JP2018109073A - Composite material composition, and paste agent using the same - Google Patents

Composite material composition, and paste agent using the same Download PDF

Info

Publication number
JP2018109073A
JP2018109073A JP2015074048A JP2015074048A JP2018109073A JP 2018109073 A JP2018109073 A JP 2018109073A JP 2015074048 A JP2015074048 A JP 2015074048A JP 2015074048 A JP2015074048 A JP 2015074048A JP 2018109073 A JP2018109073 A JP 2018109073A
Authority
JP
Japan
Prior art keywords
low
glass component
component
composite material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015074048A
Other languages
Japanese (ja)
Inventor
ゆり 梶原
Yuri Kajiwara
ゆり 梶原
内藤 孝
Takashi Naito
内藤  孝
唯 新井
Tadashi Arai
唯 新井
拓也 青柳
Takuya Aoyagi
拓也 青柳
孝仁 村木
Takahito Muraki
孝仁 村木
悟 天羽
Satoru Amo
天羽  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015074048A priority Critical patent/JP2018109073A/en
Priority to PCT/JP2015/084607 priority patent/WO2016157631A1/en
Publication of JP2018109073A publication Critical patent/JP2018109073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve adhesiveness and adhesion of a composite material to a base material such as copper, silver, aluminum, silicon and ferrite by combining low-melting glass used for sealing, adhesion and formation of a conductive joint portion with a resin material.SOLUTION: A composite material composition contains a low-melting glass component, and a resin component having no hydroxyl group and amino group, where the low-melting glass component contains VO, TeOand AgO, the total content of the VO, the TeOand the AgO in the low-melting glass component is 78 mol% or more, the contents of the TeOand the AgO are 1-2 times in a molar ratio with respect to the content of VO, and 0 or more and 20 mol% or less of one or more selected from BaO, WOand POis contained in the low-melting glass component as a first additional component, and 0.1 mol% or more and 2.0 mol% or less of one or more selected from YO, LaO, AlOand FeOis contained in the low-melting glass component as a second additional component.SELECTED DRAWING: None

Description

本発明は、複合材組成物、及びそれを用いたペースト剤に関する。   The present invention relates to a composite material composition and a paste agent using the same.

樹脂材料は、無機、金属等の他の材料に比べて、軽量であるとともに比較的低温で成形し易いという特徴を有している。樹脂材料の適用範囲は非常に幅広く、半導体の封止材や種々の電気機器のモールド材に適用されている。このような樹脂材料は、無機、金属等の異種材料に対する接着性や、放熱性、熱伝導性の向上が求められている。従来、樹脂材料の分子設計やフィラー等の添加によって樹脂材料の接着性、放熱性、熱伝導性等を向上させているが、接着性の向上と放熱性及び熱伝導率の向上とは一般にトレードオフの関係にあるという問題があった。   The resin material is characterized by being lightweight and easy to mold at a relatively low temperature as compared with other materials such as inorganic and metal. The application range of the resin material is very wide, and it is applied to semiconductor encapsulants and molding materials for various electric devices. Such resin materials are required to have improved adhesion to different materials such as inorganic and metal, heat dissipation, and thermal conductivity. Conventionally, the adhesion, heat dissipation, thermal conductivity, etc. of resin materials have been improved by the molecular design of resin materials and the addition of fillers, etc., but generally there is a trade-off between improving adhesiveness and improving heat dissipation and thermal conductivity. There was a problem of being in an off relationship.

また、樹脂材料は、電気抵抗が大きいことから絶縁材料として用いられているが、逆に電気抵抗を小さくすることで、これまでに無い分野への応用が考えられる。さらに、樹脂材料はガスバリア性が低いが、ガラスとの複合化によりガスバリア性が向上することが考えられる。   In addition, resin materials are used as insulating materials because of their high electrical resistance, but conversely, application to fields unprecedented can be considered by reducing their electrical resistance. Furthermore, although the resin material has a low gas barrier property, it can be considered that the gas barrier property is improved by combining with a glass.

特許文献1には、樹脂又はゴムと、酸化物ガラスを備えた複合材料において、前記樹脂又はゴムが前記酸化物ガラス中に分散、あるいは、前記酸化物ガラスが前記樹脂又はゴム中に分散し、加熱により、前記酸化物ガラスが、前記樹脂又はゴムの熱分解温度以下で軟化流動することを特徴とする複合材料が開示されている。特許文献1では、従来のガラス繊維強化プラスチックで課題であった、樹脂材料とガラスとの界面強度の低さを解決するべく、低融点ガラスを用いることで界面強度を向上させ、樹脂材料とガラスの複合材料の機械的強度を向上させている。しかしながら、特許文献1では、効果を最大にするための樹脂材料と低融点ガラスの詳細な組成や、界面における現象については説明されていない。   In Patent Document 1, in a composite material including a resin or rubber and oxide glass, the resin or rubber is dispersed in the oxide glass, or the oxide glass is dispersed in the resin or rubber. A composite material is disclosed in which the oxide glass softens and flows below the thermal decomposition temperature of the resin or rubber by heating. In Patent Document 1, in order to solve the low interfacial strength between the resin material and glass, which was a problem with the conventional glass fiber reinforced plastic, the interfacial strength is improved by using low-melting glass, and the resin material and glass are used. The mechanical strength of the composite material is improved. However, Patent Document 1 does not describe the detailed composition of the resin material and the low-melting glass for maximizing the effect and the phenomenon at the interface.

また、太陽電池セル、画像表示デバイス、積層コンデンサー、水晶振動子、LED(発光ダイオード)及び多層回路基板等の多くの電気電子部品では、低融点ガラスと金属粒子とを含む導電性組成物によって電極や配線が形成されている。また、この組成物は導通を取るための接合材としても使用されている。このような導電性組成物は、低温封止材用ガラスフリットと同様に導電性ガラスペースト剤の形態で適用されることが多く、この導電性ガラスペースト剤をスクリーン印刷法やディスペンサー法等によって銅やアルミニウム、フェライト等の基材に塗布し、乾燥後に焼成して、電極や配線、及び導電性接合部等が形成される。その形成の際において、導電性組成物やそれを用いた導電性ガラスペースト剤に含まれる低融点ガラスを軟化流動させることにより、金属粒子を焼結させたり、また基材に対し組成物を密着させている。したがって、このような組成物では、基材への高密着性、高接着性が要求される。   In many electrical and electronic parts such as solar cells, image display devices, multilayer capacitors, crystal resonators, LEDs (light emitting diodes), and multilayer circuit boards, electrodes are formed by a conductive composition containing low-melting glass and metal particles. And wiring are formed. This composition is also used as a bonding material for conducting. Such a conductive composition is often applied in the form of a conductive glass paste similar to a glass frit for a low-temperature encapsulant, and this conductive glass paste is coated with copper by a screen printing method or a dispenser method. It is applied to a base material such as aluminum, ferrite, etc., dried and baked to form electrodes, wiring, conductive joints, and the like. During the formation, the low melting point glass contained in the conductive composition and the conductive glass paste using the conductive composition is softened and fluidized to sinter the metal particles or to adhere the composition to the substrate. I am letting. Therefore, such a composition is required to have high adhesion to the substrate and high adhesion.

