JP2014120382A - Conductive resin paste and electronic element using the same - Google Patents
Conductive resin paste and electronic element using the same Download PDFInfo
- Publication number
- JP2014120382A JP2014120382A JP2012275739A JP2012275739A JP2014120382A JP 2014120382 A JP2014120382 A JP 2014120382A JP 2012275739 A JP2012275739 A JP 2012275739A JP 2012275739 A JP2012275739 A JP 2012275739A JP 2014120382 A JP2014120382 A JP 2014120382A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- conductive
- conductive resin
- resin paste
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 120
- 239000011347 resin Substances 0.000 title claims abstract description 120
- 239000000843 powder Substances 0.000 claims abstract description 178
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910052709 silver Inorganic materials 0.000 claims abstract description 67
- 239000004332 silver Substances 0.000 claims abstract description 67
- 239000002904 solvent Substances 0.000 claims abstract description 60
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 56
- 239000003822 epoxy resin Substances 0.000 claims abstract description 55
- 239000007787 solid Substances 0.000 claims abstract description 41
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 37
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 26
- 230000005484 gravity Effects 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 22
- 239000003990 capacitor Substances 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims description 22
- 125000003700 epoxy group Chemical group 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000004593 Epoxy Substances 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 230000001588 bifunctional Effects 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052803 cobalt Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 230000001070 adhesive Effects 0.000 abstract description 29
- 238000003860 storage Methods 0.000 abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000853 adhesive Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 25
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 229920000178 Acrylic resin Polymers 0.000 description 11
- 239000004925 Acrylic resin Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 229920001225 Polyester resin Polymers 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000004645 polyester resin Substances 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Natural products CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 8
- -1 dihydroterpinyl acetate (hydrogenated terpineol acetate Chemical class 0.000 description 8
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 5
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-Butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 5
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N n-methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- QGBSISYHAICWAH-UHFFFAOYSA-N cyanoguanidine Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- RUEBPOOTFCZRBC-UHFFFAOYSA-N (5-methyl-2-phenyl-1H-imidazol-4-yl)methanol Chemical compound OCC1=C(C)NC(C=2C=CC=CC=2)=N1 RUEBPOOTFCZRBC-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral Effects 0.000 description 2
- 239000000088 plastic resin Substances 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 1-butanal Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- NFSJJHVWUGRIHQ-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound [CH2]COCCOCCOC(C)=O NFSJJHVWUGRIHQ-UHFFFAOYSA-N 0.000 description 1
- DRLRGHZJOQGQEC-UHFFFAOYSA-N 2-(2-methoxypropoxy)propyl acetate Chemical compound COC(C)COC(C)COC(C)=O DRLRGHZJOQGQEC-UHFFFAOYSA-N 0.000 description 1
- HBNHCGDYYBMKJN-UHFFFAOYSA-N 2-(4-methylcyclohexyl)propan-2-yl acetate Chemical compound CC1CCC(C(C)(C)OC(C)=O)CC1 HBNHCGDYYBMKJN-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PXKLMJQFEQBVLD-UHFFFAOYSA-N Bis(4-hydroxyphenyl)methane Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N Bisphenol S Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N Cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 229910003301 NiO Inorganic materials 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N Terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940116411 Terpineol Drugs 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- KRKIAJBQOUBNSE-GYSYKLTISA-N [(1R,4R,6R)-1,7,7-trimethyl-6-bicyclo[2.2.1]heptanyl] 2-methylpropanoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)C(C)C)C[C@@H]1C2(C)C KRKIAJBQOUBNSE-GYSYKLTISA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Abstract
Description
本発明は、導電性樹脂ペースト及びそれを用いた電子素子に関し、詳しくは、従来よりも低温で短時間硬化でき、固体電解コンデンサや導電性アルミ固体電解コンデンサなどの内部電極用として低抵抗で、高接着性、保存安定性に優れ且つ低銀含有率の導電性樹脂ペースト及びそれを用いた電子素子に関する。 The present invention relates to a conductive resin paste and an electronic device using the conductive resin paste, and more specifically, can be cured in a short time at a lower temperature than conventional, with low resistance for internal electrodes such as solid electrolytic capacitors and conductive aluminum solid electrolytic capacitors, The present invention relates to a conductive resin paste excellent in high adhesion and storage stability and having a low silver content, and an electronic device using the same.
電子部品の接続や電極および回路の形成には、銀粉末と樹脂成分と硬化剤成分と溶剤とを含む導電性樹脂ペーストが使用されており、例えば、導電性材料の銀粉末と樹脂成分のエポキシ樹脂とフェノール樹脂系硬化剤と溶剤とを含む導電性樹脂ペーストが提案されている(特許文献1)。これを用いることにより、加熱硬化後の体積抵抗値が10μΩcmを下回るような優れた導電性が得られるようになった。しかしながら、導電性樹脂ペーストは使用時に180℃以上の高温で焼結させる必要があるため、耐熱性が低い有機物上へは使用しにくい。また、一液性のため樹脂と硬化剤が混ざっており、室温で保管することが出来ないという問題もある。 For the connection of electronic parts and the formation of electrodes and circuits, conductive resin paste containing silver powder, resin component, curing agent component and solvent is used, for example, silver powder of conductive material and epoxy of resin component A conductive resin paste containing a resin, a phenol resin-based curing agent, and a solvent has been proposed (Patent Document 1). By using this, excellent conductivity was obtained such that the volume resistance value after heat curing was less than 10 μΩcm. However, since the conductive resin paste needs to be sintered at a high temperature of 180 ° C. or higher when in use, it is difficult to use it on an organic material having low heat resistance. In addition, since the resin and the curing agent are mixed, there is also a problem that it cannot be stored at room temperature.
この問題を回避するために、熱可塑性樹脂を用い、室温で保存可能にした導電性樹脂ペーストが提案されている(特許文献2)。これは、樹脂成分としてアクリル、ブチラール、ポリエステルなどを選択することで室温保存を可能にしている。しかしながら、低抵抗化を意図してNaイオンをAg粉末に特定量含有させているので、電子素子の漏れ電流の増加が懸念される。 In order to avoid this problem, a conductive resin paste that uses a thermoplastic resin and can be stored at room temperature has been proposed (Patent Document 2). This enables storage at room temperature by selecting acrylic, butyral, polyester or the like as the resin component. However, since a specific amount of Na ions is contained in the Ag powder for the purpose of reducing the resistance, there is a concern about an increase in leakage current of the electronic device.
これまで、特許文献3、特許文献4や特許文献5のように導電性材料として銀粉末のみを使用することで体積抵抗率や熱時強度などの各種特性を維持することが検討されている。
すなわち、特許文献3では、金属粉末、エポキシ樹脂、ビスアルケニル置換ナジイミド、及び、硬化剤とで構成され、かつ、上記金属粉末が60〜90重量%の範囲で配合されると共に、シリカ、チタニア、アルミナから選ばれる粉体、硬化促進剤、及び、エポキシ樹脂と上記ビスアルケニル置換ナジイミドの希釈剤として作用し、かつ硬化時には液体として存在しない有機化合物の少なくとも1種が添加成分として配合された導電性接着剤が提案されている。
Until now, as in Patent Document 3, Patent Document 4 and Patent Document 5, it has been studied to maintain various characteristics such as volume resistivity and strength during heat by using only silver powder as a conductive material.
That is, in patent document 3, it is comprised with a metal powder, an epoxy resin, bisalkenyl substituted nadiimide, and a hardening | curing agent, and while the said metal powder is mix | blended in the range of 60 to 90 weight%, silica, titania, A powder selected from alumina, a curing accelerator, and a conductive agent that acts as a diluent for an epoxy resin and the bisalkenyl-substituted nadiimide, and at least one organic compound that does not exist as a liquid during curing is added as an additive component Adhesives have been proposed.
また、特許文献4では、特許文献3を改良し、銀粉末を全量に対して80〜95重量%含有させるが、その際、タップ密度が3.5g/cm3以上で8.0g/cm3以下の銀粉末(a)を全量に対して40〜95重量%、さらにタップ密度が0.1g/cm3以上で3.5g/cm3未満の銀粉末(b)を50重量%以下とした導電性接着剤が提案されている。 Further, JP at 4, to improve the Patent Document 3, but is contained 80 to 95 wt% of silver powder with respect to the total amount, this time, 8.0 g / cm 3 tap density of 3.5 g / cm 3 or more The following silver powder (a) is 40 to 95% by weight based on the total amount, and the silver powder (b) having a tap density of 0.1 g / cm 3 or more and less than 3.5 g / cm 3 is set to 50% by weight or less. Conductive adhesives have been proposed.
また、特許文献5では、導電性充填剤50〜95重量%、樹脂バインダー5〜50重量%、及び導電性充填剤と特定の希釈剤とからなり、樹脂バインダーが、エポキシ樹脂、ジシアンジアミド、硬化促進剤及び特定の硬化剤からなり、硬化促進剤として、エポキシ化合物にジアルキルアミンを反応して得られ、分子中に特定の官能基を有する化合物の粉末表面を酸性物質で処理して得たものを用いる導電性樹脂組成物が提案されている。 In Patent Document 5, the conductive filler is 50 to 95% by weight, the resin binder is 5 to 50% by weight, and the conductive filler and a specific diluent. The resin binder is epoxy resin, dicyandiamide, curing acceleration. A product obtained by reacting an epoxy compound with a dialkylamine as a curing accelerator and treating the powder surface of a compound having a specific functional group in the molecule with an acidic substance. A conductive resin composition to be used has been proposed.
また、電子素子などのチップ部品は、小型化・高性能化が進んでおり、生産効率の観点から短時間硬化やコストメリットの観点から低銀含有率化が必要とされている。そのため、低銀含有率かつ短時間硬化可能で、硬化後に低抵抗で室温保存可能なペーストが要求されている。
しかし、特許文献3〜5では体積抵抗率や熱時強度などの各種特性を維持することができるものの、銀含有率が50重量%以上なので、導電性接着剤組成物へのコストアップに繋がってしまう。また、硬化剤が添加されているので室温保存が困難である。
In addition, chip parts such as electronic elements have been reduced in size and performance, and a low silver content is required from the viewpoint of short-time curing and cost merit from the viewpoint of production efficiency. Therefore, there is a demand for a paste that has a low silver content, can be cured for a short time, and can be stored at room temperature with low resistance after curing.
However, although Patent Documents 3 to 5 can maintain various properties such as volume resistivity and strength at heat, the silver content is 50% by weight or more, leading to an increase in cost to the conductive adhesive composition. End up. Further, since a curing agent is added, it is difficult to store at room temperature.
