WO2018181110A1 - Low melting point sealing material and electronic part - Google Patents

Low melting point sealing material and electronic part Download PDF

Info

Publication number
WO2018181110A1
WO2018181110A1 PCT/JP2018/012003 JP2018012003W WO2018181110A1 WO 2018181110 A1 WO2018181110 A1 WO 2018181110A1 JP 2018012003 W JP2018012003 W JP 2018012003W WO 2018181110 A1 WO2018181110 A1 WO 2018181110A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
sealing material
low
low melting
moles
Prior art date
Application number
PCT/JP2018/012003
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 池田
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Publication of WO2018181110A1 publication Critical patent/WO2018181110A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to a low melting point sealing material comprising an inorganic low melting point composition.
  • Various inorganic low melting point compositions are used in various applications in the electrical and electronic equipment industry. For example, in the sealing of electrical and electronic parts such as crystal oscillators and LED elements, a low melting point (for example, 250 ° C.) Au—Sn alloy solder paste or sealing glass frit is applied to these parts. And then firing.
  • a low melting point for example, 250 ° C.
  • Au—Sn alloy solder paste or sealing glass frit is applied to these parts. And then firing.
  • Au-Sn alloy (Patent Document 1) is a material that has been used for some time and is reliable, but it is very expensive because it contains gold as a component.
  • PbO glass and V 2 O 5 glass are also known as low melting point glass used for the preparation of the sealing material.
  • PbO-based glass Patent Document 2
  • V 2 O 5 glass Patent Document 3
  • Patent Document 4 a sealing material that can be used at 300 to 330 ° C., which contains silver oxide and / or silver halide and another metal oxide (which may be Pb or V) is known (Patent Document 4). .
  • Patent Documents 5 and 6 a sealing material containing silver oxide, phosphorus pentoxide and silver iodide is known.
  • One object of the present invention is to provide a low-melting-point sealing material that flows well when heat-treated in a low temperature range of 500 ° C. or lower, preferably 350 ° C. or lower, and exhibits a low thermal expansion coefficient by subsequent cooling and solidification. It is also preferable to provide such a sealing material that has a small change in thermal expansion coefficient even when a relatively high heat treatment temperature or a relatively long heat treatment is performed.
  • a further object of the present invention is to peel off the sealing material from what has been sealed once and reuse it, or to reheat the device once sealed to release the seal, repair and adjust the inside of the device, etc. It is to provide a sealing material that can be sealed again (rework) by post-heat treatment.
  • a sealing material excellent in reusability and reworkability is a sealing material that contributes to resource saving and energy saving.
  • the present inventor investigated the reactivity between an inorganic low-melting-point composition containing Ag and O within a predetermined range and various compounds, and Fe alloy and Ni alloy have reactivity with the low-melting-point composition. Found low. Moreover, it discovered that the sealing material which shows a low thermal expansion coefficient can be obtained by using this alloy as a filler.
  • the present invention has been completed by further studying these findings. That is, the present invention provides the following.
  • a low melting point sealing material comprising 50 to 95% by volume of a low melting point composition and 5 to 50% by volume of a filler
  • the low-melting-point composition is a nonmetallic composition having a melting point not exceeding 500 ° C. containing Ag and O as essential components, and the low-melting-point sealing material is an alloy selected from an Fe alloy and a Ni alloy.
  • a low-melting-point sealing material comprising at least 5% by volume of one or more fillers.
  • a low-melting point sealing material containing 50 to 95% by volume of a low melting point composition and 5 to 50% by volume of a filler contains Ag and O as essential components, and is selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te.
  • a non-metallic composition containing at least one melting point and having a melting point not exceeding 500 ° C., wherein the low melting point sealing material contains at least 5% by volume of a filler consisting of at least one alloy selected from Fe alloys and Ni alloys A low melting point sealing material. 3.
  • (C) Number of moles of V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi, and Te atoms with respect to the sum of the number of moles of all atoms having a positive ionic valence. The percentage of the sum of 4.
  • the proportion of moles of I atoms is 1% or more and the proportion of moles of O atoms is 99% with respect to the sum of moles of all atoms having a negative ionic valence. 5.
  • the low melting point sealing material according to any one of 1 to 4 above.
  • the ratio of the sum of the number of moles of F, Cl, Br atoms to the sum of the number of moles of all atoms having a negative ionic valence in the low melting point composition of a predetermined mass does not exceed 3%. 1 to 5 low melting point sealing material. 7).
  • the ratio of the number of moles of P atoms to the sum of the number of moles of all atoms having a positive ionic valence is 25% or less. Melting point sealing material. 8).
  • the ratio of the sum of the number of moles of V, Mo, W, Ge, P and Te atoms to the sum of the number of moles of all atoms having a positive ionic valence in the low melting point composition of a predetermined mass is 2 to 80. %,
  • 11. 10 The electronic component as described above, which is a crystal resonator, a semiconductor element, a SAW element or an organic EL element.
  • the low melting point sealing material of the present invention is applied to the surface to be sealed and is heated and melted in a wide temperature range not exceeding 500 ° C., preferably not exceeding 350 ° C. Then, by cooling and solidifying, a sealing layer having a low coefficient of thermal expansion can be formed, so that a sealing target made of a material having a low coefficient of thermal expansion can be effectively sealed. Furthermore, the low-melting-point sealing material has a small change in the coefficient of thermal expansion even when heat treatment is performed for a long time or at a high temperature, and is therefore excellent in reusability and reworkability.
  • FIG. 1 is a schematic view showing the structure of a quartz crystal resonator using a sealing material in an exploded state.
  • the term “low melting point” means that the melting point does not exceed 500 ° C., preferably does not exceed 450 ° C., more preferably does not exceed 400 ° C., and more preferably does not exceed 350 ° C. Means that.
  • the low melting-point sealing material of this invention can be used for the use suitable for melting
  • a low melting point sealing material comprising a low melting point composition having a melting point of 250 to 350 ° C. can be used as an inexpensive alternative material for an Au—Sn alloy sealing material.
  • the low melting point sealing material comprising a low melting point composition whose melting point does not exceed 250 ° C. can be advantageously used for further sealing an electronic component in which an Au—Sn alloy solder is already used. .
  • the low melting point composition in the present invention contains a large amount of oxide ions, it is a metal such as silver solder or silver-containing tin solder (the electrical resistivity is in the range of 10 ⁇ 8 to 10 ⁇ 5 ⁇ ⁇ m). In contrast, it is a non-metallic material having an electrical resistivity of 10 ⁇ 2 ⁇ ⁇ m or more.
  • the term “predetermined mass” means that the term “predetermined mass” does not mean a specific fixed mass, but an arbitrary mass. It may be.
  • the present invention relates to the number of moles of the specific atom (one or more) with respect to the sum of the number of moles of all atoms having the same ionic valence as that atom. This is because the ratio (%) may be obtained.
  • the number of moles of a specific atom (one kind or two or more kinds) having the same sign ionic valence with respect to the sum of the number of moles of all atoms having a positive ionic valence.
  • the ratio is also referred to as “the cation%” of a particular atom for convenience.
  • anion% In the case of an atom having a negative ionic valence, it is also referred to as “anion%”.
  • Ag is an essential component of the low melting point composition.
  • Ag has the effect of lowering the liquidus temperature of the low melting point composition in the present invention and the effect of forming a glass phase.
  • the content of Ag is preferably 20 to 98 cation%, more preferably 29 to 95 cation%, and still more preferably 39 to 92 cation%.
  • O is an essential component of the low melting point composition.
  • O has the effect of lowering the liquidus temperature of the low melting point composition in the present invention and the effect of forming a glass phase.
  • the O content is preferably 10 anion% or more, more preferably 20 anion% or more, and further preferably 27 anion% or more.
  • the low melting point composition contains at least one selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te as an optional component. It is preferable. By containing these elements, it is possible to easily form a glass phase in the low melting point composition.
  • the total content of one or more selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te is preferably 2 to 80 anion%, more preferably 3 ⁇ 71 anion%, more preferably 5 to 61 anion%.
  • I is an optional component of the low melting point composition.
  • I significantly lowers the liquidus temperature of the low-melting-point composition in the present invention, so that it matches the temperature of the sealing process for the sealing material to be sealed and the heat-resistant temperature required for the sealing material after sealing. , Its content can be adjusted.
  • I decreases the elastic modulus of the low melting point composition, it has the effect of lowering the thermal expansion coefficient of the low melting point sealing material combined with the high elastic modulus filler.
  • the content of I for lowering the liquidus temperature is preferably 90 anion% or less, more preferably 80 anion% or less, and still more preferably 73 anion% or less.
  • the content of I for lowering the thermal expansion coefficient of the low melting point sealing material is preferably 1 anion% or more, more preferably 3 anion% or more, and further preferably 5 anion% or more.
  • F, Cl and Br are optional components of the low melting point composition. Since F, Cl, and Br may cause corrosion of the Fe—Ni alloy and Fe—Co alloy contained as fillers in the low melting point sealing material, the total content thereof is preferably 3 anion% or less. Preferably it is 1 anion% or less, and it is still more preferable that it does not contain substantially.
  • substantially does not contain F, Cl and Br means that the content is 0.1 anion% or less even when they are mixed in a trace amount as impurities.
  • P is an optional component of the low melting point composition.
  • P has the effect of increasing the thermal expansion coefficient of the low melting point sealing material, and the inclusion of P may cause deterioration of water resistance.
  • the content of P in the low-melting-point composition is preferably 25 cations. % Or less, more preferably 10 cation% or less, and still more preferably 1 cation% or less.
  • the low melting point composition includes Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, lanthanoid elements, Ti, Zr, Hf, Fe, Co, as optional cation components.
  • Ni, Cu, Al, Ga, In, Si, Sn, N, Sb and S may be contained.
  • These optional components can be contained for adjusting the solidus temperature, liquidus temperature, thermal expansion coefficient, elastic modulus and the like.
  • the total content of these optional oxide components is preferably 10 cation% or less, more preferably 8 cation% or less, and still more preferably 5 cation% or less.
  • the low melting point composition may be provided in the form of a mixture of various raw material reagent powders prepared in advance so as to give the target low melting point composition by heating and melting. Moreover, it can also be set as the material of the form in which the solid solution, the double halide, and the glass phase which are obtained by heating, melting, and cooling such a mixture are formed. When a solid solution, a double halide, or a glass phase is formed, it becomes a composition that is easily melted by heating in a shorter time, and thus a composition in such a form is more preferable.
  • the low-melting-point composition can also be produced by reacting and precipitating an aqueous solution containing an acid, base, or salt.
  • the low melting point sealing material of the present invention has a form containing a filler made of Fe alloy or Ni alloy in order to lower the thermal expansion coefficient and improve the sealing characteristics.
  • a filler made of Fe alloy or Ni alloy as a filler, not only a low melting point sealing material having a low coefficient of thermal expansion is obtained, but also a coefficient of thermal expansion is maintained even when a relatively high heat treatment temperature or a relatively long heat treatment is performed. It becomes a low melting point sealing material with little change.
  • the low melting point sealing material can be peeled off from what has been sealed once and reused, or the device once sealed is reheated to release the seal, and the inside of the device is repaired and adjusted, and then heat treated again. It is possible to heat and seal (rework).
  • the Fe alloy means an alloy containing 30 mass% or more of Fe
  • the Ni alloy means an alloy containing 30 mass% or more of Ni.
  • Fe-Ni alloys are 40 to 70 mass% Fe, and 10 to 50 mass% Ni, represented by Invar (Ni: 36 mass%) and Super Invar (Ni: 32 mass%, Co: 5 mass%).
  • Co containing 0 to 20% by mass.
  • Fe-Co alloy contains 30 to 70 mass% Fe, 20 to 70 mass% Co, and 0 to 15 mass% Cr, represented by stainless steel invar (Co: 52 mass%, Cr: 11 mass%) Means what to do.
  • the thermal expansion coefficient of the filler is preferably 70 ⁇ 10 ⁇ 7 / K or less, more preferably 30 ⁇ 10 ⁇ 7 / K or less, and further preferably 10 ⁇ 10 ⁇ 7 / K or less.
  • the amount of thermal expansion coefficient of the low melting point sealing material is close to the thermal expansion coefficient of the object to be sealed.
  • An Fe alloy or Ni alloy filler may be used. More specifically, the content of the Fe alloy or Ni alloy filler in the low melting point sealing material is in the range of 5 to 50% by volume.
  • the low melting point sealing material can be in a form containing various fillers in addition to the Fe alloy or Ni alloy.
  • the filler D 50 (50% diameter.
  • the particle diameter of 50% cumulatively counted from the small particle diameter side in the volume-based particle size distribution measured using a laser diffraction / scattering particle size distribution meter) is 1 ⁇ m to 30 ⁇ m. It is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m.
  • the total content of various fillers is 50% by volume or less, preferably 40% by volume or less.
  • the low melting point sealing material of the present invention can be used after being processed into powder, beads, rods or the like. From the viewpoint of improving workability, it can be used as a paste by mixing with water, an organic solvent or the like.
  • the surface to be sealed can be composed of various metals and non-metals (inorganic oxides, etc.).
  • the working atmosphere may or may not contain oxygen. Therefore, since the sealing with the low melting point sealing material of the present invention can be performed in the air, it is preferable in that the adjustment of the atmosphere is unnecessary and the operation is simple.
  • pressure can be applied to the object to be sealed to further enhance the adhesion, and the low melting point sealing material can be vibrated to promote melting.
  • crystallization can reduce the thermal expansion coefficient of the sealing material, improve the mechanical strength, and improve the thermal shock resistance. it can.
  • the glass transition temperature may be maintained for a certain period of time above the glass transition point and below the liquidus temperature.
  • the low-melting-point sealing material of the present invention can be used for various electronic parts such as crystal resonators, semiconductor elements, SAW elements, and organic EL elements. In addition, it can be used for sealing parts that have problems with permeation of low molecular weight and low atomic weight gases such as hydrogen and helium, and parts that need to maintain a vacuum.
  • FIG. 1 schematically shows the structure of a crystal resonator using the low melting point sealing material 12 of the present invention in an exploded state.
  • each low melting point composition powder and each filler powder were mixed in a mortar to obtain a sealing material.
  • Details of the filler powder are as follows.
  • Example 2 using super invar as the filler, the degree of change in the coefficient of thermal expansion is small when sintered at 220 ° C. and when sintered at 300 ° C. It can also be seen that Examples 2 to 12 all have a relatively low coefficient of thermal expansion.
  • the low-melting-point composition of the present invention is useful because it can be used for a sealing material and a sealing method used for electric and electronic parts such as a crystal resonator and an LED element.