特開2013−133342号公報JP2013-133342A

上記のように、樹脂材料の開発においては、接着性の向上と放熱性及び熱伝導性の向上とは従来トレードオフの関係にあった。また、樹脂材料は電気抵抗が大きく、ガスバリア性が低いという課題があった。そこで、本発明は、低融点ガラスと樹脂材料とを複合化することにより、これらの樹脂材料の課題を解決することを目的とする。   As described above, in the development of resin materials, there has been a trade-off relationship between the improvement in adhesiveness and the improvement in heat dissipation and thermal conductivity. In addition, the resin material has a problem that the electric resistance is large and the gas barrier property is low. Then, this invention aims at solving the subject of these resin materials by compounding low melting glass and resin material.

また、封止や接着、導電性接合部の形成等に用いられている低融点ガラスを、樹脂材料と複合化することにより、銅や銀、アルミニウム、シリコン、フェライト等の基材に対する複合材料の接着性及び密着性を向上させることを目的とする。   In addition, by combining low melting point glass used for sealing, adhesion, and formation of conductive joints with resin materials, composite materials for substrates such as copper, silver, aluminum, silicon, and ferrite It aims at improving adhesiveness and adhesiveness.

本発明者らが鋭意研究を行った結果、極性の低い樹脂成分と結晶化傾向が低減された低融点ガラス成分とを複合化することによって、上記課題が解決されることを見い出し、発明を完成した。すなわち、本発明の複合材組成物は、低融点ガラス成分と、水酸基及びアミノ基を有さない樹脂成分とを含む複合材組成物であって、前記低融点ガラス成分が、V、TeO及びAgOを含み、前記低融点ガラス成分におけるV、TeO及びAgOの合計含有量が78モル%以上であり、且つTeO及びAgOの含有量が、Vの含有量に対してそれぞれモル比にして1〜2倍であることを特徴とする。 As a result of diligent research by the present inventors, it was found that the above problems can be solved by combining a low-polarity resin component and a low-melting glass component having a reduced crystallization tendency, thereby completing the invention. did. That is, the composite material composition of the present invention is a composite material composition comprising a low-melting glass component and a resin component having no hydroxyl group and amino group, wherein the low-melting glass component is V 2 O 5 , TeO 2 and Ag 2 O, the total content of V 2 O 5 , TeO 2 and Ag 2 O in the low melting point glass component is 78 mol% or more, and the content of TeO 2 and Ag 2 O is It is characterized by being 1 to 2 times in terms of molar ratio with respect to the content of V 2 O 5 .

極性の低い樹脂成分と低融点ガラス成分とを複合化することにより、基材に対する接着性が向上し、電気抵抗が小さい複合材組成物を得ることができる。この複合材組成物は、ペースト剤等として利用することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   By compounding a resin component having a low polarity and a low melting point glass component, it is possible to obtain a composite composition having improved adhesion to a substrate and low electrical resistance. This composite material composition can be used as a paste agent or the like. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

低融点ガラス成分の特性温度を説明するための図である。It is a figure for demonstrating the characteristic temperature of a low melting glass component. 本発明に係る複合材組成物の断面を模式的に表した図である。It is the figure which represented typically the cross section of the composite material composition which concerns on this invention. 実施例における接着性の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the adhesiveness in an Example.

以下、実施の形態に基づき本発明を詳細に説明する。
本発明の複合材組成物は、低融点ガラス成分と、水酸基及びアミノ基を有さない樹脂成分とを含むことを特徴とする。
Hereinafter, the present invention will be described in detail based on embodiments.
The composite material composition of the present invention comprises a low melting glass component and a resin component having no hydroxyl group and amino group.

低融点ガラス成分は、V、TeO及びAgOを含む。低融点ガラス成分におけるV、TeO及びAgOの合計含有量は78モル%以上であり、TeO及びAgOの含有量は、Vの含有量に対してそれぞれモル比にして1〜2倍である。さらに第一追加成分としてBaO、WO及びPから選択されるいずれか一種以上を低融点ガラス成分中0以上20モル%以下含み、第二追加成分としてY、La、Al及びFeから選択されるいずれか一種以上を低融点ガラス成分中0.1モル%以上2.0モル%以下含むことが好ましい。 The low melting point glass component includes V 2 O 5 , TeO 2 and Ag 2 O. The total content of V 2 O 5 , TeO 2 and Ag 2 O in the low-melting glass component is 78 mol% or more, and the content of TeO 2 and Ag 2 O is relative to the content of V 2 O 5 , respectively. The molar ratio is 1 to 2 times. Further, as the first additional component, one or more selected from BaO, WO 3 and P 2 O 5 are contained in the low melting point glass component in an amount of 0 to 20 mol%, and the second additional component is Y 2 O 3 , La 2 O. 3 , Al 2 O 3 and Fe 2 O 3 are preferably contained in an amount of 0.1 mol% or more and 2.0 mol% or less in the low melting point glass component.

低融点ガラス成分における、主要成分である酸化バナジウム、酸化テルル及び酸化銀の働きについて以下説明する。酸化銀は、転移点、屈伏点、軟化点等の特性温度の低温化と化学的安定性の向上のために含有される。酸化バナジウムは、低融点ガラス成分の調製時に、酸化銀が還元されて金属銀が析出しないようにするため含有される。酸化銀は、低融点ガラス成分中に銀イオンの状態で存在しないと、特性温度の低温化の効果を得ることができない。酸化銀の含有量を多くすることにより、すなわち低融点ガラス成分中の銀イオン量を多くすることにより、特性温度の低温化を図ることができるが、その際には、金属銀の析出を防止あるいは抑制するために、酸化バナジウムの含有量も増やす必要がある。低融点ガラス成分の調製時に、5価のバナジウムイオン1つに対して1価の銀イオンを2つまで含有させることができる。酸化テルルは、低融点ガラス成分をガラス化するためのガラス化成分である。酸化テルルを含有しないと、ガラスを形成することができない。しかし、5価のバナジウムイオン1つに対して4価のテルルイオンは1つまでが有効であり、これを超えると、テルルと銀の化合物が析出してしまう可能性がある。   The functions of vanadium oxide, tellurium oxide and silver oxide, which are the main components in the low melting point glass component, will be described below. Silver oxide is contained for lowering the characteristic temperature such as transition point, yield point, softening point, and improving chemical stability. Vanadium oxide is contained so that silver oxide is not reduced and metallic silver is not precipitated during preparation of the low-melting glass component. If silver oxide is not present in the low melting point glass component in the form of silver ions, the effect of lowering the characteristic temperature cannot be obtained. By increasing the content of silver oxide, that is, by increasing the amount of silver ions in the low-melting-point glass component, the characteristic temperature can be lowered, but in this case, precipitation of metallic silver is prevented. Or in order to suppress, it is also necessary to increase the content of vanadium oxide. When preparing the low melting point glass component, up to two monovalent silver ions can be contained for one pentavalent vanadium ion. Tellurium oxide is a vitrification component for vitrifying a low-melting glass component. If tellurium oxide is not contained, glass cannot be formed. However, up to one tetravalent tellurium ion is effective for one pentavalent vanadium ion, and if it exceeds this, a compound of tellurium and silver may be precipitated.