そのため、一般的な低銀含有率化として、卑金属に銀をコートした金属粉のみ使用するか、それと銀粉末を併用する方法が選択されている。例えば、特許文献6では銅粉に銀をコートした金属粉と銀粉末との併用によって低体積抵抗率化を行なっている。
すなわち、この特許文献6には、平均粒径が5〜60μmの銀コート銅粉、平均粒径が0.5〜15μmの銀粉、室温で液状のエポキシ樹脂を必須成分とし、該成分中に銀コート銅粉が10〜90重量%、銀粉が5〜85重量%含まれ、かつ銀コート銅粉と銀粉の合計量が75〜97重量%である導電性樹脂ペーストが記載されている。
Therefore, as a general method for reducing the silver content, a method of using only a metal powder obtained by coating a base metal with silver, or a method of using it in combination with silver powder has been selected. For example, in Patent Document 6, the volume resistivity is reduced by using a metal powder obtained by coating copper powder with silver and silver powder.
That is, in Patent Document 6, silver coated copper powder having an average particle diameter of 5 to 60 μm, silver powder having an average particle diameter of 0.5 to 15 μm, and an epoxy resin which is liquid at room temperature are essential components, and silver is contained in the components. A conductive resin paste containing 10 to 90% by weight of coated copper powder, 5 to 85% by weight of silver powder, and 75 to 97% by weight of the total amount of silver coated copper powder and silver powder is described.
しかし、銀をコートした金属粉を使用した場合、三本ロールでの混練時に圧力が高いと銀コート部分が剥がれたり、クラックが入ったりする。また、電子素子に適用後、経時変化によってクラックが進行し内部の金属が露出することにより抵抗値が変化しうるので適用しにくい。また、圧力が低いと分散状態が充分ではないため、バラツキが大きくなりやすい。自公転ミキサーや攪拌羽根付きミキサーでも分散が不充分となり性能が発揮されない。さらに、硬化剤が添加されているため室温保存が困難である。 However, when metal powder coated with silver is used, if the pressure is high during the kneading with the three rolls, the silver coat part may be peeled off or cracks may occur. In addition, after application to an electronic device, cracks progress with time and the resistance value can be changed by exposing internal metal, making it difficult to apply. Further, when the pressure is low, the dispersion state is not sufficient, so that the variation tends to increase. Even with a revolving mixer or a mixer with stirring blades, the dispersion is insufficient and the performance is not exhibited. Furthermore, since a curing agent is added, room temperature storage is difficult.
これに対して、低銀含有率で低体積抵抗率を実現するために、特許文献7では、平均粒径が0.5〜2μmで、かつタップ密度が3〜7g/cm3であり、さらに比表面積が0.4〜1.5m2/gである導電性粉末と特定の有機成分とを必須成分とし、ガラスフリットを含有するプラズマディスプレイ用導電ペーストが提案されている。
特許文献7によれば、低銀含有率であり低コスト化が実現できるが、590℃で15分間保持することでガラスフリットを溶融し、再凝固によって接着力を発現させている。また、その際ガラスフリットは、銀の焼結助剤として働き低体積抵抗率化を行なっている。一般的に樹脂などの有機物は、590℃という高温では分解・蒸発してしまう。
On the other hand, in order to realize a low volume resistivity with a low silver content, Patent Document 7 has an average particle diameter of 0.5 to 2 μm and a tap density of 3 to 7 g / cm 3 , A conductive paste for plasma display has been proposed which contains a conductive powder having a specific surface area of 0.4 to 1.5 m 2 / g and a specific organic component as essential components and contains glass frit.
According to Patent Document 7, a low silver content and cost reduction can be realized, but the glass frit is melted by holding at 590 ° C. for 15 minutes, and an adhesive force is expressed by re-solidification. At that time, the glass frit functions as a sintering aid for silver to reduce the volume resistivity. In general, organic substances such as resins are decomposed and evaporated at a high temperature of 590 ° C.
こうした導電ペーストは、プラズマディスプレイのような高温で熱処理しても周辺部材へ影響を与えない場合に適用される。高温熱処理による周辺部材の劣化を考えて300℃以下の温度で熱処理しなければならない用途もある。
例えば、タンタルコンデンサやアルミ固体電解コンデンサなど各種電子素子の内部電極や端面電極を接着する場合であり、300℃以下の温度で熱処理した後でも樹脂などの有機物は存在するし、接着力はその樹脂によって発現させている。
ところが、特許文献7のような焼成型銀ペーストは、高温での熱処理を必要とするため、300℃以下で熱処理すると、樹脂は残存するが硬化反応をさせることはできないし、ガラスフリットも溶融しないので接着力が弱くて実用性がない。
Such a conductive paste is applied when a peripheral member is not affected even when heat-treated at a high temperature such as a plasma display. In some applications, heat treatment must be performed at a temperature of 300 ° C. or lower in consideration of deterioration of peripheral members due to high-temperature heat treatment.
For example, it is a case where internal electrodes and end face electrodes of various electronic elements such as tantalum capacitors and aluminum solid electrolytic capacitors are bonded. Even after heat treatment at a temperature of 300 ° C. or less, organic substances such as resins exist, and the adhesive force is the resin. It is expressed by.
However, the fired silver paste as in Patent Document 7 requires heat treatment at a high temperature. Therefore, when heat treatment is performed at 300 ° C. or lower, the resin remains but cannot undergo a curing reaction, and the glass frit does not melt. Therefore, the adhesive strength is weak and not practical.
こうした状況の下、半導体などのチップ部品に使用される低温で短時間硬化でき低抵抗且つ、高接着強度、低銀含有率化、室温保存を実現した導電性接着剤組成物が切望されていた。 Under such circumstances, there has been a strong demand for a conductive adhesive composition that can be cured at a low temperature for a short time and has low resistance, high adhesive strength, low silver content, and room temperature storage, which is used for chip parts such as semiconductors. .
本発明の課題は、前述した従来技術の問題点に鑑み、低温で短時間硬化でき低抵抗且つ高接着性で保存安定性に優れた導電性樹脂ペースト及びそれを用いた電子素子を提供することにある。 An object of the present invention is to provide a conductive resin paste that can be cured at a low temperature for a short time and has low resistance, high adhesion, and excellent storage stability, and an electronic device using the same, in view of the problems of the prior art described above. It is in.
本発明者は、上記課題を解決するために鋭意研究を重ねた結果、銀粉末、無機粉末、熱可塑性樹脂、溶剤を必須成分とする導電性樹脂ペーストにおいて、熱可塑性樹脂として常温で固形のエポキシ樹脂を用い、硬化剤を配合せず、銀粉末(A)と比重が4以上の無機粉末(B)と合わせた量と熱可塑性樹脂(C)の量との重量比率が80:20〜98:2の範囲で、かつ銀粉末(A)と比重が4以上の無機粉末(B)と熱可塑性樹脂(C)とを合わせた量と溶剤(D)の量との重量比率が90:10〜30:70の範囲となるように混合すると、特定粘度となり低温で短時間固化でき、低抵抗且つ高密着性、保存安定性の優れた導電性樹脂ペーストが得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has found that a conductive resin paste containing silver powder, inorganic powder, thermoplastic resin, and solvent as essential components is an epoxy that is solid at room temperature as a thermoplastic resin. The weight ratio of the amount of the resin combined with the silver powder (A) and the inorganic powder (B) having a specific gravity of 4 or more and the amount of the thermoplastic resin (C) is 80:20 to 98. : The weight ratio of the amount of the total amount of the silver powder (A), the inorganic powder (B) having a specific gravity of 4 or more and the thermoplastic resin (C) to the amount of the solvent (D) is 90:10. It was found that when mixed so as to be in the range of ˜30: 70, a conductive resin paste having a specific viscosity can be solidified at a low temperature for a short time, and low resistance, high adhesion, and excellent storage stability can be obtained. It came to be completed.
すなわち、本発明の第1の発明によれば、銀粉末(A)と無機粉末(B)からなる導電性粉末、熱可塑性樹脂(C)、および溶剤(D)を必須成分とする導電性樹脂ペーストであって、
無機粉末(B)は、比重が4以上かつ平均粒子径が1μm以下であり、熱可塑性樹脂(C)は、平均分子量が900以上の固形エポキシ樹脂であり、硬化剤を含まず、銀粉末(A)が総量に対して10〜50重量%、かつ無機粉末(B)が総量に対して60重量%以下で配合され、導電性粉末と熱可塑性樹脂(C)の重量比率(A+B):(C)が80:20〜98:2の範囲で、また導電性粉末と熱可塑性樹脂(C)との合計量と溶剤(D)の量との重量比率(A+B+C):(D)が90:10〜30:70の範囲となるように混合され、25℃における粘度が0.2〜100Pasとなることを特徴とする導電性樹脂ペーストが提供される。
That is, according to the first invention of the present invention, the conductive resin comprising the conductive powder comprising the silver powder (A) and the inorganic powder (B), the thermoplastic resin (C), and the solvent (D) as essential components. Paste,
The inorganic powder (B) has a specific gravity of 4 or more and an average particle diameter of 1 μm or less, and the thermoplastic resin (C) is a solid epoxy resin having an average molecular weight of 900 or more, does not contain a curing agent, and contains silver powder ( A) is blended in an amount of 10 to 50% by weight based on the total amount, and the inorganic powder (B) is blended in an amount of 60% by weight or less based on the total amount, and the weight ratio (A + B) of the conductive powder and the thermoplastic resin (C): ( C) is in the range of 80:20 to 98: 2, and the weight ratio (A + B + C) :( D) of the total amount of conductive powder and thermoplastic resin (C) to the amount of solvent (D) is 90: A conductive resin paste is provided which is mixed so as to be in the range of 10 to 30:70 and has a viscosity at 25 ° C. of 0.2 to 100 Pas.
また、本発明の第2の発明によれば、第1の発明において、前記銀粉末(A)は、タップ密度が3〜8g/cm3であることを特徴とする導電性樹脂ペーストが提供される。 According to a second aspect of the present invention, there is provided the conductive resin paste according to the first aspect, wherein the silver powder (A) has a tap density of 3 to 8 g / cm 3. The
また、本発明の第3の発明によれば、第1の発明において、前記銀粉末(A)は、形状がフレーク状であることを特徴とする導電性樹脂ペーストが提供される。 According to a third aspect of the present invention, there is provided the conductive resin paste according to the first aspect, wherein the silver powder (A) has a flake shape.
また、本発明の第4の発明によれば、第1の発明において、前記無機粉末(B)は、Ni、Cu、Bi、Co、Mn、Sn、Fe、Cr、Ti、又はZrから選ばれる金属粉末、あるいはそれらの酸化物粉末であることを特徴とする導電性樹脂ペーストが提供される。 According to the fourth invention of the present invention, in the first invention, the inorganic powder (B) is selected from Ni, Cu, Bi, Co, Mn, Sn, Fe, Cr, Ti, or Zr. There is provided a conductive resin paste characterized by being a metal powder or an oxide powder thereof.