Abstract

Disclosed is a low melting point sealing material that flows well during a thermal treatment at 500ºC or lower and exhibits a low coefficient of thermal expansion by subsequent cooling solidification. The low melting point sealing material comprises 50-95 vol% of a low melting point composition and 5-50 vol% of a filler, wherein the low melting point composition is a non-metallic composition comprising Ag and O as essential components and having a melting point of not higher than 500ºC, and the low melting point sealing material comprises at least 5 vol% of a filler made of at least one alloy selected from Fe alloys and Ni alloys.

Description

低融点封止材及び電子部品Low melting point sealing material and electronic parts
 本発明は,無機低融点組成物を含んでなる低融点封止材に関する。 The present invention relates to a low melting point sealing material comprising an inorganic low melting point composition.
 種々の無機低融点組成物が電気・電子機器業界において様々な用途で用いられている。例えば,水晶振動子,LED素子のような電気・電子部品の封止において,低融点(例えば,250℃)のAu-Sn合金はんだペーストや封止用ガラスフリットが,これをそれらの部品に塗布し焼成するという方法で用いられている。 Various inorganic low melting point compositions are used in various applications in the electrical and electronic equipment industry. For example, in the sealing of electrical and electronic parts such as crystal oscillators and LED elements, a low melting point (for example, 250 ° C.) Au—Sn alloy solder paste or sealing glass frit is applied to these parts. And then firing.
 Au-Sn合金(特許文献1)は以前より用いられてきた材料であり信頼性はあるが,金を成分に含むため非常に高価である。 Au-Sn alloy (Patent Document 1) is a material that has been used for some time and is reliable, but it is very expensive because it contains gold as a component.
 このため,封止材の調製に用いられる低融点ガラスとしては,より安価なPbO系ガラスやV系ガラスも知られている。例えば,400℃未満の温度で封止可能なPbO系ガラス(特許文献2)や350℃以下で焼成可能なV系ガラス(特許文献3)が知られている。 For this reason, cheaper PbO glass and V 2 O 5 glass are also known as low melting point glass used for the preparation of the sealing material. For example, PbO-based glass (Patent Document 2) that can be sealed at a temperature lower than 400 ° C. and V 2 O 5 glass (Patent Document 3) that can be fired at 350 ° C. or lower are known.
 他方,酸化銀及び/又はハロゲン化銀と他の金属酸化物(Pb,Vであってよい)を含んでなる,300~330℃で使用できる封止材料が知られている(特許文献4)。 On the other hand, a sealing material that can be used at 300 to 330 ° C., which contains silver oxide and / or silver halide and another metal oxide (which may be Pb or V) is known (Patent Document 4). .
 また,酸化銀,五酸化燐及びヨウ化銀を含んでなる封止材料が知られている(特許文献5,6)。 Further, a sealing material containing silver oxide, phosphorus pentoxide and silver iodide is known (Patent Documents 5 and 6).
 このような状況において,近年,電気・電子材料の回路構成等の益々の微細化が進むのに伴い,より信頼性が高く且つ安価な封止材が求められるようになっているが,その要請には未だ十分に応えられていない。 Under such circumstances, as the circuit configuration of electric / electronic materials has been increasingly miniaturized in recent years, a more reliable and inexpensive sealing material has been demanded. Has not been fully met.
特開平9-122969号公報Japanese Patent Laid-Open No. 9-122969 特開昭61-261233号公報JP-A-61-261233 特開2013-32255号公報JP 2013-32255 A 特開平5-147974号公報JP-A-5-147974 特開2000-183560号公報JP 2000-183560 A 特開2001-328837号公報JP 2001-328837 A
 本発明の一目的は,500℃以下,好ましくは350℃以下という低い温度領域において熱処理するとき,よく流動し,その後の冷却固化により低い熱膨張係数を示す低融点封止材を提供すること,及び更に好ましくは,そのような封止材であって且つ比較的高い熱処理温度や比較的長時間の熱処理が行われても熱膨張係数の変化が小さいものを提供することである。本発明の更なる一目的は,一度封止したものから封止材を剥がして再利用することや,一度封止した機器を再加熱して封止を解き,機器内部を修理・調整等した後熱処理により再度封止すること(再作業)が可能な封止材を提供することである。再利用性・再作業性に優れた封止材は省資源化・省エネルギー化に寄与する封止材である。 One object of the present invention is to provide a low-melting-point sealing material that flows well when heat-treated in a low temperature range of 500 ° C. or lower, preferably 350 ° C. or lower, and exhibits a low thermal expansion coefficient by subsequent cooling and solidification. It is also preferable to provide such a sealing material that has a small change in thermal expansion coefficient even when a relatively high heat treatment temperature or a relatively long heat treatment is performed. A further object of the present invention is to peel off the sealing material from what has been sealed once and reuse it, or to reheat the device once sealed to release the seal, repair and adjust the inside of the device, etc. It is to provide a sealing material that can be sealed again (rework) by post-heat treatment. A sealing material excellent in reusability and reworkability is a sealing material that contributes to resource saving and energy saving.
 本発明者は,Ag及びOを所定範囲内の割合で含有する無機の低融点組成物と各種化合物との反応性を調査し,Fe合金及びNi合金は該低融点組成物との反応性が低いことを見出した。また,該合金をフィラーとして用いることで,低い熱膨張係数を示す封止材を得られることも見出した。本発明は,これらの発見に更に検討を加えて完成するに至ったものである。すなわち,本発明は以下を提供する。 The present inventor investigated the reactivity between an inorganic low-melting-point composition containing Ag and O within a predetermined range and various compounds, and Fe alloy and Ni alloy have reactivity with the low-melting-point composition. Found low. Moreover, it discovered that the sealing material which shows a low thermal expansion coefficient can be obtained by using this alloy as a filler. The present invention has been completed by further studying these findings. That is, the present invention provides the following.
 1.低融点組成物50~95体積%とフィラー5~50体積%とを含んでなる低融点封止材であって,
 該低融点組成物が,Ag及びOを必須の構成要素として含んでなる融点が500℃を超えない非金属組成物であり,該低融点封止材がFe合金及びNi合金から選ばれる合金の1種以上からなるフィラーを少なくとも5体積%含んでなるものである,低融点封止材。
 2.低融点組成物50~95体積%,フィラー5~50体積%を含有する低融点封止材であって,
 該低融点組成物が,Ag及びOを必須の構成要素として含み,且つ,V,Nb,Ta,Cr,Mo,W,Mn,Zn,B,Ge,Pb,P,Bi及びTeから選ばれる1種以上を含んでなる融点が500℃を超えない非金属組成物であり,該低融点封止材がFe合金及びNi合金から選ばれる合金の1種以上からなるフィラーを少なくとも5体積%含んでなるものである,低融点封止材。
 3.所定質量の該低融点組成物中,
 (a)正のイオン価を有する全原子のモル数の和に対しAg原子のモル数の占める割合が20~98%であり,
 (b)負のイオン価を有する全原子のモル数の和に対し,I原子のモル数の占める割合が0~90%,及びO原子のモル数の占める割合が10~100%である,
 上記1又は2の低融点封止材。
 4.所定質量の該低融点組成物中,
(c)正のイオン価を有する全原子のモル数の和に対しV,Nb,Ta,Cr,Mo,W,Mn,Zn,B,Ge,Pb,P,Bi,及びTe原子のモル数の和の占める割合が2~80%である,
 上記3の低融点封止材。
 5.所定質量の該低融点組成物中,負のイオン価を有する全原子のモル数の和に対し,I原子のモル数の占める割合が1%以上及びO原子のモル数の占める割合が99%以下である,上記1~4の何れかの低融点封止材。
 6.所定質量の該低融点組成物中,負のイオン価を有する全原子のモル数の和に対し,F,Cl,Br原子のモル数の和の占める割合が3%超えないものである,上記1~5の何れかの低融点封止材。
 7.所定質量の該低融点組成物中,正のイオン価を有する全原子のモル数の和に対し,P原子のモル数の占める割合が25%以下である,上記1~6の何れかの低融点封止材。
 8.所定質量の該低融点組成物中,正のイオン価を有する全原子のモル数の和に対し,V,Mo,W,Ge,P及びTe原子のモル数の和の占める割合が2~80%である,上記1~7の何れかの低融点封止材。
 9.該Fe合金及びNi合金から選ばれる合金が,Fe-Ni合金及びFe-Co合金である上記1~8の何れかの低融点封止材。
 10.上記1~9の何れかの低融点封止材で封止された電子部品。
 11.水晶振動子,半導体素子,SAW素子又は有機EL素子である,上記10の電子部品。
1. A low melting point sealing material comprising 50 to 95% by volume of a low melting point composition and 5 to 50% by volume of a filler,
The low-melting-point composition is a nonmetallic composition having a melting point not exceeding 500 ° C. containing Ag and O as essential components, and the low-melting-point sealing material is an alloy selected from an Fe alloy and a Ni alloy. A low-melting-point sealing material comprising at least 5% by volume of one or more fillers.
2. A low-melting point sealing material containing 50 to 95% by volume of a low melting point composition and 5 to 50% by volume of a filler,