上記で説明したような酸化バナジウム、酸化テルル及び酸化銀の働きを考慮すると、低融点ガラス成分のベースとなる化合物は、V、TeO及びAgOの合計含有量が78モル%以上であり、且つTeO及びAgOの含有量が、Vの含有量に対してそれぞれモル比にして1〜2倍とされる。これらの組成の範囲を外れると、低融点ガラス成分の調製時に金属銀が析出したり、特性温度の低温化の効果が小さくなったり、加熱焼成時に顕著に結晶化したり、又は化学的安定性が低下したりする等の問題が発生する可能性がある。 In consideration of the action of vanadium oxide, tellurium oxide and silver oxide as described above, the compound serving as the base of the low melting point glass component has a total content of V 2 O 5 , TeO 2 and Ag 2 O of 78 mol%. The content of TeO 2 and Ag 2 O is 1 to 2 times as the molar ratio with respect to the content of V 2 O 5 . When the composition is out of the range, metallic silver is precipitated during the preparation of the low melting point glass component, the effect of lowering the characteristic temperature is reduced, the crystal is markedly crystallized during the heating and baking, or the chemical stability is reduced. There is a possibility that problems such as lowering may occur.

また、低融点ガラス成分を均一なガラス状態(非晶質状態)として得られ易くするため、及び得られた低融点ガラス成分の結晶化傾向を低減するために、第一追加成分として、BaO、WO及びPから選択されるいずれか一種以上を低融点ガラス成分中0以上20モル%以下含むことが有効である。20モル%を超えると、融点が高温化する恐れがある。 Further, in order to easily obtain the low melting point glass component as a uniform glass state (amorphous state) and to reduce the crystallization tendency of the obtained low melting point glass component, BaO, It is effective to include one or more selected from WO 3 and P 2 O 5 in the low melting point glass component in an amount of 0 to 20 mol%. If it exceeds 20 mol%, the melting point may increase.

第二追加成分として含有されるY、La、Al及びFeは、少量の含有によって、顕著に結晶化傾向を低減できる効果があり、その含有量は、合計で、低融点ガラス成分中0.1モル%以上2.0モル以下とすることが有効である。2.0モル%を超えると、転移点、屈伏点、軟化点等の低融点ガラス成分の特性温度が上昇したり、逆に結晶化傾向が大きくなることがあるため不適である。 Y 2 O 3 , La 2 O 3 , Al 2 O 3, and Fe 2 O 3 contained as the second additional component have the effect of significantly reducing the crystallization tendency when contained in a small amount. In total, it is effective to adjust the content to 0.1 mol% or more and 2.0 mol or less in the low melting point glass component. If it exceeds 2.0 mol%, the characteristic temperature of the low-melting-point glass component such as transition point, yield point, softening point, etc. may increase, or conversely, the tendency to crystallize may increase.

また、本発明における低融点ガラス成分は、無鉛低融点ガラス成分であることが好ましい。ここで「無鉛」とは、RoHS指令(2006年7月1日施行)における禁止物質を指定値以下の範囲で含有することを容認するものである。鉛(Pb)の場合には、1000ppm以下である。   Moreover, it is preferable that the low melting glass component in this invention is a lead-free low melting glass component. Here, “lead-free” is to permit the inclusion of prohibited substances in the RoHS Directive (enforced July 1, 2006) within the specified value range. In the case of lead (Pb), it is 1000 ppm or less.

また、本発明の複合材組成物に含まれる低融点ガラス成分は、示差熱分析(DTA)による第二吸熱ピーク温度である軟化点が280℃以下であることが好ましく、さらに、DTAによる結晶化開始温度は前記第二吸熱ピーク温度(軟化点)より60℃以上高温であることが好ましい。すなわち、本発明の複合材組成物に適用する低融点ガラス成分は、軟化点がより低く、結晶化開始温度がより高い方が好ましい。これにより、低温での組成物の流動性が向上する。従来のガラス成分では、軟化点の低温化は、結晶化開始温度の低温化を伴う場合が多かったが、本発明では、0.1モル%以上2.0モル%以下の第二追加成分等に起因して、軟化点の低温化と、結晶化開始温度の高温化を同時に達成することができる。   In addition, the low melting point glass component contained in the composite material composition of the present invention preferably has a softening point of 280 ° C. or less, which is the second endothermic peak temperature by differential thermal analysis (DTA), and is further crystallized by DTA. The starting temperature is preferably 60 ° C. or more higher than the second endothermic peak temperature (softening point). That is, the low melting point glass component applied to the composite composition of the present invention preferably has a lower softening point and a higher crystallization start temperature. Thereby, the fluidity | liquidity of the composition at low temperature improves. In the conventional glass component, the lowering of the softening point is often accompanied by the lowering of the crystallization start temperature, but in the present invention, the second additional component of 0.1 mol% or more and 2.0 mol% or less, etc. As a result, the softening point can be lowered and the crystallization start temperature can be increased at the same time.

ここで、本発明における特性温度の定義について説明する。本発明では、DTAにより低融点ガラス成分の特性温度を測定した。図1は、ガラス成分の代表的なDTAカーブを示している。一般的に、ガラス成分のDTAは、粒径が数十μm程度のガラス粒子を用い、さらに標準試料として高純度のアルミナ(α−Al)粒子を用いて、大気中5℃/分の昇温速度で測定される。図1に示すように、第一吸熱ピークの開始温度が転移点T、その吸熱ピーク温度が屈伏点T、第二吸熱ピーク温度が軟化点T、及び結晶化による発熱ピークの開始温度が結晶化開始温度Tcryである。なお、本発明におけるそれぞれの特性温度は、接線法により求められる値を指す。なお、T、T及びTの特性温度は、ガラスの粘度によっても定義することができ、Tは1013.3poise、Tは1011.0poise、Tは107.65poiseに相当する温度である。結晶化傾向は、Tcryと、結晶化による発熱ピークのサイズ、すなわちその発熱量から判定され、Tcryの高温化、すなわちTとTcryとの温度差増加と、結晶化発熱量の減少が観測された場合に結晶化しにくいガラス成分であるといえる。 Here, the definition of the characteristic temperature in the present invention will be described. In the present invention, the characteristic temperature of the low melting glass component was measured by DTA. FIG. 1 shows a typical DTA curve of the glass component. In general, DTA as a glass component uses glass particles having a particle size of several tens of μm, and further uses high-purity alumina (α-Al 2 O 3 ) particles as a standard sample, and is 5 ° C./min in the atmosphere. Measured at a rate of temperature rise of. As shown in FIG. 1, the first endothermic peak start temperature is the transition point T g , the endothermic peak temperature is the yield point T d , the second endothermic peak temperature is the softening point T s , and the exothermic peak start temperature due to crystallization. Is the crystallization start temperature T cry . In addition, each characteristic temperature in this invention points out the value calculated | required by the tangent method. The characteristic temperatures of T g , T d, and T s can also be defined by the viscosity of the glass. T g is 10 13.3 poise, T d is 10 11.0 poise, and T s is 10 7. The temperature corresponds to 65 poise. Crystallization tendency has a T cry, the size of the exothermic peak due to crystallization, i.e. be determined from the calorific value, the high temperature of T cry, i.e. a temperature difference increases between T s and T cry, a decrease in heat of crystallization It can be said that this is a glass component that is difficult to crystallize when observed.

