WO2018131191A1 - Low melting point sealing material, electronic component, and sealing body - Google Patents

Low melting point sealing material, electronic component, and sealing body Download PDF

Info

Publication number
WO2018131191A1
WO2018131191A1 PCT/JP2017/024434 JP2017024434W WO2018131191A1 WO 2018131191 A1 WO2018131191 A1 WO 2018131191A1 JP 2017024434 W JP2017024434 W JP 2017024434W WO 2018131191 A1 WO2018131191 A1 WO 2018131191A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
mol
sealing material
low melting
agi
Prior art date
Application number
PCT/JP2017/024434
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 池田
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Priority to JP2018561791A priority Critical patent/JPWO2018131191A1/en
Publication of WO2018131191A1 publication Critical patent/WO2018131191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/06Frit compositions, i.e. in a powdered or comminuted form containing halogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to an inorganic composition, more specifically, a low-melting-point sealing material, and further relates to an electronic component and a sealing body using the same.
  • Various inorganic low melting point compositions are used in various applications in the electrical and electronic equipment industry. For example, in the sealing of electrical and electronic parts such as crystal oscillators and LED elements, a low melting point (for example, 250 ° C.) Au—Sn alloy solder paste or sealing glass frit is applied to these parts. And then firing.
  • a low melting point for example, 250 ° C.
  • Au—Sn alloy solder paste or sealing glass frit is applied to these parts. And then firing.
  • Au-Sn alloy (Patent Document 1) is a material that has been used for some time and is reliable, but it is very expensive because it contains gold as a component.
  • PbO glass and V 2 O 5 glass are also known as low melting point glass used for the preparation of the sealing material.
  • PbO-based glass Patent Document 2
  • V 2 O 5 glass Patent Document 3
  • Patent Document 4 a sealing material that can be used at 300 to 330 ° C., which contains silver oxide and / or silver halide and another metal oxide (which may be Pb or V) is known (Patent Document 4). .
  • Patent Documents 5 and 6 a sealing material containing silver oxide, phosphorus pentoxide and silver iodide is known.
  • One object of the present invention is applied to a sealing object having a surface made of an inorganic oxide and / or metal, and heat-treated in the air at a low temperature range not exceeding 400 ° C., preferably not exceeding 350 ° C. When they are spread well with good wettability to their surfaces, and then cooled and solidified, they can be sealed (adhered to) the surfaces, and can be sealed. It is to provide a low-melting-point sealing material that can be bonded together and is excellent in maintaining performance under low-temperature cooling. A still further object of the present invention is to provide an electronic component and a sealed body that are sealed or bonded with these sealing materials.
  • the present inventor has been investigating the adhesion of a low melting point composition containing AgO 1/2 as a constituent element to glass or metal.
  • AgI is added in a large amount, the difference in thermal expansion from the substrate is as follows.
  • the present invention has been completed by further studying the composition ratio of the composition and the adhesiveness in a cooling environment. That is, the present invention provides the following.
  • a low melting point sealing material comprising 50 to 100% by volume of a low melting point composition and 0 to 50% by volume of a filler,
  • the low melting point composition is VO 5/2 , MoO 3 , WO 3 , MnO 2 , ZnO, BO 3/2 , GeO 2 , PbO, PO 5/2 , SbO 5/2 , BiO 3 / 2 , containing one or more selected from TeO 2 , the total of which is 5 to 35 mol%, Low melting point sealing material.
  • the low-melting-point composition contains one or more selected from VO 5/2 , MoO 3 , GeO 2 , PO 5/2 , TeO 2 , and the total thereof is 5 to 35 mol%.
  • Sealing material 5).
  • thermo expansion coefficient of at least one member in contact with the low melting point sealing material as a sealing target is 100 ⁇ 10 ⁇ 7 / K or less. 8).
  • a difference in thermal expansion coefficient between members in contact with the low melting point sealing material as a sealing target is 10 ⁇ 10 ⁇ 7 / K or more.
  • the low melting point sealing material according to 1 of the present invention is applied to a surface made of an inorganic oxide and / or metal to be sealed, and heated and melted in a wide temperature range not exceeding 400 ° C. in the atmosphere.
  • sealing with good adhesion to the surface can be achieved even if the object to be sealed has a relatively low coefficient of thermal expansion.
  • the sealing adhesion can be maintained. This is because the low melting point encapsulant has a glass phase containing AgI crystal phase or AgI which is likely to cause plastic deformation, and the glass phase forms a continuous phase over the entire encapsulant.
  • FIG. 1 is a schematic view showing the structure of a quartz crystal resonator using a sealing material in an exploded state.
  • FIG. 2 is a schematic view showing the cross-sectional structure of a vacuum double container using a sealing material in an exploded state.
  • the term “low melting point” means that the melting point does not exceed 400 ° C., more preferably, the melting point does not exceed 350 ° C.
  • the sealing material of this invention can be used for the use suitable for melting
  • a composition having a melting point of 250 to 350 ° C. can be used as an inexpensive alternative material for an Au—Sn alloy sealing material.
  • a composition having a melting point not exceeding 250 ° C. can be advantageously used for further sealing an electronic component for which an Au—Sn alloy solder has already been used.
  • the composition of the present invention is formed by combining a cation and an anion derived from the raw material for production, with the formula MQ m / q [wherein M Represents a cation having a valence of m, and Q represents an anion having a valence of q. It is considered that all anions other than oxide ions (O 2 ⁇ ) are bonded to Ag ions. Note that, under the above quantitative conditions satisfied by these compounds, a relationship of [number of moles of Ag ions]> [number of moles of each anion other than oxide ⁇ total number of valences] is established.
  • the low melting point sealing material of the present invention exhibits good wettability to the surface of an inorganic oxide or metal at a temperature not exceeding 400 ° C., for example, preferably 200 to 400 ° C., more preferably 250 to 350 ° C. Have. Therefore, the composition is applied to a sealing object having a surface made of an inorganic oxide or a metal, for example, in the form of particles (for example, powder or paste), and heated to the above temperature to be sealed. By spreading on the surface of the object and then cooling and solidifying it, it can be sealed tightly to the surface of the object to be sealed.
  • AgI is an essential component.
  • AgI has the effect of lowering the liquidus temperature of the composition and the effect of stabilizing the glass phase.
  • a certain amount sealing with a member having a relatively low thermal expansion coefficient as a sealing target after cooling in a low temperature environment (for example, ⁇ 50 ° C.) after heating and bonding. Stopping material peeling or cracking occurs. If the stress caused by the difference in shrinkage between the sealing material and the member at low temperature due to the difference in thermal expansion coefficient exceeds the bonding force between the sealing material and the member, This is because if the peeling occurs and the stress exceeds the bonding force inside the sealing material, the sealing material itself breaks.
  • the AgI content is above a certain level, it will prevent peeling and cracking of the sealing material even if it is cooled to the above low temperature after heating and bonding with a member with a relatively low thermal expansion coefficient. become able to.
  • AgI increases the coefficient of thermal expansion of the composition (thus, the difference in coefficient of thermal expansion from the member increases), such an effect is caused by the AgI crystal phase or the glass phase having a large AgI component. This is thought to be due to the plastic deformation that relieves the stress caused by the difference in shrinkage. This phenomenon is considered to be particularly prominent when the AgI crystal phase or the glass phase having a large AgI component forms a macro continuous phase over the entire area of the sealing material (percolation occurs).
  • the content of AgI is 40 to 85 mol%, preferably 40 to 80 mol%, more preferably 40 to 71 mol%.
  • AgO 1/2 is also an essential component of the composition of the present invention.
  • AgO 1/2 has the effect of lowering the liquidus temperature of the composition and the effect of stabilizing the glass phase. Therefore, the content of AgO 1/2 is 10 to 50 mol%, preferably 15 to 45 mol%, more preferably 19 to 39 mol%.
  • the highly ion-bonded Ag-I bond supplied from the component AgI easily changes the bond angle and contributes to plastic deformation, while being supplied from the component AgO 1/2. It is considered that Ag—O bonds having high covalent bonds are difficult to change the bond angle, and hence the arrangement of Ag ions is fixed to inhibit plastic deformation.
  • AgI / AgO 1/2 represented by molar ratio needs to be 1 or more, preferably 1.05 or more, more preferably 1.5 or more. .
  • the total of AgI and AgO 1/2 is preferably 65 to 95 mol%, more preferably 70 to 93 mol%, still more preferably 75 to 90 mol. Mol%.
