmission cycle.
  • the data is output to the DL reception scheduled data amount determination unit 27 and the DL reception presence / absence history measurement unit 28, respectively.
  • the DL reception scheduled data amount determination unit 27 acquires information indicating that the reference signal (RS) has been received from the DL reception signal decoding unit 22, the terminal related information (information on the own terminal) stored (held) in the memory MT1a One example, see FIG. 8) is read, and the amount of data [megabytes] scheduled to be received in the downlink (DL) from the base station BS1a to the own terminal is determined.
  • the DL reception scheduled data amount determination unit 27 outputs information on the determination value of the data amount scheduled to be received in the downlink to the CSI report presence / absence determination unit 23a.
  • the DL reception presence / absence history measurement unit 28 acquires information indicating that the reference signal (RS) has been received from the DL reception signal decoding unit 22, the terminal-related information (information on the own terminal) stored (held) in the memory MT1a is acquired.
  • the terminal-related information information on the own terminal stored (held) in the memory MT1a is acquired.
  • FIG. 8 One example, see FIG. 8 is read, and the state of the past reception history for each data transmission cycle from the base station BS1a to the own terminal is measured.
  • the DL reception presence / absence history measurement unit 28 outputs information related to the measurement result of the past reception history state for each data transmission cycle to the CSI report presence / absence determination unit 23a.
  • the CSI report presence / absence determination unit 23a reads terminal-related information (an example of information related to the own terminal, see FIG. 8) stored (held) in the memory MT1a, and the terminal is connected to the line based on the terminal-related information related to the own terminal. Determine whether state information (CSI) needs to be measured and reported.
  • terminal-related information an example of information related to the own terminal, see FIG. 8
  • CSI state information
  • FIG. 8 is a diagram illustrating an example of terminal-related information for each terminal connected to the base station BS1a.
  • the terminal related information held in the memory MT1a of each terminal includes a terminal identification number, a group, a DL reception scheduled data amount for each data transmission cycle, a terminal n value (see later), and a past data transmission cycle.
  • Each DL reception history, the number of data transmission cycles in which data has not been continuously received in the past (r value, see later), and CSI measurement and report necessity determination results are included.
  • the group is set corresponding to the terminal identification number (for example, the last digit or the last two digits of the terminal identification number).
  • the terminal identification number for example, the last digit or the last two digits of the terminal identification number.
  • a terminal having a terminal identification number of “1” is set for a group “G1”
  • a terminal having a lower digit of “2” is a group “G”.
  • G2 a terminal having a lower digit of “2”
  • Terminals whose last digit is“ 0 ” are set to the group“ G10 ”, respectively.
  • the group setting method is not limited to the method of setting corresponding to the value of the last 1 digit or the last 2 digits of the terminal identification number.
  • the terminal identification number may be, for example, a terminal telephone number or a terminal manufacturing number.
  • the CSI report presence / absence determining unit 23a determines information that is known to the terminal, such as the number of transmission data periods, when determining whether the terminal itself needs to measure and report the channel state information (CSI) in the order of groups. Based on this, all terminals can keep track of group number updates. Thereby, the CSI report presence / absence determination unit 23a can easily and quickly determine whether or not it is necessary to measure and report the line state information (CSI) for each data transmission cycle. Further, transmission of CSI report request designation terminal information from the base station BS1 to the terminal, which was necessary in the first embodiment, can be made unnecessary in the second embodiment.
  • the n value of the terminal is a threshold value used when the CSI report presence / absence determination unit 23a determines whether or not the own terminal needs to measure and report the channel state information (CSI).
  • the CSI report presence / absence determining unit 23a reads the n value read from the terminal-related information about the own terminal stored (held) in the memory MT1a and the status of the past reception history for each data transmission cycle from the DL reception presence / absence history measuring unit 28. Whether or not the own terminal needs to measure and report the line state information (CSI) is determined on the basis of the information on the measurement result. Specifically, the CSI report presence / absence determining unit 23a measures and reports the channel state information (CSI) when the terminal itself has not received downlink data (DL reception data) in the past n data transmission cycles. Decide to do.
  • CSI channel state information
  • the CSI report presence / absence determining unit 23a can exclude the base station BS1a from continuing to transmit downlink data (DL reception data) only to a specific terminal, and reception of downlink data (DL reception data) is for a while. It can be expected that downlink data (DL reception data) will be received by the terminal itself that does not exist.
  • the n value may be a predetermined integer value of 2 or more (that is, a fixed value), for example.
  • the CSI report presence / absence determination unit 23a can transmit downlink data (DL reception data) uniformly and evenly to all terminals connected to the base station BS1a. Therefore, the CSI report presence / absence determining unit 23a can support the base station BS1a to perform spatial multiplexing communication with many terminals every short data transmission cycle (for example, 1 millisecond or 10 milliseconds).
  • the n value can be set flexibly to a small value so that the priority of communication with the base station BS1a increases.
  • the CSI report presence / absence determination unit 23a transmits, for example, small-sized downlink data (DL reception data) in consideration of the size of the downlink data (DL reception data) transmitted from the base station BS1a.
  • the n value can be set to a large value flexibly so that the priority of communication with the base station BS1a becomes small.
  • the past DL reception history indicates whether or not downlink data (DL reception data) has been received for each data transmission cycle from the left side to the right side in FIG. "Indicates no reception).
  • CSI channel state information
  • the memory MT1a has, for example, a RAM as a work memory used at the time of processing of the terminal TM1a, and a ROM for storing a program and data defining the operation of the terminal TM1a.
  • Various data and information are temporarily stored in the RAM.
  • the memory MT1a temporarily stores the measurement result of the line state information (CSI) measured by the CSI measurement unit 24 and the terminal related information (see FIG. 8) regarding the own terminal.
  • CSI line state information
  • FIG. 9 is a flowchart illustrating in detail an example of each operation procedure of the base station BS1a and the terminal according to the second embodiment.
  • the operation procedure of the terminal will be described using the terminal TM1a shown in FIG. 1 as an example.
  • Base station BS1a and terminal TM1a repeat each operation
  • the terminal TM1a reads the terminal related information (an example of information related to the own terminal, see FIG. 8) stored (held) in the memory MT1a, and the terminal TM1a is connected to the line based on the terminal related information related to the own terminal. It is determined whether or not state information (CSI) needs to be measured and reported (S15). As described above, the method for determining whether or not the own terminal needs to measure and report the channel state information (CSI) corresponds to the terminal identification number of the own terminal based on the terminal related information held in the memory MT1a, for example.
  • CSI channel state information
  • the downlink data (DL reception data) has been received over the past n data transmission cycles based on the terminal-related information stored in the memory MT1a based on the determination method based on whether or not the group is indicated by the group information It is one of the ways to decide whether or not.
  • the determination method of whether or not the own terminal needs to measure and report the channel state information (CSI) is not limited to these determination methods.
  • CSI measurement results are not reported to the base station BS1a from all (P) terminals connected to the base station BS1a by the process of step S15, and P terminals Among them, CSI measurement results are reported from some terminals. Thereby, when a CSI measurement result is reported from the terminal, it is possible to suppress an increase in traffic on the uplink (UL).
  • the terminal TM1a determines whether or not the terminal TM1a needs to measure and report the line state information (CSI) (S16). If the terminal TM1a determines that the terminal TM1a does not need to measure and report the line state information (CSI) (S16, NO), the processing of the terminal TM1a is terminated.
  • CSI line state information
  • the terminal TM1a determines that its own terminal needs to measure and report the channel state information (CSI) (S16, YES)
  • the terminal TM1a transmits the reference signal (RS) transmitted from the base station BS1a.
  • RS reference signal
  • line state information (CSI) indicating the state of the propagation path between the base station BS1a and the own terminal is measured (S12).
  • the terminal TM1a generates a measurement result of the line state information (CSI) and transmits (reports) it to the base station BS1a (S13).
  • the base station BS1a receives the measurement result of the line state information (CSI) transmitted from the terminal TM1a in step S13 (S3). In step S3, the base station BS1a decides to measure and report the channel state information (CSI), and the measurement results of the respective channel state information (CSI) from some of the P terminals. Receive.
  • CSI line state information
  • the base station BS1a executes various types of signal processing for transmission of downlink transmission data (DL transmission data) using a beamforming technique (S4A). For example, in the base station BS1a, the DL transmission target terminal determination unit 11 determines whether or not the line state information (CSI) is good among the measurement results of the line state information (CSI) from some terminals received in step S3. In consideration of whether each MIMO stream has a high transmission rate when M terminals are combined, M terminals are selected as terminals (destination) of UL transmission data. The base station BS1a uses the DL transmission weight determination unit 12 to determine each of the M terminals from the base station BS1a based on the information on the M terminals and the measurement result of the channel state information (CSI) from each designated terminal.
  • CSI channel state information
  • a transmission weight capable of forming the directivity of the transmission beam with respect to is calculated and determined.
  • the base station BS1a uses the transmission weight and DL transmission data in the DL transmission signal generation unit 13 to transmit DL to M terminals that can simultaneously perform spatial multiplexing communication (MU-MIMO communication) on the same frequency.
  • a transmission signal is generated.
  • the base station BS1a transmits the DL transmission signal generated using the beamforming technique in step S4A from the antennas Ab1 to Ab100 to the M terminals (S5).
  • the terminal selected as the destination (destination) of downlink transmission data (DL transmission data) in step S4A (in other words, the terminal selected as a total of M terminals) was transmitted from the base station BS1a in step S5.
  • a DL transmission signal is received (S14). Even if the terminal has decided to measure and report the channel state information (CSI) in step S15, it has not been selected as the destination (destination) of the downlink transmission data (DL transmission data) in step S4A.
  • the terminal does not receive the DL transmission signal transmitted from the base station BS1a in step S5.
  • the terminal connected to the base station BS1a holds the terminal-related information (an example of information related to the own terminal) related to the own terminal in the memory MT1a. Then, based on the terminal-related information related to the own terminal, it is determined whether or not it is necessary to report the line state information (CSI) indicating the state of the propagation path with the base station BS1a. The terminal measures the line state information (CSI) based on the decision to report the line state information (CSI), and reports the measurement result of the line state information (CSI) to the base station BS1a.
  • CSI line state information
  • the base station BS1a determines M (M: integer satisfying 2 ⁇ M ⁇ L) terminals capable of spatial multiplexing communication in the data transmission period based on the report of the measurement result of the channel state information (CSI) from the terminals. Select.
  • the base station BS1a transmits DL transmission data (an example of data) using spatial multiplexing communication with M terminals via a plurality of antennas Ab1 to Ab100.
  • the terminals are selected as M (M: a predetermined value of 2 or more) terminals capable of spatial multiplexing communication with the base station BS1a in the data transmission period based on the measurement result of the channel state information (CSI).
  • CSI channel state information
  • the radio communication system 10 determines whether it is necessary to measure and report the line state information (CSI) in each of all terminals (P terminals) connected to the base station BS1a. . As a result of this determination, the line state information (CSI) is available only in some of the P terminals (for example, about L terminals in the first embodiment, or including a slight increase or decrease from the L terminals). Measurement and reporting.
