JP2020001986A - Low thermal expansible low melting point composition, joint material, and conjugate - Google Patents

Low thermal expansible low melting point composition, joint material, and conjugate Download PDF

Info

Publication number
JP2020001986A
JP2020001986A JP2018125593A JP2018125593A JP2020001986A JP 2020001986 A JP2020001986 A JP 2020001986A JP 2018125593 A JP2018125593 A JP 2018125593A JP 2018125593 A JP2018125593 A JP 2018125593A JP 2020001986 A JP2020001986 A JP 2020001986A
Authority
JP
Japan
Prior art keywords
melting point
low melting
mol
composition
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018125593A
Other languages
Japanese (ja)
Inventor
拓朗 池田
Takuro Ikeda
拓朗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2018125593A priority Critical patent/JP2020001986A/en
Publication of JP2020001986A publication Critical patent/JP2020001986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

To provide a low melting point joint material applied to a joint target having a surface consisting of low thermal expansible inorganic oxide and/or metal and capable of jointing them excellently by a heat treatment in air and a temperature range of not exceeding 500°C.SOLUTION: There is provided a low melting point composition containing Ag, I and O, and containing an aggregate of various compound manufactured by binding cation and anion and represented by the formula MQ, wherein M represents cation with valence of m and Q represents anion with valence of q, and satisfying following conditions based on percentage of the compounds (mol%), which are AgI is over 82 to 99, and AgOis 0.1 to 17, when anions other than oxide ion (O) are represented as binding with Ag ion, and containing one or more kind selected from VO, MoO, WO, MnO, ZnO, BO, GeO, PO, SbO, BiO, and TeOof total 0.1 to 7.9.SELECTED DRAWING: Figure 1

Description

本発明は,無機組成物に関し,より具体的には低熱膨張低融点組成物,これを含んでなる接合材,及びこれを用いた接合体に関する。   The present invention relates to an inorganic composition, and more specifically, to a low-thermal-expansion low-melting-point composition, a bonding material containing the same, and a bonded body using the same.

低熱膨張性のSiO−ZnO−B−LiO−Al系ガラスが,熱膨張性の低い基材(Siや石英ガラス)に焼き付け可能な材料として知られている。このガラスの焼き付けに必要な温度は600〜700℃である。(特許文献1)。 Low thermal expansion of SiO 2 -ZnO-B 2 O 3 -Li 2 O-Al 2 O 3 based glass, known as materials which can be printed on the thermal expansion properties of low substrate (Si 3 N 4 or quartz glass) ing. The temperature required for baking this glass is 600-700 ° C. (Patent Document 1).

他方,低融点の封止材としてAgO,MoO又はWO,及びAgIを含有する無機封止材が知られている(特許文献2,3)。 On the other hand, inorganic sealing materials containing Ag 2 O, MoO 3 or WO 3 , and AgI are known as low melting point sealing materials (Patent Documents 2 and 3).

しかし,熱膨張性の低い材料に焼き付け可能であってかつ焼き付けに必要な温度を上記より低く抑えた無機組成物として十分なものは開発されていない。このためそのような材料の接合に適した低融点の無機接合材は知られていない。   However, there has not been developed any inorganic composition which can be baked on a material having low thermal expansion and has a temperature required for baking lower than the above. For this reason, a low melting point inorganic bonding material suitable for bonding such materials is not known.

特開2013−103871号公報JP 2013-103871 A 国際公開2017/068802号公報International Publication No. 2017/068802 国際公開2017/068864号公報WO 2017/068864 A

本発明の一目的は,低熱膨張性の無機酸化物及び/又は金属からなる表面を有する接合対象に適用し,大気中で,500℃を超えない,好ましくは450℃を超えない低い温度領域の熱処理でそれらを良好に接合できる,低融点接合材を提供することである。本発明の更なる一目的は,そのような接合材で接合されてなる電子部品などの接合体を提供することである。   An object of the present invention is to apply to a joining object having a surface made of a low thermal expansion inorganic oxide and / or metal, and to have a low temperature range of not more than 500 ° C., preferably not more than 450 ° C. in air. An object of the present invention is to provide a low-melting-point joining material that can favorably join them by heat treatment. A further object of the present invention is to provide a joined body such as an electronic component joined by such a joining material.