  • the seeds or more are also essential components of the composition of the present invention, and have the effect of lowering the liquidus temperature of the composition to enable sealing at 400 ° C. or less and the effect of forming a glass phase.
  • TeO 2 is preferably 5 to 35 mol%, more preferably 7 to 30 mol%, and still more preferably 10 to 25 mol%.
  • the composition of the present invention is produced by heating and melting, if it contains a small amount of poorly soluble BO 3/2 and GeO 2 , undissolved substances are likely to be generated, and variations in product composition are likely to occur.
  • the total content of BO 3/2 and GeO 2 is preferably 12 mol% or less.
  • the total content of BO 3/2 and GeO 2 is preferably 6 mol% or less.
  • PO 5/2 may corrode when the object to be sealed is an iron-based metal, so its content is preferably 3 mol% or less, more preferably Is 0.1 mol% or less.
  • AgF, AgCl, AgBr may corrode the sealing target when the sealing target is an iron-based metal, so the total content of AgF, AgCl, AgBr is preferably It is 3 mol% or less, more preferably 0.1 mol% or less.
  • the total amount of alkali metal oxides is preferably 5 mol% or less, more preferably 1 mol% or less, and 0.1 mol%. More preferably, it is as follows.
  • the content of PbO which is an environmentally harmful component, is preferably suppressed to a small amount, for example, 0.1 mol% or less.
  • the composition of the present invention may be provided in the form of a mixture of various raw material reagent powders prepared in advance so as to give the desired low melting point composition by heating and melting. Moreover, it can also be set as the material of the form in which the solid solution, the double halide, and the glass phase which are obtained by heating, melting, and cooling such a mixture are formed. When a solid solution, a double halide, or a glass phase is formed, it becomes a composition that is easily melted by heating in a shorter time, and thus a composition in such a form is more preferable.
  • the composition of the present invention can also be produced by reacting and precipitating an aqueous solution containing an acid, base, or salt.
  • the sealing material of this invention can be processed into powder, a bead, a sheet form, a rod form, etc., and can be used as a sealing material. From the viewpoint of improving workability, it can be mixed with water, an organic solvent, a dispersant, a thickener and the like and used as a paste-like sealing material.
  • the organic solvent terpineol, dihydroterpineol, glycerin, “2,4-dimethyl-1,5-pentanediol”, “2-butyl-2-ethyl-1,3-propanediol” and the like can be used.
  • the melting point of the composition of the present invention is lower than the decomposition temperature of most polymers. Therefore, it is preferable to use a liquid having a low molecular weight and a high viscosity (10 3 to 10 5 mPa ⁇ s) that volatilizes without being decomposed, without using a polymer for the paste.
  • the sealing material of the present invention can contain various fillers in order to improve sealing properties. Since the sealing material of the present invention can relieve stress due to a difference in thermal expansion, it is not necessary to add a filler for the purpose of adjusting the thermal expansion coefficient. However, a filler may be added because it is considered that the smaller the generated stress itself can relieve the stress quickly.
  • a conductive filler such as metal (for example, metallic silver), carbon nanotube, etc.
  • a filler containing a filler having high thermal conductivity for example, aluminum nitride, silicon carbide, etc.
  • it may be in a form containing a fibrous or plate-like filler.
  • fillers are blended as a part of the constituents of the sealing material of the present invention in accordance with the performance required according to the use mode and usage environment of the sealing object in which the composition of the present invention is used, Good.
  • the upper limit of the filler content in the sealing material for maintaining the fluidity of the sealing material is approximately 50% by volume although it depends on the particle size distribution of the filler.
  • the surface to be sealed can be composed of various metals and nonmetals (inorganic oxides, etc.). If the object to be sealed is Ti, Cr, Cu, Zn, Al or an alloy containing a large amount of these, the surface to be sealed can be obtained by heating the object to be sealed in an oxygen atmosphere or performing alumite treatment. It is preferable to use the oxide film after thickening it.
  • the sealing material of the present invention can relieve stress due to the difference in thermal expansion, when the thermal expansion coefficient of the member to be sealed is very small (for example, 100 ⁇ 10 ⁇ 7 / K or less, 85 ⁇ 10 ⁇ 7 / K or less, 70 ⁇ 10 ⁇ 7 / K or less, 50 ⁇ 10 ⁇ 7 / K or less, etc.). Furthermore, when the difference in thermal expansion coefficient between the members contacting through the low melting point sealing material is large (for example, 10 ⁇ 10 ⁇ 7 / K or more, 30 ⁇ 10 ⁇ 7 / K or more, 50 ⁇ 10 ⁇ 7 / K or more ) Is also suitable.
  • the thermal expansion coefficient here is an average linear expansion coefficient between 30 and 50 ° C.
  • the sealing material is crystallized to reduce the thermal expansion coefficient of the sealing material, improve the mechanical strength, and improve the thermal shock resistance. be able to.
  • the sealing material may be held for a certain period of time above the glass transition point of the low melting point composition and below the liquidus temperature. For quick and reliable crystallization, hold the crystal nucleus in the range of 50 ° C to 100 ° C for about 1 minute to 1 hour, and then hold the crystal in the range of 100 to 150 ° C for about 1 minute to 1 hour. It is good to let it grow.
  • the working atmosphere may or may not contain oxygen.
  • pressure can be applied to the object to be sealed to further enhance the adhesion, and vibration such as ultrasonic waves can be applied to the sealing material to promote melting.
  • the sealing material of the present invention After securing airtightness using the sealing material of the present invention, it is further overcoated with epoxy resin, urethane resin, acrylic resin, silicone resin, etc. to improve the mechanical strength and wear resistance of the sealing part. Also good.
  • the sealing material of the present invention can be used for various electronic components such as crystal resonators, semiconductor elements, SAW elements, and organic EL elements. In addition, it can be used for sealing parts that require a low molecular weight or low atomic weight gas such as hydrogen or helium, or for parts that need to maintain a vacuum. It can also be used for a sealed body such as a vacuum double container (a thermos bottle).
  • FIG. 1 schematically shows the structure of a crystal resonator using the sealing material 12 of the present invention in an exploded state.
  • FIG. 2 schematically shows the structure of a vacuum double container using the sealing material 22 of the present invention in an exploded state.
  • Examples 1 to 5 Comparative Examples 1 to 5
  • Tables 1 and 2 the raw materials were weighed and blended so that the blending ratio indicated for each composition was 5 g in total, and pulverized and mixed in a mortar to obtain powder. 5 g of the obtained powder was put in a magnetic crucible. The crucible was placed in a furnace heated to 450 ° C. to 550 ° C. in the atmosphere and held for 10 minutes to melt the raw material mixture. Each composition was obtained as a bulk by pouring the melt onto a graphite plate at room temperature and allowing it to cool.
  • the sample was placed in a bath maintained at ⁇ 50 ° C., held for 1 hour, and taken out.
  • the sample on the glass plate was visually observed again and compared with the observation results before cooling to evaluate the adhesion in a low temperature environment.
  • the observation items and evaluation criteria are as follows. -Occurrence of peeling: Interference fringes that were not seen before cooling were observed due to peeling of the interface (evaluation: poor).
  • -Occurrence of cracks Cracks that were not present before cooling are seen in the sealing material (evaluation: poor).
  • -State changes such as peeling and cracking of the sealing material are not observed before and after cooling (evaluation: good). The results are shown in Tables 1 and 2.
  • the low melting point sealing material of the present invention is useful because it can be used for crystal resonators, LED elements and other electric and electronic parts and vacuum double containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a sealing material applicable to a surface comprising an inorganic oxide and/or metal, that can be well spread after heat treatment in a low temperature range, can be suitably sealed by cooling and solidification, and has excellent performance maintenance under low temperature cooling conditions. This sealing material is a low melting point sealing material comprising 50%–100% by volume of a low melting point composition and 0%–50% by volume filler. The low melting point composition comprises Ag, I, and O as essential constituent elements thereof, has cations and anions bonded therein, and when represented as an aggregation of a variety of compounds indicated by formula MQm/q (M indicating a cation having a valence m and Q indicating an anion having a valence q] and as having all anions other than oxide anions (O2-) being bonded with Ag ions, the ratios of each fulfill the following conditions: AgI: 40–85 mol%; AGO1/2: 10–50 mol%; AgO1/2 + AgI: 65–95 mol%; and AgI/AgO1/2 ≥ 1 (mol/mol). The low melting point composition contains at least one type selected from VO5/2, MoO3, WO3, MnO2, ZnO, BO3/2, GeO2, PbO, PO5/2, SbO5/2, BiO3/2, and TeOin a total amount of 5–35 mol%.