The low melting point composition contains Ag and O as essential components, and is selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te. A non-metallic composition containing at least one melting point and having a melting point not exceeding 500 ° C., wherein the low melting point sealing material contains at least 5% by volume of a filler consisting of at least one alloy selected from Fe alloys and Ni alloys A low melting point sealing material.
3. In a predetermined mass of the low-melting-point composition,
(A) The ratio of the number of moles of Ag atoms to the sum of the number of moles of all atoms having a positive ionic valence is 20 to 98%,
(B) The proportion of moles of I atoms is 0 to 90% and the proportion of moles of O atoms is 10 to 100% with respect to the sum of moles of all atoms having a negative ionic valence.
3. The low melting point sealing material according to 1 or 2 above.
4). In a predetermined mass of the low-melting-point composition,
(C) Number of moles of V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi, and Te atoms with respect to the sum of the number of moles of all atoms having a positive ionic valence. The percentage of the sum of
4. The low melting point sealing material according to 3 above.
5). In the low-melting-point composition having a predetermined mass, the proportion of moles of I atoms is 1% or more and the proportion of moles of O atoms is 99% with respect to the sum of moles of all atoms having a negative ionic valence. 5. The low melting point sealing material according to any one of 1 to 4 above.
6). The ratio of the sum of the number of moles of F, Cl, Br atoms to the sum of the number of moles of all atoms having a negative ionic valence in the low melting point composition of a predetermined mass does not exceed 3%. 1 to 5 low melting point sealing material.
7). In the low-melting-point composition having a predetermined mass, the ratio of the number of moles of P atoms to the sum of the number of moles of all atoms having a positive ionic valence is 25% or less. Melting point sealing material.
8). The ratio of the sum of the number of moles of V, Mo, W, Ge, P and Te atoms to the sum of the number of moles of all atoms having a positive ionic valence in the low melting point composition of a predetermined mass is 2 to 80. %, The low-melting-point sealing material according to any one of 1 to 7 above.
9. 9. The low melting point sealing material according to any one of 1 to 8 above, wherein the alloy selected from the Fe alloy and Ni alloy is a Fe—Ni alloy and a Fe—Co alloy.
10. An electronic component sealed with the low melting point sealing material according to any one of 1 to 9 above.
11. 10. The electronic component as described above, which is a crystal resonator, a semiconductor element, a SAW element or an organic EL element.
 本発明の低融点封止材は,これを封止対象の表面に適用し,大気中で500℃を超えない,好ましくは350℃を超えない幅広い温度領域において加熱融解させて表面上に適宜広げた後,冷却させ固化させることで,熱膨張係数の低い封止層を形成できるため,低熱膨張係数の材質からなる封止対象を効果的に封止することができる。更に,当該低融点封止材は,長時間又は高温の熱処理が行われても熱膨張係数の変化も小さく,このため再利用性・再作業性に優れる。 The low melting point sealing material of the present invention is applied to the surface to be sealed and is heated and melted in a wide temperature range not exceeding 500 ° C., preferably not exceeding 350 ° C. Then, by cooling and solidifying, a sealing layer having a low coefficient of thermal expansion can be formed, so that a sealing target made of a material having a low coefficient of thermal expansion can be effectively sealed. Furthermore, the low-melting-point sealing material has a small change in the coefficient of thermal expansion even when heat treatment is performed for a long time or at a high temperature, and is therefore excellent in reusability and reworkability.
図1は,封止材を用いた水晶振動子の構造を分解した状態で示す模式図である。FIG. 1 is a schematic view showing the structure of a quartz crystal resonator using a sealing material in an exploded state.
 本明細書において,「低融点」の語は,融点が500℃を超えないことを意味し,好ましくは450℃を超えず,より好ましくは400℃を超えず,更に好ましくは350℃を超えないことを意味する。本発明の低融点封止材は,これを構成する低融点組成物の融点に適した用途に使用できる。例えば,250~350℃の融点を有する低融点組成物を含んでなる低融点封止材は,Au-Sn合金封止材の安価な代替材料として用いることができる。また,融点が250℃を超えない低融点組成物を含んでなる低融点封止材は,Au-Sn合金はんだが既に用いられている電子部品に更に封止を施す場合にも好都合に使用できる。 In this specification, the term “low melting point” means that the melting point does not exceed 500 ° C., preferably does not exceed 450 ° C., more preferably does not exceed 400 ° C., and more preferably does not exceed 350 ° C. Means that. The low melting-point sealing material of this invention can be used for the use suitable for melting | fusing point of the low melting-point composition which comprises this. For example, a low melting point sealing material comprising a low melting point composition having a melting point of 250 to 350 ° C. can be used as an inexpensive alternative material for an Au—Sn alloy sealing material. Further, the low melting point sealing material comprising a low melting point composition whose melting point does not exceed 250 ° C. can be advantageously used for further sealing an electronic component in which an Au—Sn alloy solder is already used. .
 本発明における低融点組成物は,酸化物イオンを多量に含んでいるため,金属である銀ロウや銀含有錫はんだ等(これらの電気抵抗率は10-8~10-5Ω・mの範囲内である)とは異なり,電気抵抗率が10-2Ω・m以上はある非金属材料である。 Since the low melting point composition in the present invention contains a large amount of oxide ions, it is a metal such as silver solder or silver-containing tin solder (the electrical resistivity is in the range of 10 −8 to 10 −5 Ω · m). In contrast, it is a non-metallic material having an electrical resistivity of 10 −2 Ω · m or more.
 本発明において低融点組成物につきその構成要素の割合を規定するに際し,「所定質量」の該組成物というとき,「所定質量」の語は特定の固定された質量を意味せず,任意の質量であってよい。本発明は,特定の1種又は2種以上の原子について,当該原子と同じ符号のイオン価を有する全原子のモル数の和に対する当該特定の原子(1種又は2種以上)のモル数の割合(%)が求まればよいからである。 In the present invention, when the ratio of the constituents of the low-melting-point composition is specified, the term “predetermined mass” means that the term “predetermined mass” does not mean a specific fixed mass, but an arbitrary mass. It may be. The present invention relates to the number of moles of the specific atom (one or more) with respect to the sum of the number of moles of all atoms having the same ionic valence as that atom. This is because the ratio (%) may be obtained.
 なお,本明細書において,低融点組成物中,正のイオン価を有する全原子のモル数の和に対する同符号のイオン価を有する特定の原子(1種又は2種以上)のモル数の占める割合を,便宜上それ(ら)特定の原子の「カチオン%」ともいう。負のイオン価を有する原子の場合,同様に「アニオン%」ともいう。 In the present specification, in the low melting point composition, the number of moles of a specific atom (one kind or two or more kinds) having the same sign ionic valence with respect to the sum of the number of moles of all atoms having a positive ionic valence. The ratio is also referred to as “the cation%” of a particular atom for convenience. In the case of an atom having a negative ionic valence, it is also referred to as “anion%”.