本発明者は,構成要素としてAgIを含有する低融点組成物の熱膨張係数について検討していたところ,AgIをある一定量以上含有させると,加熱溶融し冷却固化させた後の熱膨張係数が予想外にも急激に低下することを発見した。また,そのような組成物が500℃を超えない温度での熱処理による接合性も同時に備えることを発見した。本発明は,更に組成物の組成比,接合可能温度について検討を加えて完成するに至ったものである。すなわち,本発明は以下を提供する。   The present inventors have studied the thermal expansion coefficient of a low melting point composition containing AgI as a constituent element. When AgI is contained in a certain amount or more, the thermal expansion coefficient after being heated and melted and cooled and solidified is reduced. It was unexpectedly found to drop sharply. It has also been discovered that such a composition also has joint properties by heat treatment at a temperature not exceeding 500 ° C. The present invention has been completed by further studying the composition ratio of the composition and the bondable temperature. That is, the present invention provides the following.

1.Ag,I,及びOを必須の構成要素として含んでなる低融点組成物であって,カチオンとアニオンとが結合してなる,式MQm/q〔式中,Mは価数mのカチオン,Qは価数qのアニオンを表す。〕で示される種々の化合物の集合体として,且つ酸化物イオン(O2−)以外のアニオンは全てAgイオンと結合しているものとして表したとき,それらの化合物が占める割合につき次の条件:
AgI ・・・・・・・ 82モル%超〜99モル%,
AgO1/2 ・・・・・ 0.1モル%〜17モル%,
を満たし,且つ
VO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PO5/2,SbO5/2,BiO3/2,TeOから選ばれる1種又は2種以上を合計で0.1モル%〜7.9モル%未満含有するものである,
低融点組成物。
2.500℃にて流動性を有すものであり,加熱溶融及び冷却固化させた後の熱膨張係数が40×10−7/K以下である,上記1の低融点組成物。
3.VO5/2,MoO,WO,GeO,TeOから選ばれる1種又は2種以上を合計で少なくとも0.1モル%含むものである,上記1又は2の低融点組成物。
4.上記1〜3の何れかの低融点組成物を含んでなる低融点接合材。
5.該低融点組成物50〜100体積%とフィラー0〜50体積%とを含んでなる,上記4の低融点接合材。
6.上記4又は5の低融点接合材で接合されてなる接合体。
1. A low melting point composition comprising Ag, I, and O as essential constituents, wherein a cation and an anion are combined, wherein a formula MQ m / q [where M is a cation having a valence of m, Q represents an anion having a valence of q. And the anion other than the oxide ion (O 2− ) is all bound to the Ag ion, the ratio of these compounds is as follows:
AgI More than 82 mol% to 99 mol%,
AgO 1/2 0.1 mol% to 17 mol%,
The filled, and VO 5/2, MoO 3, WO 3 , MnO 2, ZnO, BO 3/2, GeO 2, PO 5/2, SbO 5/2, BiO 3/2, 1 kind selected from the TeO 2 Or containing at least 0.1 mol% to less than 7.9 mol% in total.
Low melting point composition.
2. The low melting point composition according to 1 above, which has fluidity at 500 ° C. and has a coefficient of thermal expansion of 40 × 10 −7 / K or less after being heated, melted and solidified by cooling.
3. The low melting point composition according to 1 or 2, wherein the composition contains at least 0.1 mol% in total of one or more selected from VO 5/2 , MoO 3 , WO 3 , GeO 2 , and TeO 2 .
4. A low melting point bonding material comprising the low melting point composition according to any one of the above 1 to 3.
5. 4. The low melting point bonding material according to 4 above, comprising 50 to 100% by volume of the low melting point composition and 0 to 50% by volume of a filler.
6. A joined body joined by the low-melting-point joining material according to 4 or 5 above.

本発明の低融点組成物は,これをそのまま又はフィラーとの混合物の形で接合材として用いることができる。この接合材は,各接合対象の接合面(無機酸化物及び/又は金属からなる)の少なくとも一方に適用し,それらの面を重ね合わせた状態で,大気中500℃を超えない,例えば450℃を超えない幅広い温度領域において加熱することにより融解し良好に流動して面間に広がることができ,その後の冷却で固化させ結晶化を起こさせることにより,接合対象の熱膨張係数が比較的低い場合でも,当該表面に対し密着性の良好な接合の達成を可能にする。特に,本発明の低融点接合材によれば,接合対象の熱膨張係数が40×10−7/K以下である場合でさえも,密着性の良好な接合が達成できる。 The low melting point composition of the present invention can be used as a bonding material as it is or in the form of a mixture with a filler. This joining material is applied to at least one of the joining surfaces (consisting of inorganic oxide and / or metal) of each joining object, and in a state where the surfaces are superimposed, does not exceed 500 ° C. in the air, for example, 450 ° C. Heating in a wide temperature range that does not exceed the melting point allows it to melt and flow well and spread between the planes, and then solidifies by subsequent cooling to cause crystallization, resulting in a relatively low coefficient of thermal expansion of the joining object Even in this case, it is possible to achieve good adhesion with the surface. In particular, according to the low melting point bonding material of the present invention, a good bonding can be achieved even when the thermal expansion coefficient of the bonding target is 40 × 10 −7 / K or less.