本発明の複合材組成物における樹脂成分は、水酸基及びアミノ基を有さない低極性の樹脂成分であり、この条件を満たす限り熱硬化性樹脂及び熱可塑性樹脂のいずれも適用可能である。極性基を持たない場合、誘電特性が低く、そのため、一般的に樹脂成分単独では樹脂の異種材や金属、無機材料に対する接着性は低い。また、電熱特性が必要な場合には、樹脂成分に対し無機フィラーを添加して使用されるが、無機フィラーの添加は、さらなる接着性低下の原因となる。本発明では、所定の組成を有する結晶化し難い低融点ガラス成分を採用することで、低極性の樹脂成分との複合化を可能にしている。ガラス成分が結晶化すると、樹脂成分と均一に溶融しないため、図2に示すような海島構造が組織化されず、接着強度が低下する。そこで本発明では、ガラス成分の結晶化を抑制することにより、複合材組成物の接着強度を確保している。   The resin component in the composite composition of the present invention is a low-polarity resin component that does not have a hydroxyl group and an amino group, and any of thermosetting resins and thermoplastic resins can be applied as long as this condition is satisfied. In the absence of a polar group, the dielectric properties are low, and therefore, the resin component alone generally has low adhesion to different materials, metals, and inorganic materials. Moreover, when an electrothermal characteristic is required, it adds and uses an inorganic filler with respect to a resin component, However, Addition of an inorganic filler causes a further adhesive fall. In the present invention, a low-melting glass component that has a predetermined composition and is difficult to crystallize is employed, so that it can be combined with a low-polarity resin component. When the glass component is crystallized, it does not melt uniformly with the resin component, so that the sea-island structure as shown in FIG. 2 is not organized and the adhesive strength is reduced. Therefore, in the present invention, the adhesive strength of the composite composition is ensured by suppressing the crystallization of the glass component.

適用可能な熱硬化性樹脂の例としては、エポキシ系樹脂、フェノール系樹脂、ユリア樹脂、メラミン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。また、熱可塑性樹脂の例としては、ナイロン、ポリアセタール、ポリサルフォン、ポリエーテルイミド、ポリアミドイミド、液晶ポリマー、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、芳香族ポリエーテル、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリフェニレンオキシド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリアリレート、ポリオキシベンゾイルポリエステル等が挙げられる。   Examples of applicable thermosetting resins include epoxy resins, phenol resins, urea resins, melamine resins, silicone resins, unsaturated polyester resins, polyurethane resins, and the like. Examples of thermoplastic resins include nylon, polyacetal, polysulfone, polyetherimide, polyamideimide, liquid crystal polymer, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, aromatic polyether, polyphenylene ether, poly Examples include ether ether ketone, polyphenylene oxide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether sulfone, polyarylate, and polyoxybenzoyl polyester.

好ましくは、樹脂成分は、芳香族ポリエーテル、ポリエーテルエーテルケトン、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリアリレート及びポリオキシベンゾイルポリエステルから選択されるいずれか一種以上を含む。これらの樹脂成分は、耐熱性が高く、成形性にも優れるため、複合材組成物の樹脂成分として好適である。   Preferably, the resin component is any one or more selected from aromatic polyether, polyether ether ketone, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether sulfone, polyarylate, and polyoxybenzoyl polyester. including. Since these resin components have high heat resistance and excellent moldability, they are suitable as resin components for composite compositions.

また、特に好ましく用いられる樹脂成分として、分子鎖中にポリフェニレンエーテルを有しているものが挙げられる。このような樹脂成分の具体例として、以下に示す部分構造を有している樹脂成分を挙げることができる。   In addition, particularly preferably used resin components include those having polyphenylene ether in the molecular chain. Specific examples of such a resin component include a resin component having the partial structure shown below.

Figure 2018109073
Figure 2018109073
Figure 2018109073
Figure 2018109073
Figure 2018109073
Figure 2018109073

本発明の複合材組成物において、低融点ガラス成分と樹脂成分の配合割合は、複合材組成物の用途等を考慮して適宜設定することができ、特に限定されるものではない。例えば、低融点ガラス成分:樹脂成分=10:90〜90:10(重量比)の範囲で混合し複合化して用いることができる。   In the composite composition of the present invention, the blending ratio of the low-melting glass component and the resin component can be appropriately set in consideration of the use of the composite composition and the like, and is not particularly limited. For example, low melting point glass component: resin component = 10: 90 to 90:10 (weight ratio) can be mixed and used in combination.

本発明の複合材組成物は、さらに導電性材料を含むことができる。導電性材料としては、例えば、銀、銀合金、銅、銅合金、アルミニウム、アルミニウム合金、スズ及びスズ合金から選択されるいずれか一種以上を含むことができる。   The composite material composition of the present invention can further contain a conductive material. As an electroconductive material, any 1 or more types selected from silver, a silver alloy, copper, a copper alloy, aluminum, an aluminum alloy, tin, and a tin alloy can be included, for example.

本発明の複合材組成物は、一例として、溶剤と組み合わせてペースト剤を調製し使用することが可能である。   As an example, the composite material composition of the present invention can be used by preparing a paste in combination with a solvent.

溶剤としては、α−テルピネオール又はブチルカルビトールアセテートを好ましく用いることができるが、これに限定されるものではない。   As the solvent, α-terpineol or butyl carbitol acetate can be preferably used, but is not limited thereto.

特に好ましい組み合わせとして、導電性材料が銀又はアルミニウムであり、溶剤がα−テルピネオールであるペースト剤を挙げることができる。   A particularly preferable combination is a paste agent in which the conductive material is silver or aluminum and the solvent is α-terpineol.