Description

低融点封止材,電子部品及び密封体Low melting point sealing material, electronic parts and sealed body
 本発明は,無機組成物,より具体的には低融点封止材に関し,更に,これを用いた電子部品及び密封体に関する。 The present invention relates to an inorganic composition, more specifically, a low-melting-point sealing material, and further relates to an electronic component and a sealing body using the same.
 種々の無機低融点組成物が電気・電子機器業界において様々な用途で用いられている。例えば,水晶振動子,LED素子のような電気・電子部品の封止において,低融点(例えば,250℃)のAu-Sn合金はんだペーストや封止用ガラスフリットが,これをそれらの部品に塗布し焼成するという方法で用いられている。 Various inorganic low melting point compositions are used in various applications in the electrical and electronic equipment industry. For example, in the sealing of electrical and electronic parts such as crystal oscillators and LED elements, a low melting point (for example, 250 ° C.) Au—Sn alloy solder paste or sealing glass frit is applied to these parts. And then firing.
 Au-Sn合金(特許文献1)は以前より用いられてきた材料であり信頼性はあるが,金を成分に含むため非常に高価である。 Au-Sn alloy (Patent Document 1) is a material that has been used for some time and is reliable, but it is very expensive because it contains gold as a component.
 このため,封止材の調製に用いられる低融点ガラスとしては,より安価なPbO系ガラスやV系ガラスも知られている。例えば,400℃未満の温度で封止可能なPbO系ガラス(特許文献2)や350℃以下で焼成可能なV系ガラス(特許文献3)が知られている。 For this reason, cheaper PbO glass and V 2 O 5 glass are also known as low melting point glass used for the preparation of the sealing material. For example, PbO-based glass (Patent Document 2) that can be sealed at a temperature lower than 400 ° C. and V 2 O 5 glass (Patent Document 3) that can be fired at 350 ° C. or lower are known.
 他方,酸化銀及び/又はハロゲン化銀と他の金属酸化物(Pb,Vであってよい)を含んでなる,300~330℃で使用できる封止材料が知られている(特許文献4)。 On the other hand, a sealing material that can be used at 300 to 330 ° C., which contains silver oxide and / or silver halide and another metal oxide (which may be Pb or V) is known (Patent Document 4). .
 また,酸化銀,五酸化燐及びヨウ化銀を含んでなる封止材料が知られている(特許文献5,6)。 Further, a sealing material containing silver oxide, phosphorus pentoxide and silver iodide is known (Patent Documents 5 and 6).
 このような状況において,近年,電気・電子材料の回路構成等の益々の微細化が進むのに伴い,より信頼性が高く且つ安価な封止材が求められるようになっているが,その要請には未だ十分に応えられていない。 Under such circumstances, as the circuit configuration of electric / electronic materials has been increasingly miniaturized in recent years, a more reliable and inexpensive sealing material has been demanded. Has not been fully met.
特開平9-122969号公報Japanese Patent Laid-Open No. 9-122969 特開昭61-261233号公報JP-A-61-261233 特開2013-32255号公報JP 2013-32255 A 特開平5-147974号公報JP-A-5-147974 特開2000-183560号公報JP 2000-183560 A 特開2001-328837号公報JP 2001-328837 A
 本発明の一目的は,無機酸化物及び/又は金属からなる表面を有する封止対象に適用して,大気中で,400℃を超えない,好ましくは350℃を超えない低い温度領域において熱処理するとき,それらの表面に対し良好な濡れ性を示してよく拡がり,その後の冷却固化により当該表面に良好に接着(密着)した状態となることでこれを封止でき,また重ね合わせたそれら表面同士を接合もできる,低温冷却下での性能維持に優れた低融点封止材を提供することである。本発明の尚も更なる一目的は,それらの封止材で封止又は接合された電子部品,密封体を提供することである。 One object of the present invention is applied to a sealing object having a surface made of an inorganic oxide and / or metal, and heat-treated in the air at a low temperature range not exceeding 400 ° C., preferably not exceeding 350 ° C. When they are spread well with good wettability to their surfaces, and then cooled and solidified, they can be sealed (adhered to) the surfaces, and can be sealed. It is to provide a low-melting-point sealing material that can be bonded together and is excellent in maintaining performance under low-temperature cooling. A still further object of the present invention is to provide an electronic component and a sealed body that are sealed or bonded with these sealing materials.
 本発明者は,構成要素としてAgO1/2を含有する低融点組成物のガラスや金属に対する接着性について調査していたところ,AgIを多量に添加した場合には,基板との熱膨張差は広がるにもかかわらず,冷却環境下においても封止材の剥離や割れの発生を起こしにくくなることを発見した。本発明は,更に組成物の組成比と冷却環境下における接着性について検討を加えて完成するに至ったものである。すなわち,本発明は以下を提供する。 The present inventor has been investigating the adhesion of a low melting point composition containing AgO 1/2 as a constituent element to glass or metal. When AgI is added in a large amount, the difference in thermal expansion from the substrate is as follows. Despite spreading, it was discovered that it was difficult for the sealing material to peel off and crack even in a cooling environment. The present invention has been completed by further studying the composition ratio of the composition and the adhesiveness in a cooling environment. That is, the present invention provides the following.
 1.低融点組成物50~100体積%及びフィラー0~50体積%を含んでなる低融点封止材であって,
 該低融点組成物が,Ag,I,及びOを必須の構成要素として含んでなり,カチオンとアニオンとが結合してなる,式MQm/q〔式中,Mは価数mのカチオン,Qは価数qのアニオンを表す。〕で示される種々の化合物の集合体として,且つ酸化物イオン(O2-)以外のアニオンは全てAgイオンと結合しているものとして表したとき,それらの化合物が占める割合が次の条件:
 AgI ・・・・・・・ 40~85モル%,
 AgO1/2 ・・・・・ 10~50モル%,
 AgO1/2+AgI ・ 65~95モル%,及び
 AgI/AgO1/2≧1(モル/モル)
を満たし,且つ
 該低融点組成物が,VO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PbO,PO5/2,SbO5/2,BiO3/2,TeOから選ばれる1種又は2種以上を含有し,それらの合計が5~35モル%である,
低融点封止材。
 2.該低融点組成物が,VO5/2,MoO,GeO,PO5/2,TeOから選ばれる1種又は2種以上を含有し,それらの合計が5~35モル%である,上記1の低融点封止材。
 3.該低融点組成物におけるBO3/2及びGeOの合計含有量が12モル%以下である,上記1又は2の低融点封止材。
 4.該低融点組成物におけるPO5/2の含有量が3モル%以下であり,且つAgF,AgCl,及びAgBrの合計含有量が3モル%以下である,上記1~3の何れかの低融点封止材。
 5.上記1~4の何れかの低融点封止材で封止された電子部品。
 6.水晶振動子,半導体素子,SAW素子又は有機EL素子である,上記5の電子部品。
 7.封止対象として該低融点封止材と接する部材の少なくとも1つの熱膨張係数が100×10-7/K以下である,上記5又は6の電子部品。
 8.封止対象として該低融点封止材と接する部材間の熱膨張係数差が10×10-7/K以上である,上記5又は6の電子部品。
 9.上記1~3の何れかの低融点封止材で封止された密封体。
 10.真空二重容器である,上記9の密封体。
1. A low melting point sealing material comprising 50 to 100% by volume of a low melting point composition and 0 to 50% by volume of a filler,
Low melting point composition, Ag, comprise as a component of I, and O required, made by bonding a cation and an anion, wherein MQ m / q [the formula, M of valency m cations, Q represents an anion having a valence of q. ], And all the anions other than oxide ions (O 2− ) are bound to Ag ions, and the proportion of these compounds is as follows:
AgI ...... 40-85 mol%,
AgO 1/2 ... 10 to 50 mol%,
AgO 1/2 + AgI 65 to 95 mol%, and AgI / AgO 1/2 ≧ 1 (mol / mol)
And the low melting point composition is VO 5/2 , MoO 3 , WO 3 , MnO 2 , ZnO, BO 3/2 , GeO 2 , PbO, PO 5/2 , SbO 5/2 , BiO 3 / 2 , containing one or more selected from TeO 2 , the total of which is 5 to 35 mol%,
Low melting point sealing material.
2. The low-melting-point composition contains one or more selected from VO 5/2 , MoO 3 , GeO 2 , PO 5/2 , TeO 2 , and the total thereof is 5 to 35 mol%. The low melting point sealing material according to 1 above.
3. The low melting point sealing material according to 1 or 2, wherein the total content of BO 3/2 and GeO 2 in the low melting point composition is 12 mol% or less.
4). The low melting point according to any one of 1 to 3 above, wherein the content of PO 5/2 in the low melting point composition is 3 mol% or less and the total content of AgF, AgCl, and AgBr is 3 mol% or less. Sealing material.
5). An electronic component sealed with the low melting point sealing material of any one of 1 to 4 above.
6). 5. The electronic component according to 5 above, which is a crystal resonator, a semiconductor element, a SAW element, or an organic EL element.
7). The electronic component according to 5 or 6 above, wherein a thermal expansion coefficient of at least one member in contact with the low melting point sealing material as a sealing target is 100 × 10 −7 / K or less.
8). The electronic component according to 5 or 6 above, wherein a difference in thermal expansion coefficient between members in contact with the low melting point sealing material as a sealing target is 10 × 10 −7 / K or more.
9. A sealed body sealed with the low melting point sealing material of any one of 1 to 3 above.
10. The sealed body according to 9 above, which is a vacuum double container.