図1は,参考例1〜5及び実施例1〜5のそれぞれの熱膨張係数を,AgI含有量に対してプロットしたグラフである。FIG. 1 is a graph in which the thermal expansion coefficients of Reference Examples 1 to 5 and Examples 1 to 5 are plotted against the AgI content.

本明細書において,「低融点」の語は,融点が500℃を超えないことを意味し,好ましくは,融点が450℃を超えないことを意味する。   As used herein, the term “low melting point” means that the melting point does not exceed 500 ° C., preferably that the melting point does not exceed 450 ° C.

本願発明における組成物をその成分とそれらの量的関係によって規定するにあたり,便宜上,当該組成物をその製造原料由来のカチオンとアニオンとが結合してなる,式MQm/q〔式中,Mは価数mのカチオン,Qは価数qのアニオンを表す。〕で示される種々の化合物の集合体であると見做し,且つ酸化物イオン(O2−)以外のアニオンは全てAgイオンと結合しているものと見做す。なお,それらの化合物が満たす上記の量的条件の下では,〔Agイオンのモル数〕>〔酸化物以外の各アニオンのモル数×価数の合計〕という関係が成り立つ。 In defining the composition of the present invention by its components and their quantitative relationships, for convenience, the composition is formed by combining a cation and an anion derived from the raw material for production with the formula MQ m / q [wherein M Represents a cation having a valence of m, and Q represents an anion having a valence of q. ], And all anions other than the oxide ion (O 2− ) are considered to be bonded to the Ag ion. Under the above-mentioned quantitative conditions satisfied by these compounds, the relationship of [moles of Ag ions]> [moles of anions other than oxides × sum of valences] holds.

本発明の低融点組成物は,500℃を超えない温度,例えば好ましくは250〜450℃,より好ましくは300〜350℃の範囲で,流動性を有している。従って,当該組成物(又はこれを含んでなる接合材)を,例えば粒子(例えば,粉末やペースト)の形で,低熱膨張性の一組の接合対象の接合面に適用してそれらの面を重ね合わせ,上記の温度に加熱することで流動させて面間に広げることができ,次いで冷却して固化させることにより,接合面に強く密着した状態となって両者を接合できる。   The low melting point composition of the present invention has fluidity at a temperature not exceeding 500 ° C, for example, preferably in the range of 250 to 450 ° C, more preferably in the range of 300 to 350 ° C. Accordingly, the composition (or bonding material comprising it) is applied to a set of bonding surfaces of a low thermal expansion set, for example in the form of particles (eg, powder or paste), and the surfaces are bonded. By overlapping and heating to the above-mentioned temperature, it can be made to flow and spread between the surfaces, and then cooled and solidified, so that both are brought into a state of being in intimate contact with the joining surface and can be joined.

本発明の組成物において,AgIは必須の成分である。溶融固化後の組成物の熱膨張係数は,AgIの含有量が82モル%を超えると急激な低下を示し,低熱膨張性の組成物が得られる。より低熱膨張性にするためにはAgIの含有量を85モル%超とすることが好ましい。また石英ガラスの様な極低熱膨張性の部材に適合した組成物とするためには,含有量を92モル%超とすることが好ましい。   AgI is an essential component in the composition of the present invention. When the content of AgI exceeds 82 mol%, the thermal expansion coefficient of the composition after melt-solidification sharply decreases, and a composition having low thermal expansion is obtained. For lower thermal expansion, the AgI content is preferably more than 85 mol%. Further, in order to obtain a composition suitable for a member having extremely low thermal expansion such as quartz glass, the content is preferably more than 92 mol%.

他方,AgIのみでは500℃を超えない温度では流動可能な材料とはならない。そのような温度で流動可能とするには,AgIの含有量は99モル%以下とすることが好ましく,98モル%以下とすることがより好ましい。   On the other hand, AgI alone does not result in a flowable material at temperatures not exceeding 500 ° C. In order to be able to flow at such a temperature, the AgI content is preferably at most 99 mol%, more preferably at most 98 mol%.