  • the radio communication system 10 measures the line state information (CSI) indicating the state of the propagation path between the individual antennas Ab1 to Ab100 of the base station BS1 to which the terminal is connected and the individual antennas of the terminal, In addition, it is possible to adaptively suppress an increase in uplink (UL) traffic caused by reporting line state information (CSI) to the base station BS1. Moreover, since the radio
  • DL downlink
  • the terminal related information related to the own terminal held by each terminal in the memory MT1a has group information corresponding to the terminal identification number of the own terminal.
  • the terminal determines whether or not the terminal itself needs to measure and report the channel state information (CSI) in the order of the groups indicated by the group information.
  • CSI channel state information
  • the terminal-related information related to the own terminal held by each terminal in the memory MT1a has reception history information indicating whether or not downlink data (DL reception data) has been received from the base station BS1a for each past data transmission cycle. .
  • the terminal determines to perform measurement and reporting of the line state information (CSI) when no data is received from the base station BS1a over the past n (n: integer of 2 or more) data transmission cycles.
  • CSI line state information
  • the terminal can exclude the base station BS1a from continuing to transmit downlink data (DL reception data) only to a specific terminal, and the terminal itself has not received downlink data (DL reception data) for a while. Reception of line data (DL reception data) can be expected.
  • the n value may be a fixed value.
  • the terminal can transmit downlink data (DL reception data) uniformly and evenly in all terminals connected to the base station BS1a. Therefore, the terminal can support the base station BS1a to perform spatial multiplexing communication with many terminals every short data transmission period (for example, 1 millisecond or 10 milliseconds).
  • the terminal related information related to the own terminal held by each terminal in the memory MT1a further includes information on the downlink data amount (DL received data amount) transmitted from the base station BS1a.
  • the terminal sets the n value from the current value according to the downlink data amount (DL reception data amount). Also set a smaller value.
  • the terminal in view of the size of the downlink data (DL reception data) transmitted from the base station BS1a, the terminal, for example, when large size downlink data (DL reception data) is transmitted. Can flexibly set the n value to a small value so that the priority of communication with the base station BS1a increases.
  • the terminal related information related to the own terminal held by each terminal in the memory MT1a further includes information on the downlink data amount (DL received data amount) transmitted from the base station BS1a.
  • the terminal sets the n value from the current value according to the downlink data amount (DL received data amount). Also set larger. Thereby, the terminal considers the size of the downlink data (DL reception data) transmitted from the base station BS1a, for example, when the downlink data (DL reception data) having a small size is transmitted. Can flexibly set the n value to a large value so that the priority of communication with the base station BS1a becomes small.
  • the present disclosure is caused by measurement of channel state information indicating a state of a propagation path between each antenna of a connected base station and a report of the channel state information to the base station in a terminal connected to the base station. It is useful as a terminal, a base station, a wireless communication system, and a line state information acquisition method that adaptively suppresses an increase in uplink traffic and power consumption in the terminal and realizes a comfortable MU-MIMO communication environment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局は、複数の端末との間で無線通信が可能であって、基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持するメモリと、データ送信周期毎に、P個の端末に関する情報に基づいて、P個の端末の中から、基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定する決定部と、L個の端末からの回線状態情報の報告に基づいて、データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定する選定部と、複数のアンテナを介して、M個の端末との間で空間多重通信を用いて、データを送信する。

Description

端末、基地局、無線通信システム及び回線状態情報取得方法
 本開示は、送信側から受信側への無線通信における伝搬路の状態を示す回線状態情報を取得する端末、基地局、無線通信システム及び回線状態情報取得方法に関する。
 無線LAN(Local Area Network)のスループットの増大を実現した技術の一例として、MIMO(Multi-Input Multi-Output)が知られている。MIMOでは、送信側及び受信側において多くのアンテナを用いてデータを送受信する事で、データレート(つまり、周波数利用効率)を向上でき、更に、高度なビームフォーミングも可能となる。ビームフォーミングは、それぞれのアンテナにおいて、送信される信号及び受信される信号の振幅や位相を制御する事で、送受信ビームに指向性を持たせ、そのビームの形状を変更できる技術である。
 ビームフォーミングでは、送信側(例えば基地局)が送る信号が受信側(例えば端末)においてどのような伝搬路の状態で受信されるかを推定した上で、受信側において最大の信号電力が得られるように信号が送られる。この伝搬路の状態を送信側が推定するために、例えばCSI(Channel State Information)が使用される。
 CSIは回線状態情報(チャネル状態情報)を示し、例えば送信側から送られたリファレンスシンボル(RS:Reference Symbol)が受信側で受信された時の品質情報を基に受信側にて測定される。送信側は、受信側からフィードバックされたCSIを基に、送信側のそれぞれのアンテナから受信側のそれぞれのアンテナへの伝達関数を成分とするチャネル推定行列を演算し、このチャネル推定行列を用いてビームフォーミングを実行する。これにより、送信側(例えば基地局)は、単一の受信側(例えば端末)との間でMIMOによる無線通信を行う事もできるし、複数の受信側(例えば端末)との間でMIMOによる無線通信(つまり、MU(Multiple User)-MIMOという空間多重伝送)が可能となる。
 MIMOが適用される通信システムにおいてビームフォーミングを用いてデータ信号を送る事に関する先行技術として、例えば特許文献1が提案されている。特許文献1では、基地局から離れた位置にいるユーザ端末にもビームフォーミングを適用してデータ信号を送信できるように、固定ウェイトを用いたビームフォーミングによって下りリンクの参照信号(例えば、チャネル状態測定用参照信号(CSI-RS))をユーザ端末に送り、ユーザ端末からの推定結果(CSI)を用いて適切なウェイトを設定する事が開示されている。
特開2015-53569号公報
 送信側(例えば基地局)と複数の受信側(例えば端末)とがMU-MIMOによってデータ通信できると、快適な無線通信環境の実現が可能と期待されている。ここで、上述したMU-MIMOにおける送信側(例えば基地局)の空間多重数の上限値(以下、上限値を示す文字として便宜的に「M」を用いる)は例えば2~8程度とそれほど大きくない事が知られている。従って現存の技術では、例えばスタジアム、テーマパーク又は大会議場のように多くの人が集まる場所において例えば100台の端末が基地局に接続している時には、1回のデータ送信周期内では最大M台の端末としか通信できないが、基地局がデータ送信周期毎にデータ送信対象の端末を切り替える事で100台の端末との無線通信を実現させている。
 しかし、この現存の技術による方式では、上限値Mを前提にしたMU-MIMOの無線通信の実現を考察した場合、送信側(例えば基地局)との接続候補となる受信側(例えば端末)の数が多いと、次の点について課題が生じると考えられる。