また、本発明の第5の発明によれば、第1の発明において、前記熱可塑性樹脂(C)は、平均分子量が1000〜100,000であることを特徴とする導電性樹脂ペーストが提供される。 According to a fifth aspect of the present invention, there is provided the conductive resin paste according to the first aspect, wherein the thermoplastic resin (C) has an average molecular weight of 1000 to 100,000. The
また、本発明の第6の発明によれば、第1の発明において、前記熱可塑性樹脂(C)は、直鎖状の2官能性エポキシ高分子化合物であることを特徴とする導電性樹脂ペーストが提供される。 According to a sixth aspect of the present invention, there is provided the conductive resin paste according to the first aspect, wherein the thermoplastic resin (C) is a linear bifunctional epoxy polymer compound. Is provided.
また、本発明の第7の発明によれば、第1の発明において、前記溶剤(D)は、20℃での蒸気圧が0.7hPa以下の溶剤であることを特徴とする導電性樹脂ペーストが提供される。 According to a seventh aspect of the present invention, there is provided the conductive resin paste according to the first aspect, wherein the solvent (D) is a solvent having a vapor pressure at 20 ° C. of 0.7 hPa or less. Is provided.
一方、本発明の第8の発明によれば、第1〜7の発明のいずれかの導電性樹脂ペーストを用いてなる電子素子が提供される。 On the other hand, according to the eighth invention of the present invention, there is provided an electronic device using the conductive resin paste of any one of the first to seventh inventions.
また、本発明の第9の発明によれば、第8の発明において、導電性樹脂ペーストにより固体電解コンデンサの内部電極が形成された電子素子が提供される。 According to a ninth aspect of the present invention, there is provided an electronic device according to the eighth aspect, wherein the internal electrode of the solid electrolytic capacitor is formed from a conductive resin paste.
本発明では、樹脂成分として固形エポキシ樹脂を使用し溶剤に溶解することで硬化剤を配合しないので、使用時に所定の温度で溶剤を揮発させることによって、ポリエステルやアクリル樹脂のような熱可塑性樹脂と同様な乾燥固化が実現できる。
従来のように硬化剤を含む液状エポキシ樹脂を用いないことから、樹脂が電極間の隙間に塗布されるような場合でも、隙間が埋まる前に硬化してしまわないので、安定した塗布性が得られる。
In the present invention, since a solid epoxy resin is used as a resin component and a curing agent is not blended by dissolving in a solvent, by volatilizing the solvent at a predetermined temperature during use, a thermoplastic resin such as polyester or acrylic resin can be used. Similar drying and solidification can be realized.
Since a liquid epoxy resin containing a curing agent is not used as in the past, even when the resin is applied to the gap between the electrodes, it does not harden before the gap is filled, so a stable coatability is obtained. It is done.
以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
1.導電性樹脂ペースト
本発明の導電性樹脂ペーストは、銀粉末と無機粉末、熱可塑性樹脂、溶剤が配合された導電性樹脂ペーストにおいて、熱可塑性樹脂として平均分子量が900以上の固形エポキシ樹脂を用い、硬化剤を配合せず、導電性付与に必要な量の銀粉末を含有させ、コストメリットを発現させるために比重が4以上の無機粉末を添加し、その際、熱可塑性樹脂と溶剤の量を調整して特定の粘度となるようにしている。
1. Conductive resin paste The conductive resin paste of the present invention uses a solid epoxy resin having an average molecular weight of 900 or more as a thermoplastic resin in a conductive resin paste in which silver powder and inorganic powder, a thermoplastic resin, and a solvent are blended. Including silver powder in an amount necessary for imparting conductivity without adding a curing agent, and adding inorganic powder with a specific gravity of 4 or more in order to express cost merit. It is adjusted to a specific viscosity.
(A)銀粉末
本発明において銀粉末(以下、Ag粉末とも表記する)は、導電性樹脂ペーストの導電性成分であり、通常、電子素子や人体にとって有害な元素(Pbなど)を含まない純粋なAgを用いる。
しかし、本発明の目的を損なわない範囲でSn、Bi、In、Ni、Cu、Fe、Zn、Ru、Au、Pt、Pdなどとの合金やそれらの表面にAgをコーティングしたコート粉やそれらとの混合粉を採用しても構わない。
(A) Silver powder In the present invention, silver powder (hereinafter also referred to as Ag powder) is a conductive component of a conductive resin paste, and is usually pure that does not contain elements (such as Pb) that are harmful to electronic elements and the human body. Ag is used.
However, Sn, Bi, In, Ni, Cu, Fe, Zn, Ru, Au, Pt, Pd, and the like are coated with powder coated with Ag on the surface thereof, and the like within the range not impairing the object of the present invention. The mixed powder may be used.
また、本発明において銀粉末は、タップ密度や形状、粒径の大きさなどによって特に限定されるものではない。
ただし、Ag粉末は、タップ密度や粒径の大きさによって特性が異なることから、電子素子の種類によっては、タップ密度3〜8/cm3のAg粉末を使用することが好ましい場合がある。
In the present invention, the silver powder is not particularly limited by the tap density, shape, particle size, and the like.
However, since Ag powder has different characteristics depending on the tap density and the particle size, it may be preferable to use an Ag powder having a tap density of 3 to 8 / cm 3 depending on the type of electronic device.
ここで、タップ密度とは、金属粉末などの粉体の嵩密度であり、JIS Z2500に準拠し、シリンダー容量:20mm、タップストローク:20mm、ストローク回数:50回の条件で測定した数値である。タップ密度が2〜8g/cm3の銀粉末は樹脂成分への分散性が優れている。
一方、2g/cm3より小さいと分散性が劣るので、樹脂接着剤組成物中に高充填できないことがあり、また、タップ密度が8g/cm3以上の銀被覆金属粉末は、現在のところ入手困難であり、調製も容易ではない。好ましいタップ密度は2.5〜7g/cm3で、より好ましいタップ密度は3〜6g/cm3である。
また、銀粉末の形状は、フレーク状、球状、針状、これらの混合物のいずれでも構わない。本発明で好ましいのはフレーク状である。平均粒径は、15μm以下が好ましく、10μm以下がより好ましい。この数値はマイクロトラックで測定した時の値を示す。なお、上記を満たすのであれば、2種類以上のAg粉を混合しても差し支えない。
Here, the tap density is a bulk density of a powder such as metal powder, and is a numerical value measured under the conditions of cylinder capacity: 20 mm, tap stroke: 20 mm, and stroke number: 50 in accordance with JIS Z2500. Silver powder having a tap density of 2 to 8 g / cm 3 has excellent dispersibility in the resin component.
On the other hand, if it is less than 2 g / cm 3 , the dispersibility is inferior, so the resin adhesive composition may not be highly filled, and silver-coated metal powder having a tap density of 8 g / cm 3 or more is currently available. It is difficult and preparation is not easy. A preferable tap density is 2.5 to 7 g / cm 3 , and a more preferable tap density is 3 to 6 g / cm 3 .
The shape of the silver powder may be any of flakes, spheres, needles, or a mixture thereof. Preferred in the present invention is a flake shape. The average particle size is preferably 15 μm or less, and more preferably 10 μm or less. This value shows the value when measured with a microtrack. If the above conditions are satisfied, two or more types of Ag powder may be mixed.
また、Ag粉末の割合は、総量に対して10〜50重量%の範囲に設定される。好ましくは25〜50重量%である。10重量%未満であると体積抵抗率が上昇してしまう場合があるし、50重量%を超えるとコストメリットが無くなる場合がある。 Moreover, the ratio of Ag powder is set to the range of 10-50 weight% with respect to the total amount. Preferably it is 25 to 50% by weight. If it is less than 10% by weight, the volume resistivity may increase, and if it exceeds 50% by weight, the cost merit may be lost.
(B)無機粉末
無機粉末は、銀含有率を低下させるために導電性として配合する。ただ、主たる導電性は銀粉末で発現させるため、それを阻害しないように比重が4以上の無機粉末を使用する必要がある。
(B) Inorganic powder An inorganic powder is mix | blended as electroconductivity, in order to reduce silver content rate. However, since the main conductivity is expressed by silver powder, it is necessary to use an inorganic powder having a specific gravity of 4 or more so as not to inhibit it.
無機粉末としては、特に限定されないが、WO3、SnO2、ZrO2、ZnO、TiO2、NiO、ZrCなどのセラミックス粉末やNi、Cu、Bi、Co、Mn、Sn、Fe、Cr、Ti、Zrなどの金属粉末が挙げられる。セラミックス粉末の場合、金属酸化物が入手しやすいが、金属炭化物や金属硫化物も使用可能である。これらは、いずれも比重が4以上の無機粉末である。比重が4未満の無機粉末、例えばAl2O3、Al、MgOやMgであると、同じ配合量であっても体積が大きいため、銀粉末の導電性を阻害して体積抵抗率が高くなるという問題があり好ましくない。無機粉末の比重は、5以上がより好ましい。
平均粒径は、1μm以下であり、0.8μm以下が好ましく、0.5μm以下がより好ましい。この数値はマイクロトラックで測定した時の値を示す。なお、上記を満たすのであれば、2種類以上の無機粉末を混合しても差し支えない。
The inorganic powder is not particularly limited, WO 3, SnO 2, ZrO 2, ZnO, TiO 2, NiO, ceramic powder and Ni, such as ZrC, Cu, Bi, Co, Mn, Sn, Fe, Cr, Ti, Examples thereof include metal powders such as Zr. In the case of ceramic powder, metal oxides are easily available, but metal carbides and metal sulfides can also be used. These are all inorganic powders having a specific gravity of 4 or more. Inorganic powders with a specific gravity of less than 4, such as Al 2 O 3 , Al, MgO and Mg, because the volume is large even with the same blending amount, the conductivity of the silver powder is hindered and the volume resistivity is increased. This is not preferable. The specific gravity of the inorganic powder is more preferably 5 or more.
The average particle size is 1 μm or less, preferably 0.8 μm or less, and more preferably 0.5 μm or less. This value shows the value when measured with a microtrack. If the above is satisfied, two or more kinds of inorganic powders may be mixed.
また、無機粉末の割合は、60重量%以下となるように設定される。好ましいのは1〜55重量%であり、5〜50重量%がより好ましい。60重量%を超える場合、銀粉末の導電性が阻害されるため、体積抵抗率が高くなり好ましくない。また、無機粉末の割合が少なすぎると、銀粉末の量が増えてコストアップになるため好ましくない。
銀粉末および無機粉末からなる導電性粉末と、熱可塑性樹脂との重量比率(A+B):(C)は80:20〜98:2の範囲内に設定される。重量比率が80重量%未満の場合には、固化後の導電性が悪化し易くなり、98重量%を超えると、被着体との密着性が低下して剥がれ易くなる懸念がある。より好ましくは85:15〜96:4である。
The proportion of the inorganic powder is set to be 60% by weight or less. 1 to 55% by weight is preferred, and 5 to 50% by weight is more preferred. When it exceeds 60% by weight, the conductivity of the silver powder is hindered, so that the volume resistivity becomes high, which is not preferable. Also, if the proportion of the inorganic powder is too small, the amount of silver powder increases and the cost increases, which is not preferable.
The weight ratio (A + B) :( C) between the conductive powder made of silver powder and inorganic powder and the thermoplastic resin is set in the range of 80:20 to 98: 2. When the weight ratio is less than 80% by weight, the conductivity after solidification tends to be deteriorated, and when it exceeds 98% by weight, there is a concern that the adhesion to the adherend is lowered and the film is easily peeled off. More preferably, it is 85: 15-96: 4.
(C)熱可塑性樹脂
本発明では、熱可塑性樹脂として、平均分子量900以上の固形エポキシ樹脂を使用し、導電性樹脂ペーストの接着成分とする。固形エポキシ樹脂とは、エポキシ基を有する樹脂のうち、室温で固体を示すものである。
(C) Thermoplastic resin In the present invention, as the thermoplastic resin, a solid epoxy resin having an average molecular weight of 900 or more is used as an adhesive component of the conductive resin paste. The solid epoxy resin means a solid at room temperature among resins having an epoxy group.
導電性樹脂ペーストの場合、エポキシ樹脂は硬化剤と共に使用されるのが一般的であり、一液性や二液性の熱硬化型導電性樹脂ペーストとして利用されている。すなわち、エポキシ樹脂は液状エポキシ樹脂が選択される。液状エポキシ樹脂とは、GPC法により測定される重量平均分子量が700以下で、常温で液状を呈するもので、通常、重合度(n)が1以下のエポキシ樹脂をいう。固形エポキシを選択した場合は、通常、それを反応性希釈剤や溶剤で溶解し、そこに硬化剤を添加して使用する。 In the case of a conductive resin paste, an epoxy resin is generally used together with a curing agent, and is used as a one-component or two-component thermosetting conductive resin paste. That is, a liquid epoxy resin is selected as the epoxy resin. The liquid epoxy resin is an epoxy resin having a weight average molecular weight of 700 or less measured by the GPC method and exhibiting a liquid state at normal temperature, and usually having a polymerization degree (n) of 1 or less. When a solid epoxy is selected, it is usually used by dissolving it with a reactive diluent or solvent and adding a curing agent thereto.
硬化剤を添加したエポキシ樹脂は、加熱開始とともにさらに粘度が下がって硬化剤と混ざり合い、素早く反応を進めることができる。ところが、硬化剤が入っているので、室温で保管しているとエポキシ樹脂と硬化剤が反応して粘度が上昇してしまうといった問題が発生する。
このため、本発明では固形エポキシ樹脂を使用して溶剤に溶解するだけで硬化剤を配合せず、使用時には所定の温度で溶剤を揮発させることによって、ポリエステルやアクリル樹脂のような一般的な熱可塑性樹脂と同様な乾燥固化を実現できるようにした。溶解した固形エポキシ樹脂は、溶剤のみ揮発させることで再度固形エポキシ樹脂に戻され、ポリエステルやアクリル樹脂に比べて顕著な接着性を発現することになる。
The epoxy resin to which the curing agent has been added is further reduced in viscosity with the start of heating, and is mixed with the curing agent, so that the reaction can proceed rapidly. However, since the curing agent is contained, there is a problem that the viscosity increases due to the reaction between the epoxy resin and the curing agent when stored at room temperature.
For this reason, in the present invention, a solid epoxy resin is used to dissolve in a solvent, and a curing agent is not blended. In use, the solvent is volatilized at a predetermined temperature, so that a general heat such as polyester or acrylic resin is used. Drying and solidification similar to plastic resin can be realized. The dissolved solid epoxy resin is returned to the solid epoxy resin again by volatilizing only the solvent, and expresses remarkable adhesiveness as compared with polyester and acrylic resin.
また、重合度(n)が1を超える平均分子量900以上の固形エポキシ樹脂を使用することで、Ag粉末や溶剤との分散性が良く、ポリエステルやアクリル樹脂に比べて溶剤分離が遅いので塗布安定性に優れている。本発明で用いる固形エポキシ樹脂は、GPCにより測定される重量平均分子量が1000〜100,000であることが好ましく、より好ましくは、1000〜80,000、さらに好ましくは、1000〜60,000である。 In addition, by using a solid epoxy resin having an average molecular weight of 900 or more with a degree of polymerization (n) of more than 1, the dispersibility with Ag powder and solvent is good, and the solvent separation is slower compared to polyester and acrylic resin, so that coating is stable. Excellent in properties. The solid epoxy resin used in the present invention preferably has a weight average molecular weight of 1000 to 100,000 as measured by GPC, more preferably 1000 to 80,000, and still more preferably 1000 to 60,000. .
固形エポキシ樹脂は、その種類により制限されず、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型エポキシ樹脂、フェノキシ型、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂から選ばれる1種または2種以上を用いることができる。これらは、通常、直鎖状の2官能性エポキシ高分子化合物であるが、エポキシ基の一部が他の官能基に置換しているもの、アルコキシ含有シラン変性エポキシ樹脂、フッ素化エポキシ樹脂、ゴム変性エポキシ樹脂等の変性エポキシ樹脂でも差し支えない。 The solid epoxy resin is not limited by the type, and for example, bisphenol A type, bisphenol F type, bisphenol S type epoxy resin, phenoxy type, naphthalene type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, cyclopentadiene type epoxy 1 type (s) or 2 or more types selected from resin can be used. These are usually straight-chain bifunctional epoxy polymer compounds, in which a part of the epoxy group is substituted with another functional group, alkoxy-containing silane-modified epoxy resin, fluorinated epoxy resin, rubber A modified epoxy resin such as a modified epoxy resin may be used.
固形エポキシ樹脂には、軟化点が60℃〜150℃のものが知られている。本発明では、これらの全てが用いられ、65℃〜145℃のものが好ましい。軟化点60℃以上のものは、溶剤に溶解すると液状エポキシ樹脂の挙動に近くなるため使用しやすい。軟化点が高くなるほど溶剤への溶解性が小さくなり、樹脂組成物全体として流動しにくくなる反面、軟化点が150℃に近づくにしたがって、使用時の固化乾燥が容易になる。 Solid epoxy resins having a softening point of 60 ° C to 150 ° C are known. In the present invention, all of these are used, and those of 65 ° C to 145 ° C are preferred. Those having a softening point of 60 ° C. or higher are easy to use because they become close to the behavior of a liquid epoxy resin when dissolved in a solvent. The higher the softening point, the lower the solubility in the solvent, and the more difficult the resin composition as a whole flows. On the other hand, as the softening point approaches 150 ° C., solidification drying during use becomes easier.
固形エポキシ樹脂は、樹脂量と、銀粉末と無機粉末の合計との重量比率(C):(A+B)が20:80〜2:98の範囲内となるように配合される。固形エポキシ樹脂が少なくてAg粉末と無機粉末の合計との重量比率で2:98よりも小さいと、流動性が不足し、一方、固形エポキシ樹脂が多くてAg粉末と無機粉末との重量比率で20:80よりも大きいと、導電性が不足することが考えられる。好ましいのは、4:96〜15:85の範囲である。 The solid epoxy resin is blended so that the resin amount and the weight ratio (C) :( A + B) of the total of the silver powder and the inorganic powder are in the range of 20:80 to 2:98. If there is less solid epoxy resin and the weight ratio of Ag powder and inorganic powder is less than 2:98, fluidity will be insufficient, while there will be more solid epoxy resin and weight ratio of Ag powder and inorganic powder. When it is larger than 20:80, it is considered that the conductivity is insufficient. The range of 4:96 to 15:85 is preferable.
(D)溶剤
本発明では、熱可塑性樹脂が固形エポキシ樹脂なので、溶剤に溶解させる必要がある。溶剤の種類は、熱可塑性樹脂を溶解できれば特に限定されるものではない。多価アルコールや炭化水素及びエステル等を使用でき、例えば、ターピネオール、ジヒドロターピニルアセテート(水素添加テルピネオールアセテート)、エチレングリコールモノブチルエーテルアセテート、又はジプロピレングリコールメチルエーテルアセテート、ジヒドロターピニルアセテート、イソボルニルプロピオネート、イソボルニルブチレート、又はイソボルニルイソブチレートなどが挙げられる。
(D) Solvent In the present invention, since the thermoplastic resin is a solid epoxy resin, it must be dissolved in a solvent. The kind of solvent is not particularly limited as long as it can dissolve the thermoplastic resin. Polyhydric alcohols, hydrocarbons and esters can be used. For example, terpineol, dihydroterpinyl acetate (hydrogenated terpineol acetate), ethylene glycol monobutyl ether acetate, or dipropylene glycol methyl ether acetate, dihydroterpinyl acetate, Examples thereof include bornyl propionate, isobornyl butyrate, isobornyl isobutyrate and the like.
ただ、導電性樹脂ペーストを使用する際は、ペーストが空気に曝されることが考えられるので、20℃での蒸気圧が0.7hPa以下の溶剤が好ましい。より好ましくは20℃での蒸気圧が0.5以下の溶剤が好ましい。一般的には、酢酸2−(2−n−ブトキシエトキシ)エチル、酢酸2−n−ブトキシエチル、酢酸2−(2−エトキシエトキシ)エチル等が挙げられる。これらは単独でも、複数種を混合しても良い。 However, when using a conductive resin paste, it is considered that the paste is exposed to air, and therefore a solvent having a vapor pressure at 20 ° C. of 0.7 hPa or less is preferable. More preferably, a solvent having a vapor pressure at 20 ° C. of 0.5 or less is preferred. Generally, 2- (2-n-butoxyethoxy) ethyl acetate, 2-n-butoxyethyl acetate, 2- (2-ethoxyethoxy) ethyl acetate, and the like can be given. These may be used alone or in combination of two or more.
溶剤含有量であるが、銀粉末と無機粉末と熱可塑性樹脂とを合わせた量と溶剤量の重量比率(A+B+C):(D)が90:10〜30:70の範囲内となるようにする。溶剤の含有量が10重量%未満の場合には、導電性樹脂ペーストの粘度が高くなり過ぎ、70重量%を超えると、導電性樹脂ペーストのAg粉と無機粉末と熱可塑性樹脂とを合わせた濃度が低くなって均一な塗布膜を形成することが困難となる。体積抵抗率が上昇する傾向もある。好ましいのは、85:15〜50:50の範囲である。 The solvent content is such that the weight ratio (A + B + C) :( D) of the combined amount of silver powder, inorganic powder and thermoplastic resin is within the range of 90:10 to 30:70. . When the content of the solvent is less than 10% by weight, the viscosity of the conductive resin paste becomes too high, and when it exceeds 70% by weight, the Ag powder of the conductive resin paste, the inorganic powder, and the thermoplastic resin are combined. The concentration becomes low and it becomes difficult to form a uniform coating film. There is also a tendency for volume resistivity to increase. Preference is given to a range of 85:15 to 50:50.
また、溶剤の含有量は、電子素子の要求される粘度特性によって決定されるため、導電性樹脂ペーストの塗布膜形成方法によってその最適量は変化する。スクリーン印刷やディスペンサー等による塗布膜形成では、比較的粘度の高い導電性樹脂ペーストが要求されるため、溶剤の含有量は少なくするのが好ましく、ディッピング等による塗布膜形成では、低粘度の導電性樹脂ペーストが要求されるため、溶剤の含有量を多くするのが好ましい。 Further, since the content of the solvent is determined by the required viscosity characteristics of the electronic element, the optimum amount varies depending on the method for forming the coating film of the conductive resin paste. In coating film formation by screen printing or dispenser, etc., a conductive resin paste having a relatively high viscosity is required. Therefore, it is preferable to reduce the solvent content. In coating film formation by dipping, etc., low viscosity conductive Since a resin paste is required, it is preferable to increase the content of the solvent.
本発明では、導電性樹脂ペーストの25℃における粘度が0.2〜100Pasとなるようにする。この粘度範囲であれば、電子素子の種類によらず使用できるが、特に固体電解コンデンサに適用したときに大きな効果を得ることが出来る。
なお、粘度は、長時間放置すると銀粉末の一部が沈降することがある。そのため粘度は、ブルックフィールド社製のHAT型粘度計を用い、試料を20rpmで60秒後の測定値である。本発明では、0.3〜50Pasの範囲が好ましい。
In the present invention, the viscosity of the conductive resin paste at 25 ° C. is set to 0.2 to 100 Pas. Within this viscosity range, it can be used regardless of the type of electronic element, but a great effect can be obtained particularly when applied to a solid electrolytic capacitor.
In addition, as for a viscosity, when it is left for a long time, a part of silver powder may settle. Therefore, the viscosity is a measured value after 60 seconds at 20 rpm using a HAT viscometer manufactured by Brookfield. In the present invention, a range of 0.3 to 50 Pas is preferable.
(E)その他の任意成分
本発明では、上記必須成分に対して、本発明の目的を損なわない限り、分散剤、安定剤、着色剤などを添加することができる。
また、本発明の目的を損なわない範囲でポリエステルやアクリル樹脂などの熱可塑性樹脂を添加しても構わない。ポリエステルやアクリル樹脂などの熱可塑性樹脂を添加する場合は、固形エポキシ樹脂に対して30重量%以下、好ましくは10重量%以下とする。
(E) Other optional components In the present invention, a dispersant, a stabilizer, a colorant, and the like can be added to the above essential components as long as the object of the present invention is not impaired.
Moreover, you may add thermoplastic resins, such as polyester and an acrylic resin, in the range which does not impair the objective of this invention. When a thermoplastic resin such as polyester or acrylic resin is added, it is 30% by weight or less, preferably 10% by weight or less based on the solid epoxy resin.
2.電子素子
本発明の導電性樹脂ペーストは、タンタルコンデンサやアルミ固体電解コンデンサ、チップ抵抗器、積層セラミックスコンデンサなどの各種電子素子の内部電極や端面電極の形成や、その接着に適用できる。特に導電性樹脂ペーストをディッピング等により塗布膜形成する固体電解コンデンサの内部電極を製造するのに効果的である。
2. Electronic Element The conductive resin paste of the present invention can be applied to the formation and adhesion of internal electrodes and end face electrodes of various electronic elements such as tantalum capacitors, aluminum solid electrolytic capacitors, chip resistors, and multilayer ceramic capacitors. In particular, it is effective for manufacturing an internal electrode of a solid electrolytic capacitor in which a coating film is formed by dipping or the like of a conductive resin paste.
導電性樹脂ペーストは、対象物上で塗布膜が固化する際、例えば120〜180℃の温度で、10〜60分間加熱すると、溶剤成分が揮発・蒸発し、又は分解して飛散して安定な固化膜となる。得られた電子素子は、固化膜が樹脂成分中に銀粉末を均一に分散しているために、導電性に優れている。 The conductive resin paste is stable when the coating film is solidified on the object, for example, when heated at a temperature of 120 to 180 ° C. for 10 to 60 minutes, the solvent component is volatilized / evaporated or decomposed and scattered. It becomes a solidified film. The obtained electronic device has excellent conductivity because the solidified film uniformly disperses silver powder in the resin component.
以下に、実施例に基づき本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。なお、用いた原材料は次のとおりである。また、実施例1〜17及び、比較例1〜15の各試料は混練後、下記に示す評価を行なった。 EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples. The raw materials used are as follows. Moreover, each sample of Examples 1-17 and Comparative Examples 1-15 evaluated the following shown after kneading | mixing.
(A)銀粉末
フレーク状Ag粉末A タップ密度が3.8g/cm3のAg粉末
フレーク状Ag粉末B タップ密度が2g/cm3のAg粉末
球状Ag粉C タップ密度が4.1g/cm3のAg粉末
(A) Silver powder Flaked Ag powder A Ag powder having a tap density of 3.8 g / cm 3 Flaked Ag powder B Ag powder having a tap density of 2 g / cm 3 Spherical Ag powder C Tap density of 4.1 g / cm 3 Ag powder
(B)無機粉末
無機粉末A 比重が7.16で、平均粒径が0.3μmのWO3粉末
無機粉末B 比重が8.90で、平均粒径が0.5μmのNi粉末
無機粉末C 比重が6.95で、平均粒径が1.0μmのSnO2粉末
無機粉末D 比重が6.95で、平均粒径が2.0μmのSnO2粉末
無機粉末E 比重が3.58で、平均粒径が0.5μmのMgO粉末
(B) Inorganic powder Inorganic powder A Specific gravity of 7.16, WO 3 powder having an average particle size of 0.3 μm Inorganic powder B Ni powder having a specific gravity of 8.90 and an average particle size of 0.5 μm Inorganic powder C Specific gravity Of SnO 2 powder with an average particle diameter of 1.0 μm, an inorganic powder D, a specific gravity of 6.95, an SnO 2 powder with an average particle diameter of 2.0 μm, an inorganic powder E, a specific gravity of 3.58, and an average particle size MgO powder with a diameter of 0.5 μm
(C)樹脂
エポキシ樹脂化合物A ビスフェノールA型固形エポキシ樹脂(三菱化学株式会社:jER1256、平均分子量:約50,000)
エポキシ樹脂化合物B ビスフェノールA型固形エポキシ樹脂(三菱化学株式会社:jER1004、平均分子量:約1,650)
エポキシ樹脂化合物C ビスフェノールA型液状エポキシ樹脂(三菱化学株式会社:jER828、平均分子量:約370)
エポキシ樹脂化合物D 液状のエポキシ化ポリブタジエン樹脂(株式会社ダイセル:エポリードPB4700 平均分子量:約2,750)
ポリエステル樹脂化合物A 高分子量飽和ポリエステル樹脂(日本合成化学工業株式会社:ニチゴーポリエスター TP−220、平均分子量:約16,000)
アクリル樹脂化合物A アクリル樹脂(三菱レイヨン株式会社:BR−95、平均分子量:約320,000)
(C) Resin Epoxy Resin Compound A Bisphenol A type solid epoxy resin (Mitsubishi Chemical Corporation: jER1256, average molecular weight: about 50,000)
Epoxy resin compound B bisphenol A type solid epoxy resin (Mitsubishi Chemical Corporation: jER1004, average molecular weight: about 1,650)
Epoxy resin compound C bisphenol A type liquid epoxy resin (Mitsubishi Chemical Corporation: jER828, average molecular weight: about 370)
Epoxy resin compound D Liquid epoxidized polybutadiene resin (Daicel Corporation: Epolide PB4700 average molecular weight: about 2,750)
Polyester resin compound A High molecular weight saturated polyester resin (Nippon Gosei Chemical Industry Co., Ltd .: Nichigo Polyester TP-220, average molecular weight: about 16,000)
Acrylic resin compound A Acrylic resin (Mitsubishi Rayon Co., Ltd .: BR-95, average molecular weight: about 320,000)
(D)硬化剤、硬化促進剤
硬化剤A ジシアンジアミド(三菱化学株式会社:DICY7)
硬化促進剤A 2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(四国化成株式会社:キュアゾール2P4MHZ−PW)
(D) Curing agent, curing accelerator Curing agent A Dicyandiamide (Mitsubishi Chemical Corporation: DICY7)
Curing Accelerator A 2-Phenyl-4-methyl-5-hydroxymethylimidazole (Shikoku Kasei Co., Ltd .: Curesol 2P4MHZ-PW)
(E)溶剤
溶剤A 酢酸2−(2−n−ブトキシエトキシ)エチル(関東化学株式会社:酢酸2−(2−n−ブトキシエトキシ)エチル、蒸気圧(20℃):0.01hPa)
溶剤B 酢酸2−n−ブトキシエチル(関東化学株式会社:酢酸2−n−ブトキシエチル、蒸気圧(20℃):0.31hPa)
溶剤C ブチルカルビトール(関東化学株式会社:2−(2−n−ブトキシエトキシ、蒸気圧(20℃):0.013hPa)
溶剤D N−メチル−2−ピロリドン(関東化学株式会社:N−メチル−2−ピロリジノン、蒸気圧(20℃):0.32hPa)
溶剤E 2−n−ブトキシエタノール(関東化学株式会社:2−n−ブトキシエタノール、蒸気圧(20℃):0.8hPa)
(E) Solvent Solvent A 2- (2-n-Butoxyethoxy) ethyl acetate (Kanto Chemical Co., Inc .: 2- (2-n-Butoxyethoxy) ethyl acetate, vapor pressure (20 ° C.): 0.01 hPa)
Solvent B 2-n-butoxyethyl acetate (Kanto Chemical Co., Inc .: 2-n-butoxyethyl acetate, vapor pressure (20 ° C.): 0.31 hPa)
Solvent C Butyl carbitol (Kanto Chemical Co., Inc .: 2- (2-n-butoxyethoxy, vapor pressure (20 ° C.): 0.013 hPa)
Solvent D N-methyl-2-pyrrolidone (Kanto Chemical Co., Inc .: N-methyl-2-pyrrolidinone, vapor pressure (20 ° C.): 0.32 hPa)
Solvent E 2-n-butoxyethanol (Kanto Chemical Co., Inc .: 2-n-butoxyethanol, vapor pressure (20 ° C.): 0.8 hPa)
(1)導電性樹脂ペーストの粘度
粘度はブルックフィールド社製のHAT型粘度計を用い、試料を20rpmで、60秒後の測定値である。
(1) Viscosity of conductive resin paste Viscosity is a value measured after 60 seconds at 20 rpm using a HAT viscometer manufactured by Brookfield.
(2)体積抵抗率の測定
アルミナ基板上に幅0.6mm、長さ60mmの長方形状に試料(導電性樹脂ペースト)を印刷し、150℃のオーブン中に40分間放置し、固化した後、室温まで冷却し、導電性樹脂ペースト上の両端で抵抗値を測定した。続いて、印刷し固化した導電性樹脂ペーストの膜厚を測定し、抵抗値と膜厚から抵抗率を求めた。
(2) Measurement of volume resistivity After printing a sample (conductive resin paste) in a rectangular shape having a width of 0.6 mm and a length of 60 mm on an alumina substrate and leaving it in an oven at 150 ° C. for 40 minutes to solidify, After cooling to room temperature, the resistance value was measured at both ends on the conductive resin paste. Subsequently, the film thickness of the printed and solidified conductive resin paste was measured, and the resistivity was determined from the resistance value and the film thickness.
(3)接着強度の測定
アルミナ基板上に試料(導電性樹脂ペースト)を滴下し、1.5mm角のシリコンチップを載せ、150℃のオーブン中に40分間放置して固化させた。室温まで冷却した後、この基板に対し水平方向からシリコンチップに力を加え、該シリコンチップが剥がれた時の力を接着強度として測定した。
(3) Measurement of adhesive strength A sample (conductive resin paste) was dropped on an alumina substrate, a 1.5 mm square silicon chip was placed, and allowed to solidify in an oven at 150 ° C. for 40 minutes. After cooling to room temperature, a force was applied to the silicon chip from the horizontal direction with respect to the substrate, and the force when the silicon chip was peeled was measured as the adhesive strength.
(4)保存安定性
混練された導電性樹脂ペーストを25℃で保管しながら、1回/週の頻度で粘度を測定し、初期粘度から20%以上高くなるまでの日数が90日以上の場合は良(○)、それ未満の場合は不可(×)とした。
ブルックフィールド社製のHAT型粘度計を用い、20rpm時の粘度を計測した。
(4) Storage stability When the kneaded conductive resin paste is stored at 25 ° C., the viscosity is measured once / week, and the number of days until the initial viscosity is increased by 20% or more is 90 days or more. Is determined to be good (◯), and less than that is impossible (×).
Using a Brookfield HAT viscometer, the viscosity at 20 rpm was measured.
(5)コストメリット
銀含有率が50重量%以下の場合を良(○)、それを超えた場合を不可(×)とした。
(5) Cost merit A case where the silver content is 50% by weight or less was judged as good (◯), and a case where the silver content was exceeded was judged as impossible (×).
(6)総合評価
上記の5項目において、粘度が0.2〜100Pa・s、体積抵抗率が5mΩ・cm以下、接着強度は20N以上、保存安定性については良(○)、コストメリットについては良(○)の条件を全て満たしたもののみ良(○)とし、1つでも条件に満たさないものがある場合は不可(×)とした。
(6) Comprehensive evaluation In the above five items, the viscosity is 0.2 to 100 Pa · s, the volume resistivity is 5 mΩ · cm or less, the adhesive strength is 20 N or more, the storage stability is good (◯), and the cost merit is Only those satisfying all the conditions of good (◯) were judged as good (◯), and when there was one that did not satisfy the conditions, it was judged as impossible (×).
(実施例1)
Ag粉末として、タップ密度が3.8g/cm3のフレーク状Ag粉末A、無機粉末として、比重が7.16で、平均粒径が0.3μmのWO3粉末A、樹脂成分として、エポキシ樹脂化合物A:ビスフェノールA型固形エポキシ樹脂(三菱化学株式会社:jER1256)、溶剤成分として、酢酸2−(2−n−ブトキシエトキシ)エチル(関東化学株式会社:酢酸2−(2−n−ブトキシエトキシ)エチル)を原料として、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、本発明の導電性接着剤を得た。
この導電性樹脂ペーストを用いて、アルミナ基板上に印刷し、上記の条件で体積抵抗率を測定した。また、アルミナ基板上に滴下しシリコンチップを載せ、150℃に加熱し40分間溶剤を気化させてから、接着強度を測定した。また、本発明の導電性樹脂ペーストを25℃で保管しながら粘度を測定し保存安定性を評価した。この結果は表1に併記した。表1中、各成分の濃度は重量%で示している。
Example 1
Flaked Ag powder A having a tap density of 3.8 g / cm 3 as Ag powder, WO 3 powder A having a specific gravity of 7.16 and an average particle size of 0.3 μm as an inorganic powder, and epoxy resin as a resin component Compound A: bisphenol A type solid epoxy resin (Mitsubishi Chemical Corporation: jER1256), 2- (2-n-butoxyethoxy) ethyl acetate (Kanto Chemical Co., Ltd .: 2- (2-n-butoxyethoxy) acetate as a solvent component ) Ethyl) as a raw material, a conductive resin paste was prepared and kneaded using a three-roll kneader to obtain the conductive adhesive of the present invention.
Using this conductive resin paste, printing was performed on an alumina substrate, and the volume resistivity was measured under the above conditions. Moreover, it dropped on the alumina substrate, mounted a silicon chip, heated to 150 ° C. to evaporate the solvent for 40 minutes, and then measured the adhesive strength. Further, the storage stability was evaluated by measuring the viscosity while storing the conductive resin paste of the present invention at 25 ° C. The results are also shown in Table 1. In Table 1, the concentration of each component is shown in wt%.
(実施例2〜8)
表1に記載したAg粉、無機粉末、エポキシ樹脂化合物A、溶剤Aの配合を変えた以外は実施例1と同様にして、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、本発明の導電性樹脂ペーストを得た。その後、この導電性樹脂ペーストを用いて、アルミナ基板上に印刷し、上記の条件で体積抵抗率を測定した。また、アルミナ基板上に滴下しシリコンチップ載せ、150℃に加熱し40分間溶剤を気化させてから、接着強度を測定した。本発明の導電性樹脂ペーストを25℃で保管しながら粘度を測定し保存安定性を評価した。この結果は表1に併記した。
(Examples 2 to 8)
A conductive resin paste was prepared in the same manner as in Example 1 except that the composition of Ag powder, inorganic powder, epoxy resin compound A, and solvent A described in Table 1 was changed, and a three-roll kneader was used. And kneaded to obtain the conductive resin paste of the present invention. Then, using this conductive resin paste, it printed on the alumina substrate and measured the volume resistivity on said conditions. Further, it was dropped on an alumina substrate, placed on a silicon chip, heated to 150 ° C. and the solvent was vaporized for 40 minutes, and then the adhesive strength was measured. While the conductive resin paste of the present invention was stored at 25 ° C., the viscosity was measured and storage stability was evaluated. The results are also shown in Table 1.
(実施例9〜17)
表2に記載したようにAg粉末をタップ密度が2g/cm3のフレークAg粉Bとし(実施例9)、又はタップ密度が4.1g/cm3の球状Ag粉Cを用い(実施例10)以外は実施例1と同様にして、導電性樹脂ペーストを調整し、3本ロール型混練機を使用して混練し、本発明の導電性樹脂ペーストを得た。
また、無機粉末を無機粉末B:比重が8.90で、平均粒径が0.5μmのNi粉末に変えるか(実施例11)、無機粉末を無機粉末C: 比重が6.95で、平均粒径が1.0μmのSnO2粉末に変えた(実施例12)以外は実施例1と同様にして、導電性樹脂ペーストを調整し、3本ロール型混練機を使用して混練し、本発明の導電性樹脂ペーストを得た。
樹脂成分をエポキシ樹脂化合物B:ビスフェノールA型固形エポキシ樹脂(三菱化学株式会社:jER1004)に変えるか(実施例13)、溶剤成分を溶剤B:酢酸2−n−ブトキシエチル(関東化学株式会社:酢酸2−n−ブトキシエチル)とし(実施例14)、又は溶剤C:ブチルカルビトール(関東化学株式会社:2−(2−n−ブトキシエトキシ)エタノールとし(実施例15)、又は溶剤D:N−メチル−2−ピロリドン(関東化学株式会社:N−メチル−2−ピロリジノン)とするか(実施例16)、又は溶剤E:2−n−ブトキシエタノール(関東化学株式会社:2−n−ブトキシエタノール)に変えた(実施例17)以外は実施例1と同様にして、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、本発明の導電性樹脂ペーストを得た。
その後、この導電性樹脂ペーストを用いて、アルミナ基板上に印刷し、上記の条件で体積抵抗率を測定した。また、アルミナ基板上に滴下しシリコンチップ載せ、150℃に加熱し40分間溶剤を気化させてから、接着強度を測定した。本発明の導電性樹脂ペーストを25℃で保管しながら粘度を測定し保存安定性を評価した。この結果は表2に併記した。
(Examples 9 to 17)
As described in Table 2, the Ag powder was used as flake Ag powder B having a tap density of 2 g / cm 3 (Example 9), or spherical Ag powder C having a tap density of 4.1 g / cm 3 was used (Example 10). The conductive resin paste was prepared in the same manner as in Example 1 except that, and kneaded using a three-roll type kneader to obtain the conductive resin paste of the present invention.
Also, the inorganic powder is changed to inorganic powder B: Ni powder having a specific gravity of 8.90 and an average particle diameter of 0.5 μm (Example 11), or the inorganic powder is inorganic powder C: specific gravity is 6.95, average A conductive resin paste was prepared in the same manner as in Example 1 except that the particle size was changed to SnO 2 powder having a particle size of 1.0 μm (Example 12), and this was kneaded using a three-roll kneader. The conductive resin paste of the invention was obtained.
The resin component is changed to epoxy resin compound B: bisphenol A type solid epoxy resin (Mitsubishi Chemical Corporation: jER1004) (Example 13) or the solvent component is solvent B: 2-n-butoxyethyl acetate (Kanto Chemical Co., Inc .: 2-N-butoxyethyl acetate) (Example 14), or solvent C: butyl carbitol (Kanto Chemical Co., Inc .: 2- (2-n-butoxyethoxy) ethanol (Example 15), or solvent D: N-methyl-2-pyrrolidone (Kanto Chemical Co., Inc .: N-methyl-2-pyrrolidinone) (Example 16) or solvent E: 2-n-butoxyethanol (Kanto Chemical Co., Ltd .: 2-n-) A conductive resin paste was prepared in the same manner as in Example 1 except that (butoxyethanol) was changed to (Butoxyethanol), and kneaded using a three-roll kneader. To give a light conductive resin paste.
Then, using this conductive resin paste, it printed on the alumina substrate and measured the volume resistivity on said conditions. Further, it was dropped on an alumina substrate, placed on a silicon chip, heated to 150 ° C. and the solvent was vaporized for 40 minutes, and then the adhesive strength was measured. While the conductive resin paste of the present invention was stored at 25 ° C., the viscosity was measured and storage stability was evaluated. The results are also shown in Table 2.
(比較例1〜8)
表3に記載したようにAg粉末成分と無機粉末成分と樹脂成分と溶剤成分の配合量を変えた以外は実施例1と同様にして、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、比較用の導電性樹脂ペーストを得た。
その後、この導電性樹脂ペーストを用いて、アルミナ基板上に印刷し、上記の条件で体積抵抗率を測定した。また、アルミナ基板上に滴下しシリコンチップ載せ、150℃に加熱し40分間溶剤を気化させてから、接着強度を測定した。この導電性樹脂ペーストを25℃で保管しながら粘度を測定し保存安定性を評価した。この結果は表3に併記した。
(Comparative Examples 1-8)
As shown in Table 3, a conductive resin paste was prepared in the same manner as in Example 1 except that the blending amounts of the Ag powder component, the inorganic powder component, the resin component, and the solvent component were changed, and a three-roll kneader Was used for kneading to obtain a conductive resin paste for comparison.
Then, using this conductive resin paste, it printed on the alumina substrate and measured the volume resistivity on said conditions. Further, it was dropped on an alumina substrate, placed on a silicon chip, heated to 150 ° C. and the solvent was vaporized for 40 minutes, and then the adhesive strength was measured. The storage stability was evaluated by measuring the viscosity while storing this conductive resin paste at 25 ° C. The results are also shown in Table 3.
(比較例9〜15)
表4に記載したように無機粉末成分の無機粉末Aの代わりに無機粉末D:比重6.95で、平均粒径が2.0μmのSnO2粉末を用い(比較例9)、又は無機粉末E:比重が3.58で平均粒径が0.5μmのMgO粉末に変えた(比較例10)以外は、実施例1と同様にして、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、比較用の導電性樹脂ペーストを得た。
また、樹脂成分のエポキシ樹脂化合物Aの代わりにエポキシ樹脂化合物C:ビスフェノールA型液状エポキシ樹脂(三菱化学株式会社:jER828)を用い(比較例11)、又はエポキシ樹脂化合物D:エポキシ化ポリブタジエン樹脂(株式会社ダイセル:エポリードPB4700)を用いるか(比較例12)、又はポリエステル樹脂化合物A:高分子量飽和ポリエステル樹脂(日本合成化学工業株式会社:ニチゴーポリエスター TP−220)(比較例13)、又はアクリル樹脂化合物A:アクリル樹脂(三菱レイヨン株式会社:BR−95)に変えた(比較例14)以外は実施例1と同様にして、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、比較用の導電性樹脂ペーストを得た。
硬化剤成分として硬化剤A:ジシアンジアミド(三菱化学株式会社:DICY7)、及び促進剤成分として硬化促進剤A:2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(四国化成株式会社:キュアゾール2P4MHZ−PW)を加えた以外は実施例1と同様にして、導電性樹脂ペーストを調製し、3本ロール型混練機を使用して混練し、比較用の導電性樹脂ペーストを得た(比較例15)。
その後、これらの導電性樹脂ペーストを用いて、アルミナ基板上に印刷し、上記の条件で体積抵抗率を測定した。また、アルミナ基板上に滴下しシリコンチップを載せ、150℃に加熱し40分間溶剤を気化するか硬化させてから、接着強度を測定した。次に、この導電性樹脂ペーストを25℃で保管しながら粘度を測定し保存安定性を評価した。この結果は表4に併記した。
(Comparative Examples 9-15)
As described in Table 4, instead of inorganic powder A as an inorganic powder component, inorganic powder D: SnO 2 powder having a specific gravity of 6.95 and an average particle size of 2.0 μm (Comparative Example 9), or inorganic powder E A conductive resin paste was prepared in the same manner as in Example 1 except that the specific gravity was changed to MgO powder having a specific gravity of 3.58 and an average particle diameter of 0.5 μm (Comparative Example 10), and a three-roll kneader Was used for kneading to obtain a conductive resin paste for comparison.
Moreover, instead of the epoxy resin compound A of the resin component, an epoxy resin compound C: a bisphenol A type liquid epoxy resin (Mitsubishi Chemical Corporation: jER828) is used (Comparative Example 11), or an epoxy resin compound D: an epoxidized polybutadiene resin ( (Comparative Example 12) or polyester resin compound A: high molecular weight saturated polyester resin (Nippon Gosei Chemical Co., Ltd .: Nichigo Polyester TP-220) (Comparative Example 13) or acrylic Resin Compound A: Conductive resin paste was prepared in the same manner as in Example 1 except that it was changed to acrylic resin (Mitsubishi Rayon Co., Ltd .: BR-95) (Comparative Example 14), and a three-roll kneader was used. And kneaded to obtain a conductive resin paste for comparison.
Curing agent A: dicyandiamide (Mitsubishi Chemical Corporation: DICY7) as a curing agent component, and curing accelerator A: 2-phenyl-4-methyl-5-hydroxymethylimidazole (Shikoku Kasei Co., Ltd .: Curesol 2P4MHZ- as an accelerator component) A conductive resin paste was prepared in the same manner as in Example 1 except that PW) was added, and kneaded using a three-roll kneader to obtain a conductive resin paste for comparison (Comparative Example 15). ).
Thereafter, these conductive resin pastes were used to print on an alumina substrate, and the volume resistivity was measured under the above conditions. Moreover, after dripping on an alumina substrate and mounting a silicon chip, it heated at 150 degreeC, and vaporized or hardened the solvent for 40 minutes, Then, the adhesive strength was measured. Next, the storage stability was evaluated by measuring the viscosity while storing this conductive resin paste at 25 ° C. The results are also shown in Table 4.
「評価」
表1、2から明らかなように、実施例1〜17の導電性樹脂ペーストは、本発明により平均分子量が900以上の固形エポキシ樹脂を用い、硬化剤を含まず、銀粉末(A)と熱可塑性樹脂(B)の重量比率、かつ銀粉末(A)と熱可塑性樹脂(B)とを合わせた量と溶剤(C)の量との重量比率が所定の範囲となるように混合されているので、導電性、接着性、保存安定性のいずれも優れていることが分かる。なお、実施例2、7、8は体積抵抗率がやや高く、実施例5は粘度がやや高く、実施例7、8、11は、接着強度がやや弱いが、実用上問題の無いレベルである。
"Evaluation"
As is clear from Tables 1 and 2, the conductive resin pastes of Examples 1 to 17 use a solid epoxy resin having an average molecular weight of 900 or more according to the present invention, does not contain a curing agent, and contains silver powder (A) and heat. The weight ratio of the plastic resin (B) and the weight ratio of the amount of the silver powder (A) and the thermoplastic resin (B) combined with the amount of the solvent (C) are mixed in a predetermined range. Therefore, it turns out that all of electroconductivity, adhesiveness, and storage stability are excellent. In Examples 2, 7, and 8, the volume resistivity is slightly high, in Example 5, the viscosity is slightly high, and in Examples 7, 8, and 11, the adhesive strength is slightly weak, but there is no practical problem. .
これに対し、表3から明らかなように、比較例1は、本発明よりもAg粉末の量を少なくしたため、抵抗値が測定出来ず不可となった。比較例2は、Ag粉末が本発明よりも多いため、コストメリットが見いだせず不可となった。比較例3は、Ag粉末と無機粉末の合計量を本発明よりも少なくしたので、Ag粉末と無機粉末の合計量と樹脂量の比率が変化し、接着強度が弱く不可となった。比較例4は、Ag粉末と無機粉末の合計量を本発明よりも多くし、溶剤量が減少したため、粘度が高く、また、Ag粉末と無機粉末の合計量と樹脂の比率が変化し、接着強度が弱く不可となった。比較例5は、Ag粉末と無機粉末の合計量と樹脂量との比率を本発明より低くしたため、体積抵抗率が測定出来ず不可となった。比較例6は、Ag粉末と無機粉末の合計量と樹脂量との比率を本発明より高くしたため、接着強度が低く不可となった。比較例7は、Ag粉末と無機粉末と樹脂の合計量の比率を本発明よりも低くしたため、接着強度が低く不可となった。比較例8は、Ag粉末と無機粉末と樹脂の合計量と溶剤量の比率を本発明よりも高くしたため、粘度が高く、抵抗値が測定出来ず不可となった。 On the other hand, as can be seen from Table 3, in Comparative Example 1, since the amount of Ag powder was smaller than that of the present invention, the resistance value could not be measured and became impossible. Since the comparative example 2 had more Ag powder than this invention, cost merit was not found but became impossible. In Comparative Example 3, since the total amount of Ag powder and inorganic powder was less than that of the present invention, the ratio between the total amount of Ag powder and inorganic powder and the amount of resin was changed, and the adhesive strength was weak and was impossible. In Comparative Example 4, the total amount of Ag powder and inorganic powder was larger than that of the present invention, and the amount of solvent was reduced. Therefore, the viscosity was high, and the ratio of the total amount of Ag powder and inorganic powder to the resin was changed. The strength was weak and was impossible. In Comparative Example 5, the ratio of the total amount of Ag powder and inorganic powder and the amount of resin was made lower than that of the present invention, so that the volume resistivity could not be measured and became impossible. In Comparative Example 6, since the ratio of the total amount of Ag powder and inorganic powder and the amount of resin was higher than that of the present invention, the adhesive strength was low and became impossible. In Comparative Example 7, the ratio of the total amount of the Ag powder, the inorganic powder, and the resin was made lower than that of the present invention, so that the adhesive strength was low and was impossible. In Comparative Example 8, since the ratio of the total amount of Ag powder, inorganic powder, resin, and solvent amount was higher than that of the present invention, the viscosity was high, and the resistance value could not be measured, which became impossible.
比較例9は、表4から明らかなように、粒径が大きい無機粉末Dを使用しているため、体積抵抗率が高く不可となった。また、比較例10は、比重が小さい無機粉末Eを使用したため、体積抵抗率が高く不可となった。比較例11は、液状のエポキシ樹脂化合物Cを使用したため、体積抵抗率が高く、接着強度が弱く不可となった。同様に、比較例12は液状のエポキシ樹脂化合物Dを使用したため、体積抵抗率が高く、接着強度が弱く不可となった。比較例13は、固形エポキシ樹脂ではなくポリエステル化合物Aを使用したため、接着強度が弱く不可となった。比較例14は、固形エポキシ樹脂ではなくアクリル樹脂化合物Aを使用したため,接着強度が弱く不可となった。比較例15は、固形エポキシ樹脂に対して、硬化剤Aと硬化促進剤Aを使用しているため、保存安定性が悪く不可となった。 As is clear from Table 4, Comparative Example 9 uses an inorganic powder D having a large particle size, and thus has a high volume resistivity and cannot be used. Moreover, since the comparative example 10 used the inorganic powder E with small specific gravity, the volume resistivity became high and became impossible. Since the comparative example 11 used the liquid epoxy resin compound C, the volume resistivity was high and the adhesive strength was weak and became impossible. Similarly, since Comparative Example 12 used a liquid epoxy resin compound D, the volume resistivity was high and the adhesive strength was weak, which was not possible. In Comparative Example 13, since the polyester compound A was used instead of the solid epoxy resin, the adhesive strength was weak and it was not possible. Since the comparative example 14 used the acrylic resin compound A instead of a solid epoxy resin, its adhesive strength was weak and became impossible. Since the comparative example 15 uses the hardening | curing agent A and the hardening accelerator A with respect to solid epoxy resin, its storage stability became bad and became impossible.
本発明によれば、銀粉末(A)、無機粉末(B)、熱可塑性樹脂(C)、溶剤(D)を必須成分とする導電性樹脂ペーストにおいて、銀粉末(A)と比重が4以上の無機粉末(B)の合計と熱可塑性樹脂(B)の重量比率、これらと溶剤との重量比率が特定の範囲になるよう、熱可塑性樹脂(B)は分子量が900以上の固形エポキシ樹脂を特定量組合せ、硬化剤を使用することなく調製したため、導電性、接着強度、保存安定性を改善させることができ、各種電子素子に適用できる。 According to the present invention, in a conductive resin paste containing silver powder (A), inorganic powder (B), thermoplastic resin (C), and solvent (D) as essential components, the specific gravity of silver powder (A) is 4 or more. The thermoplastic resin (B) is a solid epoxy resin having a molecular weight of 900 or more so that the total weight of the inorganic powder (B) and the weight ratio of the thermoplastic resin (B) and the weight ratio of these to the solvent are within a specific range. Since it was prepared without using a specific amount combination and a curing agent, the conductivity, adhesive strength and storage stability can be improved, and it can be applied to various electronic devices.
本発明の導電性樹脂ペーストは、タンタルコンデンサやアルミ固体電解コンデンサ、チップ抵抗器などの各種電子素子の内部電極や端面電極、また、それの接着に適用できる。また、低温で硬化できるためタッチパネルなどの配線電極やそれらを用いた電子素子などに対して、ハンドリングが良く低抵抗値を実現できるため、その工業的価値はきわめて大きい。 The conductive resin paste of the present invention can be applied to internal electrodes and end face electrodes of various electronic elements such as tantalum capacitors, aluminum solid electrolytic capacitors, chip resistors, and adhesion thereof. In addition, since it can be cured at a low temperature, it can be handled well and a low resistance value can be realized with respect to wiring electrodes such as a touch panel and electronic elements using them.
Claims (9)
無機粉末(B)は、比重が4以上かつ平均粒子径が1μm以下であり、熱可塑性樹脂(C)は、平均分子量が900以上の固形エポキシ樹脂であり、硬化剤を含まず、銀粉末(A)が総量に対して10〜50重量%、かつ無機粉末(B)が総量に対して60重量%以下で配合され、導電性粉末と熱可塑性樹脂(C)の重量比率(A+B):(C)が80:20〜98:2の範囲で、また導電性粉末と熱可塑性樹脂(C)との合計量と溶剤(D)の量との重量比率(A+B+C):(D)が90:10〜30:70の範囲となるように混合され、25℃における粘度が0.2〜100Pasとなることを特徴とする導電性樹脂ペースト。 A conductive resin paste comprising silver powder (A) and inorganic powder (B) as conductive powder, thermoplastic resin (C), and solvent (D) as essential components,
The inorganic powder (B) has a specific gravity of 4 or more and an average particle diameter of 1 μm or less, and the thermoplastic resin (C) is a solid epoxy resin having an average molecular weight of 900 or more, does not contain a curing agent, and contains silver powder ( A) is blended in an amount of 10 to 50% by weight based on the total amount, and inorganic powder (B) is blended in an amount of 60% by weight or less based on the total amount, and the weight ratio (A + B) of the conductive powder and the thermoplastic resin (C): C) is in the range of 80:20 to 98: 2, and the weight ratio (A + B + C) :( D) of the total amount of conductive powder and thermoplastic resin (C) to the amount of solvent (D) is 90: A conductive resin paste, which is mixed so as to be in a range of 10 to 30:70, and has a viscosity at 25 ° C. of 0.2 to 100 Pas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012275739A JP2014120382A (en) | 2012-12-18 | 2012-12-18 | Conductive resin paste and electronic element using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012275739A JP2014120382A (en) | 2012-12-18 | 2012-12-18 | Conductive resin paste and electronic element using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014120382A true JP2014120382A (en) | 2014-06-30 |
Family
ID=51175044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012275739A Pending JP2014120382A (en) | 2012-12-18 | 2012-12-18 | Conductive resin paste and electronic element using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014120382A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018092762A1 (en) * | 2016-11-21 | 2018-05-24 | 東洋紡株式会社 | Conductive paste, conductive film, method for producing conductive film, conductive thin wiring line and method for producing conductive thin wiring line |
CN108962421A (en) * | 2017-05-23 | 2018-12-07 | 中国振华集团云科电子有限公司 | A kind of impregnated silver pulp and tantalum capacitor |
JP2020513463A (en) * | 2016-12-08 | 2020-05-14 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | Compositions suitable for laser-induced forward transfer (LIFT) applications |
JPWO2021066091A1 (en) * | 2019-10-04 | 2021-04-08 | ||
WO2021066090A1 (en) * | 2019-10-04 | 2021-04-08 | 株式会社村田製作所 | Electrolytic capacitor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06267784A (en) * | 1992-11-04 | 1994-09-22 | Du Pont Kk | Conductive resin paste and laminated ceramic chip capacitor with terminal electrode consisting of same |
JP2001023869A (en) * | 1999-07-09 | 2001-01-26 | Toshiba Chem Corp | Conductive paste for solid electrolytic capacitor |
WO2007072894A1 (en) * | 2005-12-22 | 2007-06-28 | Namics Corporation | Thermosetting conductive paste and multilayer ceramic component having external electrode which is formed by using such thermosetting conductive paste |
JP2010047716A (en) * | 2008-08-22 | 2010-03-04 | Toyo Ink Mfg Co Ltd | Electroconductive ink composition for screen printing and electroconductive coated film |
JP2010083952A (en) * | 2008-09-30 | 2010-04-15 | Mitsubishi Materials Corp | Conductive ink composition and solar cell module formed using the same |
WO2011096222A1 (en) * | 2010-02-05 | 2011-08-11 | 東洋インキScホールディングス株式会社 | Electrically conductive ink, and laminate having electrically conductive pattern attached thereto and process for production thereof |
WO2013077447A1 (en) * | 2011-11-24 | 2013-05-30 | 昭和電工株式会社 | Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating |
JP2013194169A (en) * | 2012-03-21 | 2013-09-30 | Kyoto Elex Kk | Thermosetting conductive paste composition |
-
2012
- 2012-12-18 JP JP2012275739A patent/JP2014120382A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06267784A (en) * | 1992-11-04 | 1994-09-22 | Du Pont Kk | Conductive resin paste and laminated ceramic chip capacitor with terminal electrode consisting of same |
JP2001023869A (en) * | 1999-07-09 | 2001-01-26 | Toshiba Chem Corp | Conductive paste for solid electrolytic capacitor |
WO2007072894A1 (en) * | 2005-12-22 | 2007-06-28 | Namics Corporation | Thermosetting conductive paste and multilayer ceramic component having external electrode which is formed by using such thermosetting conductive paste |
JP2010047716A (en) * | 2008-08-22 | 2010-03-04 | Toyo Ink Mfg Co Ltd | Electroconductive ink composition for screen printing and electroconductive coated film |
JP2010083952A (en) * | 2008-09-30 | 2010-04-15 | Mitsubishi Materials Corp | Conductive ink composition and solar cell module formed using the same |
WO2011096222A1 (en) * | 2010-02-05 | 2011-08-11 | 東洋インキScホールディングス株式会社 | Electrically conductive ink, and laminate having electrically conductive pattern attached thereto and process for production thereof |
WO2013077447A1 (en) * | 2011-11-24 | 2013-05-30 | 昭和電工株式会社 | Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating |
JP2013194169A (en) * | 2012-03-21 | 2013-09-30 | Kyoto Elex Kk | Thermosetting conductive paste composition |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018092762A1 (en) * | 2016-11-21 | 2018-05-24 | 東洋紡株式会社 | Conductive paste, conductive film, method for producing conductive film, conductive thin wiring line and method for producing conductive thin wiring line |
JPWO2018092762A1 (en) * | 2016-11-21 | 2019-10-17 | 東洋紡株式会社 | A conductive paste, a conductive film, a method for manufacturing a conductive film, a conductive fine wiring, and a method for manufacturing a conductive fine wiring. |
JP7024724B2 (en) | 2016-11-21 | 2022-02-24 | 東洋紡株式会社 | A method for manufacturing a conductive paste, a conductive film, a conductive film, a conductive fine wiring, and a method for manufacturing a conductive fine wiring. |
JP2020513463A (en) * | 2016-12-08 | 2020-05-14 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | Compositions suitable for laser-induced forward transfer (LIFT) applications |
CN108962421A (en) * | 2017-05-23 | 2018-12-07 | 中国振华集团云科电子有限公司 | A kind of impregnated silver pulp and tantalum capacitor |
JPWO2021066091A1 (en) * | 2019-10-04 | 2021-04-08 | ||
WO2021066090A1 (en) * | 2019-10-04 | 2021-04-08 | 株式会社村田製作所 | Electrolytic capacitor |
WO2021066091A1 (en) * | 2019-10-04 | 2021-04-08 | 株式会社村田製作所 | Electrolytic capacitor, and method for manufacturing electrolytic capacitor |
JPWO2021066090A1 (en) * | 2019-10-04 | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180588B2 (en) | Thermosetting conductive paste and multilayer ceramic component having external electrodes formed using the same | |
JP4507750B2 (en) | Conductive paste | |
KR102079148B1 (en) | Electroconductive paste | |
JP5988124B2 (en) | Thick film resistor and manufacturing method thereof | |
US9676947B2 (en) | Thermosetting conductive paste | |
KR102188447B1 (en) | Conductive adhesive composition and electronic element using same | |
JP2014120382A (en) | Conductive resin paste and electronic element using the same | |
JP5488059B2 (en) | Conductive paste | |
KR102328465B1 (en) | Conductive paste | |
JP2007227156A (en) | Conductive paste, and printed wiring board using it | |
JP5200662B2 (en) | Conductive adhesive and electronic components | |
JP5988123B2 (en) | Resistance composition | |
JP2013149618A (en) | Polymer thick film solder alloy conductor composition | |
JP2007277384A (en) | Electroconductive adhesive | |
JP2004111057A (en) | Conductive paste composition | |
JP2010090264A (en) | Functional electroconductive coating and method for production of printed circuit board using the same | |
JP6048166B2 (en) | Conductive adhesive composition and electronic device using the same | |
JP6247015B2 (en) | Polymer type conductive paste and method for producing electrode using polymer type conductive paste | |
JP6084397B2 (en) | Inorganic particle-containing paste for sintering and coating formed product | |
JP6084396B2 (en) | Inorganic particle-containing paste for sintering and coating formed product | |
JP5861600B2 (en) | Conductive adhesive composition and electronic device using the same | |
JP4152163B2 (en) | Conductive adhesive and method for producing the same | |
JP2003327943A (en) | Conductive adhesive | |
JP5119766B2 (en) | Conductive adhesive and electronic component using the same | |
JP2014107157A (en) | Conductive resin paste and electronic element using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141208 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150508 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160621 |