AgO1/2も,本発明の組成物の必須の成分である。AgO1/2は,組成物の液相線温度を低下させる効果がある。その効果のためには,AgO1/2の含有量は,0.1〜17モル%,好ましくは0.2〜16モル%,より好ましくは0.3〜15モル%である。 AgO 1/2 is also an essential component of the composition of the present invention. AgO 1/2 has the effect of lowering the liquidus temperature of the composition. For its effect, the content of AgO 1/2 is 0.1 to 17 mol%, preferably 0.2 to 16 mol%, more preferably 0.3 to 15 mol%.

VO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PO5/2,SbO5/2,BiO3/2,TeOから選ばれる1種又は2種以上も,本発明の組成物の必須の成分であり,組成物の液相線温度を低下させ500℃以下での流動を可能にし,従ってそのような温度での対象物の接合を可能にする効果を有する。これらの効果の利用のため,組成物におけるVO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PO5/2,SbO5/2,BiO3/2,TeOの含有量の合計は,好ましくは0.1〜7.9モル%未満,より好ましくは0.2〜7モル%,更に好ましくは0.3〜6モル%である。 VO 5/2, MoO 3, WO 3 , MnO 2, ZnO, BO 3/2, GeO 2, PO 5/2, SbO 5/2, BiO 3/2, 1 or 2 or more selected from TeO 2 Is also an essential component of the composition of the present invention, and has the effect of lowering the liquidus temperature of the composition, allowing flow at 500 ° C. or lower, and thus enabling bonding of objects at such temperatures. Having. For the use of these effects, VO 5/2, MoO 3, WO 3, MnO 2, ZnO, BO 3/2, GeO 2, PO 5/2 in the composition, SbO 5/2, BiO 3/2, the total content of TeO 2 is preferably less than 0.1 to 7.9 mol%, more preferably 0.2 to 7 mol%, more preferably 0.3 to 6 mol%.

VO5/2,MoO,WO,GeO,TeOは組成物の液相線温度を特に下げやすく,これらの含有量は合計で,好ましくは0.1モル%以上,より好ましくは0.2モル%以上,更に好ましくは0.3モル%以上である。 VO 5/2 , MoO 3 , WO 3 , GeO 2 , and TeO 2 are particularly easy to lower the liquidus temperature of the composition, and their contents are preferably 0.1 mol% or more, more preferably 0 mol% or more in total. 0.2 mol% or more, more preferably 0.3 mol% or more.

本発明の低融点組成物において,PO5/2は,接合対象が鉄系金属である場合にこれを腐食するおそれがあるため,その含有量は,好ましくは3モル%以下,より好ましくは1モル%以下である。 In the low melting point composition of the present invention, the content of PO 5/2 is preferably 3 mol% or less, more preferably 1 mol%, since there is a possibility of corroding the iron-based metal when the object to be bonded is an iron-based metal. Mol% or less.

本発明の低融点組成物において,AgF,AgCl,及びAgBrは接合対象が鉄系金属である場合にこれを腐食するおそれがあるため,AgF,AgCl,及びAgBrの合計含有量は,好ましくは3モル%以下,より好ましくは0.1モル%以下である。   In the low melting point composition of the present invention, AgF, AgCl, and AgBr may corrode iron-based metal when the object to be bonded is iron. Therefore, the total content of AgF, AgCl, and AgBr is preferably 3%. Mol% or less, more preferably 0.1 mol% or less.

本発明の組成物は,上に記載していない成分を含有してもよい。ただし,本発明の組成物の耐水性への悪影響防止の観点から,アルカリ金属酸化物の合計は5モル%以下とすることが好ましく,1モル%以下とすることがより好ましく,0.1モル%以下とすることが更に好ましい。   The compositions of the present invention may contain components not listed above. However, from the viewpoint of preventing adverse effects on the water resistance of the composition of the present invention, the total amount of the alkali metal oxides is preferably 5 mol% or less, more preferably 1 mol% or less, and 0.1 mol% or less. % Is more preferable.

本発明の組成物は,原料混合物を加熱溶融し冷却固化させることで目的の低融点組成物を与えることになるように予め調合された各種原料試薬粉末の混合物の形で提供してもよい。また,そのような混合物を加熱溶融した後に急冷することで得られる,固溶体や複ハロゲン化物,ガラス相が形成されている形態の材料とすることもできる。固溶体や複ハロゲン化物,ガラス相が形成されていると,より短時間の加熱で融解しやすい組成物となることから,そのような形態の組成物であることがより好ましい。また,本発明の組成物は,組成に応じた酸,塩基,又は塩を含んだ水溶液を反応させ沈殿させることによっても製造することができる。   The composition of the present invention may be provided in the form of a mixture of various raw material reagent powders that have been prepared in advance so that the raw material mixture is heated, melted, and solidified by cooling to give the desired low melting point composition. In addition, a material in which a solid solution, a double halide, and a glass phase are formed, which is obtained by heating and melting such a mixture and then rapidly cooling the mixture, can also be used. If a solid solution, a double halide, or a glass phase is formed, the composition is likely to be melted by heating for a shorter time, and thus a composition in such a form is more preferable. The composition of the present invention can also be produced by reacting and precipitating an aqueous solution containing an acid, a base, or a salt according to the composition.

また,本発明の接合材は,粉末やビーズ,シート状,ロッド状等に加工して接合材として用いることができる。作業性の向上という点から,粉末形態のものを水,有機溶剤,分散剤,増粘剤等と混合してペースト状の接合材としても用いることもできる。   Further, the bonding material of the present invention can be processed into powder, beads, sheets, rods, or the like and used as the bonding material. From the viewpoint of improving workability, a powdery material can be mixed with water, an organic solvent, a dispersant, a thickener, or the like, and used as a paste-like joining material.

また,本発明の接合材は,性能付加の観点から,例えば,導電性の付与のためには,金属(例えば,金属銀等),カーボンナノチューブ等の導電性フィラーを含んだ形態のものとすることができ,熱伝導性の付与のためには,高い熱伝導性を有するフィラー(例えば,窒化アルミニウム,炭化ケイ素等)を含んだ形態のものとすることができる。また,接合材の機械的強度向上のためには,繊維状や板状のフィラーを含んだ形態のものとすることができる。   Further, from the viewpoint of adding performance, for example, in order to impart conductivity, the bonding material of the present invention has a form containing a conductive filler such as metal (for example, metallic silver) or carbon nanotube. In order to provide thermal conductivity, a filler containing high thermal conductivity (for example, aluminum nitride, silicon carbide, etc.) can be used. Further, in order to improve the mechanical strength of the joining material, the joining material may be in a form containing a fibrous or plate-like filler.

これらのフィラーは,接合対象の使用態様・使用環境に応じて求められる性能に合わせ,本発明の接合材の構成要素の一部をなすものとして配合すればよい。接合材の流動性を保つための接合材中のフィラーの含有率の上限は,概ね50体積%である。   These fillers may be blended as part of the components of the joining material of the present invention in accordance with the performance required according to the use mode and use environment of the joining object. The upper limit of the filler content in the joining material for maintaining the fluidity of the joining material is approximately 50% by volume.

本発明の接合材を用いる場合,接合対象は,その表面が,種々の金属,非金属(無機酸化物等)で構成されたものであることができる。なお,接合対象がTi,Cr,Cu,Zn,Al又はこれらを多く含む合金である場合は接合対象を酸素雰囲気下で加熱したり,アルマイト処理を行ったりすることによって,接合対象表面に存在する酸化被膜を厚くしてから用いることが好ましい。   When the joining material of the present invention is used, the joining object may be one whose surface is made of various metals and nonmetals (such as inorganic oxides). When the object to be joined is Ti, Cr, Cu, Zn, Al, or an alloy containing many of these, the object to be joined is present on the surface to be joined by heating the object in an oxygen atmosphere or performing alumite treatment. It is preferable to use the oxide film after thickening it.

本発明の接合材は,接合対象となる部材の熱膨張係数が非常に小さい場合(例えば,40×10−7/K以下,30×10−7/K以下等)に用いるのが取り分け好適である。ここにいう熱膨張係数は30〜100℃の間の平均線膨張係数である。 The joining material of the present invention is particularly preferably used when the coefficient of thermal expansion of the member to be joined is very small (for example, 40 × 10 −7 / K or less, 30 × 10 −7 / K or less). is there. The coefficient of thermal expansion referred to here is an average coefficient of linear expansion between 30 and 100 ° C.

本発明の接合材は,接合過程での加熱溶融後の冷却中に結晶化し,熱膨張係数の低い状態となる。結晶化度を100%に近づけるため,接合材を,低融点組成物のガラス転移点以上且つ液相線温度以下に一定時間保持する処理を行うこともできる。このような処理は例えば,150℃にて1分〜1時間程度保持することにより行うことができるが,これに限定されない。   The joining material of the present invention crystallizes during cooling after heating and melting in the joining process, and has a low thermal expansion coefficient. In order to make the degree of crystallinity close to 100%, it is possible to carry out a treatment for maintaining the bonding material at a temperature higher than the glass transition point of the low melting point composition and lower than the liquidus temperature for a certain time. Such a treatment can be performed, for example, by holding at 150 ° C. for about 1 minute to 1 hour, but is not limited to this.

本発明の接合材を用いて対象物を接合するとき,作業雰囲気は酸素を含んでいてもいなくてもよい。接合に際しては,接合対象に圧力をかけて接着性を更に高めることもでき,また,接合材に超音波等の振動を与えて融解を促進させることもできる。   When joining objects using the joining material of the present invention, the working atmosphere may or may not contain oxygen. At the time of joining, pressure can be applied to the joining object to further enhance the adhesiveness, and the joining material can be subjected to vibration such as ultrasonic waves to promote melting.

本発明の接合材はこれ単独を接合材として用いる他に,シリコーン樹脂等の耐熱性樹脂により既に接合された部位に本発明の接合材をオーバーコートして,接合部の気密性を高めるという目的でも用いることができる。オーバーコートの際の接合条件(温度・時間)は耐熱性樹脂の劣化を防ぐため,可能な限り低温及び/又は短時間とすることが好ましい。   The bonding material of the present invention is used not only as a bonding material alone, but also to improve the airtightness of the bonding portion by overcoating a portion already bonded with a heat-resistant resin such as a silicone resin. However, it can be used. The bonding conditions (temperature and time) at the time of overcoating are preferably as low as possible and / or as short as possible in order to prevent deterioration of the heat-resistant resin.

本発明の接合材は種々の電子部品,例えば,水晶振動子,半導体素子,SAW素子,有機EL素子の製造において部材の接合に使用できる。その他にも,水素・ヘリウムのような低分子量・低原子量のガスの漏洩の阻止や真空の維持が必要な種々の部品の製造において部材の接合に使用できる。   The bonding material of the present invention can be used for bonding members in the manufacture of various electronic components, for example, quartz oscillators, semiconductor devices, SAW devices, and organic EL devices. In addition, it can be used to join members in the manufacture of various components that require the prevention of leakage of low molecular weight and low atomic weight gas such as hydrogen and helium and the maintenance of vacuum.

以下,実施例を参照して本発明の特徴をより具体的に説明するが,本発明がそれらの実施例に限定されることは意図しない。   Hereinafter, the features of the present invention will be described more specifically with reference to examples, but it is not intended that the present invention be limited to these examples.

〔参考例1〜6,実施例1〜12〕
表1〜3に従い,各組成物につき示された配合割合で合計5gとなるように原料を秤取・配合し,乳鉢で粉砕・混合して粉末とした。得られた粉末5gを磁製ルツボに入れた。ルツボを大気中,500℃〜650℃に加熱した炉内へ入れ,10分間保持して原料混合物を溶融させた。融液を室温にてグラファイト板上へ流し出して急冷させることにより,バルクとして各組成物を得た。
[Reference Examples 1 to 6, Examples 1 to 12]
According to Tables 1 to 3, the raw materials were weighed and blended so as to be 5 g in total at the blending ratio shown for each composition, and crushed and mixed in a mortar to obtain a powder. 5 g of the obtained powder was placed in a porcelain crucible. The crucible was placed in a furnace heated to 500 ° C. to 650 ° C. in the atmosphere, and held for 10 minutes to melt the raw material mixture. Each composition was obtained as a bulk by flowing the melt onto a graphite plate at room temperature and rapidly cooling it.

〔物性の評価〕
上記で得られた各バルクについて,下記の方法により物性を評価した。
[Evaluation of physical properties]
The physical properties of each bulk obtained above were evaluated by the following methods.

1.熱膨張係数の評価
参考例及び実施例の各バルクを150℃にて1時間加熱し,十分に結晶化させた。結晶化させたバルクを,直径5mm×高さ15mmの円柱状に切削加工してサンプルとした。円柱状試料と石英ガラスにより形成された標準試料とを,熱機械測定装置(型名「TMA8310」,(株)リガク製)を用いて,室温から10K/分で昇温して熱膨張曲線の測定を行い,30℃〜100℃までに観測される熱膨張係数の値を平均して各試料の熱膨張係数とした。
1. Evaluation of coefficient of thermal expansion Each bulk of Reference Examples and Examples was heated at 150 ° C. for 1 hour to sufficiently crystallize. The crystallized bulk was cut into a column having a diameter of 5 mm and a height of 15 mm to obtain a sample. The temperature of the columnar sample and the standard sample formed of quartz glass were raised from room temperature at 10 K / min using a thermomechanical measuring device (model name “TMA8310”, manufactured by Rigaku Corporation) to obtain a thermal expansion curve. The measurement was performed, and the values of the thermal expansion coefficients observed from 30 ° C to 100 ° C were averaged to obtain the thermal expansion coefficient of each sample.

2.流動性の評価
実施例及び比較例の各バルクを,3mm×3mm×3mmの立方体状に切削加工してサンプルとした。各サンプルを26mm角,1.2mm厚のガラス板2枚の間に挟んだものを電気炉へ入れた。5℃/分で350℃,400℃,450℃又は500℃まで昇温した後,同温度で1時間保持し,加熱を止め,サンプルを放冷した。室温下でサンプルを目視観察した。観察事項及び評価基準は次の通りである。
・○:サンプルが流動し,2枚のガラス板を接合していた。
・×:サンプルは流動せず,2枚のガラス板は接合されていなかった。
2. Evaluation of Fluidity Each of the bulks of the examples and the comparative examples was cut into a cube of 3 mm × 3 mm × 3 mm to obtain samples. Each sample sandwiched between two 26 mm square, 1.2 mm thick glass plates was placed in an electric furnace. After the temperature was raised to 350 ° C., 400 ° C., 450 ° C., or 500 ° C. at 5 ° C./min, the temperature was maintained for 1 hour, the heating was stopped, and the sample was allowed to cool. The sample was visually observed at room temperature. The observation items and evaluation criteria are as follows.
○: The sample flowed and the two glass plates were joined.
X: The sample did not flow, and the two glass plates were not joined.

表1〜3,図1に見られるように,AgI含有量が82モル%を超えると組成物の熱膨張係数が急激に低下する。即ち,より低いAgIモル%領域でのAgI−熱膨張係数の相関関係から予測されるのとは顕著に相違した別の相関関係が,AgI含有量82モル%以上で認められる。また,実施例の組成物は500℃以下で流動性を示し且つ冷却固化後は40×10−7/K以下の熱膨張係数を有するのに対し,参考例の組成物には,これら2つの性質を両立できたものはない。 As shown in Tables 1 to 3 and FIG. 1, when the AgI content exceeds 82 mol%, the coefficient of thermal expansion of the composition sharply decreases. That is, another correlation significantly different from that predicted from the correlation of AgI-thermal expansion coefficient in the lower AgI mol% region is observed at an AgI content of 82 mol% or more. Further, the composition of the example shows fluidity at 500 ° C. or less and has a coefficient of thermal expansion of 40 × 10 −7 / K or less after cooling and solidification, whereas the composition of the reference example has these two properties. No one has been able to balance the properties.

本発明の低融点組成物を含んでなる接合材は,窒化ケイ素や石英ガラスのような低熱膨張性の部材の接合に用いることができ,有用である。
The joining material containing the low melting point composition of the present invention can be used for joining low thermal expansion members such as silicon nitride and quartz glass, and is useful.

Claims (6)

Ag,I,及びOを必須の構成要素として含んでなる低融点組成物であって,カチオンとアニオンとが結合してなる,式MQm/q〔式中,Mは価数mのカチオン,Qは価数qのアニオンを表す。〕で示される種々の化合物の集合体として,且つ酸化物イオン(O2−)以外のアニオンは全てAgイオンと結合しているものとして表したとき,それらの化合物が占める割合につき次の条件:
AgI ・・・・・・・ 82モル%超〜99モル%,
AgO1/2 ・・・・・ 0.1モル%〜17モル%,
を満たし,且つ
VO5/2,MoO,WO,MnO,ZnO,BO3/2,GeO,PO5/2,SbO5/2,BiO3/2,TeOから選ばれる1種又は2種以上を合計で0.1モル%〜7.9モル%未満含有するものである,
低融点組成物。
Ag, a low melting composition comprising as a component of I, and O required, made by bonding a cation and an anion, wherein MQ m / q [the formula, M of valency m cations, Q represents an anion having a valence of q. And the anion other than the oxide ion (O 2− ) is all bound to the Ag ion, the ratio of these compounds is as follows:
AgI More than 82 mol% to 99 mol%,
AgO 1/2 0.1 mol% to 17 mol%,
The filled, and VO 5/2, MoO 3, WO 3 , MnO 2, ZnO, BO 3/2, GeO 2, PO 5/2, SbO 5/2, BiO 3/2, 1 kind selected from the TeO 2 Or containing at least 0.1 mol% to less than 7.9 mol% in total,
Low melting point composition.
500℃にて流動性を有すものであり,加熱溶融及び冷却固化させた後の熱膨張係数が40×10−7/K以下である,請求項1の低融点組成物。 2. The low melting point composition according to claim 1, which has fluidity at 500 ° C., and has a coefficient of thermal expansion of 40 × 10 −7 / K or less after being heated and melted and solidified by cooling. VO5/2,MoO,WO,GeO,TeOから選ばれる1種又は2種以上を合計で少なくとも0.1モル%含むものである,請求項1又は2の低融点組成物。 The low melting point composition according to claim 1, wherein the composition contains at least 0.1 mol% in total of one or more selected from VO 5/2 , MoO 3 , WO 3 , GeO 2 , and TeO 2 . 請求項1〜3の何れかの低融点組成物を含んでなる低融点接合材。   A low melting point bonding material comprising the low melting point composition according to claim 1. 該低融点組成物50〜100体積%とフィラー0〜50体積%とを含んでなる,請求項4の低融点接合材。   The low melting point bonding material according to claim 4, comprising 50 to 100% by volume of the low melting point composition and 0 to 50% by volume of a filler. 請求項4又は5の低融点接合材で接合されてなる接合体。
A joined body joined by the low melting point joining material according to claim 4 or 5.
JP2018125593A 2018-06-29 2018-06-29 Low thermal expansible low melting point composition, joint material, and conjugate Pending JP2020001986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125593A JP2020001986A (en) 2018-06-29 2018-06-29 Low thermal expansible low melting point composition, joint material, and conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125593A JP2020001986A (en) 2018-06-29 2018-06-29 Low thermal expansible low melting point composition, joint material, and conjugate

Publications (1)

Publication Number Publication Date
JP2020001986A true JP2020001986A (en) 2020-01-09

Family

ID=69098585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125593A Pending JP2020001986A (en) 2018-06-29 2018-06-29 Low thermal expansible low melting point composition, joint material, and conjugate

Country Status (1)

Country Link
JP (1) JP2020001986A (en)

Similar Documents

Publication Publication Date Title
JP6148813B2 (en) Low melting point composition, sealing material and electronic component
JP2018152385A (en) Low-temperature seal member and method for manufacturing the same
JPH04231349A (en) Sealing material, glass used therefor and mill additve
KR101940894B1 (en) Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
WO1992000924A1 (en) Tellurite glass compositions
US20130224561A1 (en) Braze compositions, and related articles and methods
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP2020001986A (en) Low thermal expansible low melting point composition, joint material, and conjugate
JP6286565B2 (en) Heat dissipation structure and semiconductor module using the same
TW201529520A (en) Lead-free glass and sealing material
JP6887420B2 (en) Lead-free low melting point composition, encapsulant, conductive material and electronic components
WO2018131191A1 (en) Low melting point sealing material, electronic component, and sealing body
JP2020073418A (en) Bonding material and bonded body
Mohamed et al. Evaluation of the microstructure, thermal, and mechanical characteristics of Sn-9Zn reinforced with Ni and ZrO2 nanoparticles via vacuum melting process
JP2017193468A (en) Lead-free low melting point composition, encapsulation material and electronic component
CN106624433A (en) Low-melting-point lead-free solder alloy
WO2018131190A1 (en) Low melting point sealing material and electronic component
WO2017098928A1 (en) Low melting point composition, sealing material and sealing method
JPS6281290A (en) Brazing filler metal for ceramics
JP7366466B2 (en) Solid heat storage materials and composites with tuned thermal conductivity
WO2017154956A1 (en) Low-melting-point composition, sealant, and sealing method
JP2019137572A (en) Low melting point composition, encapsulating material, and electronic component
JP2017165610A (en) Lead free low melting point composition, encapsulation material, and encapsulation method
JP2011098383A (en) Joined body of precision component
JP3157695B2 (en) Low temperature sealing composition