 本発明において,Agは低融点組成物の必須成分である。Agは,本発明における低融点組成物の液相線温度を低下させる効果やガラス相を形成させる効果がある。この効果のためには,Agの含有量は,好ましくは20~98カチオン%,より好ましくは29~95カチオン%,更に好ましくは39~92カチオン%である。 In the present invention, Ag is an essential component of the low melting point composition. Ag has the effect of lowering the liquidus temperature of the low melting point composition in the present invention and the effect of forming a glass phase. For this effect, the content of Ag is preferably 20 to 98 cation%, more preferably 29 to 95 cation%, and still more preferably 39 to 92 cation%.
 本発明において,Oは低融点組成物の必須成分である。Oは本発明における低融点組成物の液相線温度を低下させる効果やガラス相を形成させる効果がある。この効果のためには,Oの含有量は,好ましくは10アニオン%以上,より好ましくは20アニオン%以上,更に好ましくは27アニオン%以上である。 In the present invention, O is an essential component of the low melting point composition. O has the effect of lowering the liquidus temperature of the low melting point composition in the present invention and the effect of forming a glass phase. For this effect, the O content is preferably 10 anion% or more, more preferably 20 anion% or more, and further preferably 27 anion% or more.
 本発明において,低融点組成物には,V,Nb,Ta,Cr,Mo,W,Mn,Zn,B,Ge,Pb,P,Bi及びTeから選ばれる1種以上を任意成分として含有させることが好ましい。これらの元素を含有させることで,低融点組成物にガラス相を形成させやすくすることができる。V,Nb,Ta,Cr,Mo,W,Mn,Zn,B,Ge,Pb,P,Bi及びTeから選ばれる1種以上の合計含有量は好ましくは2~80アニオン%,より好ましくは3~71アニオン%,更に好ましくは5~61アニオン%である。 In the present invention, the low melting point composition contains at least one selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te as an optional component. It is preferable. By containing these elements, it is possible to easily form a glass phase in the low melting point composition. The total content of one or more selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te is preferably 2 to 80 anion%, more preferably 3 ~ 71 anion%, more preferably 5 to 61 anion%.
 本発明において,Iは低融点組成物の任意成分である。Iは本発明における低融点組成物の液相線温度を著しく低下させるため,封着対象に対する封着材の封着プロセスの温度や,封着後の封着材に求められる耐熱温度に合わせて,その含有量を調整することができる。また,Iは低融点組成物の弾性率を低下させるため,高弾性率のフィラーと複合化されてなる低融点封止材の熱膨張係数を下げる効果がある。液相線温度を低下させるためのIの含有量は,好ましくは90アニオン%以下,より好ましくは80アニオン%以下,更に好ましくは73アニオン%以下である。また,低融点封止材の熱膨張係数を下げるための,Iの含有量は好ましくは1アニオン%以上,より好ましくは3アニオン%以上,更に好ましくは5アニオン%以上である。 In the present invention, I is an optional component of the low melting point composition. I significantly lowers the liquidus temperature of the low-melting-point composition in the present invention, so that it matches the temperature of the sealing process for the sealing material to be sealed and the heat-resistant temperature required for the sealing material after sealing. , Its content can be adjusted. In addition, since I decreases the elastic modulus of the low melting point composition, it has the effect of lowering the thermal expansion coefficient of the low melting point sealing material combined with the high elastic modulus filler. The content of I for lowering the liquidus temperature is preferably 90 anion% or less, more preferably 80 anion% or less, and still more preferably 73 anion% or less. Further, the content of I for lowering the thermal expansion coefficient of the low melting point sealing material is preferably 1 anion% or more, more preferably 3 anion% or more, and further preferably 5 anion% or more.
 本発明において,F,Cl,Brは低融点組成物の任意成分である。F,Cl,Brは,低融点封止材にフィラーとして含まれるFe-Ni合金及びFe-Co合金の腐食を招くおそれがあるため,それらの含有量は合計で好ましくは3アニオン%以下,より好ましくは1アニオン%以下であり,実質的に含まないことが更に好ましい。ここに,F,Cl,Brを「実質的に含まない」とは,不純物としてそれらが微量に混入する場合でも,その含有量が,0.1アニオン%以下であることをいう。 In the present invention, F, Cl and Br are optional components of the low melting point composition. Since F, Cl, and Br may cause corrosion of the Fe—Ni alloy and Fe—Co alloy contained as fillers in the low melting point sealing material, the total content thereof is preferably 3 anion% or less. Preferably it is 1 anion% or less, and it is still more preferable that it does not contain substantially. Here, “substantially does not contain” F, Cl and Br means that the content is 0.1 anion% or less even when they are mixed in a trace amount as impurities.
 本発明において,Pは低融点組成物の任意成分である。但し,Pには低融点封止材の熱膨張係数を増大させる作用があり,また,Pの含有は耐水性の悪化を招くおそれがある。熱膨張係数を増大させ過ぎずまた耐水性に特に優れた低融点組成物を(従って,低融点封止材を)得るには,低融点組成物中のPの含有量は,好ましくは25カチオン%以下であり,より好ましくは10カチオン%以下,更に好ましくは1カチオン%以下である。 In the present invention, P is an optional component of the low melting point composition. However, P has the effect of increasing the thermal expansion coefficient of the low melting point sealing material, and the inclusion of P may cause deterioration of water resistance. In order to obtain a low-melting-point composition that does not increase the coefficient of thermal expansion excessively and is particularly excellent in water resistance (thus, a low-melting-point sealing material), the content of P in the low-melting-point composition is preferably 25 cations. % Or less, more preferably 10 cation% or less, and still more preferably 1 cation% or less.
 本発明において,低融点組成物は,任意のカチオン成分としてLi,Na,K,Rb,Cs,Mg,Ca,Sr,Ba,Sc,Y,ランタノイド元素,Ti,Zr,Hf,Fe,Co,Ni,Cu,Al,Ga,In,Si,Sn,N,Sb及びSを含有してもよい。これら任意の成分は,固相線温度,液相線温度,熱膨張係数,弾性率等の調整のために含有させることができる。これら任意の酸化物成分の含有量は合計で,好ましくは10カチオン%以下,より好ましくは8カチオン%以下,更に好ましくは5カチオン%以下である。 In the present invention, the low melting point composition includes Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, lanthanoid elements, Ti, Zr, Hf, Fe, Co, as optional cation components. Ni, Cu, Al, Ga, In, Si, Sn, N, Sb and S may be contained. These optional components can be contained for adjusting the solidus temperature, liquidus temperature, thermal expansion coefficient, elastic modulus and the like. The total content of these optional oxide components is preferably 10 cation% or less, more preferably 8 cation% or less, and still more preferably 5 cation% or less.
 本発明において,低融点組成物は,加熱し融解することで目的の低融点組成物を与えることになるように予め調合された各種原料試薬粉末の混合物の形で提供してもよい。また,そのような混合物を加熱し溶融した後に冷却することで得られる,固溶体や複ハロゲン化物,ガラス相が形成されている形態の材料とすることもできる。固溶体や複ハロゲン化物,ガラス相が形成されていると,より短時間の加熱で融解しやすい組成物となることから,そのような形態の組成物であることがより好ましい。また,本発明において,低融点組成物は,酸,塩基,又は塩を含んだ水溶液を反応させ沈殿させることによっても製造することができる。 In the present invention, the low melting point composition may be provided in the form of a mixture of various raw material reagent powders prepared in advance so as to give the target low melting point composition by heating and melting. Moreover, it can also be set as the material of the form in which the solid solution, the double halide, and the glass phase which are obtained by heating, melting, and cooling such a mixture are formed. When a solid solution, a double halide, or a glass phase is formed, it becomes a composition that is easily melted by heating in a shorter time, and thus a composition in such a form is more preferable. In the present invention, the low-melting-point composition can also be produced by reacting and precipitating an aqueous solution containing an acid, base, or salt.