ペースト剤は、様々な配合比で調製することが可能である。例えば、低融点ガラス成分と導電性材料とを50:50〜10:90(体積比)の割合で配合し、ペースト剤中の固形成分の含有率が70質量%〜80質量%になるように、樹脂成分と溶剤とを加えて調製することができる。組成が上記範囲内にあるペースト剤を焼成し、組織断面を観察すると、図2に示すように、低融点ガラス成分22の焼成後の特徴である、点在する空隙に、樹脂成分21が広がり、海島構造に近い状態が得られる。好ましいペースト剤の構成の一例として、銀60体積%、低融点ガラス成分25体積%、変性ポリフェニレンエーテル(OP2St)15体積%の配合比で調製した固形成分75重量%に対し、溶剤としてブチルカルビトールアセテートを25重量%配合し、使用する場合を挙げることができる。   The paste can be prepared in various compounding ratios. For example, the low melting point glass component and the conductive material are blended in a ratio of 50:50 to 10:90 (volume ratio) so that the solid component content in the paste is 70% by mass to 80% by mass. It can be prepared by adding a resin component and a solvent. When the paste having the composition in the above range is fired and the cross section of the structure is observed, as shown in FIG. 2, the resin component 21 spreads in the interspersed voids, which is a characteristic after firing the low melting point glass component 22. A state close to the sea-island structure is obtained. As an example of a preferred paste composition, butyl carbitol is used as a solvent with respect to 75% by weight of a solid component prepared by mixing 60% by volume of silver, 25% by volume of a low melting glass component, and 15% by volume of modified polyphenylene ether (OP2St). The case where 25 weight% of acetate is mix | blended and used can be mentioned.

また従来、ガラス成分を単独で封止材や接着剤として使用した場合、図2における点在する空隙が密着性や接着性を低下させる原因となっていた。所定の樹脂成分と低融点ガラス成分とを組み合わせた本発明の複合材組成物では、この空隙の減少により、低融点ガラス成分単体に比べて、接着性及び密着性を向上させることができる。   Conventionally, when a glass component is used alone as a sealing material or an adhesive, the interspersed voids in FIG. 2 have caused a decrease in adhesion and adhesiveness. In the composite material composition of the present invention in which a predetermined resin component and a low-melting glass component are combined, the adhesiveness and adhesion can be improved compared to the low-melting glass component alone due to the reduction of the voids.

したがって、本発明の複合材組成物は、上記のペースト剤の他、封止や接着、導電性接合部の形成時に、銅や銀、アルミニウム、シリコン、フェライト等の基材への接着性及び密着性を高めるための封止材、接着剤として用いることができる。また、本発明の複合材組成物は、従来、樹脂材料の課題であった接着性向上と放熱性及び熱伝導性向上の両立を可能にすることができる。さらに、従来の樹脂材料における、電気抵抗が大きくガスバリア性が低いといった課題も解決することができる。また、本発明の複合材組成物は、半田接合やメッキも可能である。   Therefore, the composite material composition of the present invention is capable of adhering and adhering to copper, silver, aluminum, silicon, ferrite and other base materials during sealing and adhesion, and formation of conductive joints in addition to the above paste agent. It can be used as a sealing material or an adhesive for enhancing the properties. Moreover, the composite material composition of the present invention can make it possible to achieve both improvement in adhesiveness and improvement in heat dissipation and thermal conductivity, which has been a problem of conventional resin materials. Furthermore, the problem that the conventional resin material has a large electric resistance and a low gas barrier property can be solved. The composite composition of the present invention can be soldered or plated.

また、本発明の複合材組成物は、ガラス封止材としても適用可能である。具体的には、窓ガラス等に適用されている真空断熱複層ガラスパネル、プラズマディスプレイパネル、有機ELディスプレイパネル、蛍光表示管等のディスプレイパネル等の封止材として用いることができる。さらに、太陽電池セル、画像表示デバイス、積層コンデンサー、水晶振動子、LED(発光ダイオード)、多層回路基板、ICセラミックパッケージ、半導体センサー等の種々の電気電子部品等における接着剤としても適用可能である。   Moreover, the composite material composition of the present invention is also applicable as a glass sealing material. Specifically, it can be used as a sealing material for display panels such as vacuum heat insulating multilayer glass panels, plasma display panels, organic EL display panels, fluorescent display tubes and the like applied to window glass and the like. Furthermore, it can also be applied as an adhesive in various electric and electronic parts such as solar cells, image display devices, multilayer capacitors, crystal resonators, LEDs (light emitting diodes), multilayer circuit boards, IC ceramic packages, and semiconductor sensors. .

以下、実施例及び比較例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
本実施例では、複合材組成物を、電子部品として放熱構造体や半導体モジュールに適用することを想定し、複合材組成物からペースト剤を作製し、得られたペースト剤の接着性と熱伝導率について評価した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these.
In this example, assuming that the composite material composition is applied to a heat dissipation structure or a semiconductor module as an electronic component, a paste agent is prepared from the composite material composition, and the adhesiveness and heat conduction of the obtained paste agent are prepared. The rate was evaluated.

1.電子部品用ペースト剤の作製
表1に示す無鉛低融点ガラス成分G1〜G9を調製した。表1に示した組成は、低融点ガラス成分の調製時の配合組成であり、単位は全てモル%である。G1〜G7は組成が本発明の範囲内のもの(実施例)であり、G8〜G9は組成が本発明の範囲外のもの(比較例)である。出発原料としては、振興化学製V、高純度化学研究所製TeO、和光純薬製AgO、高純度化学研究所製BaO、高純度化学研究所製WO、高純度化学研究所製P、高純度化学研究所製Y、高純度化学研究所製La、及び高純度化学研究所製Alの粉末を用いた。
1. Preparation of paste for electronic parts Lead-free low-melting glass components G1 to G9 shown in Table 1 were prepared. The composition shown in Table 1 is a blending composition at the time of preparation of the low melting point glass component, and all the units are mol%. G1 to G7 have compositions within the scope of the present invention (Examples), and G8 to G9 have compositions outside the scope of the present invention (Comparative Examples). As the starting material, promotion Kagaku V 2 O 5, manufactured by Kojundo Chemical Laboratory TeO 2, manufactured by Wako Pure Chemical Industries, Ltd. Ag 2 O, manufactured by Kojundo Chemical Laboratory BaO, manufactured by Kojundo Chemical Laboratory WO 3, high purity chemical Research Laboratory P 2 O 5, manufactured by Kojundo Chemical Laboratory Y 2 O 3, powder was used Kojundo Chemical Laboratory Ltd. La 2 O 3, and by Kojundo Chemical Laboratory Al 2 O 3.

各出発原料の粉末を、合計で200g程度になるように秤量、配合して混合し、石英ガラスるつぼに投入した。続いて、混合した粉末を投入した石英ガラスるつぼをガラス溶融炉内に設置し、約10℃/分の昇温速度で700℃〜750℃まで加熱し、石英ガラスるつぼ内の融液の組成均一化を図るために、アルミナ棒で攪拌しながら1時間保持した。その後、石英ガラスるつぼをガラス溶融炉から取り出し、予め120℃前後に加熱しておいたステンレス鋳型へ融液を流し込み、無鉛低融点ガラス成分G1〜G9をそれぞれ調製した。次に、調製した無鉛低融点ガラス成分を約10μmまで粉砕した。表2に、調製した無鉛低融点ガラス成分の特性をまとめて示す。表2における「ガラス化状態」の項目は、調製した無鉛低融点ガラス成分のX線回折により回折ピークが認められない状態を「合格」としている。   The powders of each starting material were weighed, blended and mixed so that the total amount was about 200 g, and put into a quartz glass crucible. Subsequently, the quartz glass crucible charged with the mixed powder is placed in a glass melting furnace and heated to 700 ° C. to 750 ° C. at a rate of temperature increase of about 10 ° C./min, so that the composition of the melt in the quartz glass crucible is uniform. In order to achieve this, the mixture was held for 1 hour while stirring with an alumina rod. Thereafter, the quartz glass crucible was taken out from the glass melting furnace, and the melt was poured into a stainless steel mold heated to around 120 ° C. in advance to prepare lead-free low melting glass components G1 to G9, respectively. Next, the prepared lead-free low-melting glass component was pulverized to about 10 μm. Table 2 summarizes the characteristics of the prepared lead-free low-melting glass components. In the item “Vitrification State” in Table 2, a state in which no diffraction peak is observed by X-ray diffraction of the prepared lead-free low-melting glass component is “pass”.

Figure 2018109073
Figure 2018109073
Figure 2018109073
Figure 2018109073

表2の結果から明らかなように、G1〜G7の無鉛低融点ガラス成分では、結晶化を示す発熱ピークが消滅しており、結晶化傾向が著しく低減している。一方、G8は結晶化発熱量が大きく、また、G9では、Tcryは高温化しているが、結晶化傾向はG1〜G7ほどには抑制できていない。 As is clear from the results in Table 2, in the lead-free low-melting glass components G1 to G7, the exothermic peak indicating crystallization disappears and the crystallization tendency is remarkably reduced. Meanwhile, G8 has a large heat of crystallization, also in G9, T cry is being heated to a high temperature, the crystallization tendency is not possible to suppress as much as G1 to G7.

次に、平均粒径が2μm以下の無鉛低融点ガラス成分の粉末と、導電性材料として平均粒径が3.5μm(大粒子)及び1.5μm(小粒子)のAg粒子とを所定の体積比で配合し、固形分の含有率が80質量%になるように、樹脂成分及び溶剤を加え、良く混合、混練することによって電子部品用のペースト剤を作製した。樹脂成分として、三菱ガス化学製の変性ポリフェニレンエーテル(OPE2St)を、溶剤として和光純薬製のα−テルピネオールを用いた。表3に、調製した電子部品用ペースト剤の組成を示す。   Next, a lead-free low-melting glass component powder having an average particle size of 2 μm or less and Ag particles having an average particle size of 3.5 μm (large particles) and 1.5 μm (small particles) as a conductive material in a predetermined volume. The paste component for electronic parts was produced by adding a resin component and a solvent, mixing well, and knead | mixing so that it may mix | blend by ratio and the content rate of solid content may be 80 mass%. Modified polyphenylene ether (OPE2St) manufactured by Mitsubishi Gas Chemical was used as the resin component, and α-terpineol manufactured by Wako Pure Chemical was used as the solvent. Table 3 shows the composition of the prepared paste for electronic parts.

Figure 2018109073
Figure 2018109073

2.接着性の評価
図3に、接着性を評価するための試料の作製方法を示す。まず、φ5mmの接合面を有する高さ5mmの円柱状基材31を用意した(図3(a))。次に、円柱状基材31の接合面に、調製した電子部品用ペースト剤をディスペンサー法にて塗布した。その後、大気中120℃〜150℃で乾燥し、これを電気炉へ投入し、不活性ガス(窒素)中あるいは大気中において10℃/分の昇温速度で220℃まで加熱し、15分間保持した後に、同じ昇温速度でそれぞれの低融点ガラス成分の軟化点より50℃〜60℃高い温度まで加熱し、15分間保持した。続いて、接合面32を厚み3mm〜5mmの板状基材33上に設置し、耐熱用クリップで挟み、不活性ガス(窒素)中あるいは大気中において10℃/分の昇温速度で270℃あるいは290℃まで加熱し、15分間保持することによって接合体を作製した(図3(b))。
2. Evaluation of Adhesiveness FIG. 3 shows a method for preparing a sample for evaluating adhesiveness. First, a columnar substrate 31 having a height of 5 mm and having a bonding surface of φ5 mm was prepared (FIG. 3A). Next, the prepared paste for electronic components was applied to the joint surface of the columnar substrate 31 by a dispenser method. Then, it is dried at 120 ° C. to 150 ° C. in the atmosphere, put into an electric furnace, heated to 220 ° C. at a heating rate of 10 ° C./min in an inert gas (nitrogen) or in the atmosphere, and held for 15 minutes. After that, it was heated to a temperature 50 ° C. to 60 ° C. higher than the softening point of each low-melting glass component at the same rate of temperature rise, and held for 15 minutes. Subsequently, the joining surface 32 is placed on a plate-like base material 33 having a thickness of 3 mm to 5 mm, sandwiched between heat-resistant clips, and 270 ° C. at a temperature rising rate of 10 ° C./min in an inert gas (nitrogen) or in the atmosphere. Or it heated to 290 degreeC and produced the joined body by hold | maintaining for 15 minutes (FIG.3 (b)).

作製した各接合体について、せん断応力を測定した。板状基材としては、銅又はアルミニウムの基材を使用した。せん断応力の評価は、測定値が30MPa以上の場合には「優秀」、20MPa〜30MPaの場合は「良好」、10MPa〜20MPaの場合は「通常」、10MPa未満の場合は「不合格」とした。せん断応力の評価結果を表4に示す。   About each produced joined body, the shear stress was measured. As the plate-like substrate, a copper or aluminum substrate was used. The shear stress was evaluated as “excellent” when the measured value was 30 MPa or more, “good” when 20 MPa to 30 MPa, “normal” when 10 MPa to 20 MPa, and “fail” when less than 10 MPa. . Table 4 shows the evaluation results of the shear stress.

P1〜P9のペースト剤では、結晶化を抑制した無鉛低融点ガラス成分と低極性の樹脂成分であるOPE2Stとを用いることで、せん断応力が、樹脂成分を含まないP10のペースト剤、及び低融点ガラス成分を含まないP11のペースト剤に比べて、優秀な傾向を示した。また、結晶化が抑制されていない無鉛低融点ガラス成分を用いたP12〜P13のペースト剤は、良好なせん断応力ではあったが、優秀な結果とはならなかった。結晶化傾向のある無鉛低融点ガラス成分は、樹脂成分と均一に溶融することができず、海島構造の組織の形成が不十分になるためと考えられる。   In the pastes of P1 to P9, by using a lead-free low-melting glass component that suppresses crystallization and OPE2St that is a low-polarity resin component, the shear stress is P10 paste that does not contain a resin component, and a low-melting point Compared to the P11 paste containing no glass component, an excellent tendency was exhibited. Moreover, although the paste agent of P12-P13 using the lead-free low melting-point glass component in which crystallization is not suppressed was a favorable shear stress, it did not become an excellent result. This is probably because the lead-free low-melting-point glass component that tends to crystallize cannot be melted uniformly with the resin component, and the formation of a sea-island structure becomes insufficient.

3.熱伝導率の評価
調製した各ペースト剤から、ハンドプレスを用いて、直径10mm厚み2mmの板状成形体を作製した。この際の加圧は、500kgf/cmとした。作製した成形体を電気炉にて大気中10℃/分の昇温速度で無鉛低融点ガラス成分の軟化点よりも50℃〜60℃高い温度まで加熱し、30分保持することにより、焼結体を作製した。そして、作製した焼結体の上下面を研磨し、キセノンフラッシュ法にて熱伝導率を測定した。測定結果を表4に示す。
3. Evaluation of thermal conductivity A plate-like molded article having a diameter of 10 mm and a thickness of 2 mm was produced from each prepared paste using a hand press. The pressurization at this time was 500 kgf / cm 2 . The produced compact is heated in an electric furnace at a heating rate of 10 ° C./min in the atmosphere to a temperature 50 ° C. to 60 ° C. higher than the softening point of the lead-free low-melting glass component, and held for 30 minutes to sinter The body was made. And the upper and lower surfaces of the produced sintered body were polished, and the thermal conductivity was measured by a xenon flash method. Table 4 shows the measurement results.

なお、P11に対応する、低融点ガラス成分を用いない熱伝導率測定用サンプルは、次のように作製した。まず、東京化成製の過酸化ベンゾイル0.01gを10gのOPE2Stに加え、溶解させた。さらに、表3に示す配合比でAg粒子を加え、ペーストにして、直径10mmのアルミカップに流し込み、150℃の恒温槽で2時間保持し、OPE2StとAg粒子を含む硬化物を作製した。作製した硬化物を研磨し、直径10mm厚み2mmのサンプルを作製して熱伝導率を測定した。   In addition, the sample for thermal conductivity measurement which does not use the low melting-point glass component corresponding to P11 was produced as follows. First, 0.01 g of benzoyl peroxide manufactured by Tokyo Chemical Industry was added to 10 g of OPE2St and dissolved. Furthermore, Ag particles were added at a blending ratio shown in Table 3, and the mixture was made into a paste, poured into an aluminum cup having a diameter of 10 mm, and kept in a thermostatic bath at 150 ° C. for 2 hours to produce a cured product containing OPE2St and Ag particles. The produced cured product was polished, a sample having a diameter of 10 mm and a thickness of 2 mm was produced, and the thermal conductivity was measured.

表4に示すように、P1〜P9のペースト剤は、樹脂成分とAg粒子のみからなるP11に比べて、著しく熱伝導率が向上していた。   As shown in Table 4, the thermal conductivity of the pastes P1 to P9 was remarkably improved as compared with P11 consisting only of the resin component and Ag particles.

4.半田ぬれ性の評価
熱伝導率の評価の場合と同様の作製方法で、半田ぬれ性評価用サンプルを作製した。板状成形体の表面に半田付けを行い、ぬれた場合には合格、ぬれなかった場合には不合格とした。
4). Evaluation of solder wettability A sample for evaluating solder wettability was manufactured by the same manufacturing method as that for evaluation of thermal conductivity. Soldering was performed on the surface of the plate-like molded body, and when it was wet, it passed, and when it was not wet, it was rejected.

表4に示すように、P1〜P9のペースト剤では、ぬれ性は合格であり、半田付けが可能であることが分かった。   As shown in Table 4, in the pastes of P1 to P9, it was found that the wettability was acceptable and soldering was possible.

5.めっきの均一性の評価
熱伝導率の評価の場合と同様の作製方法で、めっきの均一性の評価サンプルを作製した。板状成形体の表面に、均一にめっきができた場合には合格、均一でない場合は不合格とした。
5. Evaluation of plating uniformity A sample for evaluating the uniformity of plating was prepared by the same manufacturing method as in the case of evaluation of thermal conductivity. When the surface of the plate-shaped molded body was uniformly plated, it was accepted, and when it was not uniform, it was rejected.

表4に示すように、P1〜P9のペースト剤では、めっきが均一にできることが分かった。また、本発明の複合材組成物は、半田接合とめっきの両技術が適用できることが分かった。   As shown in Table 4, it was found that the P1-P9 paste agent can be uniformly plated. Further, it was found that the composite material composition of the present invention can be applied to both solder joining and plating techniques.

Figure 2018109073
Figure 2018109073

以上、本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail above, but the specific configuration is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention, It is included in the present invention.

21 樹脂成分
22 低融点ガラス成分
31 円柱状基材
32 接合面
33 板状基材

21 resin component 22 low melting point glass component 31 columnar substrate 32 bonding surface 33 plate substrate

Claims (11)

低融点ガラス成分と、水酸基及びアミノ基を有さない樹脂成分とを含む複合材組成物であって、
前記低融点ガラス成分が、V、TeO及びAgOを含み、前記低融点ガラス成分におけるV、TeO及びAgOの合計含有量が78モル%以上であり、且つTeO及びAgOの含有量が、Vの含有量に対してそれぞれモル比にして1〜2倍である前記複合材組成物。
A composite composition comprising a low melting glass component and a resin component having no hydroxyl group and amino group,
The low melting glass component comprises V 2 O 5, TeO 2 and Ag 2 O, and at the total content of V 2 O 5, TeO 2 and Ag 2 O in the low-melting-point glass component 78 mol% or more, and TeO content of 2 and Ag 2 O is, the composite material composition is 1 to 2 times by molar ratio, respectively relative to the content of V 2 O 5.
第一追加成分としてBaO、WO及びPから選択されるいずれか一種以上を低融点ガラス成分中0以上20モル%以下含む請求項1に記載の複合材組成物。 2. The composite composition according to claim 1, comprising as a first additional component any one or more selected from BaO, WO 3 and P 2 O 5 in a low melting glass component in an amount of 0 to 20 mol%. 第二追加成分としてY、La、Al及びFeから選択されるいずれか一種以上を低融点ガラス成分中0.1モル%以上2.0モル%以下含む請求項2に記載の複合材組成物。 As a second additional component, at least one selected from Y 2 O 3 , La 2 O 3 , Al 2 O 3 and Fe 2 O 3 is 0.1 mol% or more and 2.0 mol% or less in the low melting point glass component. The composite material composition according to claim 2. 低融点ガラス成分の示差熱分析による第二吸熱ピーク温度である軟化点が、280℃以下である請求項1〜3のいずれかに記載の複合材組成物。   The composite composition according to any one of claims 1 to 3, wherein a softening point that is a second endothermic peak temperature by differential thermal analysis of the low-melting glass component is 280 ° C or lower. 低融点ガラス成分の示差熱分析による結晶化開始温度が軟化点より60℃以上高い請求項4に記載の複合材組成物。   The composite material composition according to claim 4, wherein the low-melting-point glass component has a crystallization start temperature by differential thermal analysis that is 60 ° C. or more higher than the softening point. 樹脂成分が、ポリフェニレンエーテルを有している請求項1〜5のいずれかに記載の複合材組成物。   The composite composition according to any one of claims 1 to 5, wherein the resin component comprises polyphenylene ether. 樹脂成分が、芳香族ポリエーテル、ポリエーテルエーテルケトン、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリアリレート及びポリオキシベンゾイルポリエステルから選択されるいずれか一種以上を含む請求項1〜5のいずれかに記載の複合材組成物。   Claims in which the resin component contains any one or more selected from aromatic polyether, polyether ether ketone, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether sulfone, polyarylate and polyoxybenzoyl polyester Item 6. The composite composition according to any one of Items 1 to 5. さらに導電性材料を含む請求項1〜7のいずれかに記載の複合材組成物。   Furthermore, the composite material composition in any one of Claims 1-7 containing an electroconductive material. 導電性材料が、銀、銀合金、銅、銅合金、アルミニウム、アルミニウム合金、スズ及びスズ合金から選択されるいずれか一種以上を含む請求項8に記載の複合材組成物。   The composite material composition according to claim 8, wherein the conductive material includes at least one selected from silver, silver alloy, copper, copper alloy, aluminum, aluminum alloy, tin, and tin alloy. 請求項1〜9のいずれかに記載の複合材組成物と、溶剤とを含むペースト剤。   The paste agent containing the composite material composition in any one of Claims 1-9, and a solvent. 溶剤が、α−テルピネオール又はブチルカルビトールアセテートである請求項10に記載のペースト剤。
The paste according to claim 10, wherein the solvent is α-terpineol or butyl carbitol acetate.
JP2015074048A 2015-03-31 2015-03-31 Composite material composition, and paste agent using the same Pending JP2018109073A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015074048A JP2018109073A (en) 2015-03-31 2015-03-31 Composite material composition, and paste agent using the same
PCT/JP2015/084607 WO2016157631A1 (en) 2015-03-31 2015-12-10 Composite material composition and paste material including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074048A JP2018109073A (en) 2015-03-31 2015-03-31 Composite material composition, and paste agent using the same