 本発明の上記1の低融点封止材は,これを封止対象の無機酸化物及び/又は金属からなる表面に適用し,大気中で400℃を超えない幅広い温度領域において加熱融解させて適宜広げた後,冷却させ固化させるとき,封止対象が熱膨張係数の比較的低いものの場合でも,当該表面に対し密着性の良好な封止を達成できる。更に,封止された対象を-50℃まで冷却させても封止の密着性を維持することができる。これは,低融点組封止材中にAgI結晶相あるいはAgIを多分に含むガラス相が存在し,それらが塑性変形を起こしやすいこと,及び該ガラス相が封止材全域にわたる連続相を形成していることにより,熱膨張差により生じた応力を緩和させるためと考えられる。その結果。低融点封止材と接する部材のうち少なくとも1つの熱膨張係数が100×10-7/K以下である場合や,低融点封止材を介して接する2つの部材間の熱膨張係数差が10×10-7/K以上である場合にも,密着性の良好な封止を達成できる。 The low melting point sealing material according to 1 of the present invention is applied to a surface made of an inorganic oxide and / or metal to be sealed, and heated and melted in a wide temperature range not exceeding 400 ° C. in the atmosphere. When it is cooled and solidified after spreading, sealing with good adhesion to the surface can be achieved even if the object to be sealed has a relatively low coefficient of thermal expansion. Furthermore, even if the sealed object is cooled to −50 ° C., the sealing adhesion can be maintained. This is because the low melting point encapsulant has a glass phase containing AgI crystal phase or AgI which is likely to cause plastic deformation, and the glass phase forms a continuous phase over the entire encapsulant. This is considered to relieve the stress caused by the difference in thermal expansion. as a result. When at least one of the members in contact with the low melting point sealing material has a thermal expansion coefficient of 100 × 10 −7 / K or less, or the difference in thermal expansion coefficient between two members in contact with the low melting point sealing material is 10 Even in the case of × 10 −7 / K or more, sealing with good adhesion can be achieved.
図1は,封止材を用いた水晶振動子の構造を分解した状態で示す模式図である。FIG. 1 is a schematic view showing the structure of a quartz crystal resonator using a sealing material in an exploded state. 図2は,封止材を用いた真空二重容器の断面構造を分解した状態で示す模式図である。FIG. 2 is a schematic view showing the cross-sectional structure of a vacuum double container using a sealing material in an exploded state.
 本明細書において,「低融点」の語は,融点が400℃を超えないことを意味し,より好ましくは,融点が350℃を超えないことを意味する。本発明の封止材は,組成物の融点に適した用途に使用できる。例えば,250~350℃の融点を有する組成物は,Au-Sn合金封止材の安価な代替材料として用いることができる。また,融点が250℃を超えない組成物は,Au-Sn合金はんだが既に用いられている電子部品に更に封止を施す場合にも好都合に使用できる。 In this specification, the term “low melting point” means that the melting point does not exceed 400 ° C., more preferably, the melting point does not exceed 350 ° C. The sealing material of this invention can be used for the use suitable for melting | fusing point of a composition. For example, a composition having a melting point of 250 to 350 ° C. can be used as an inexpensive alternative material for an Au—Sn alloy sealing material. In addition, a composition having a melting point not exceeding 250 ° C. can be advantageously used for further sealing an electronic component for which an Au—Sn alloy solder has already been used.
 本願発明における組成物をその成分とそれらの量的関係によって規定するにあたり,便宜上,当該組成物をその製造原料由来のカチオンとアニオンとが結合してなる,式MQm/q〔式中,Mは価数mのカチオン,Qは価数qのアニオンを表す。〕で示される種々の化合物の集合体であると見做し,且つ酸化物イオン(O2-)以外のアニオンは全てAgイオンと結合しているものと見做す。なお,それらの化合物が満たす上記の量的条件の下では,〔Agイオンのモル数〕>〔酸化物以外の各アニオンのモル数×価数の合計〕という関係が成り立つ。 In defining the composition of the present invention by its components and their quantitative relationship, for convenience, the composition is formed by combining a cation and an anion derived from the raw material for production, with the formula MQ m / q [wherein M Represents a cation having a valence of m, and Q represents an anion having a valence of q. It is considered that all anions other than oxide ions (O 2− ) are bonded to Ag ions. Note that, under the above quantitative conditions satisfied by these compounds, a relationship of [number of moles of Ag ions]> [number of moles of each anion other than oxide × total number of valences] is established.
 本発明の低融点封止材は,400℃を超えない温度,例えば好ましくは200~400℃,より好ましくは250~350℃の範囲で,無機酸化物や金属の表面への良好な濡れ性を有している。従って,当該組成物を,例えば粒子(例えば,粉末やペースト)の形で,無機酸化物又は金属からなる表面を有する封止対象に適用し,上記の温度に加熱することで流動させて封止対象の表面に広げ,次いで冷却して固化させることにより,封止対象の表面に強く密着した状態となってこれを封止することができる。 The low melting point sealing material of the present invention exhibits good wettability to the surface of an inorganic oxide or metal at a temperature not exceeding 400 ° C., for example, preferably 200 to 400 ° C., more preferably 250 to 350 ° C. Have. Therefore, the composition is applied to a sealing object having a surface made of an inorganic oxide or a metal, for example, in the form of particles (for example, powder or paste), and heated to the above temperature to be sealed. By spreading on the surface of the object and then cooling and solidifying it, it can be sealed tightly to the surface of the object to be sealed.
 本発明の組成物において,AgIは,必須の成分である。AgIは組成物の液相線温度を低下させる効果及びガラス相を安定化させる効果がある。AgIの含有量がある一定量未満である場合には,封止対象として熱膨張係数が比較的低い部材と加熱・接着させた後に低温(例えば-50℃)環境下で冷却されると,封止材の剥離や割れが発生する。熱膨張係数の差に由来する低温での封止材と部材との収縮率の差によって生じた応力が封止材-部材間の結合力を上回った場合には,封止材-部材間で剥離が起こり,また応力が封止材内部の結合力を上回った場合には,封止材自体が破断するためである。 In the composition of the present invention, AgI is an essential component. AgI has the effect of lowering the liquidus temperature of the composition and the effect of stabilizing the glass phase. When the content of AgI is less than a certain amount, sealing with a member having a relatively low thermal expansion coefficient as a sealing target after cooling in a low temperature environment (for example, −50 ° C.) after heating and bonding. Stopping material peeling or cracking occurs. If the stress caused by the difference in shrinkage between the sealing material and the member at low temperature due to the difference in thermal expansion coefficient exceeds the bonding force between the sealing material and the member, This is because if the peeling occurs and the stress exceeds the bonding force inside the sealing material, the sealing material itself breaks.
 他方,AgIの含有量がある一定量以上であれば,比較的低い熱膨張係数の部材と加熱・接着後に上記のような低温まで冷却しても,封止材の剥離や割れの発生が防止できるようになる。AgIは組成物の熱膨張係数を高める(このため部材との熱膨張係数差は拡大する)にも拘わらずこのような効果が生じるのは,AgI結晶相,あるいは,AgI成分の多いガラス相が塑性変形を起こし,収縮率の差によって生じた応力を緩和させているためと考えられる。この現象は,特にAgI結晶相,あるいは,AgI成分の多いガラス相が封止材の全域にわたるマクロな連続相を形成する(パーコレーションが起こる)ことで顕著になるものと考えられる。 On the other hand, if the AgI content is above a certain level, it will prevent peeling and cracking of the sealing material even if it is cooled to the above low temperature after heating and bonding with a member with a relatively low thermal expansion coefficient. become able to. Although AgI increases the coefficient of thermal expansion of the composition (thus, the difference in coefficient of thermal expansion from the member increases), such an effect is caused by the AgI crystal phase or the glass phase having a large AgI component. This is thought to be due to the plastic deformation that relieves the stress caused by the difference in shrinkage. This phenomenon is considered to be particularly prominent when the AgI crystal phase or the glass phase having a large AgI component forms a macro continuous phase over the entire area of the sealing material (percolation occurs).
 低温での剥離や割れの防止のため,AgIの含有量は,40~85モル%,好ましくは40~80モル%,より好ましくは40~71モル%である。 In order to prevent peeling and cracking at low temperatures, the content of AgI is 40 to 85 mol%, preferably 40 to 80 mol%, more preferably 40 to 71 mol%.
 AgO1/2も,本発明の組成物の必須の成分である。AgO1/2は,組成物の液相線温度を低下させる効果及びガラス相を安定化させる効果がある。そのため,AgO1/2の含有量は,10~50モル%,好ましくは15~45モル%,より好ましくは19~39モル%である。 AgO 1/2 is also an essential component of the composition of the present invention. AgO 1/2 has the effect of lowering the liquidus temperature of the composition and the effect of stabilizing the glass phase. Therefore, the content of AgO 1/2 is 10 to 50 mol%, preferably 15 to 45 mol%, more preferably 19 to 39 mol%.
 本発明の組成物において,ミクロに見れば,成分AgIから供給されるイオン結合性の高いAg-I結合は結合角を変化させやすく,塑性変形に寄与し,一方,成分AgO1/2から供給される共有結合性の高いAg-O結合は結合角を変化させにくいため,Agイオンの配置を固定し,塑性変形を阻害するものと考えられる。 In the composition of the present invention, when viewed microscopically, the highly ion-bonded Ag-I bond supplied from the component AgI easily changes the bond angle and contributes to plastic deformation, while being supplied from the component AgO 1/2. It is considered that Ag—O bonds having high covalent bonds are difficult to change the bond angle, and hence the arrangement of Ag ions is fixed to inhibit plastic deformation.
 前記塑性変形を顕著に起こさせるためには,モル比で表すAgI/AgO1/2は,1以上であることが必要であり,好ましくは1.05以上,より好ましくは1.5以上である。 In order to cause the plastic deformation remarkably, AgI / AgO 1/2 represented by molar ratio needs to be 1 or more, preferably 1.05 or more, more preferably 1.5 or more. .
 本発明の組成物において,400℃を超えない温度で融解させるため,AgIとAgO1/2の合計は好ましくは65~95モル%,より好ましくは70~93モル%,更に好ましくは75~90モル%である。 In the composition of the present invention, in order to melt at a temperature not exceeding 400 ° C., the total of AgI and AgO 1/2 is preferably 65 to 95 mol%, more preferably 70 to 93 mol%, still more preferably 75 to 90 mol. Mol%.