 本発明の低融点封止材は,熱膨張係数を下げて封止特性を向上させるために,Fe合金又はNi合金からなるフィラーを含んだ形態のものとする。フィラーとしてFe合金又はNi合金を用いることで,低い熱膨張係数を示す低融点封止材となるだけでなく,比較的高い熱処理温度や比較的長時間の熱処理が行われても熱膨張係数の変化が小さい低融点封止材となる。これにより,一度封止したものから低融点封止材を剥がして再利用することや,一度封止した機器を再加熱して封止を解き,機器内部を修理・調整等した後熱処理により再度加熱し封止すること(再作業)などが可能となる。なお本明細書において,Fe合金とはFeを30質量%以上含有する合金を意味し,Ni合金とはNiを30質量%以上含有する合金を意味する。 The low melting point sealing material of the present invention has a form containing a filler made of Fe alloy or Ni alloy in order to lower the thermal expansion coefficient and improve the sealing characteristics. By using an Fe alloy or Ni alloy as a filler, not only a low melting point sealing material having a low coefficient of thermal expansion is obtained, but also a coefficient of thermal expansion is maintained even when a relatively high heat treatment temperature or a relatively long heat treatment is performed. It becomes a low melting point sealing material with little change. As a result, the low melting point sealing material can be peeled off from what has been sealed once and reused, or the device once sealed is reheated to release the seal, and the inside of the device is repaired and adjusted, and then heat treated again. It is possible to heat and seal (rework). In this specification, the Fe alloy means an alloy containing 30 mass% or more of Fe, and the Ni alloy means an alloy containing 30 mass% or more of Ni.
 Fe合金としては,Fe-Ni合金又はFe-Co合金を用いるのが好ましい。Fe-Ni合金とは,インバー(Ni:36質量%),スーパーインバー(Ni:32質量%,Co:5質量%)に代表されるFeを40~70質量%,Niを10~50質量%,Coを0~20質量%含有するものを意味する。Fe-Co合金とは,ステンレスインバー(Co:52質量%,Cr:11質量%)に代表されるFeを30~70質量%,Coを20~70質量%,Crを0~15質量%含有するものを意味する。フィラーの熱膨張係数は70×10-7/K以下であることが好ましく,30×10-7/K以下であることがより好ましく,10×10-7/K以下であることが更に好ましい。急速冷却,急速加熱等の過酷な環境下においても特に優れた封止特性を得るためには,低融点封止材の熱膨張係数が封止対象の熱膨張係数と近い値となるような量のFe合金又はNi合金フィラーを使用すればよい。より具体的には,低融点封止材中のFe合金又はNi合金フィラーの含有率は,5~50体積%の範囲内である。 As the Fe alloy, an Fe—Ni alloy or an Fe—Co alloy is preferably used. Fe-Ni alloys are 40 to 70 mass% Fe, and 10 to 50 mass% Ni, represented by Invar (Ni: 36 mass%) and Super Invar (Ni: 32 mass%, Co: 5 mass%). , Co containing 0 to 20% by mass. Fe-Co alloy contains 30 to 70 mass% Fe, 20 to 70 mass% Co, and 0 to 15 mass% Cr, represented by stainless steel invar (Co: 52 mass%, Cr: 11 mass%) Means what to do. The thermal expansion coefficient of the filler is preferably 70 × 10 −7 / K or less, more preferably 30 × 10 −7 / K or less, and further preferably 10 × 10 −7 / K or less. In order to obtain particularly excellent sealing characteristics even in harsh environments such as rapid cooling and rapid heating, the amount of thermal expansion coefficient of the low melting point sealing material is close to the thermal expansion coefficient of the object to be sealed. An Fe alloy or Ni alloy filler may be used. More specifically, the content of the Fe alloy or Ni alloy filler in the low melting point sealing material is in the range of 5 to 50% by volume.
 更に,熱・電気・磁気等に対する性能付加の観点から,低融点封止材は,Fe合金又はNi合金以外に種々のフィラーを含んだ形態のものとすることができる。フィラーのD50(50%径。レーザー回折・散乱式粒度分布計を用いて測定した体積基準の粒度分布において小粒子径側から数えて累積50%となる粒子径)は1μm~30μmであることが好ましく,1μm~20μmであることがより好ましく,1μm~15μmであることが更に好ましい。流動性の高い低融点封止材を得る観点からは各種フィラーの合計の含有率は50体積%以下であり,好ましくは40体積%以下である。 Furthermore, from the viewpoint of adding performance to heat, electricity, magnetism, etc., the low melting point sealing material can be in a form containing various fillers in addition to the Fe alloy or Ni alloy. The filler D 50 (50% diameter. The particle diameter of 50% cumulatively counted from the small particle diameter side in the volume-based particle size distribution measured using a laser diffraction / scattering particle size distribution meter) is 1 μm to 30 μm. It is preferably 1 μm to 20 μm, more preferably 1 μm to 15 μm. From the viewpoint of obtaining a low-melting-point sealing material with high fluidity, the total content of various fillers is 50% by volume or less, preferably 40% by volume or less.
 また,本発明の低融点封止材は,粉末やビーズ,ロッド状等に加工して用いることができる。作業性の向上という点からは水,有機溶剤等と混合してペースト状としても用いることができる。 Also, the low melting point sealing material of the present invention can be used after being processed into powder, beads, rods or the like. From the viewpoint of improving workability, it can be used as a paste by mixing with water, an organic solvent or the like.
 本発明の低融点封止材を用いて封止する場合,封止対象は,その表面が,種々の金属,非金属(無機酸化物等)で構成されたものであることができる。 In the case of sealing using the low melting point sealing material of the present invention, the surface to be sealed can be composed of various metals and non-metals (inorganic oxides, etc.).
 本発明の低融点封止材を用いて封止するとき,作業雰囲気は酸素を含んでいてもいなくてもよい。従って,本発明の低融点封止材での封止は大気中において行えるため,雰囲気の調整が不要となり,操作が簡便となる点で好ましい。封止に際しては,封止対象に圧力をかけて接着性を更に高めることもでき,また,低融点封止材に振動を与えて融解を促進させることもできる。 When sealing with the low melting point sealing material of the present invention, the working atmosphere may or may not contain oxygen. Therefore, since the sealing with the low melting point sealing material of the present invention can be performed in the air, it is preferable in that the adjustment of the atmosphere is unnecessary and the operation is simple. At the time of sealing, pressure can be applied to the object to be sealed to further enhance the adhesion, and the low melting point sealing material can be vibrated to promote melting.
本発明の低融点封止材を用いて封止した後,結晶化させることで,封止材の熱膨張係数を低下させること,機械的強度を向上させること,耐熱衝撃性を向上させることができる。結晶化させるにはガラス転移点以上,液相線温度以下に一定時間保持すればよい。 After sealing with the low-melting-point sealing material of the present invention, crystallization can reduce the thermal expansion coefficient of the sealing material, improve the mechanical strength, and improve the thermal shock resistance. it can. In order to crystallize, the glass transition temperature may be maintained for a certain period of time above the glass transition point and below the liquidus temperature.
 本発明の低融点封止材は種々の電子部品,例えば,水晶振動子,半導体素子,SAW素子,有機EL素子に使用できる。その他,水素・ヘリウムのような低分子・低原子量のガスの透過が問題となる部品の封止や,真空を保つことが必要になる部品の封止に使用できる。 The low-melting-point sealing material of the present invention can be used for various electronic parts such as crystal resonators, semiconductor elements, SAW elements, and organic EL elements. In addition, it can be used for sealing parts that have problems with permeation of low molecular weight and low atomic weight gases such as hydrogen and helium, and parts that need to maintain a vacuum.
 本発明の低融点封止材12を用いた水晶振動子の構造を,分解した状態で図1に模式的に示す。 FIG. 1 schematically shows the structure of a crystal resonator using the low melting point sealing material 12 of the present invention in an exploded state.
 以下,実施例を参照して本発明の特徴をより具体的に説明するが,本発明がそれらの実施例に限定されることは意図しない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples, but the present invention is not intended to be limited to these examples.
〔低融点組成物の製造〕
 表1~2に従い,組成物1~11の各々につき,合計5gとなるよう原料を秤量し,乳鉢で粉砕・混合して粉末とした。得られた粉末5gを磁製ルツボに入れた。ルツボを大気中,400~550℃に加熱した炉内へ入れ,10分間保持して原料混合物を溶融した。融液を室温にてグラファイト板上へ流し出すことにより急冷してバルクを得た。また,バルクを乳鉢で粉砕して,粉末形態の低融点組成物を得た。
[Production of low melting point composition]