Publications (1)

Publication Number Publication Date
JP2018109073A true JP2018109073A (en) 2018-07-12

Family

ID=57005560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074048A Pending JP2018109073A (en) 2015-03-31 2015-03-31 Composite material composition, and paste agent using the same

Country Status (2)

Country Link
JP (1) JP2018109073A (en)
WO (1) WO2016157631A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358820A (en) * 2020-11-09 2021-02-12 福斯特(滁州)新材料有限公司 Packaging adhesive film with strong adhesive force with battery piece, composition for forming packaging adhesive film and application of packaging adhesive film
JP2021035896A (en) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 Lead-free low-melting glass composition, low-melting glass composite material, glass paste, and applied product
CN116262871A (en) * 2021-12-13 2023-06-16 阿特斯阳光电力集团股份有限公司 Packaging adhesive film and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598190A (en) * 2018-05-31 2018-09-28 苏州瑞力博新材科技有限公司 A kind of low-density HIT low temperature silver paste used for solar batteries and preparation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175254A (en) * 1991-12-20 1993-07-13 Nippon Electric Glass Co Ltd Low melting point bonding composition
US5336644A (en) * 1993-07-09 1994-08-09 Johnson Matthey Inc. Sealing glass compositions
JPH08259262A (en) * 1995-03-20 1996-10-08 Nippon Electric Glass Co Ltd Low melting point seal bonding composition
TWI448444B (en) * 2010-08-11 2014-08-11 Hitachi Ltd A glass composition for an electrode, a paste for an electrode for use, and an electronic component to which the electrode is used
JP5726698B2 (en) * 2011-07-04 2015-06-03 株式会社日立製作所 Glass composition, glass frit containing the same, glass paste containing the same, and electric and electronic parts using the same
JP2013103840A (en) * 2011-11-10 2013-05-30 Hitachi Ltd Conductive glass paste, and electric/electronic component using the same
JP5667970B2 (en) * 2011-12-26 2015-02-12 株式会社日立製作所 Composite material
JP5712123B2 (en) * 2011-12-26 2015-05-07 株式会社日立製作所 Composite material
US9824900B2 (en) * 2012-11-09 2017-11-21 Hitachi, Ltd. Bonded structure and production method therefor
US20150337106A1 (en) * 2012-12-26 2015-11-26 Hitachi, Ltd. Low-Melting-Point Glass Resin Composite Material and Electronic/Electric Apparatus Using Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035896A (en) * 2019-08-30 2021-03-04 昭和電工マテリアルズ株式会社 Lead-free low-melting glass composition, low-melting glass composite material, glass paste, and applied product
JP7028226B2 (en) 2019-08-30 2022-03-02 昭和電工マテリアルズ株式会社 Lead-free low melting point glass composition, low melting point glass composite material, glass paste and applied products
CN112358820A (en) * 2020-11-09 2021-02-12 福斯特(滁州)新材料有限公司 Packaging adhesive film with strong adhesive force with battery piece, composition for forming packaging adhesive film and application of packaging adhesive film
CN112358820B (en) * 2020-11-09 2021-11-19 福斯特(滁州)新材料有限公司 Packaging adhesive film with strong adhesive force with battery piece, composition for forming packaging adhesive film and application of packaging adhesive film
CN116262871A (en) * 2021-12-13 2023-06-16 阿特斯阳光电力集团股份有限公司 Packaging adhesive film and preparation method and application thereof

Also Published As

Publication number Publication date
WO2016157631A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6350126B2 (en) Lead-free low-melting glass composition, glass frit for low-temperature sealing containing the same, glass paste for low-temperature sealing, conductive material and conductive glass paste, and glass sealing parts and electric / electronic parts using the same
WO2016157631A1 (en) Composite material composition and paste material including same
TWI489594B (en) And the semiconductor module
US9540275B2 (en) Conductive paste and method for producing a semiconductor device using the same
KR102188447B1 (en) Conductive adhesive composition and electronic element using same
WO2013005600A1 (en) Glass composition, glass frit containing same, glass paste containing same, and electrical/electronic component obtained using same
JP2006342044A (en) Vanadium phosphate base glass
JP6570644B2 (en) Bonding material and bonded body using the same
WO2014119579A1 (en) Glass frit
TWI513782B (en) A joining structure and a method for manufacturing the same
JP2014120382A (en) Conductive resin paste and electronic element using the same
CN109071322B (en) Lead-free low-melting-point composition, sealing material, conductive material, and electronic component
JP3695226B2 (en) One-part thermosetting resin composition
TW201840501A (en) Low melting point sealing material, electronic component, and sealing body
US10290601B2 (en) Method of manufacturing bonded body
JP5861600B2 (en) Conductive adhesive composition and electronic device using the same
JP2019137572A (en) Low melting point composition, encapsulating material, and electronic component
CN112585702A (en) Electronic component and method for manufacturing electronic component