 VO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PbO,PO5/2,SbO5/2,BiO3/2,TeOから選ばれる1種又は2種以上も本発明の組成物の必須の成分であり,組成物の液相線温度を低下させ400℃を以下での封止を可能にする効果やガラス相を形成させる効果を有する。これらの効果の利用のため,組成物におけるVO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PbO,PO5/2,SbO5/2,BiO3/2,TeOの含有量の合計は,好ましくは5~35モル%,より好ましくは7~30モル%,更に好ましくは10~25モル%である。 VO 5/2, MoO 3, WO 3 , MnO 2, ZnO, BO 3/2, GeO 2, PbO, PO 5/2, SbO 5/2, BiO 3/2, 1 or two selected from TeO 2 The seeds or more are also essential components of the composition of the present invention, and have the effect of lowering the liquidus temperature of the composition to enable sealing at 400 ° C. or less and the effect of forming a glass phase. In order to utilize these effects, VO 5/2 , MoO 3 , WO 3 , MnO 2 , ZnO, BO 3/2 , GeO 2 , PbO, PO 5/2 , SbO 5/2 , BiO 3 / 2 , The total content of TeO 2 is preferably 5 to 35 mol%, more preferably 7 to 30 mol%, and still more preferably 10 to 25 mol%.
 本発明の組成物を加熱溶融によって製造する場合,難溶性のBO3/2,GeOを多量に含むと未溶解物を発生しやすく,また,製品組成のばらつきが生じやすくなる。10μm程度の径の未溶解物が発生することを防ぐためには,BO3/2,GeOの合計含有量は好ましくは12モル%以下である。3μm程度の径の未溶解物が発生することを防ぐためには,BO3/2,GeOの合計含有量は好ましくは6モル%以下である。 When the composition of the present invention is produced by heating and melting, if it contains a small amount of poorly soluble BO 3/2 and GeO 2 , undissolved substances are likely to be generated, and variations in product composition are likely to occur. In order to prevent generation of undissolved material having a diameter of about 10 μm, the total content of BO 3/2 and GeO 2 is preferably 12 mol% or less. In order to prevent generation of undissolved material having a diameter of about 3 μm, the total content of BO 3/2 and GeO 2 is preferably 6 mol% or less.
 本発明の低融点組成物において,PO5/2は,封止対象が鉄系金属である場合にはこれを腐食するおそれがあるため,その含有量は,好ましくは3モル%以下,より好ましくは0.1モル%以下である。 In the low-melting-point composition of the present invention, PO 5/2 may corrode when the object to be sealed is an iron-based metal, so its content is preferably 3 mol% or less, more preferably Is 0.1 mol% or less.
 本発明の低融点組成物において,AgF,AgCl,AgBrは封止対象が鉄系金属である場合には封止対象を腐食するおそれがあるため,AgF,AgCl,AgBrの合計含有量は好ましくは3モル%以下,より好ましくは0.1モル%以下である。 In the low melting point composition of the present invention, AgF, AgCl, AgBr may corrode the sealing target when the sealing target is an iron-based metal, so the total content of AgF, AgCl, AgBr is preferably It is 3 mol% or less, more preferably 0.1 mol% or less.
 本発明の組成物において,上に記載していない成分を含有させてもよい。ただし,本発明の組成物において,耐水性の向上の観点から,アルカリ金属酸化物の合計は5モル%以下とすることが好ましく,1モル%以下とすることがより好ましく,0.1モル%以下とすることが更に好ましい。 In the composition of the present invention, components not described above may be included. However, in the composition of the present invention, from the viewpoint of improving water resistance, the total amount of alkali metal oxides is preferably 5 mol% or less, more preferably 1 mol% or less, and 0.1 mol%. More preferably, it is as follows.
 本発明の組成物において,環境有害性成分であるPbOの含有量は少量に抑えることが好ましく,例えば0.1モル%以下とすることが好ましい。 In the composition of the present invention, the content of PbO, which is an environmentally harmful component, is preferably suppressed to a small amount, for example, 0.1 mol% or less.
 本発明の組成物は,加熱し融解することで目的の低融点組成物を与えることになるように予め調合された各種原料試薬粉末の混合物の形で提供してもよい。また,そのような混合物を加熱し溶融した後に冷却することで得られる,固溶体や複ハロゲン化物,ガラス相が形成されている形態の材料とすることもできる。固溶体や複ハロゲン化物,ガラス相が形成されていると,より短時間の加熱で融解しやすい組成物となることから,そのような形態の組成物であることがより好ましい。また,本発明の組成物は,酸,塩基,又は塩を含んだ水溶液を反応させ沈殿させることによっても製造することができる。 The composition of the present invention may be provided in the form of a mixture of various raw material reagent powders prepared in advance so as to give the desired low melting point composition by heating and melting. Moreover, it can also be set as the material of the form in which the solid solution, the double halide, and the glass phase which are obtained by heating, melting, and cooling such a mixture are formed. When a solid solution, a double halide, or a glass phase is formed, it becomes a composition that is easily melted by heating in a shorter time, and thus a composition in such a form is more preferable. The composition of the present invention can also be produced by reacting and precipitating an aqueous solution containing an acid, base, or salt.
 また,本発明の封止材は,粉末やビーズ,シート状,ロッド状等に加工して封止材として用いることができる。作業性の向上という点から水,有機溶剤,分散剤,増粘剤等と混合してペースト状の封止材としても用いることができる。有機溶剤としてはターピネオール,ジヒドロターピネオール,グリセリン,「2,4-ジメチル-1,5-ペンタンジオール」,「2-ブチル-2-エチル-1,3-プロパンジオール」等を用いることができる。本発明の組成物の融点は,大抵のポリマーの分解温度より低い。そのため,ペーストにはポリマーは用いず,分解せずとも揮発する低分子量で高粘性(10~10mPa・s)の液体を用いることが好ましい。 Moreover, the sealing material of this invention can be processed into powder, a bead, a sheet form, a rod form, etc., and can be used as a sealing material. From the viewpoint of improving workability, it can be mixed with water, an organic solvent, a dispersant, a thickener and the like and used as a paste-like sealing material. As the organic solvent, terpineol, dihydroterpineol, glycerin, “2,4-dimethyl-1,5-pentanediol”, “2-butyl-2-ethyl-1,3-propanediol” and the like can be used. The melting point of the composition of the present invention is lower than the decomposition temperature of most polymers. Therefore, it is preferable to use a liquid having a low molecular weight and a high viscosity (10 3 to 10 5 mPa · s) that volatilizes without being decomposed, without using a polymer for the paste.
 また,本発明の封止材には,封止特性の向上のために,各種フィラーを含有させることができる。本発明の封止材は熱膨張差による応力を緩和することができるため,熱膨張係数を調整する目的でのフィラーの添加はしなくてもよい。もっとも,発生する応力自体が小さいほうが応力を速やかに緩和できるとも考えられるため,フィラーを添加してもよい。 Moreover, the sealing material of the present invention can contain various fillers in order to improve sealing properties. Since the sealing material of the present invention can relieve stress due to a difference in thermal expansion, it is not necessary to add a filler for the purpose of adjusting the thermal expansion coefficient. However, a filler may be added because it is considered that the smaller the generated stress itself can relieve the stress quickly.
 その他,性能付加の観点から,例えば,導電性の付与のためには,金属(例えば,金属銀等),カーボンナノチューブ等の導電性フィラーを含んだ形態のものとすることができ,熱伝導性の付与のためには,高い熱伝導性を有するフィラー(例えば,窒化アルミニウム,炭化ケイ素等)を含んだ形態のものとすることができる。また,封止材の機械的強度向上のためには,繊維状や板状のフィラーを含んだ形態のものとすることができる。 In addition, from the viewpoint of adding performance, for example, in order to impart conductivity, it may have a form including a conductive filler such as metal (for example, metallic silver), carbon nanotube, etc. In order to provide the above, it is possible to use a filler containing a filler having high thermal conductivity (for example, aluminum nitride, silicon carbide, etc.). Further, in order to improve the mechanical strength of the sealing material, it may be in a form containing a fibrous or plate-like filler.
 これらのフィラーは,本発明の組成物が用いられる封止対象の使用態様・使用環境に応じて求められる性能に合わせ,本発明の封止材の構成要素の一部をなすものとして配合すればよい。封止材の流動性を保つための封止材中のフィラーの含有率の上限は,フィラーの粒度分布にも依るが概ね50体積%である。 If these fillers are blended as a part of the constituents of the sealing material of the present invention in accordance with the performance required according to the use mode and usage environment of the sealing object in which the composition of the present invention is used, Good. The upper limit of the filler content in the sealing material for maintaining the fluidity of the sealing material is approximately 50% by volume although it depends on the particle size distribution of the filler.
 本発明の封止材を用いる場合,封止対象は,その表面が,種々の金属,非金属(無機酸化物等)で構成されたものであることができる。なお,封止対象がTi,Cr,Cu,Zn,Al又はこれらを多く含む合金である場合は封止対象を酸素雰囲気下で加熱したり,アルマイト処理を行ったりすることによって,封止対象表面に存在する酸化被膜を厚くしてから用いることが好ましい。 When the sealing material of the present invention is used, the surface to be sealed can be composed of various metals and nonmetals (inorganic oxides, etc.). If the object to be sealed is Ti, Cr, Cu, Zn, Al or an alloy containing a large amount of these, the surface to be sealed can be obtained by heating the object to be sealed in an oxygen atmosphere or performing alumite treatment. It is preferable to use the oxide film after thickening it.