According to Tables 1 and 2, the raw materials were weighed so that the total amount was 5 g for each of the compositions 1 to 11, and pulverized and mixed in a mortar to obtain powder. 5 g of the obtained powder was put in a magnetic crucible. The crucible was placed in a furnace heated to 400 to 550 ° C. in the atmosphere and held for 10 minutes to melt the raw material mixture. The melt was quenched by pouring it onto a graphite plate at room temperature to obtain a bulk. The bulk was pulverized in a mortar to obtain a low melting point composition in powder form.
〔封止材の製造〕
 表3~6に従い,実施例1~12及び比較例1~10につき,各低融点組成物の粉末と各フィラー粉末を乳鉢で混合し,封止材とした。フィラー粉末の詳細は以下の通りである。
(a)スーパーインバー:D50=12.4μm,アトマイズ法により作製された球状粉末
(b)β-ユークリプタイト:D50=5μm,粉砕品
(c)ZrW:D50=12μm,粉砕品
(d)コージェライト:D50=3μm,粉砕品
(e)AlTiO:D50=3.7μm,粉砕品
(f)石英ガラス:D50=1.5μm,粉砕品
[Manufacture of sealing materials]
According to Tables 3 to 6, for each of Examples 1 to 12 and Comparative Examples 1 to 10, each low melting point composition powder and each filler powder were mixed in a mortar to obtain a sealing material. Details of the filler powder are as follows.
(A) Super Invar: D 50 = 12.4 μm, spherical powder produced by atomization method (b) β-eucryptite: D 50 = 5 μm, pulverized product (c) ZrW 2 O 8 : D 50 = 12 μm, Ground product (d) Cordierite: D 50 = 3 μm, Ground product (e) Al 2 TiO 5 : D 50 = 3.7 μm, Ground product (f) Quartz glass: D 50 = 1.5 μm, Ground product
〔焼結体の作製〕
 上記で調整した実施例1~12及び比較例1~10の封止材粉末をSUS430製の型へ入れ,表3~6に示す温度条件で焼結させ,室温まで冷却し,一部の封止材はそのままとし,他の封止材には再度,表3~6に示す温度条件で結晶化処理を施した。
(Production of sintered body)
The encapsulant powders of Examples 1 to 12 and Comparative Examples 1 to 10 prepared above were put into SUS430 molds, sintered under the temperature conditions shown in Tables 3 to 6, cooled to room temperature, and some sealing The stoppers were left as they were, and the other sealing materials were again crystallized under the temperature conditions shown in Tables 3-6.
〔物性の評価〕 [Evaluation of physical properties]
 1.低融点組成物とフィラーの反応性の評価
 実施例1及び比較例1~4の封止材(焼結体)を乳鉢で粉砕し,粉末を得た。これらの粉末について粉末X線回折装置(型名「RINT2500VL」,(株)リガク製)を用いて粉末X線回折パターンを取得した。X線にはCuKα線を用い,2θ=10~60deg.の回折パターンを取得した。フィラー由来の最強線の積分強度を算出した。最強線の回折ピーク角度は表3に示す。220℃での焼結による焼結体で得られた最強線の強度を基準(100%)として,300℃で再度焼結した焼結体で得られた最強線の相対強度を算出した結果を表3に示す。
1. Evaluation of reactivity of low melting point composition and filler The sealing materials (sintered bodies) of Example 1 and Comparative Examples 1 to 4 were pulverized in a mortar to obtain powder. With respect to these powders, powder X-ray diffraction patterns were obtained using a powder X-ray diffractometer (model name “RINT2500VL”, manufactured by Rigaku Corporation). CuKα ray is used for X-ray, and 2θ = 10 to 60 deg. The diffraction pattern was obtained. The integrated intensity of the strongest line derived from the filler was calculated. Table 3 shows the diffraction peak angles of the strongest lines. Based on the strength (100%) of the strongest line obtained by sintering at 220 ° C., the relative strength of the strongest line obtained by sintering again at 300 ° C. was calculated. Table 3 shows.
 表3に見られるように,フィラーとしてスーパーインバーを用いたもの(実施例1)では,300℃で焼結した焼結体の相対強度が97%と殆ど低下せず比較例1~4での各値に比べて顕著に高く維持されており,低融点組成物とスーパーインバーとは反応性が低いことが分かる。 As can be seen from Table 3, in the case where Super Invar was used as the filler (Example 1), the relative strength of the sintered body sintered at 300 ° C. was hardly reduced to 97%, and in Comparative Examples 1 to 4. It is maintained significantly higher than each value, and it can be seen that the low melting point composition and Super Invar have low reactivity.
 2.熱膨張係数の評価
 組成物1~11の各バルク並びに,実施例2~12及び比較例5~10の各焼結体を,直径5mm×高さ20mmの円柱状に切削加工してサンプルとした。各円柱状サンプルと石英ガラスにより形成された標準試料とを用い,熱機械測定装置(型名「TMA8310」,(株)リガク製)中で室温から10K/分の速度で昇温して熱膨張曲線の測定を行い,30℃~50℃までに観測される熱膨張係数の値を平均して各サンプルの熱膨張係数(α30-50℃)とした。結果は表1,2,4~6に示す。
2. Evaluation of Thermal Expansion Coefficient Each of the bulks of the compositions 1 to 11 and the sintered bodies of Examples 2 to 12 and Comparative Examples 5 to 10 were cut into cylindrical shapes having a diameter of 5 mm and a height of 20 mm to obtain samples. . Using each cylindrical sample and a standard sample formed of quartz glass, the temperature is increased at a rate of 10 K / min from room temperature in a thermomechanical measurement device (model name “TMA8310”, manufactured by Rigaku Co., Ltd.). The curve was measured, and the thermal expansion coefficient values observed from 30 ° C. to 50 ° C. were averaged to obtain the thermal expansion coefficient (α30-50 ° C.) of each sample. The results are shown in Tables 1, 2, 4-6.
 表4より,フィラーにスーパーインバーを用いた実施例2は,220℃で焼結した場合と300℃で焼結した場合の熱膨張係数の変化の程度が小さいことが分かる。また,実施例2~12いずれも比較的低い熱膨張係数を示していることが分かる。 From Table 4, it can be seen that in Example 2 using super invar as the filler, the degree of change in the coefficient of thermal expansion is small when sintered at 220 ° C. and when sintered at 300 ° C. It can also be seen that Examples 2 to 12 all have a relatively low coefficient of thermal expansion.
 3.接着可能温度の評価
 25mm角,1.3mm厚のガラス板(ソーダライムガラス)の空気面(非錫面)上に実施例2~12,比較例10の何れかの組成物粉末0.04gを載せ,粉末上に,上記と同寸同材質のガラス板1枚を,重ね合わせた。粉末を間に挟んで重ね合わされたそれらのガラス板を電気炉へ入れた。5℃/分で所定の温度(200~400℃の間の特定温度)まで昇温した後,同温度で1時間保持し,加熱を止め放冷した。炉から取り出した重なったガラス板を試験片とした。接着性は次の基準で評価した。
3. Evaluation of temperature capable of bonding 0.04 g of the composition powder of any of Examples 2 to 12 and Comparative Example 10 on the air surface (non-tin surface) of a 25 mm square, 1.3 mm thick glass plate (soda lime glass) A glass plate of the same size and material as above was placed on the powder. Those glass plates stacked with the powder in between were placed in an electric furnace. The temperature was raised to a predetermined temperature (specific temperature between 200 ° C. and 400 ° C.) at 5 ° C./minute, then held at that temperature for 1 hour, heating was stopped and the mixture was allowed to cool. The overlapped glass plate taken out from the furnace was used as a test piece. The adhesion was evaluated according to the following criteria.
(a)ガラス板同士が接着されていない:接着性なし(評価×)
(b)ガラス板同士が接着されていたが,封止材はあまり流動していなかった:接着性有り(評価○)
(c)ガラス板同士が接着されており,かつ,封止材はよく流動していた:接着性有り,流動性良好(評価◎)
評価結果は表5,6に示す。
(A) Glass plates are not bonded to each other: no adhesion (evaluation x)
(B) The glass plates were bonded together, but the sealing material did not flow very much: Adhesive (Evaluation ○)
(C) The glass plates were bonded to each other, and the sealing material flowed well: Adhesiveness, good fluidity (evaluation ◎)
The evaluation results are shown in Tables 5 and 6.
 実施例2~12の何れの封着材についても,接着性を示す温度が400℃以下において認められ,またその温度において流動性も良好であった。 In any of the sealing materials of Examples 2 to 12, a temperature showing adhesiveness was observed at 400 ° C. or lower, and the fluidity was good at that temperature.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の低融点組成物は,水晶振動子,LED素子のような電気電子部品に用いる封止材,封止方法に用いることができ,有用である。 The low-melting-point composition of the present invention is useful because it can be used for a sealing material and a sealing method used for electric and electronic parts such as a crystal resonator and an LED element.
10 蓋
12 封止材
14 セラミック基板
16 水晶振動子
10 Lid 12 Sealing Material 14 Ceramic Substrate 16 Crystal Resonator