 つまり、データ送信周期毎に100台の端末がCSI(つまり、端末の個々のアンテナと基地局の個々のアンテナとの間の伝搬路の回線状態情報)を基地局に報告する事が全ての接続中の端末の中から最適な端末の組み合わせを選択できるため、下り回線の周波数利用効率の最大化の観点では理想的である。しかしながら、上り回線(言い換えると、端末から基地局)のトラフィックが膨大な数のCSIによって浪費されてしまうという課題がある。
 また、MU-MIMOにおける空間多重数の上限値Mは一定値であって全ての端末のうち一部の端末しかデータ信号の送信に選定されないにも拘わらず、データ送信周期毎にCSIを測定して基地局に報告する事を継続すると、端末における電力消費が大きくなるという課題がある。このような課題については特許文献1においても考慮されていないので、依然として未解決といえる。
 本開示は、上述した従来の事情に鑑みて案出され、接続中の基地局の個々のアンテナとの間の伝搬路の状況を示す回線状態情報の測定並びに回線状態情報の基地局への報告によって生じる、上り回線のトラフィックの増大や端末における消費電力の増大を適応的に抑制し、快適なMU-MIMOの通信環境を実現する端末、基地局、無線通信システム及び回線状態情報取得方法を提供する事を目的とする。
 本開示は、複数の端末との間で無線通信が可能な基地局であって、前記基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持するメモリと、データ送信周期毎に、前記P個の端末に関する情報に基づいて、前記P個の端末の中から、前記基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定する決定部と、前記L個の端末からの前記回線状態情報の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定する選定部と、複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信する通信部と、を備える、基地局を提供する。
 また、本開示は、複数の端末との間で無線通信が可能な基地局における回線状態情報取得方法であって、前記基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持するステップと、データ送信周期毎に、前記P個の端末に関する情報に基づいて、前記P個の端末の中から、前記基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定するステップと、前記L個の端末からの前記回線状態情報の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定するステップと、複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信するステップと、を有する、回線状態情報取得方法を提供する。
 また、本開示は、複数の端末と基地局とが無線通信可能な無線通信システムであって、前記基地局は、前記基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持し、データ送信周期毎に、前記P個の端末に関する情報に基づいて、前記P個の端末の中から、前記基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定し、更に、前記回線状態情報の報告指示を前記P個の端末に送信し、前記端末は、前記基地局から送信された前記回線状態情報の報告指示を基に、前記回線状態情報を測定し、更に、前記回線状態情報の測定結果を前記基地局に報告し、前記基地局は、前記L個の端末からの前記回線状態情報の測定結果の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定し、複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信する、無線通信システムを提供する。
 また、本開示は、基地局との間で通信可能な端末であって、自端末に関する情報を保持するメモリと、データ送信周期毎に、前記自端末に関する情報に基づいて、前記基地局との間の伝搬路の状態を示す回線状態情報の報告の要否を決定する決定部と、前記回線状態情報の報告を行う事の決定に基づいて、前記回線状態情報を測定する測定部と、前記回線状態情報の測定結果を前記基地局に報告する通信部と、を備え、前記通信部は、前記回線状態情報の測定結果に基づいて前記データ送信周期において前記基地局との間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、前記基地局から送信されたデータを受信する、端末を提供する。
 また、本開示は、基地局との間で通信可能な端末における回線状態情報取得方法であって、自端末に関する情報を保持するステップと、データ送信周期毎に、前記自端末に関する情報に基づいて、前記基地局との間の伝搬路の状態を示す回線状態情報の報告の要否を決定するステップと、前記回線状態情報の報告を行う事の決定に基づいて、前記回線状態情報を測定するステップと、前記回線状態情報の測定結果を前記基地局に報告するステップと、前記回線状態情報の測定結果に基づいて前記データ送信周期において前記基地局との間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、前記基地局から送信されたデータを受信するステップと、を有する、回線状態情報取得方法を提供する。
 また、本開示は、複数の端末と基地局とが無線通信可能な無線通信システムであって、前記端末は、自端末に関する情報を保持し、データ送信周期毎に、前記自端末に関する情報に基づいて、前記基地局との間の伝搬路の状態を示す回線状態情報の報告の要否を決定し、前記回線状態情報の報告を行う事の決定に基づいて、前記回線状態情報を測定し、前記回線状態情報の測定結果を前記基地局に報告し、前記基地局は、前記端末からの前記回線状態情報の測定結果の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定し、複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信し、前記端末は、前記回線状態情報の測定結果に基づいて前記データ送信周期において前記基地局との間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、前記空間多重通信を用いて前記基地局から送信されたデータを受信する、無線通信システムを提供する。
 本開示によれば、接続中の基地局の個々のアンテナとの間の伝搬路の状況を示す回線状態情報の測定並びに回線状態情報の基地局への報告によって生じる、上り回線のトラフィックの増大や端末における消費電力の増大を適応的に抑制でき、快適なMU-MIMOの通信環境を実現できる。
図1は、各実施の形態の無線通信システムのシステム構成の一例を示す図である。 図2は、実施の形態1の基地局の内部構成の一例を詳細に示すブロック図である。 図3は、実施の形態1の端末の内部構成の一例を詳細に示すブロック図である。 図4Aは、基地局が保持する接続端末リストの第1例を示す模式図である。 図4Bは、基地局が保持する接続端末リストの第2例を示す模式図である。 図5は、実施の形態1の基地局及び端末の各動作手順の一例を詳細に示すフローチャートである。 図6は、実施の形態2の基地局の内部構成の一例を詳細に示すブロック図である。 図7は、実施の形態2の端末の内部構成の一例を詳細に示すブロック図である。 図8は、基地局に接続している端末毎の端末関連情報の一例を示す図である。 図9は、実施の形態2の基地局及び端末の各動作手順の一例を詳細に示すフローチャートである。
 以下、適宜図面を参照しながら、本開示に係る端末、基地局、無線通信システム及び回線状態情報取得方法を具体的に開示した各実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。
 (実施の形態1)
 実施の形態1では、基地局が、基地局に接続している全ての端末の中から、回線状態情報(CSI)の測定及び報告を行う一部の端末を決定する。図1は、各実施の形態の無線通信システム10のシステム構成の一例を示す図である。
 実施の形態1において、無線通信システム10は、1台の基地局BS1と複数の端末TM1,TM2,…,TM100とを含む構成である。基地局BS1と個々の端末とは、無線通信回線を介して接続並びに無線通信する事が可能である。無線通信回線は、様々な公衆回線、携帯電話回線、広域無線回線等を広く含む。以下、基地局BS1が、空間多重通信(言い換えると、MU-MIMO(Multiple User Multi Input Multi Output)通信)を用いて、下り回線(DL:Down Link)のデータを、所定個(後述参照)の端末に送信する例を説明する。なお、下り回線(DL)は基地局BS1から端末に向かう無線回線であり、一方、上り回線は端末から基地局BS1に向かう無線回線である。
 基地局BS1は、複数のアンテナAb1,Ab2,…,Ab100を有する。基地局BS1が有するアンテナの設置数は100を例示しているが、100に限定されず、例えば128、1024等の2のべき乗の数であってもよい事は言うまでもない。
 基地局BS1は、データ送信周期毎に、同一の周波数上で同時に空間多重通信が可能な所定個(以下、M(M:2以上の既定の整数値)個とする)の端末との間で、アンテナAb1~Ab100を介して下り回線のデータ(以下、「DL送信データ」という)を送信する。つまり、Mは、1回のデータ送信周期における空間多重数の最大値を示す。Mは例えば2~8程度の整数値である。例えば図1では、M個の端末として、端末識別番号「#1」を有する端末TM1と、端末識別番号「#100」を有する端末TM100とが、同一のデータ送信周期において、空間多重通信によって基地局BS1から送信されたDL送信データを受信した事が図示されている。端末識別番号は、端末を識別可能な番号であって、例えば端末の電話番号でもよいし、端末の製造番号でもよい。
 基地局BS1は、DL送信データを端末TM1や端末TM100に送信する前に、基地局BS1の個々のアンテナi(i:1~100の整数)から端末TM1や端末TM100の個々のアンテナj(j:1~400の整数)に至る伝達関数aijを成分とするチャネル行列Aを把握している。jは、例えば端末のアンテナ設置数が4であって、端末数が100である場合に最大値が400となる。これにより、基地局BS1と端末TM1との間や、基地局BS1と端末TM100との間のそれぞれのマルチユーザ空間多重伝送(つまり、MU-MIMO伝送)が可能となる。
 また、伝達関数aijは時間的に変動するため、基地局BS1は、例えばデータ送信周期(例えば1m秒又は10m秒)毎に伝達関数aijを更新して取得する必要がある。この伝達関数aijの取得のために、実施の形態1では、基地局BS1は、データ送信周期毎に、基地局BS1が決定した一部の端末に対し、基地局BS1との間の伝搬路の状態を示す回線状態情報(CSI)の測定及び測定の実行指示を送信する。端末は、基地局BS1からの実行指示を受信した場合には、基地局BS1との間の伝搬路の状態を示す回線状態情報(CSI)を測定し、測定結果を基地局BS1に報告する。基地局BS1は、該当する一部の端末から報告された回線状態情報(CSI)を用いて、下り回線送信対象とする端末を最大M台決定し、そのM台以下の端末からの回線状態情報(CSI)に基づいて推定される伝達関数aijよりMU-MIMOの空間多重送信信号を生成する事で、同一の周波数上で同時に最大M台の端末にDL送信データを送信する。
 無線通信システム10において、基地局BS1と個々の端末との間で用いられる無線規格方式は、高周波数帯(例えば、5G(第5世代移動通信システム)での使用が検討されている28GHz帯)が想定可能である。各実施の形態において主に適用される無線通信方式は、例えば基地局に多数のアンテナを持ち、基地局と複数の端末との間の空間多重通信機能を持ったものであり、5G(第5世代移動通信システム)がその代表例である。しかし、無線通信システム10での基地局及び端末が別の無線通信規格(例えばLTE(Long Term Evolution)、無線LAN(Local Area Network)、DECT(Digital Enhanced Cordless Telecommunication)、3G(第3世代移動通信システム)などの無線通信規格)を併せ持ってもよい。
 無線通信システム10により構成されるネットワークは、C/U分離型のネットワークでなくてもよいし、C/U分離型のネットワークであってもよい。本実施の形態では、C/U分離型ではないネットワークを例示する。つまり、無線通信システム10では、制御データの通信とユーザデータの通信とが同じ基地局BS1により実施される。
 基地局BS1は、例えば上述した28GHz帯に基づく高速なスループットを提供可能なスモールセル基地局又はマクロセル基地局である。基地局BS1の通信可能範囲は、例えば基地局BS1の位置とセル半径に応じて定まる。基地局BS1は、例えば工場、工事現場、スタジアム、テーマパーク、国際会議場等の大会議室に配置される。端末は、基地局BS1との間においても、制御データを通信し、ユーザデータを通信する。制御データは、C(Control)-Planeに係るデータを含む。ユーザデータは、U(User)-Planeに係るデータを含む。ユーザデータは、例えば画像データ(例えば動画、静止画)、音声データを含み、データ量の多いデータを含み得る。
 C-planeは、無線通信における呼接続や無線資源割当の制御データを通信するための通信プロトコルである。U-planeは、端末と基地局BS1との間で、割り当てられた無線資源を使用して実際に通信(例えば映像通信、音声通信、データ通信)するための通信プロトコルである。