 本発明の封止材は熱膨張差による応力を緩和することができるため,封止対象となる部材の熱膨張係数が非常に小さい場合(例えば,100×10-7/K以下,85×10-7/K以下,70×10-7/K以下,50×10-7/K以下等)に用いるのが好適である。更には低融点封止材を介して接する部材間の熱膨張係数差が大きい場合(例えば,10×10-7/K以上,30×10-7/K以上,50×10-7/K以上)に用いるのもまた好適である。ここにいう熱膨張係数は30~50℃の間の平均線膨張係数である。 Since the sealing material of the present invention can relieve stress due to the difference in thermal expansion, when the thermal expansion coefficient of the member to be sealed is very small (for example, 100 × 10 −7 / K or less, 85 × 10 −7 / K or less, 70 × 10 −7 / K or less, 50 × 10 −7 / K or less, etc.). Furthermore, when the difference in thermal expansion coefficient between the members contacting through the low melting point sealing material is large (for example, 10 × 10 −7 / K or more, 30 × 10 −7 / K or more, 50 × 10 −7 / K or more ) Is also suitable. The thermal expansion coefficient here is an average linear expansion coefficient between 30 and 50 ° C.
 本発明の封止材を用いて封止した後,封止材に結晶化を起こさせることで,封止材の熱膨張係数を低下させ,機械的強度を向上させ,耐熱衝撃性を向上させることができる。結晶化を起こさせるには,封止材を,低融点組成物のガラス転移点以上,液相線温度以下に一定時間保持すればよい。素早く確実に結晶化させるには50℃~100℃の範囲で1分~1時間程度保持して結晶核を生成させた後,100~150℃の範囲で1分~1時間程度保持して結晶成長をさせるとよい。 After sealing with the sealing material of the present invention, the sealing material is crystallized to reduce the thermal expansion coefficient of the sealing material, improve the mechanical strength, and improve the thermal shock resistance. be able to. In order to cause crystallization, the sealing material may be held for a certain period of time above the glass transition point of the low melting point composition and below the liquidus temperature. For quick and reliable crystallization, hold the crystal nucleus in the range of 50 ° C to 100 ° C for about 1 minute to 1 hour, and then hold the crystal in the range of 100 to 150 ° C for about 1 minute to 1 hour. It is good to let it grow.
 本発明の封止材を用いて封止するとき,作業雰囲気は酸素を含んでいてもいなくてもよい。封止に際しては,封止対象に圧力をかけて接着性を更に高めることもでき,また,封止材に超音波等の振動を与えて融解を促進させることもできる。 When sealing with the sealing material of the present invention, the working atmosphere may or may not contain oxygen. At the time of sealing, pressure can be applied to the object to be sealed to further enhance the adhesion, and vibration such as ultrasonic waves can be applied to the sealing material to promote melting.
 本発明の封止材を用いて気密性を担保したうえで,さらにエポキシ樹脂,ウレタン樹脂,アクリル樹脂,シリコーン樹脂等をオーバーコートして,封止部の機械的強度,耐摩耗性を高めても良い。 After securing airtightness using the sealing material of the present invention, it is further overcoated with epoxy resin, urethane resin, acrylic resin, silicone resin, etc. to improve the mechanical strength and wear resistance of the sealing part. Also good.
 本発明の封止材は種々の電子部品,例えば,水晶振動子,半導体素子,SAW素子,有機EL素子に使用できる。その他,水素・ヘリウムのような低分子・低原子量のガスの透過が問題となる部品の封止や真空を保つことが必要になる部品の封止に使用できる。真空二重容器(魔法瓶)等の密封体にも使用できる。 The sealing material of the present invention can be used for various electronic components such as crystal resonators, semiconductor elements, SAW elements, and organic EL elements. In addition, it can be used for sealing parts that require a low molecular weight or low atomic weight gas such as hydrogen or helium, or for parts that need to maintain a vacuum. It can also be used for a sealed body such as a vacuum double container (a thermos bottle).
 本発明の封止材12を用いた水晶振動子の構造を,分解した状態で図1に模式的に示す。 FIG. 1 schematically shows the structure of a crystal resonator using the sealing material 12 of the present invention in an exploded state.
 本発明の封止材22を用いた真空二重容器の構造を,分解した状態で図2に模式的に示す。 FIG. 2 schematically shows the structure of a vacuum double container using the sealing material 22 of the present invention in an exploded state.
 以下,実施例を参照して本発明の特徴をより具体的に説明するが,本発明がそれらの実施例に限定されることは意図しない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples, but the present invention is not intended to be limited to these examples.
〔実施例1~5,比較例1~5〕
 表1~2に従い,各組成物につき示された配合割合で合計5gとなるように原料を秤取・配合し,乳鉢で粉砕・混合して粉末とした。得られた粉末5gを磁製ルツボに入れた。ルツボを大気中,450℃~550℃に加熱した炉内へ入れ,10分間保持して原料混合物を溶融した。融液を室温にてグラファイト板上へ流し出して冷却させることにより,バルクとして各組成物を得た。
[Examples 1 to 5, Comparative Examples 1 to 5]
According to Tables 1 and 2, the raw materials were weighed and blended so that the blending ratio indicated for each composition was 5 g in total, and pulverized and mixed in a mortar to obtain powder. 5 g of the obtained powder was put in a magnetic crucible. The crucible was placed in a furnace heated to 450 ° C. to 550 ° C. in the atmosphere and held for 10 minutes to melt the raw material mixture. Each composition was obtained as a bulk by pouring the melt onto a graphite plate at room temperature and allowing it to cool.
〔物性の評価〕
 上記で得られた各バルクについて,下記の方法により物性を評価した。
[Evaluation of physical properties]
About each bulk obtained above, the physical property was evaluated by the following method.
 1.熱膨張係数の評価
 実施例1及び3,並びに比較例1及び4の各バルクを,直径5mm×高さ20mmの円柱状に切削加工してサンプルとした。円柱状試料と石英ガラスにより形成された標準試料とを,熱機械測定装置(型名「TMA8310」,(株)リガク製)を用いて,室温から10K/分で昇温して熱膨張曲線の測定を行い,30℃~50℃までに観測される熱膨張係数の値を平均して各試料の熱膨張係数とした。
1. Evaluation of Thermal Expansion Coefficient Each bulk of Examples 1 and 3, and Comparative Examples 1 and 4 was cut into a cylindrical shape having a diameter of 5 mm and a height of 20 mm to obtain a sample. Using a thermomechanical measuring device (model name “TMA8310”, manufactured by Rigaku Corporation), a cylindrical sample and a standard sample formed of quartz glass are heated at a rate of 10 K / min from room temperature to obtain a thermal expansion curve. Measurements were made, and the values of thermal expansion coefficients observed from 30 ° C. to 50 ° C. were averaged to obtain the thermal expansion coefficient of each sample.
 表1~2に示す実施例1及び3,並びに比較例1及び4の熱膨張係数から,AgIを含有させると熱膨張係数は大きくなる傾向にあることが分かる。 From the thermal expansion coefficients of Examples 1 and 3 and Comparative Examples 1 and 4 shown in Tables 1 and 2, it can be seen that the thermal expansion coefficient tends to increase when AgI is contained.
 2.低温環境下における接着性の評価
 実施例及び比較例の各バルクを,直径3mm×高さ5mmの円柱状に切削加工してサンプルとした。各サンプルを26mm角,1.2mm厚のガラス板(松浪硝子工業株式会社製,品名:スライドガラスS1225,熱膨張係数は約87×10-7/K)の空気面(非錫面)に立てて載せ電気炉へ入れた。5℃/分で300℃又は350℃まで昇温した後,同温度で1時間保持し,加熱を止め,サンプルを放冷した。室温下でガラス板上のサンプルを目視観察した。サンプルを-50℃に保った槽の中へ入れ1時間保持し,取り出した。改めてガラス板上のサンプルを目視観察し,冷却前の観察結果と比較することで,低温環境下における接着性を評価した。観察事項及び評価基準は次の通りである。
 ・剥離の発生:冷却前には見られなかった干渉縞が界面の剥離により認められる(評価:不良)。
 ・割れの発生:冷却前にはなかったひび割れが封止材に見られる(評価:不良)。
 ・冷却前後で剥離や封止材の割れのような状態変化は見られない(評価:良好)。
 結果は表1~2に示す
2. Evaluation of adhesiveness in a low-temperature environment Each bulk of Examples and Comparative Examples was cut into a cylindrical shape having a diameter of 3 mm and a height of 5 mm to obtain a sample. Each sample is placed on a 26 mm square, 1.2 mm thick glass plate (manufactured by Matsunami Glass Industrial Co., Ltd., product name: slide glass S1225, thermal expansion coefficient is about 87 × 10 −7 / K) on the air surface (non-tin surface). And put it in the electric furnace. After raising the temperature to 300 ° C. or 350 ° C. at 5 ° C./min, the temperature was maintained for 1 hour, heating was stopped, and the sample was allowed to cool. The sample on the glass plate was visually observed at room temperature. The sample was placed in a bath maintained at −50 ° C., held for 1 hour, and taken out. The sample on the glass plate was visually observed again and compared with the observation results before cooling to evaluate the adhesion in a low temperature environment. The observation items and evaluation criteria are as follows.
-Occurrence of peeling: Interference fringes that were not seen before cooling were observed due to peeling of the interface (evaluation: poor).
-Occurrence of cracks: Cracks that were not present before cooling are seen in the sealing material (evaluation: poor).
-State changes such as peeling and cracking of the sealing material are not observed before and after cooling (evaluation: good).
The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1~2に見られるように,低温環境下の接着性において何れの実施例も良好であったのに対し,比較例は全て剥離あるいは封止材の割れという問題が生じた。 As can be seen from Tables 1 and 2, all the examples were good in adhesiveness under a low temperature environment, but all the comparative examples had a problem of peeling or cracking of the sealing material.
 本発明の低融点封止材は,水晶振動子,LED素子その他の電気電子部品や真空二重容器に用いることができ,有用である。 The low melting point sealing material of the present invention is useful because it can be used for crystal resonators, LED elements and other electric and electronic parts and vacuum double containers.
10 蓋
12 封止材
14 セラミック基板
16 水晶振動子
20 二重容器
22 封止材
24 蓋
10 Lid 12 Sealing Material 14 Ceramic Substrate 16 Crystal Resonator 20 Double Container 22 Sealing Material 24 Lid