Claims (11)

  1.  低融点組成物50~95体積%とフィラー5~50体積%とを含んでなる低融点封止材であって,
     該低融点組成物が,Ag及びOを必須の構成要素として含んでなる融点が500℃を超えない非金属組成物であり,該低融点封止材がFe合金及びNi合金から選ばれる合金の1種以上からなるフィラーを少なくとも5体積%含んでなるものである,低融点封止材。
    A low melting point sealing material comprising 50 to 95% by volume of a low melting point composition and 5 to 50% by volume of a filler,
    The low-melting-point composition is a nonmetallic composition having a melting point not exceeding 500 ° C. containing Ag and O as essential components, and the low-melting-point sealing material is an alloy selected from an Fe alloy and a Ni alloy. A low-melting-point sealing material comprising at least 5% by volume of one or more fillers.
  2.  低融点組成物50~95体積%,フィラー5~50体積%を含有する低融点封止材であって,
     該低融点組成物が,Ag及びOを必須の構成要素として含み,且つ,V,Nb,Ta,Cr,Mo,W,Mn,Zn,B,Ge,Pb,P,Bi及びTeから選ばれる1種以上を含んでなる融点が500℃を超えない非金属組成物であり,該低融点封止材がFe合金及びNi合金から選ばれる合金の1種以上からなるフィラーを少なくとも5体積%含んでなるものである,低融点封止材。
    A low-melting point sealing material containing 50 to 95% by volume of a low melting point composition and 5 to 50% by volume of a filler,
    The low melting point composition contains Ag and O as essential components, and is selected from V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi and Te. A non-metallic composition containing at least one melting point and having a melting point not exceeding 500 ° C., wherein the low melting point sealing material contains at least 5% by volume of a filler consisting of at least one alloy selected from Fe alloys and Ni alloys A low melting point sealing material.
  3.  所定質量の該低融点組成物中,
     (a)正のイオン価を有する全原子のモル数の和に対しAg原子のモル数の占める割合が20~98%であり,
     (b)負のイオン価を有する全原子のモル数の和に対し,I原子のモル数の占める割合が0~90%,及びO原子のモル数の占める割合が10~100%である,
     請求項1又は2の低融点封止材。
    In a predetermined mass of the low-melting-point composition,
    (A) The ratio of the number of moles of Ag atoms to the sum of the number of moles of all atoms having a positive ionic valence is 20 to 98%,
    (B) The proportion of moles of I atoms is 0 to 90% and the proportion of moles of O atoms is 10 to 100% with respect to the sum of moles of all atoms having a negative ionic valence.
    The low-melting-point sealing material according to claim 1 or 2.
  4.  所定質量の該低融点組成物中,
    (c)正のイオン価を有する全原子のモル数の和に対しV,Nb,Ta,Cr,Mo,W,Mn,Zn,B,Ge,Pb,P,Bi,及びTe原子のモル数の和の占める割合が2~80%である,
     請求項3の低融点封止材。
    In a predetermined mass of the low-melting-point composition,
    (C) Number of moles of V, Nb, Ta, Cr, Mo, W, Mn, Zn, B, Ge, Pb, P, Bi, and Te atoms with respect to the sum of the number of moles of all atoms having a positive ionic valence. The percentage of the sum of
    The low melting point sealing material according to claim 3.
  5.  所定質量の該低融点組成物中,負のイオン価を有する全原子のモル数の和に対し,I原子のモル数の占める割合が1%以上及びO原子のモル数の占める割合が99%以下である,請求項1~4の何れかの低融点封止材。 In the low-melting-point composition having a predetermined mass, the proportion of moles of I atoms is 1% or more and the proportion of moles of O atoms is 99% with respect to the sum of moles of all atoms having a negative ionic valence. The low melting point sealing material according to any one of claims 1 to 4, which is as follows.
  6.  所定質量の該低融点組成物中,負のイオン価を有する全原子のモル数の和に対し,F,Cl,Br原子のモル数の和の占める割合が3%超えないものである,請求項1~5の何れかの低融点封止材。 The ratio of the sum of the number of moles of F, Cl and Br atoms to the sum of the number of moles of all atoms having a negative ion valence in the low melting point composition of a predetermined mass is not more than 3%. Item 6. The low melting point sealing material according to any one of Items 1 to 5.
  7.  所定質量の該低融点組成物中,正のイオン価を有する全原子のモル数の和に対し,P原子のモル数の占める割合が25%以下である,請求項1~6の何れかの低融点封止材。 The ratio of the number of moles of P atoms to the sum of the number of moles of all atoms having a positive ionic valence in the low-melting-point composition having a predetermined mass is 25% or less. Low melting point sealing material.
  8.  所定質量の該低融点組成物中,正のイオン価を有する全原子のモル数の和に対し,V,Mo,W,Ge,P及びTe原子のモル数の和の占める割合が2~80%である,請求項1~7の何れかの低融点封止材。 The ratio of the sum of the number of moles of V, Mo, W, Ge, P and Te atoms to the sum of the number of moles of all atoms having a positive ionic valence in the low melting point composition of a predetermined mass is 2 to 80. The low-melting-point sealing material according to any one of claims 1 to 7, wherein
  9.  該Fe合金及びNi合金から選ばれる合金が,Fe-Ni合金及びFe-Co合金である請求項1~8の何れかの低融点封止材。 The low melting point sealing material according to any one of claims 1 to 8, wherein the alloy selected from the Fe alloy and the Ni alloy is a Fe-Ni alloy and a Fe-Co alloy.
  10.  請求項1~9の何れかの低融点封止材で封止された電子部品。 An electronic component sealed with the low melting point sealing material according to any one of claims 1 to 9.
  11.  水晶振動子,半導体素子,SAW素子又は有機EL素子である,請求項10の電子部品。 The electronic component according to claim 10, wherein the electronic component is a crystal resonator, a semiconductor element, a SAW element, or an organic EL element.
PCT/JP2018/012003 2017-03-27 2018-03-26 Low melting point sealing material and electronic part WO2018181110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061999 2017-03-27
JP2017061999 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018181110A1 true WO2018181110A1 (en) 2018-10-04