 図2は、実施の形態1の基地局BS1の内部構成の一例を詳細に示すブロック図である。
 図2に示す基地局BS1は、プロセッサPRB1と、メモリMB1と、DL無線送信部17と、UL無線受信部18と、アンテナAb1~Ab100とを含む構成である。図1及び図2には、基地局BS1のアンテナ保有数が100と例示されているが、100に限定されない事は言うまでもない。
 プロセッサPRB1は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)又はDSP(Digital Signal Processor)を用いて構成される。プロセッサPRB1は、メモリMB1と協働して、各種処理や制御を行う。具体的には、プロセッサPRB1は、メモリMB1に保持されたプログラム及びデータを参照し、そのプログラムを実行することにより、以下の各部の機能を実現する。この各部は、DL送信対象端末決定部11と、DL送信ウェイト決定部12と、DL送信信号生成部13と、CSI報告要求指定端末決定部14と、CSI取得部15と、UL受信信号復号部16とを含む。
 DL(Down Link)送信対象端末決定部11には、基地局BS1に上位装置(例えばコアネットワーク装置)からのDL送信データが入力される。DL送信データは、上述したユーザデータであり、例えば画像データや音声データである。DL送信対象端末決定部11は、データ送信周期毎に、同一周波数上で同時に空間多重通信(MU-MIMO通信)が可能なM台(個)の端末を決定していない場合、基地局BS1との間の伝搬路の状態を示す回線状態情報(CSI)の報告が要求される指定端末の決定指示をCSI報告要求指定端末決定部14に出力する。これは、DL送信対象端末決定部11がCSI報告要求指定端末決定部14に、回線状態情報(CSI)の測定及び報告を行わせる端末を、基地局BS1に接続中の全端末から一部(後述するL個)の指定端末に限定する事で、CSI報告に伴うUL(Up Link、つまり端末から基地局BS1)のトラフィックの増大を抑制するためである。
 また、選定部の一例としてのDL送信対象端末決定部11は、データ送信周期に、それぞれの指定端末(後述するL個の端末)からの回線状態情報(CSI)の測定結果の報告に基づいて、同一周波数上で同時に空間多重通信(MU-MIMO通信)が可能なM台(個)の端末を決定する。DL送信対象端末決定部11は、DL送信データとM台の端末に関する情報とをDL送信ウェイト決定部12に出力する。
 DL送信ウェイト決定部12は、データ送信周期毎に、M台の端末に関する情報とそれぞれの指定端末(後述するL台の端末)からの回線状態情報(CSI)の測定結果とに基づいて、MIMO空間多重送信信号の送信ビーム指向性形成の送信ウェイトを算出して決定する。DL送信ウェイト決定部12は、送信ウェイトとDL送信データとをDL送信信号生成部13に出力する。DL送信ウェイト決定部12の動作は公知技術であるため、詳細な説明を省略する。
 DL送信信号生成部13は、回線状態情報(CSI)の測定及び報告が要求される指定端末(後述するL台個の端末)はどれであるかを示す報知情報(後述するCSI報告要求指定端末情報)、及び回線状態情報(CSI)を測定させるための固定パターンである参照信号(RS:Reference Symbol)を生成してDL無線送信部17に出力する。これらCSI報告要求指定端末情報及び参照信号(RS)は、基地局BS1からL台の端末に向けたビームフォーミング送信ではなく、例えば基地局BS1に接続中の全ての端末に対して共通の共通制御チャネルにて送信される。CSI報告要求指定端末情報は基地局BS1のアンテナの全てから送信される必要性はない。参照信号(RS)は、回線状態情報(CSI)測定の対象なので基地局アンテナの全てから送信される必要がある。
 また、DL送信信号生成部13は、データ送信周期毎に、送信ウェイトとDL送信データとを用いて、同一周波数上で同時に空間多重通信(MU-MIMO通信)が可能なM台(個)の端末に送信可能なDL送信信号を生成する。つまり、DL送信信号生成部13は、ビームフォーミング技術を用いて、M台の端末においてDL送信データの受信が可能なDL送信信号を生成してDL無線送信部17に出力する。
 決定部の一例としてのCSI報告要求指定端末決定部14は、データ送信周期毎に、回線状態情報(CSI)の報告が要求される指定端末の決定指示に基づいて、基地局BS1に接続中の合計P(P:3以上の整数)台(個)の端末の中から、回線状態情報(CSI)の報告を行わせるL(L:2≦L<Pを満たす整数)台(個)の端末を決定する。CSI報告要求指定端末決定部14は、回線状態情報(CSI)の報告を行わせるL台の指定端末に関する情報(以下、「CSI報告要求指定端末情報」という)をDL送信信号生成部13に出力する。
 図4Aは、基地局BS1が保持する接続端末リストの第1例を示す模式図である。
 図4Aに示す接続端末リストT1は、基地局BS1と接続した端末に関する情報の一例として、それぞれの端末の識別番号(端末識別番号)の情報と、それぞれの端末において基地局BS1と接続した順序(順番)に関する情報とを有する。図4Aにおいて、端末識別情報と個々の端末が基地局BS1に接続した順序(順番)とは一致するように対応している。従って、基地局BS1は、例えば現在、端末識別番号「#1」~「#60」の合計60台の端末と接続中であり、「#1」の端末、「#2」の端末、「#3」の端末、…、「#53」の端末、…、「#59」の端末、「#60」の端末の順に接続を開始した事になる。なお、図4Aには図示されていないが、基地局BS1と接続した順を示す情報として、例えば端末が基地局BS1と接続した時刻情報を更に有しても構わない。
 CSI報告要求指定端末決定部14は、データ送信周期毎に、メモリMB1に保持されている接続端末リストT1を読み出し、基地局BS1と接続した個々の端末における端末識別番号の順にL台ずつ、回線状態情報(CSI)の報告を行わせるL(L:2≦L<Pを満たす整数)台(個)の端末を決定する。これにより、CSI報告要求指定端末決定部14は、回線状態情報(CSI)の報告を行わせるL台の端末をデータ送信周期毎に簡易かつ迅速に決定できる。
 図4Bは、基地局BS1が保持する接続端末リストの第2例を示す模式図である。
 図4Bに示す接続端末リストT2は、基地局BS1と接続した端末に関する情報の一例として、それぞれの端末の識別番号(端末識別番号)の情報と、基地局BSがそれぞれの端末に送信するべきDL送信データ量の情報とを有する。例えばDL送信データ量の大きい順に、図4Bの紙面左側から紙面右側に向かって示される。従って、基地局BS1は、例えば現在、端末識別番号「#1」~「#60」の合計60台の端末と接続中であり、「#7」の端末、「#1」の端末、「#3」の端末、…、「#60」の端末、…、「#18」の端末、「#13」の端末の順にDL送信データ量を多く送信する。DL送信データ量は、それぞれ「#7」の端末には「27メガバイト」、「#1」の端末には「26.1メガバイト」、「#3」の端末には「25メガバイト」、…、「#60」の端末には「5.2メガバイト」、…、「#18」の端末には「2.5メガバイト」、「#13」の端末には「1.1メガバイト」である。
 CSI報告要求指定端末決定部14は、データ送信周期毎に、メモリMB1に保持されている接続端末リストT2を読み出し、DL送信データ量の多い順に優先してL台の端末を、回線状態情報(CSI)の報告を行わせるL(L:2≦L<Pを満たす整数)台(個)の端末として決定する。これにより、CSI報告要求指定端末決定部14は、DL送信データ量が大きいデータ(例えば映像データ)の送り先(宛先)となる端末との通信を優先して継続できるように、回線状態情報(CSI)の報告を行わせるL台の指定端末を決定できる。
 また、CSI報告要求指定端末決定部14は、データ送信周期毎に、メモリMB1に保持されている接続端末リストT2を読み出し、DL送信データ量に応じて、回線状態情報(CSI)の報告を行わせるL台の端末の選定頻度を変更してもよい。例えば、CSI報告要求指定端末決定部14は、DL送信データ量が大きい端末が既定値以上である場合には、現在のデータ送信周期を含む所定回数分のデータ送信周期にわたって、現在のデータ送信周期において決定した同一のL台の端末を続けて選択してもよい。これにより、CSI報告要求指定端末決定部14は、DL送信データ量が大きい端末が所定回数分のデータ送信周期にわたって回線状態情報(CSI)の報告を行える端末として決定できるので、そのDL送信データ量が大きい端末と基地局BS1との通信の連続的な継続を支援できる。
 また、メモリMT1は、基地局BS1と接続中の端末の中に所定の契約(SLA:Service Level Agreement)を締結したか否かを示す情報とその契約におけるランク情報又はレベル情報(以下、「契約関連情報」という)を保持する。CSI報告要求指定端末決定部14は、データ送信周期毎に、メモリMB1に保持されている契約関連情報(不図示)を読み出し、上述した所定の契約を締結済みの端末であってかつその契約におけるランク情報又はレベル情報が高い端末から優先してL台の端末を、回線状態情報(CSI)の報告を行わせるL(L:2≦L<Pを満たす整数)台(個)の端末として決定する。これにより、CSI報告要求指定端末決定部14は、例えば所定の契約を締結した一部の有料会員、更にはその有料会員の中でも契約の高いランク又はレベルに属する有料会員の端末との通信を優先できるように、回線状態情報(CSI)の報告を行わせるL台の指定端末を決定できる。
 CSI取得部15は、UL受信信号復号部16の出力から、L台の指定端末からそれぞれ送信されてきた回線状態情報(CSI)の測定結果を取得する。CSI取得部15は、L台の指定端末からそれぞれ送信されてきた回線状態情報(CSI)の測定結果を、DL送信対象端末決定部11及びDL送信ウェイト決定部12にそれぞれ出力する。
 UL受信信号復号部16は、UL無線受信部18の出力(つまり、UL受信信号)を取得して復号する。UL受信信号復号部16の復号出力は、L台の指定端末からそれぞれ送信されてきた回線状態情報(CSI)の測定結果、又はM台の端末(つまり、データ送信周期において基地局BSとの間でMU-MIMO伝送が可能な端末)からそれぞれ送信されてきたUL受信データのうちいずれか又はその両方である。
 UL受信信号復号部16は、L台の指定端末からそれぞれ送信されてきた回線状態情報(CSI)の測定結果を得た場合には、L台の指定端末からそれぞれ送信されてきた回線状態情報(CSI)の測定結果をCSI取得部15に出力する。一方、UL受信信号復号部16は、M台の端末(つまり、データ送信周期において基地局BSとの間でMU-MIMO伝送が可能な端末)からそれぞれ送信されてきたUL受信データを得た場合には、M台の端末(つまり、データ送信周期において基地局BSとの間でMU-MIMO伝送が可能な端末)からそれぞれ送信されてきたUL受信データを基地局BS1の上位装置(例えばコアネットワーク装置、不図示)に出力する。
 通信部の一例としてのDL無線送信部17は、ビームフォーミング技術を用いてDL送信信号生成部13により生成されたDL送信信号をそれぞれのアンテナAb1~Ab100からM台の端末に向けて送信する。また、DL無線送信部17は、DL送信信号生成部13により生成された参照信号(RS)をそれぞれのアンテナAb1~Ab100からL台の端末に向けて送信する。
 通信部の一例としてのUL無線受信部18は、M台の端末から送信されたUL受信信号を、アンテナAb1~Ab100を介して受信してUL受信信号復号部16に出力する。
 メモリMB1は、例えば基地局BS1の処理時に用いられるワークメモリとしてのRAM(Random Access Memory)と、基地局BS1の動作を規定したプログラム及びデータを格納するROM(Read Only Memory)とを有する。RAMには、各種データや情報が一時的に保存される。ROMには、基地局BS1の動作(例えば、本実施の形態に係る回線状態情報取得方法として行われる処理(ステップ))を規定したプログラムが書き込まれている。
 また、メモリMB1は、図4Aに示す接続端末リストT1、又は図4Bに示す接続端末リストT2を保存(保持)する。なお図2では、メモリMB1は、プロセッサPRB1とは別構成として示されているが、プロセッサPRB1に内蔵されてもよい。メモリMB1は、一次記憶装置とともに、二次記憶装置を含んでもよい。
 図3は、実施の形態1の端末TM1の内部構成の一例を詳細に示すブロック図である。
 図1に示すそれぞれの端末TM1~TM100の内部構成は同一であるため、図3では端末TM1を例示して詳細に説明する。それぞれの端末TM1~TM100は、基地局BS1との間で無線通信が可能な端末であって、例えば携帯電話機、スマートフォン、タブレット端末である。なお、端末TM1~TM100は、電話機能を有してもよいし、電話機能を有さなくてもよい。
 図3に示す端末TM1は、プロセッサPRT1と、メモリMT1と、UL無線送信部25と、DL無線受信部26と、アンテナAt11~At14とを含む構成である。図1及び図3には、端末TM1のアンテナ保有数が4と例示されているが、4に限定されない事は言うまでもない。
 プロセッサPRT1は、例えばCPU、MPU又はDSPを用いて構成される。プロセッサPRT1は、メモリMT1と協働して、各種処理や制御を行う。具体的には、プロセッサPRT1は、メモリMT1に保持されたプログラム及びデータを参照し、そのプログラムを実行することにより、以下の各部の機能を実現する。この各部は、UL送信信号生成部21と、DL受信信号復号部22と、CSI報告有無決定部23と、CSI測定部24とを含む。
 UL送信信号生成部21は、例えば端末TM1のユーザのアプリケーションに対する操作に応じて生成された上り回線のデータ(以下、「UL送信データ」という)を取得する。UL送信信号生成部21は、UL送信データを基地局BS1に送信するためのUL送信信号を生成してUL無線送信部25に出力する。UL送信データは、ユーザデータ(例えば画像データや音声データ)でもよいし、制御データ(例えば画像や音声の配信リクエスト)でもよい。
 また、UL送信信号生成部21は、CSI測定部24により測定された回線状態情報(CSI:基地局BS1と端末TM1との間の伝搬路の状態を示す情報)を取得する。UL送信信号生成部21は、回線状態情報(CSI)を基地局BS1に送信するためのUL送信信号を生成してUL無線送信部25に出力する。
 DL受信信号復号部22は、DL無線受信部26の出力(つまり、DL受信信号)を取得して復号する。DL受信信号復号部22の復号出力は、基地局BS1から送信されてきた参照信号(RS)又はDL受信データのうちいずれかである。
 DL受信信号復号部22は、基地局BS1から送信されてきた参照信号(RS)を得た場合には、参照信号(RS)をCSI測定部24に出力するとともに、参照信号(RS)のデータフレームに含まれるCSI報告要求指定端末情報をCSI報告有無決定部23に出力する。一方、DL受信信号復号部22は、基地局BS1から送信されてきたDL受信データを得た場合には、DL受信データをアプリケーション(不図示)に出力する。
 CSI報告有無決定部23は、DL受信信号復号部22の出力(つまり、参照信号(RS)のデータフレームに含まれるCSI報告要求指定端末情報)に基づいて、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する。CSI報告有無決定部23は、決定結果に応じて、回線状態情報(CSI)の測定のオンオフ制御信号をCSI測定部24に出力する。
 例えば、CSI報告有無決定部23は、CSI報告要求指定端末情報に自端末の識別番号(端末識別番号)が含まれていると判断した場合に、自端末が回線状態情報(CSI)の測定及び報告を行う事を決定し、その旨のオンオフ制御信号(つまり、CSIの測定及び報告を行うための制御信号)をCSI測定部24に出力する。一方、CSI報告有無決定部23は、CSI報告要求指定端末情報に自端末の識別番号(端末識別番号)が含まれていないと判断した場合に、自端末が回線状態情報(CSI)の測定及び報告を行わない事を決定し、その旨のオンオフ制御信号(つまり、CSIの測定及び報告を行わないための制御信号)をCSI測定部24に出力する。
 CSI測定部24は、CSI報告有無決定部23からのオンオフ制御信号が回線状態情報(CSI)の測定及び報告を行う事の決定を示す場合に、DL受信信号復号部22からの出力(つまり、参照信号(RS))に基づいて、基地局BS1と自端末(例えば端末TM1)との間の伝搬路の状態を示す回線状態情報(CSI)を測定する。CSI測定部24は、基地局BS1から送信されてきた参照信号(RS)に対して、回線状態情報(CSI)を測定する。CSI測定部24は、回線状態情報(CSI)の測定結果をUL送信信号生成部21に出力する。
 通信部の一例としてのUL無線送信部25は、UL送信信号生成部21により生成されたUL送信信号(具体的には、UL送信データを基地局BS1に送信するためのUL送信信号)をアンテナAt11~At14から基地局BS1に向けて送信する。また、UL無線送信部25は、UL送信信号生成部21により生成されたUL送信信号(具体的には、回線状態情報(CSI)を基地局BS1に送信するためのUL送信信号)をアンテナAt11~At14から基地局BS1に向けて送信する。
 通信部の一例としてのDL無線受信部26は、基地局BS1から送信されたDL受信信号を、アンテナAt11~At14を介して受信してDL受信信号復号部22に出力する。
 メモリMT1は、例えば端末TM1の処理時に用いられるワークメモリとしてのRAMと、端末TM1の動作を規定したプログラム及びデータを格納するROMとを有する。RAMには、各種データや情報が一時的に保存される。例えばメモリMT1は、CSI測定部24により測定された回線状態情報(CSI)の測定結果を一時的に保存する。
 次に、実施の形態1における基地局BS1及び端末の動作手順について、図5を参照して説明する。図5は、実施の形態1の基地局BS1及び端末TM1の各動作手順の一例を詳細に示すフローチャートである。図5の説明においても、端末の動作手順を図1に示す端末TM1を例示して説明する。基地局BS1及び端末TM1は、図5に示すそれぞれの動作フローをデータ送信周期毎に繰り返す。図5において説明する端末の動作手順は、基地局BS1において、回線状態情報(CSI)の測定及び報告を行わせるL台の端末として決定された端末における動作フローを示す。
 図5において、基地局BS1は、データ送信周期毎に、現在基地局BS1に接続中のP(例えば100)台の端末から、回線状態情報(CSI)の測定及び報告を行わせるL台(例えばkM台、kは例えば2~5の整数)の端末を決定する(S1)。L台の端末の決定方法は、上述したように、例えばメモリMB1に保持される接続端末リストT1に基づいて基地局BS1に接続した順に決定する方法、メモリMB1に保持される接続端末リストT2に基づいてDL送信データ量が大きい端末の順に決定する方法、又は、所定の契約を締結済みであってかつその契約におけるランク情報又はレベル情報が高い端末から順に決定する方法のいずれかである。但し、L台の端末の決定方法は、これらの決定方法に限定されなくても構わない。
 従って、実施の形態1では、ステップS1の処理により、基地局BS1に接続中の全て(P台)の端末からCSIの測定結果の報告が基地局BS1になされる事が無く、P台の端末のうち一部(L台の端末、L<P)の端末からCSIの測定結果が報告される。これにより、端末からCSIの測定結果の報告がなされるときに、上り回線(UL)におけるトラフィックの増大の抑制が可能となる。
 基地局BS1は、回線状態情報(CSI)の報告指示として、ステップS1において決定したL台の端末はどれであるかの報知情報(つまり、CSI報告要求指定端末情報)及び回線状態情報(CSI)を測定させるための固定パターンである参照信号(RS)をP台の端末に送信する(S2)。これらCSI報告要求指定端末情報及び参照信号は、例えば共通制御チャネルにてビームフォーミング送信ではなく送信される。CSI報告要求指定端末情報は、基地局BS1のアンテナの全てから送信される必要性はない。参照信号(RS)は、回線状態情報(CSI)の測定の対象なので基地局BS1のアンテナの全てから送信される必要がある。
 基地局BS1のステップS1の処理によりL台の端末として決定された端末(指定端末)は、ステップS2において基地局BS1から送信されたCSI報告要求指定端末情報により自身が回線状態情報(CSI)の測定及び報告を行うべきことを知る(S11)。そして、それらの端末(指定端末)は、基地局BS1から送信される参照信号(RS)を受信処理する事により、基地局BS1と自端末との間の伝搬路の状態を示す回線状態情報(CSI)を測定する(S12)。端末(指定端末)は、回線状態情報(CSI)の測定結果を生成して基地局BS1に送信(報告)する(S13)。
 基地局BS1は、ステップS13において端末(指定端末)から送信された回線状態情報(CSI)の測定結果を受信する(S3)。基地局BS1は、ステップS3においては合計L台の端末からのそれぞれの回線状態情報(CSI)の測定結果を受信する。
 基地局BS1は、ビームフォーミング技術を用いて、下り回線の送信データ(DL送信データ)の送信用の各種の信号処理を実行する(S4)。例えば、基地局BS1は、DL送信対象端末決定部11において、ステップS3において受信した合計L台の端末(指定端末)からの回線状態情報(CSI)の測定結果の中で回線状態情報(CSI)が良好か或いはどのM台の端末を組み合わせるとMIMOの各ストリームが大きな伝送速度になるか等を考慮してM台の端末を、UL送信データの送り先(宛先)となる端末として選定する。基地局BS1は、DL送信ウェイト決定部12において、M台の端末に関する情報とそれぞれの指定端末(L台の端末)からの回線状態情報(CSI)の測定結果とに基づいて、MIMO空間多重送信信号の送信ビーム指向性形成の送信ウェイトを算出して決定する。基地局BS1は、DL送信信号生成部13において、送信ウェイトとDL送信データとを用いて、同一周波数上で同時に空間多重通信(MU-MIMO通信)が可能なM台の端末に送信可能なDL送信信号を生成する。
 基地局BS1は、ステップS4においてビームフォーミング技術を用いて生成したDL送信信号をそれぞれのアンテナAb1~Ab100からM台の端末に向けて送信する(S5)。
 ステップS4において下り回線の送信データ(DL送信データ)の送り先(宛先)として選定された端末(言い換えると、合計M台の端末として選定された端末)は、ステップS5において基地局BS1から送信されたDL送信信号を受信する(S14)。なお、ステップS1において決定されたL台の端末であっても、ステップS4において下り回線の送信データ(DL送信データ)の送り先(宛先)として選定されなかった端末は、ステップS5において基地局BS1から送信されたDL送信信号は受信されない。
 以上により、実施の形態1の無線通信システム10では、基地局BS1は、基地局BS1と接続中の全て(具体的には、P(P:3以上の整数)台)の端末に関する情報をメモリMB1に保持し、データ送信周期毎に、P台の端末に関する情報に基づいて、P台の端末の中から、基地局BS1との間の伝搬路の状態を示す回線状態情報(CSI)の報告を行わせるL(L:2≦L<Pを満たす整数)台の端末を決定する。基地局BS1は、回線状態情報(CSI)の測定及び報告の実行指示をCSI報告要求指定端末情報として、基地局BS1に接続中のそれぞれの端末に送信する。回線状態情報(CSI)の報告の要求が指定されたL台の端末は、回線状態情報(CSI)を測定し、回線状態情報(CSI)の測定結果を基地局BS1に報告する。基地局BS1は、L個の端末からの回線状態情報(CSI)の測定結果の報告に基づいて、データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)台の端末を選定し、複数のアンテナAb1~Ab100を介して、M個の端末との間で空間多重通信を用いて、データを送信する。
 つまり、無線通信システム10は、基地局BS1において全ての端末(P台の端末)から、回線状態情報(CSI)の測定及び報告を行わせる端末をL台の端末に限定的に決定する。これにより、無線通信システム10は、端末が接続している基地局BS1の個々のアンテナAb1~Ab100と端末の個々のアンテナとの間の伝搬路の状況を示す回線状態情報(CSI)の測定、並びに回線状態情報(CSI)の基地局BS1への報告によって生じる、上り回線(UL)のトラフィックの増大を適応的に抑制できる。また、無線通信システム10は、基地局BS1においてL台の端末に決定されなかった端末において回線状態情報(CSI)の測定及び報告を行わせる必要が無いので、それらの端末における消費電力の増大を適応的に抑制できる。従って、無線通信システム10は、基地局BS1と回線状態情報(CSI)の測定結果に基づいて選定された合計M台の端末との間で、良好かつ快適な下り回線(DL)のMU-MIMOの通信環境を実現できる。
 また、基地局BS1がメモリMB1に保持するP台の端末に関する情報は、基地局BS1に接続した個々の端末における端末識別情報を有する。基地局BS1は、基地局BS1に接続した端末の順に対応する端末識別番号に従い、データ送信周期毎にL個の端末を決定する。データ送信周期毎に選ばれるL台の番号は、シフト及び巡回(最後の番号の次は1番に戻る)させる。これにより、基地局BS1は、回線状態情報(CSI)の報告を行わせるL台の端末をデータ送信周期毎に簡易かつ迅速に決定できる。
 また、基地局BS1がメモリMB1に保持するP台の端末に関する情報は、基地局BS1が個々の端末に送信した下り回線データ量に関する情報を有する。基地局BS1は、下り回線データ量が大きい端末を優先してL個の端末を決定する。これにより、基地局BS1は、DL送信データ量が大きいデータ(例えば映像データ)の送り先(宛先)となる端末との通信を優先して継続できるように、回線状態情報(CSI)の報告を行わせるL台の指定端末を決定できる。
 また、基地局BS1がメモリMB1に保持するP台の端末に関する情報は、所定の契約におけるランク情報を有する。基地局BS1は、所定の契約におけるランク情報に基づいて、ランク情報が高い端末を優先してL個の端末を決定する。これにより、基地局BS1は、例えば所定の契約を締結した一部の有料会員、更にはその有料会員の中でも契約の高いランク又はレベルに属する有料会員の端末との通信を優先できるように、回線状態情報(CSI)の報告を行わせるL台の指定端末を決定できる。
 (実施の形態2)
 実施の形態1では、回線状態情報(CSI)の測定及び報告を行う端末は基地局BS1により決定される。実施の形態2では、基地局に接続している端末自身が、回線状態情報(CSI)の測定及び報告の要否を決定する。
 実施の形態2の無線通信システム10の構成は図1に示す実施の形態1の無線通信システム10の構成と同一であるため、実施の形態1と重複する説明は簡略化又は省略する。実施の形態2において、無線通信システム10は、1台の基地局BS1aと複数の端末TM1a,TM2a,…,TM100aとを含む構成である。実施の形態2では、基地局BS1a及びそれぞれの端末の内部構成が実施の形態1の基地局BS1及びそれぞれの端末の内部構成と一部において異なる。
 図6は、実施の形態2の基地局BS1aの内部構成の一例を詳細に示すブロック図である。
 図6に示す基地局BS1aは、プロセッサPRB1aと、メモリMB1aと、DL無線送信部17と、UL無線受信部18と、アンテナAb1~Ab100とを含む構成である。図1及び図6には、基地局BS1aのアンテナ保有数が100と例示されているが、100に限定されない事は言うまでもない。
 プロセッサPRB1aは、例えばCPU、MPU又はDSPを用いて構成される。プロセッサPRB1aは、メモリMB1aと協働して、各種処理や制御を行う。具体的には、プロセッサPRB1aは、メモリMB1aに保持されたプログラム及びデータを参照し、そのプログラムを実行することにより、以下の各部の機能を実現する。この各部は、DL送信対象端末決定部11と、DL送信ウェイト決定部12と、DL送信信号生成部13と、CSI取得部15と、UL受信信号復号部16とを含むが、これらの各部の動作は実施の形態1とほぼ同一であるため、説明を省略する。
 実施の形態1では、回線状態情報(CSI)の測定を可能とする参照信号(RS:Reference Symbol、例えば固定パターンデータなど)とL台の端末を指定する制御信号(つまり、CSI報告指定端末情報)の両者が基地局BS1から送信された。実施の形態2では、回線状態情報(CSI)の測定を可能とする参照信号(RS:Reference Symbol、例えば固定パターンデータなど)が周期的に基地局から送信されていればよい。
 メモリMB1aは、例えば基地局BS1aの処理時に用いられるワークメモリとしてのRAMと、基地局BS1aの動作を規定したプログラム及びデータを格納するROMとを有する。RAMには、各種データや情報が一時的に保存される。
 図7は、実施の形態2の端末の内部構成の一例を詳細に示すブロック図である。
 図1に示すそれぞれの端末TM1a~TM100aの内部構成は同一であるため、図7では端末TM1aを例示して詳細に説明する。
 図7に示す端末TM1aは、プロセッサPRT1aと、メモリMT1aと、UL無線送信部25と、DL無線受信部26と、アンテナAt11~At14とを含む構成である。図1及び図7には、端末TM1aのアンテナ保有数が4と例示されているが、4に限定されない事は言うまでもない。
 プロセッサPRT1aは、例えばCPU、MPU又はDSPを用いて構成される。プロセッサPRT1aは、メモリMT1aと協働して、各種処理や制御を行う。具体的には、プロセッサPRT1aは、メモリMT1aに保持されたプログラム及びデータを参照し、そのプログラムを実行することにより、以下の各部の機能を実現する。この各部は、UL送信信号生成部21と、DL受信信号復号部22と、CSI報告有無決定部23aと、CSI測定部24と、DL受信予定データ量判定部27と、DL受信有無履歴計測部28とを含むが、UL送信信号生成部21と、DL受信信号復号部22と、CSI測定部24との動作は実施の形態1と同一であるため、説明を省略する。
 DL受信信号復号部22の復号出力は、基地局BS1aから送信されてきた参照信号(RS)およびDL受信データである。自分宛のDL受信データは無い場合もある。
 DL受信信号復号部22は、基地局BS1aから送信されてきた参照信号(RS)をCSI測定部24に出力する。一方、DL受信信号復号部22は、基地局BS1aから送信されてきたDL受信データを得た場合には、DL受信データをアプリケーション(不図示)に出力するとともに、そのデータ送信周期においてデータを受信したことを記憶するためにDL受信予定データ量判定部27及びDL受信有無履歴計測部28にそれぞれ出力する。
 DL受信予定データ量判定部27は、DL受信信号復号部22から参照信号(RS)を受信した旨の情報を取得すると、メモリMT1aに保存(保持)されている端末関連情報(自端末に関する情報の一例、図8参照)を読み出し、基地局BS1aからの自端末への下り回線(DL)における受信予定のデータ量[メガバイト]を判定する。DL受信予定データ量判定部27は、下り回線における受信予定のデータ量の判定値に関する情報をCSI報告有無決定部23aに出力する。
 DL受信有無履歴計測部28は、DL受信信号復号部22から参照信号(RS)を受信した旨の情報を取得すると、メモリMT1aに保存(保持)されている端末関連情報(自端末に関する情報の一例、図8参照)を読み出し、基地局BS1aからの自端末へのデータ送信周期毎の過去の受信履歴の状況を計測する。DL受信有無履歴計測部28は、データ送信周期毎の過去の受信履歴の状況の計測結果に関する情報をCSI報告有無決定部23aに出力する。
 CSI報告有無決定部23aは、メモリMT1aに保存(保持)されている端末関連情報(自端末に関する情報の一例、図8参照)を読み出し、自端末に関する端末関連情報に基づいて、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する。
 図8は、基地局BS1aに接続している端末毎の端末関連情報の一例を示す図である。
 図8では、基地局BS1aに接続している全て(例えばP=100台)の端末のそれぞれの端末関連情報が結合されて示されているが、個々の端末のメモリMT1aは、図8に示す自端末の端末識別番号に対応するレコードの情報のみ保持している。
 個々の端末のメモリMT1aに保持される端末関連情報は、端末識別番号と、グループと、データ送信周期毎のDL受信予定データ量と、端末のn値(後述参照)と、過去のデータ送信周期毎のDL受信履歴と、過去連続してデータを未受信となったデータ送信周期の回数(r値、後述参照)と、CSI測定及び報告の要否決定結果とを有する。
 グループは、端末識別番号(例えば端末識別番号の下1桁又は下2桁の値)に対応して設定される。図8では、例えば下1桁の値に対応して設定されており、端末識別番号の下1桁が「1」の端末はグループ「G1」、下1桁が「2」の端末はグループ「G2」、…、下1桁が「0」の端末はグループ「G10」にそれぞれ設定される。また、グループの設定方法は、端末識別番号の下1桁又は下2桁の値に対応して設定する方法に限定されない。また、端末識別番号は、例えば端末の電話番号でもよいし、端末の製造番号でもよい。
 なお、CSI報告有無決定部23aは、グループの順に自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する場合には、送信データ周期の番号等の端末にとって既知の情報を基に全端末がグループ番号の更新を同期して把握できるようにしている。これにより、CSI報告有無決定部23aは、回線状態情報(CSI)の測定及び報告を行う必要があるか否かをデータ送信周期毎に簡易かつ迅速に決定できる。また、実施の形態1で必要であった基地局BS1から端末へのCSI報告要求指定端末情報の送信を実施の形態2では不要とできる。
 端末のn値は、CSI報告有無決定部23aにより、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する際に用いられる閾値である。
 CSI報告有無決定部23aは、メモリMT1aに保存(保持)される自端末に関する端末関連情報から読み出したn値と、DL受信有無履歴計測部28からのデータ送信周期毎の過去の受信履歴の状況の計測結果に関する情報とに基づいて、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する。具体的には、CSI報告有無決定部23aは、過去n回のデータ送信周期において下り回線データ(DL受信データ)を未受信である場合に、自端末が回線状態情報(CSI)の測定及び報告を行う事を決定する。これにより、CSI報告有無決定部23aは、基地局BS1aが特定の端末にのみ下り回線データ(DL受信データ)の送信を継続する事を排除でき、下り回線データ(DL受信データ)の受信が暫く無い自端末において下り回線データ(DL受信データ)の受信を期待できる。
 また、n値は例えば2以上の既定の整数値(つまり、固定値)であってよい。これにより、CSI報告有無決定部23aは、基地局BS1aに接続している全ての端末において万遍なくかつ均等に下り回線データ(DL受信データ)を送信できる。従って、CSI報告有無決定部23aは、基地局BS1aが短いデータ送信周期(例えば1ミリ秒又は10ミリ秒)毎に多くの端末との間で空間多重通信を行う事を支援できる。
 また、CSI報告有無決定部23aは、n値を固定値とせずに、例えばDL受信予定データ量判定部27からの下り回線における受信予定のデータ量の判定値に関する情報に基づいて、n値をデータ送信周期の度に変更してもよい。例えば、CSI報告有無決定部23aは、n値=「10÷(下り回線における受信予定のデータ量[メガバイト])」を演算する事によって、n値をデータ送信周期の度に求めてもよい。これにより、CSI報告有無決定部23aは、基地局BS1aから送信されてくる下り回線データ(DL受信データ)のサイズの大きさに鑑みて、例えば大きなサイズの下り回線データ(DL受信データ)が送信されてくる場合には基地局BS1aとの通信の優先度が大きくなるようにn値を小さい値に臨機応変に設定できる。また、CSI報告有無決定部23aは、基地局BS1aから送信されてくる下り回線データ(DL受信データ)のサイズの大きさに鑑みて、例えば小さなサイズの下り回線データ(DL受信データ)が送信されてくる場合には基地局BS1aとの通信の優先度が小さくなるようにn値を大きい値に臨機応変に設定できる。
 図8において、過去のDL受信履歴は、図8の紙面左側から紙面右側に向けて、データ送信周期毎の下り回線データ(DL受信データ)の受信の有無(「○」は受信あり、「×」は受信なし)を示す。
 例えば端末識別番号「#1」の端末では、直近5回分のデータ送信周期において下り回線データ(DL受信データ)の受信が無く、r=5となっている。従って、CSI報告有無決定部23aが自端末のn値を用いて回線状態情報(CSI)の測定及び報告の要否を決定する場合、端末識別番号「#1」の端末では、CSI報告有無決定部23aは、n(=4)<r(=5)であるため、自端末が回線状態情報(CSI)の測定及び報告を行う事を決定する。
 例えば端末識別番号「#2」の端末では、直近2回分のデータ送信周期において下り回線データ(DL受信データ)の受信が無く、r=2となっている。従って、CSI報告有無決定部23aが自端末のn値を用いて回線状態情報(CSI)の測定及び報告の要否を決定する場合、端末識別番号「#2」の端末では、CSI報告有無決定部23aは、n(=33)>r(=2)であるため、自端末が回線状態情報(CSI)の測定及び報告を行わない事を決定する。CSI報告有無決定部23aが自端末のn値を用いて回線状態情報(CSI)の測定及び報告の要否を決定する場合、他の端末においても同様の決定がなされる。
 メモリMT1aは、例えば端末TM1aの処理時に用いられるワークメモリとしてのRAMと、端末TM1aの動作を規定したプログラム及びデータを格納するROMとを有する。RAMには、各種データや情報が一時的に保存される。例えばメモリMT1aは、CSI測定部24により測定された回線状態情報(CSI)の測定結果や、自端末に関する端末関連情報(図8参照)を一時的に保存する。
 次に、実施の形態2における基地局BS1a及び端末の動作手順について、図9を参照して説明する。図9は、実施の形態2の基地局BS1a及び端末の各動作手順の一例を詳細に示すフローチャートである。図9の説明においても、端末の動作手順を図1に示す端末TM1aを例示して説明する。基地局BS1a及び端末TM1aは、図9に示すそれぞれの動作フローをデータ送信周期毎に繰り返す。
 図9において、端末TM1aは、メモリMT1aに保存(保持)されている端末関連情報(自端末に関する情報の一例、図8参照)を読み出し、自端末に関する端末関連情報に基づいて、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する(S15)。自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無の決定方法は、上述したように、例えばメモリMT1aに保持されている端末関連情報に基づいて自端末の端末識別番号に対応するグループ情報により示されるグループに属するか否かで決定する方法、メモリMT1aに保持されている端末関連情報に基づいて過去n回分のデータ送信周期にわたって下り回線データ(DL受信データ)を受信していないかどうかで決定する方法のいずれかである。但し、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無の決定方法は、これらの決定方法に限定されなくても構わない。
 従って、実施の形態2では、ステップS15の処理により、基地局BS1aに接続中の全て(P台)の端末からCSIの測定結果の報告が基地局BS1aになされる事が無く、P台の端末のうち一部の端末からCSIの測定結果が報告される。これにより、端末からCSIの測定結果の報告がなされるときに、上り回線(UL)におけるトラフィックの増大の抑制が可能となる。
 端末TM1aは、自端末が回線状態情報(CSI)の測定及び報告を行う必要があるか否かを判断する(S16)。端末TM1aは自端末が回線状態情報(CSI)の測定及び報告を行う必要が無いと判断した場合には(S16、NO)、端末TM1aの処理は終了する。
 一方、端末TM1aは、自端末が回線状態情報(CSI)の測定及び報告を行う必要があると判断した場合には(S16、YES)、基地局BS1aから送信されてきた参照信号(RS)の受信処理に基づいて、基地局BS1aと自端末との間の伝搬路の状態を示す回線状態情報(CSI)を測定する(S12)。端末TM1aは、回線状態情報(CSI)の測定結果を生成して基地局BS1aに送信(報告)する(S13)。
 基地局BS1aは、ステップS13において端末TM1aから送信された回線状態情報(CSI)の測定結果を受信する(S3)。基地局BS1aは、ステップS3においては、回線状態情報(CSI)の測定及び報告を行う事を決定した、P台の端末のうち一部の端末からのそれぞれの回線状態情報(CSI)の測定結果を受信する。
 基地局BS1aは、ビームフォーミング技術を用いて、下り回線の送信データ(DL送信データ)の送信用の各種の信号処理を実行する(S4A)。例えば、基地局BS1aは、DL送信対象端末決定部11において、ステップS3において受信した一部の端末からの回線状態情報(CSI)の測定結果の中で回線状態情報(CSI)が良好か或いはどのM台の端末を組み合わせるとMIMOの各ストリームが大きな伝送速度になるか等を考慮して、UL送信データの送り先(宛先)となる端末としてM台の端末を選定する。基地局BS1aは、DL送信ウェイト決定部12において、M台の端末に関する情報とそれぞれの指定端末からの回線状態情報(CSI)の測定結果とに基づいて、基地局BS1aからM台のそれぞれの端末に対する送信ビームの指向性を形成可能な送信ウェイトを算出して決定する。基地局BS1aは、DL送信信号生成部13において、送信ウェイトとDL送信データとを用いて、同一周波数上で同時に空間多重通信(MU-MIMO通信)が可能なM台の端末に送信可能なDL送信信号を生成する。
 基地局BS1aは、ステップS4Aにおいてビームフォーミング技術を用いて生成したDL送信信号をそれぞれのアンテナAb1~Ab100からM台の端末に向けて送信する(S5)。
 ステップS4Aにおいて下り回線の送信データ(DL送信データ)の送り先(宛先)として選定された端末(言い換えると、合計M台の端末として選定された端末)は、ステップS5において基地局BS1aから送信されたDL送信信号を受信する(S14)。なお、ステップS15において回線状態情報(CSI)の測定及び報告を行う事を決定した端末であっても、ステップS4Aにおいて下り回線の送信データ(DL送信データ)の送り先(宛先)として選定されなかった端末は、ステップS5において基地局BS1aから送信されたDL送信信号は受信されない。
 以上により、実施の形態2の無線通信システム10では、基地局BS1aに接続している端末は、自端末に関する端末関連情報(自端末に関する情報の一例)をメモリMT1aに保持し、データ送信周期毎に、自端末に関する端末関連情報に基づいて、基地局BS1aとの間の伝搬路の状態を示す回線状態情報(CSI)の報告の要否を決定する。端末は、回線状態情報(CSI)の報告を行う事の決定に基づいて、回線状態情報(CSI)を測定し、回線状態情報(CSI)の測定結果を基地局BS1aに報告する。基地局BS1aは、端末からの回線状態情報(CSI)の測定結果の報告に基づいて、データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定する。基地局BS1aは、複数のアンテナAb1~Ab100を介して、M個の端末との間で空間多重通信を用いて、DL送信データ(データの一例)を送信する。端末は、回線状態情報(CSI)の測定結果に基づいてデータ送信周期において基地局BS1aとの間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、空間多重通信を用いて基地局BS1aから送信されたDL送信データ(データの一例)を受信する。
 つまり、無線通信システム10は、基地局BS1aに接続している全ての端末(P台の端末)のそれぞれにおいて、回線状態情報(CSI)の測定及び報告を行う必要があるか否かを判断させる。この判断の結果として、P台の端末のうち一部の端末(例えば実施の形態1のL台の端末程度、又はL台から多少の幅の増減を含む)においてのみ、回線状態情報(CSI)の測定及び報告が行われる。これにより、無線通信システム10は、端末が接続している基地局BS1の個々のアンテナAb1~Ab100と端末の個々のアンテナとの間の伝搬路の状況を示す回線状態情報(CSI)の測定、並びに回線状態情報(CSI)の基地局BS1への報告によって生じる、上り回線(UL)のトラフィックの増大を適応的に抑制できる。また、無線通信システム10は、端末自らの判断によって回線状態情報(CSI)の測定及び報告を行う必要が無い端末を決定できるので、それらの端末における消費電力の増大を適応的に抑制できる。従って、無線通信システム10は、基地局BS1と回線状態情報(CSI)の測定結果に基づいて選定された合計M台の端末との間で、良好かつ快適な下り回線(DL)のMU-MIMOの通信環境を実現できる。
 また、個々の端末がメモリMT1aに保持する自端末に関する端末関連情報は、自端末の端末識別番号に対応するグループ情報を有する。端末は、このグループ情報により示されるグループの順に、自端末が回線状態情報(CSI)の測定及び報告を行う必要の有無を決定する。これにより、端末は、回線状態情報(CSI)の測定及び報告を行う必要があるか否かをデータ送信周期毎に簡易かつ迅速に決定できる。
 また、個々の端末がメモリMT1aに保持する自端末に関する端末関連情報は、過去のデータ送信周期毎の基地局BS1aからの下り回線データ(DL受信データ)の受信の有無を示す受信履歴情報を有する。端末は、過去のn(n:2以上の整数)回分のデータ送信周期にわたって基地局BS1aからのデータの受信が無い場合に、回線状態情報(CSI)の測定及び報告を行う事を決定する。これにより、端末は、基地局BS1aが特定の端末にのみ下り回線データ(DL受信データ)の送信を継続する事を排除でき、下り回線データ(DL受信データ)の受信が暫く無い自端末において下り回線データ(DL受信データ)の受信を期待できる。
 また、個々の端末がメモリMT1aに保持する自端末に関する端末関連情報において、n値は固定値であってもよい。これにより、端末は、基地局BS1aに接続している全ての端末において万遍なくかつ均等に下り回線データ(DL受信データ)を送信できる。従って、端末は、基地局BS1aが短いデータ送信周期(例えば1ミリ秒又は10ミリ秒)毎に多くの端末との間で空間多重通信を行う事を支援できる。
 また、個々の端末がメモリMT1aに保持する自端末に関する端末関連情報は、基地局BS1aから送信される下り回線データ量(DL受信データ量)の情報を更に有する。端末は、基地局BS1aから送信される下り回線データ量(DL受信データ量)が所定閾値より大きい場合には、その下り回線データ量(DL受信データ量)に応じて、n値を現在値よりも小さく設定する。これにより、端末は、基地局BS1aから送信されてくる下り回線データ(DL受信データ)のサイズの大きさに鑑みて、例えば大きなサイズの下り回線データ(DL受信データ)が送信されてくる場合には基地局BS1aとの通信の優先度が大きくなるようにn値を小さい値に臨機応変に設定できる。
 また、個々の端末がメモリMT1aに保持する自端末に関する端末関連情報は、基地局BS1aから送信される下り回線データ量(DL受信データ量)の情報を更に有する。端末は、基地局BS1aから送信される下り回線データ量(DL受信データ量)が所定閾値より小さい場合には、その下り回線データ量(DL受信データ量)に応じて、n値を現在値よりも大きく設定する。これにより、端末は、基地局BS1aから送信されてくる下り回線データ(DL受信データ)のサイズの大きさに鑑みて、例えば小さなサイズの下り回線データ(DL受信データ)が送信されてくる場合には基地局BS1aとの通信の優先度が小さくなるようにn値を大きい値に臨機応変に設定できる。
 以上、図面を参照しながら各種の実施形態について説明したが、本開示本開示はかかる例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述実施形態における各構成要素を任意に組み合わせてもよい。
 本開示は、基地局に接続している端末における、接続中の基地局の個々のアンテナとの間の伝搬路の状況を示す回線状態情報の測定並びに回線状態情報の基地局への報告によって生じる、上り回線のトラフィックの増大や端末における消費電力の増大を適応的に抑制し、快適なMU-MIMOの通信環境を実現する端末、基地局、無線通信システム及び回線状態情報取得方法として有用である。
10 無線通信システム
11 DL送信対象端末決定部
12 DL送信ウェイト決定部
13 DL送信信号生成部
14 CSI報告要求指定端末決定部
15 CSI取得部
16 UL受信信号復号部
17 DL無線送信部
18 UL無線受信部
21 UL送信信号生成部
22 DL受信信号復号部
23,23a CSI報告有無決定部
24 CSI測定部
25 UL無線送信部
26 DL無線受信部
27 DL受信予定データ量判定部
28 DL受信有無履歴計測部
Ab1,Ab2,Ab100,At11,At14,At21,At24,At1001,At1004 アンテナ
BS1,BS1a 基地局
TM1,TM1a,TM2,TM2a,TM100,TM100a 端末
MB1,MB1a,MT1,MT1a メモリ
PRB1,PRB1a,PRT1,PRT1a プロセッサ
T1,T2 接続端末リスト

Claims (14)

  1.  複数の端末との間で無線通信が可能な基地局であって、
     前記基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持するメモリと、
     データ送信周期毎に、前記P個の端末に関する情報に基づいて、前記P個の端末の中から、前記基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定する決定部と、
     前記L個の端末からの前記回線状態情報の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定する選定部と、
     複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信する通信部と、を備える、
     基地局。
  2.  前記P個の端末に関する情報は、前記基地局に接続した個々の端末における端末識別情報を有し、
     前記決定部は、前記個々の端末における端末識別情報の順に前記L個の端末を決定する、
     請求項1に記載の基地局。
  3.  前記P個の端末に関する情報は、個々の端末に送信する下り回線データ量に関する情報を有し、
     前記決定部は、前記下り回線データ量が大きい端末を優先して前記L個の端末を決定する、
     請求項1に記載の基地局。
  4.  前記P個の端末に関する情報は、所定の契約におけるランク情報を有し、
     前記決定部は、前記所定の契約におけるランク情報に基づいて、前記ランク情報が高い端末を優先して前記L個の端末を決定する、
     請求項1に記載の基地局。
  5.  複数の端末との間で無線通信が可能な基地局における回線状態情報取得方法であって、
     前記基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持するステップと、
     データ送信周期毎に、前記P個の端末に関する情報に基づいて、前記P個の端末の中から、前記基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定するステップと、
     前記L個の端末からの前記回線状態情報の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定するステップと、
     複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信するステップと、を有する、
     回線状態情報取得方法。
  6.  複数の端末と基地局とが無線通信可能な無線通信システムであって、
     前記基地局は、
     前記基地局と接続中のP(P:3以上の整数)個の端末に関する情報を保持し、
     データ送信周期毎に、前記P個の端末に関する情報に基づいて、前記P個の端末の中から、前記基地局との間の伝搬路の状態を示す回線状態情報の報告を行わせるL(L:2≦L<Pを満たす整数)個の端末を決定し、更に、前記回線状態情報の報告指示を前記P個の端末に送信し、
     前記端末は、
     前記基地局から送信された前記回線状態情報の報告指示を基に、前記回線状態情報を測定し、更に、前記回線状態情報の測定結果を前記基地局に報告し、
     前記基地局は、
     前記L個の端末からの前記回線状態情報の測定結果の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定し、
     複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信する、
     無線通信システム。
  7.  基地局との間で通信可能な端末であって、
     自端末に関する情報を保持するメモリと、
     データ送信周期毎に、前記自端末に関する情報に基づいて、前記基地局との間の伝搬路の状態を示す回線状態情報の報告の要否を決定する決定部と、
     前記回線状態情報の報告を行う事の決定に基づいて、前記回線状態情報を測定する測定部と、
     前記回線状態情報の測定結果を前記基地局に報告する通信部と、を備え、
     前記通信部は、前記回線状態情報の測定結果に基づいて前記データ送信周期において前記基地局との間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、前記基地局から送信されたデータを受信する、
     端末。
  8.  前記自端末に関する情報は、前記自端末の識別番号に対応するグループ情報を有し、
     前記決定部は、前記グループ情報に基づいて、前記回線状態情報の報告の要否を決定する、
     請求項7に記載の端末。
  9.  前記自端末に関する情報は、過去の前記データ送信周期毎の前記基地局からのデータの受信の有無を示す受信履歴情報を有し、
     前記決定部は、過去のn(n:2以上の整数)回分の前記データ送信周期にわたって前記基地局からのデータの受信が無い場合に、前記回線状態情報の報告を行う事を決定する、
     請求項7に記載の端末。
  10.  前記nの値は、2以上の既定の整数値である、
     請求項9に記載の端末。
  11.  前記自端末に関する情報は、前記基地局から送信されるデータ量の情報を更に有し、
     前記決定部は、前記基地局から送信されるデータ量が所定閾値より大きい場合には、前記データ量に応じて、前記nの値を現在値よりも小さく設定する、
     請求項9に記載の端末。
  12.  前記自端末に関する情報は、前記基地局から送信されるデータ量の情報を更に有し、
     前記決定部は、前記基地局から送信されるデータ量が所定閾値より小さい場合には、前記データ量に応じて、前記nの値を現在値よりも大きく設定する、
     請求項9に記載の端末。
  13.  基地局との間で通信可能な端末における回線状態情報取得方法であって、
     自端末に関する情報を保持するステップと、
     データ送信周期毎に、前記自端末に関する情報に基づいて、前記基地局との間の伝搬路の状態を示す回線状態情報の報告の要否を決定するステップと、
     前記回線状態情報の報告を行う事の決定に基づいて、前記回線状態情報を測定するステップと、
     前記回線状態情報の測定結果を前記基地局に報告するステップと、
     前記回線状態情報の測定結果に基づいて前記データ送信周期において前記基地局との間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、前記基地局から送信されたデータを受信するステップと、を有する、
     回線状態情報取得方法。
  14.  複数の端末と基地局とが無線通信可能な無線通信システムであって、
     前記端末は、
     自端末に関する情報を保持し、
     データ送信周期毎に、前記自端末に関する情報に基づいて、前記基地局との間の伝搬路の状態を示す回線状態情報の報告の要否を決定し、
     前記回線状態情報の報告を行う事の決定に基づいて、前記回線状態情報を測定し、
     前記回線状態情報の測定結果を前記基地局に報告し、
     前記基地局は、
     前記端末からの前記回線状態情報の測定結果の報告に基づいて、前記データ送信周期において空間多重通信が可能なM(M:2≦M≦Lを満たす整数)個の端末を選定し、
     複数のアンテナを介して、前記M個の端末との間で前記空間多重通信を用いて、データを送信し、
     前記端末は、
     前記回線状態情報の測定結果に基づいて前記データ送信周期において前記基地局との間での空間多重通信が可能なM(M:2以上の既定値)個の端末に選定された場合に、前記空間多重通信を用いて前記基地局から送信されたデータを受信する、
     無線通信システム。
PCT/JP2017/043722 2017-01-16 2017-12-06 端末、基地局、無線通信システム及び回線状態情報取得方法 WO2018131335A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018561852A JP7126165B2 (ja) 2017-01-16 2017-12-06 端末、基地局、無線通信システム及び回線状態情報取得方法
US16/466,628 US10715224B2 (en) 2017-01-16 2017-12-06 Terminal, base station, wireless communication system and channel state information acquisition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005375 2017-01-16
JP2017-005375 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131335A1 true WO2018131335A1 (ja) 2018-07-19

Family

ID=62840269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043722 WO2018131335A1 (ja) 2017-01-16 2017-12-06 端末、基地局、無線通信システム及び回線状態情報取得方法

Country Status (3)

Country Link
US (1) US10715224B2 (ja)
JP (1) JP7126165B2 (ja)
WO (1) WO2018131335A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151115B2 (ja) * 2018-03-23 2022-10-12 日本電気株式会社 基地局、通信端末、無線通信方法、プログラムおよび無線通信システム
CN113038506B (zh) * 2021-02-04 2023-03-10 维沃移动通信有限公司 测量方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513257A (ja) * 2012-02-23 2015-04-30 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute 大規模アンテナシステムにおける多重入力多重出力通信方法
JP2016213760A (ja) * 2015-05-07 2016-12-15 株式会社東芝 無線通信用集積回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636553B2 (en) * 2005-09-21 2009-12-22 Broadcom Corporation Double search user group selection scheme with range reduction for FDD multiuser MIMO downlink transmission with finite-rate channel state information feedback
US8675743B2 (en) * 2007-08-03 2014-03-18 Apple Inc. Feedback scheduling to reduce feedback rates in MIMO systems
US8879602B2 (en) * 2009-07-24 2014-11-04 At&T Mobility Ii Llc Asymmetrical receivers for wireless communication
JP5727201B2 (ja) * 2010-11-24 2015-06-03 シャープ株式会社 基地局装置及び通信方法
WO2013187669A1 (en) * 2012-06-11 2013-12-19 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus for use in wireless communication system
JP2016528776A (ja) 2013-06-26 2016-09-15 エルジー エレクトロニクス インコーポレイティド 大規模mimo方式のためのグルーピングベースの参照信号送信
JP6275422B2 (ja) 2013-09-06 2018-02-07 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
WO2015174800A1 (ko) * 2014-05-16 2015-11-19 엘지전자 주식회사 무선 통신 시스템에서 간섭을 제거하고 신호를 수신하는 방법 및 장치
JP6254962B2 (ja) * 2015-01-23 2017-12-27 日本電信電話株式会社 基地局装置、無線通信方法及び無線通信システム
US10516459B2 (en) * 2015-09-14 2019-12-24 Lg Electronics Inc. Method for transmitting and receiving channel state information (CSI) in wireless communication system, and apparatus therefor
WO2017074083A1 (ko) * 2015-10-29 2017-05-04 엘지전자 주식회사 무선 통신 시스템에서 단말의 채널상태정보 보고 방법 및 이를 위한 장치
US10201006B2 (en) * 2016-04-01 2019-02-05 Qualcomm Incorporated Downlink control information for multi-layer transmissions
CN108111197A (zh) * 2016-11-25 2018-06-01 索尼公司 电子设备和通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513257A (ja) * 2012-02-23 2015-04-30 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute 大規模アンテナシステムにおける多重入力多重出力通信方法
JP2016213760A (ja) * 2015-05-07 2016-12-15 株式会社東芝 無線通信用集積回路

Also Published As

Publication number Publication date
US10715224B2 (en) 2020-07-14
US20190296808A1 (en) 2019-09-26
JP7126165B2 (ja) 2022-08-26
JPWO2018131335A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
US10756860B2 (en) Distributed multiple-input multiple-output downlink configuration
US11711118B2 (en) Methods and systems for determining downlink data mode
JP5717635B2 (ja) ダウンリンクでネットワーク全体にわたる多入力多出力無線通信をサポートするアーキテクチャ
US8620280B2 (en) Downlink single-user multi-cell mimo systems for interference mitigation
US9655099B2 (en) Method and apparatus for coordinating one or more downlink transmissions in a wireless communication system
KR101387532B1 (ko) 협력적 mimo 수행을 위한 피드백 정보 전송방법
US10432272B1 (en) Variable multiple-input multiple-output downlink user equipment
AU2019375404B2 (en) Cooperative multiple-input multiple-output downlink scheduling
JP5600795B2 (ja) マルチユーザmimoシステム、基地局、ユーザ設備及びcqiフィードバック方法
US10812216B2 (en) Cooperative multiple-input multiple-output downlink scheduling
US12081468B2 (en) Interference-aware beamforming
US9059752B2 (en) Multicellular cooperative communications in a decentralized network
KR20080053679A (ko) 이동통신 시스템에서 사용자 스케줄링 장치 및 방법
JP6598104B2 (ja) 端末、基地局、無線通信システム及び回線状態情報取得方法
WO2018131335A1 (ja) 端末、基地局、無線通信システム及び回線状態情報取得方法
CN111937320B (zh) 无线通信装置、用于该装置的方法和布置、以及可读介质
US20240032019A1 (en) Collision reduction in wireless medium access
WO2008006930A1 (en) Method, radio system, base station and user terminal
EP2693814A1 (en) Multiple input multiple output (mimo) pilot transmission power
JP2020161904A (ja) 無線通信方法及び基地局
CN117560112A (zh) 一种信息传输方法、装置及通信设备
JP2020161903A (ja) 無線通信方法及び基地局
JP2020161902A (ja) 無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891062

Country of ref document: EP

Kind code of ref document: A1