Claims (10)

  1.  低融点組成物50~100体積%及びフィラー0~50体積%を含んでなる低融点封止材であって,
     該低融点組成物が,Ag,I,及びOを必須の構成要素として含んでなり,カチオンとアニオンとが結合してなる,式MQm/q〔式中,Mは価数mのカチオン,Qは価数qのアニオンを表す。〕で示される種々の化合物の集合体として,且つ酸化物イオン(O2-)以外のアニオンは全てAgイオンと結合しているものとして表したとき,それらの化合物が占める割合が次の条件:
     AgI ・・・・・・・ 40~85モル%,
     AgO1/2 ・・・・・ 10~50モル%,
     AgO1/2+AgI ・ 65~95モル%,及び
     AgI/AgO1/2≧1(モル/モル)
    を満たし,且つ
     該低融点組成物が,VO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PbO,PO5/2,SbO5/2,BiO3/2,TeOから選ばれる1種又は2種以上を含有し,それらの合計が5~35モル%である,
    低融点封止材。
    A low melting point sealing material comprising 50 to 100% by volume of a low melting point composition and 0 to 50% by volume of a filler,
    Low melting point composition, Ag, comprise as a component of I, and O required, made by bonding a cation and an anion, wherein MQ m / q [the formula, M of valency m cations, Q represents an anion having a valence of q. ], And all the anions other than oxide ions (O 2− ) are bound to Ag ions, and the proportion of these compounds is as follows:
    AgI ...... 40-85 mol%,
    AgO 1/2 ... 10 to 50 mol%,
    AgO 1/2 + AgI 65 to 95 mol%, and AgI / AgO 1/2 ≧ 1 (mol / mol)
    And the low melting point composition is VO 5/2 , MoO 3 , WO 3 , MnO 2 , ZnO, BO 3/2 , GeO 2 , PbO, PO 5/2 , SbO 5/2 , BiO 3 / 2 , containing one or more selected from TeO 2 , the total of which is 5 to 35 mol%,
    Low melting point sealing material.
  2.  該低融点組成物が,VO5/2,MoO,GeO,PO5/2,TeOから選ばれる1種又は2種以上を含有し,それらの合計が5~35モル%である,請求項1の低融点封止材。 The low-melting-point composition contains one or more selected from VO 5/2 , MoO 3 , GeO 2 , PO 5/2 , TeO 2 , and the total thereof is 5 to 35 mol%. The low melting point sealing material according to claim 1.
  3.  該低融点組成物におけるBO3/2及びGeOの合計含有量が12モル%以下である,請求項1又は2の低融点封止材。 The low-melting-point sealing material according to claim 1 or 2, wherein the total content of BO 3/2 and GeO 2 in the low-melting-point composition is 12 mol% or less.
  4.  該低融点組成物におけるPO5/2の含有量が3モル%以下であり,且つAgF,AgCl,及びAgBrの合計含有量が3モル%以下である,請求項1~3の何れかの低融点封止材。 4. The low melting point composition according to claim 1, wherein the content of PO 5/2 in the low melting point composition is 3 mol% or less and the total content of AgF, AgCl, and AgBr is 3 mol% or less. Melting point sealing material.
  5.  請求項1~4の何れかの低融点封止材で封止された電子部品。 An electronic component sealed with the low melting point sealing material according to any one of claims 1 to 4.
  6.  水晶振動子,半導体素子,SAW素子又は有機EL素子である,請求項5の電子部品。 6. The electronic component according to claim 5, which is a crystal resonator, a semiconductor element, a SAW element or an organic EL element.
  7.  封止対象として該低融点封止材と接する部材の少なくとも1つの熱膨張係数が100×10-7/K以下である,請求項5又は6の電子部品。 The electronic component according to claim 5 or 6, wherein at least one coefficient of thermal expansion of a member in contact with the low melting point sealing material as a sealing target is 100 × 10 -7 / K or less.
  8.  封止対象として該低融点封止材と接する部材間の熱膨張係数差が10×10-7/K以上である,請求項5又は6の電子部品。 The electronic component according to claim 5 or 6, wherein a difference in thermal expansion coefficient between members in contact with the low melting point sealing material as a sealing target is 10 x 10-7 / K or more.
  9.  請求項1~3の何れかの低融点封止材で封止された密封体。 A sealed body sealed with the low melting point sealing material according to any one of claims 1 to 3.
  10.  真空二重容器である,請求項9の密封体。 The sealed body according to claim 9, which is a vacuum double container.
PCT/JP2017/024434 2017-01-13 2017-07-04 Low melting point sealing material, electronic component, and sealing body WO2018131191A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018561791A JPWO2018131191A1 (en) 2017-01-13 2017-07-04 Low melting point sealing material, electronic parts and sealed body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004094 2017-01-13
JP2017-004094 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131191A1 true WO2018131191A1 (en) 2018-07-19

Family

ID=62840015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024434 WO2018131191A1 (en) 2017-01-13 2017-07-04 Low melting point sealing material, electronic component, and sealing body

Country Status (3)

Country Link
JP (1) JPWO2018131191A1 (en)
TW (1) TW201840501A (en)
WO (1) WO2018131191A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172209B2 (en) 2018-07-13 2022-11-16 日本電気硝子株式会社 sealing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147974A (en) * 1991-11-25 1993-06-15 Nippon Electric Glass Co Ltd Seal bonding material
JP2001328837A (en) * 2000-05-16 2001-11-27 Nippon Electric Glass Co Ltd Glass for sealing and sealing material using the same
JP2007297272A (en) * 2004-07-14 2007-11-15 Nippon Electric Glass Co Ltd Sealing glass, its production method and sealing method of vacuum double container made of metal
WO2017068802A1 (en) * 2015-10-22 2017-04-27 日本山村硝子株式会社 Low-melting-point composition, production method therefor, sealing material, and sealing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147974A (en) * 1991-11-25 1993-06-15 Nippon Electric Glass Co Ltd Seal bonding material
JP2001328837A (en) * 2000-05-16 2001-11-27 Nippon Electric Glass Co Ltd Glass for sealing and sealing material using the same
JP2007297272A (en) * 2004-07-14 2007-11-15 Nippon Electric Glass Co Ltd Sealing glass, its production method and sealing method of vacuum double container made of metal
WO2017068802A1 (en) * 2015-10-22 2017-04-27 日本山村硝子株式会社 Low-melting-point composition, production method therefor, sealing material, and sealing method
WO2017068864A1 (en) * 2015-10-22 2017-04-27 日本山村硝子株式会社 Low-melting-point composition, sealing material, and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172209B2 (en) 2018-07-13 2022-11-16 日本電気硝子株式会社 sealing material

Also Published As

Publication number Publication date
JPWO2018131191A1 (en) 2019-11-14
TW201840501A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP6148813B2 (en) Low melting point composition, sealing material and electronic component
KR102265576B1 (en) Conductive paste and method for producing a semiconductor device using the same
JP2018152385A (en) Low-temperature seal member and method for manufacturing the same
KR101940894B1 (en) Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
JP7174910B2 (en) Metal powder sintering paste, method for producing same, and method for producing conductive material
KR101686252B1 (en) Au-Ga-In brazing filler metal
Peng et al. An investigation on the ZnO retained ratio, microstructural evolution, and mechanical properties of ZnO doped Sn3. 0Ag0. 5Cu composite solder joints
CN110331405B (en) Liquid metal and graphite composite heat dissipation film and preparation method thereof
WO2018131191A1 (en) Low melting point sealing material, electronic component, and sealing body
TW201529520A (en) Lead-free glass and sealing material
JP2018109073A (en) Composite material composition, and paste agent using the same
TW201522604A (en) High thermal conductivity composite solder
CN109071322B (en) Lead-free low-melting-point composition, sealing material, conductive material, and electronic component
WO2018131190A1 (en) Low melting point sealing material and electronic component
JP2017193468A (en) Lead-free low melting point composition, encapsulation material and electronic component
JP2019137572A (en) Low melting point composition, encapsulating material, and electronic component
JP2020001986A (en) Low thermal expansible low melting point composition, joint material, and conjugate
JP2018168226A (en) Paste-like silver powder composition, method for producing joined body, and method for producing silver film
WO2018181110A1 (en) Low melting point sealing material and electronic part
WO2017098928A1 (en) Low melting point composition, sealing material and sealing method
WO2017154956A1 (en) Low-melting-point composition, sealant, and sealing method
JP2017165610A (en) Lead free low melting point composition, encapsulation material, and encapsulation method
JP2019011228A (en) Paste, paste for encapsulation, paste for forming conductive layer, low melting point composition powder, and manufacturing method for paste
JP5868818B2 (en) Phosphate glass bonding material
JP2017019705A (en) Low melting point composition, encapsulating material and encapsulating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018561791

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890967

Country of ref document: EP

Kind code of ref document: A1