Family

ID=63675770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012003 WO2018181110A1 (en) 2017-03-27 2018-03-26 Low melting point sealing material and electronic part

Country Status (1)

Country Link
WO (1) WO2018181110A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511922A (en) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof
JP2017081820A (en) * 2015-10-22 2017-05-18 日本山村硝子株式会社 Low melting point composition and electronic component
JP2017193468A (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low melting point composition, encapsulation material and electronic component
WO2017183687A1 (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low-melting-point composition, sealing material, conductive material, and electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511922A (en) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション Thermal expansion coefficient filler for vanadium-based frit material and / or production method thereof and / or utilization method thereof
JP2017081820A (en) * 2015-10-22 2017-05-18 日本山村硝子株式会社 Low melting point composition and electronic component
JP2017193468A (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low melting point composition, encapsulation material and electronic component
WO2017183687A1 (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low-melting-point composition, sealing material, conductive material, and electronic component

Similar Documents

Publication Publication Date Title
WO2017068802A1 (en) Low-melting-point composition, production method therefor, sealing material, and sealing method
JP2018152385A (en) Low-temperature seal member and method for manufacturing the same
TWI523828B (en) A bonding material and a joining structure
JP2007301570A (en) Solder alloy
KR20160128394A (en) Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
US4748136A (en) Ceramic-glass-metal composite
US3755065A (en) Oxidic solder sealing compositions and their use in forming laminates
CN108705222A (en) A kind of corrosion-resistant low temperature solder materials and preparation method thereof
WO2018181110A1 (en) Low melting point sealing material and electronic part
US2848802A (en) Method of soft soldering to nonmetallic refractory bodies
TWI232852B (en) Composite solder glass with reduced melting temperature, filling material for same and methods of using same
JP2015117170A (en) Glass for coating metal and metal member having glass layer attached thereto
CN113146092B (en) Sn-Bi-In-Zn alloy lead-free solder and preparation method and application thereof
JP2009212385A (en) Composite soft magnetic material, powder magnetic core, and method of producing composite soft magnetic material
CN109071322B (en) Lead-free low-melting-point composition, sealing material, conductive material, and electronic component
WO2018131191A1 (en) Low melting point sealing material, electronic component, and sealing body
CN113205901A (en) Glass frit, conductive paste and application in preparation of ceramic dielectric filter electrode
JP2020073418A (en) Bonding material and bonded body
WO2017098928A1 (en) Low melting point composition, sealing material and sealing method
WO2018131190A1 (en) Low melting point sealing material and electronic component
JP2017193468A (en) Lead-free low melting point composition, encapsulation material and electronic component
CN109693056B (en) Insulator solder for aluminum silicon carbide tube shell and preparation method thereof
US2985547A (en) Method for preparing coated bodies
JP2011121818A (en) SnO-P2O5-B2O3-BASED PHASE-SEPARATED GLASS
JP2019137572A (en) Low melting point composition, encapsulating material, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP