JP2011098383A - Joined body of precision component - Google Patents

Joined body of precision component Download PDF

Info

Publication number
JP2011098383A
JP2011098383A JP2009255590A JP2009255590A JP2011098383A JP 2011098383 A JP2011098383 A JP 2011098383A JP 2009255590 A JP2009255590 A JP 2009255590A JP 2009255590 A JP2009255590 A JP 2009255590A JP 2011098383 A JP2011098383 A JP 2011098383A
Authority
JP
Japan
Prior art keywords
alloy
phase
amorphous phase
main phase
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009255590A
Other languages
Japanese (ja)
Inventor
Hirotomo Watanabe
大智 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2009255590A priority Critical patent/JP2011098383A/en
Publication of JP2011098383A publication Critical patent/JP2011098383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body which does not sacrifice a shape and properties of each component, has high joint reliability and can withstand practical use. <P>SOLUTION: The joined body includes two or more precision components joined to each other. At least one of the precision components is formed of an alloy having an amorphous phase as a main phase. In the joined body of precision components, a joining base material, which is represented by a compositional formula shown by general formula (1), and melts in a temperature zone of a crystallization temperature or below of the alloy having the amorphous phase as the main phase, is used in a joint interface. Alternatively, in the joined body of precision components, a foil layer containing at least one of Au, Pt, Pd, and Ni is used on a joint interface side of a member formed of an alloy having an amorphous phase as a main phase, and a joining base material represented by a compositional formula shown by general formula (1) is used on a joint interface. General formula (1) is shown by: Au<SB>100-x</SB>M<SB>x</SB>wherein M represents any group of elements indispensably including at least one of Si, Ge, and Sn; and x is atom% and meets a requirement of 17.5≤x≤40. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、小型アクチュエータや、半導体微細加工技術を応用したMEMSを利用したアプリケーション(以下、MEMSアプリケーションと称する)などに用いられる、非晶質相を主相とする合金からなる精密部品同士、或いは非晶質を主相とする合金からなる精密部品と結晶性金属、或いは半導体材料からなる精密部品との接合体に関する。   The present invention is a precision actuator made of an alloy having an amorphous phase as a main phase, which is used for a small actuator, an application using MEMS using semiconductor micromachining technology (hereinafter referred to as a MEMS application), or the like. The present invention relates to a joined body of a precision part made of an alloy having an amorphous main phase and a precision part made of a crystalline metal or a semiconductor material.

技術進歩に伴う高機能化によって、複数の優れた機能が付与された機器が開発されている。これらの機能を付与するためには、一般に機器の容積を大きくする必要がある。しかしながら、近年の機器の省資源化や省スペース化、更には低侵襲医療などを始めとした高付加価値化などの要求から従来の容積と同等か更に小型化した機器が求められており、その機器に組み込まれる部品についても更なる小型化が求められている。   Due to high functionality due to technological advancement, devices with a plurality of excellent functions have been developed. In order to provide these functions, it is generally necessary to increase the volume of the device. However, due to the recent demands for resource saving and space saving of equipment, as well as high added value such as minimally invasive medical treatment, there is a demand for equipment that is the same as or smaller than the conventional volume. There is a demand for further miniaturization of components incorporated in equipment.

近年、精密な機械加工と高精度の組立技術を以って作製された小型アクチュエータや、MEMSアプリケーションが実用化されている。これらの出現は、高機能な機器の小型化に大きな役割を果たしている。   In recent years, small actuators manufactured with precision machining and high-precision assembly technology and MEMS applications have been put into practical use. These appearances play a big role in miniaturization of highly functional devices.

また、新しい機能構造材料として非晶質合金が脚光を浴びている。従来、人類の歴史の中で使用されてきた従来の金属材料は、ほとんど全てが規則構造を有する結晶の集合体、すなわち多結晶体によって構成されているものであった。一方で、非晶質合金は長距離秩序構造を持たない液体の構造を有したままの状態で凍結固化することによって形成される点が、従来の金属材料と根本的に異なる特徴である。   In addition, amorphous alloys are attracting attention as new functional structural materials. Conventionally, almost all of the conventional metal materials that have been used in the history of mankind are constituted by a collection of crystals having a regular structure, that is, a polycrystal. On the other hand, an amorphous alloy is fundamentally different from conventional metal materials in that it is formed by freezing and solidifying while maintaining a liquid structure having no long-range ordered structure.

非晶質合金は、従来の金属材料のような転位や格子欠陥が存在しないことから、本来の材料が有する理想強度に限りなく近い高い強度を発現する一方、結晶よりも原子間の自由体積が大きく、しなやかであるという特徴を有している。このことから、非晶質合金の弾性歪み限界は約2%と極めて大きく、従来の金属材料の約3倍の値を有する。また、結晶粒界や偏析による析出物が存在しないことから腐食の起点となる特異な部位が存在せず、不動態膜を形成する元素を添加することによって極めて高い耐食性を付与することが可能である。更に、Fe,Co,Niといった磁性を有する元素が多く含まれている非晶質合金は、異方性がないことから極めて高い透磁率が得られる。   Amorphous alloys do not have dislocations or lattice defects like conventional metal materials, so they exhibit a high strength that is almost as close as possible to the ideal strength of the original material, while the free volume between atoms is higher than that of crystals. It is large and supple. From this, the elastic strain limit of the amorphous alloy is as extremely large as about 2%, which is about three times that of the conventional metal material. In addition, since there are no precipitates due to grain boundaries or segregation, there is no unique site that becomes the starting point of corrosion, and it is possible to impart extremely high corrosion resistance by adding elements that form a passive film. is there. Furthermore, an amorphous alloy containing a large amount of magnetic elements such as Fe, Co, and Ni does not have anisotropy, and therefore has an extremely high magnetic permeability.

特に、数10〜100K以上にも及ぶガラス転移領域が確認されるほど極めて安定な過冷却状態を有している非晶質合金も数多く発見されている。それらのほとんどは「3成分以上によって構成」され、「原子半径比が12%以上」であり、「液体生成時の混合エンタルピーが負」であるという3つの共通の経験則が成立する。それらは非晶質合金の中でも「金属ガラス」や「ガラス合金」と、区別して呼ばれることが多いが、本質的には非晶質合金の一部とみなされる。また、数nm程度の超微結晶が析出しているがX線回折法による分析では、非晶質とみなされる合金についても、その諸特性が厳密な意味での非晶質合金に酷似するため、非晶質合金とみなされるのが一般的である。   In particular, a large number of amorphous alloys having a supercooled state that is so stable that a glass transition region extending to several tens to 100K or more is confirmed. Most of them are “consisting of three or more components”, “atomic radius ratio is 12% or more”, and three common rules of thumb are established: “the mixing enthalpy at the time of liquid generation is negative”. Although they are often referred to as “metallic glass” and “glass alloy” among amorphous alloys, they are essentially regarded as a part of the amorphous alloy. In addition, ultrafine crystals of several nanometers are precipitated, but in the analysis by the X-ray diffraction method, the characteristics of an alloy regarded as amorphous are very similar to those of an amorphous alloy in a strict sense. Generally, it is regarded as an amorphous alloy.

以上のような極めて安定な過冷却状態が実現されたことにより、数mm〜数10mmに及ぶ塊状の非晶質合金を鋳込みの手法を用いて形成すること、すなわち、非晶質合金が従来の結晶金属材料と同様に塊状の各種部品として形成することが可能となった。   By realizing the extremely stable supercooled state as described above, it is possible to form a massive amorphous alloy ranging from several millimeters to several tens of millimeters using a casting method. As with the crystalline metal material, it has become possible to form it as various massive parts.

非晶質合金の塊の凝固表面は結晶粒界を持たないことから極めて平滑であり、ナノオーダの微細構造をも再現することが可能な金型転写性を有している。また、液体状態から直接凍結固化してなることから凝固収縮がないため、その寸法精度は極めて高い。以上のことから、溶融状態からの鋳造法や過冷却液体状態からのインプリント法を用いた精密部品を作製するのに適している。   The solidified surface of the lump of the amorphous alloy is extremely smooth because it has no crystal grain boundary, and has a mold transfer property that can reproduce a nano-order fine structure. Further, since it is frozen and solidified directly from the liquid state, there is no coagulation shrinkage, and therefore its dimensional accuracy is extremely high. From the above, it is suitable for producing precision parts using a casting method from a molten state or an imprint method from a supercooled liquid state.

部品によっては全体が非晶質相である必要がないものもあるが、非晶質相が持つ種々の特性を利用した、非晶質を主相とする合金からなる精密部品の実用化に対する検討が数多く進められており、その一部は既に実用化されている。   Some parts do not need to be in an amorphous phase as a whole, but the practical use of precision parts made of an amorphous-based alloy using various properties of the amorphous phase Are being promoted, some of which have already been put into practical use.

以上のような背景の中で、非晶質相を主相とする合金からなる精密部品同士、或いは非晶質相を主相とする合金からなる精密部品と結晶性金属、或いは半導体材料からなる部品との接合体を形成する必要性が出てきている。それらの接合体を得られる可能性を有する接合方法としては、例えば、粘性流動接合法(特許文献1)、摩擦撹拌接合法(特許文献2)、電子ビーム接合法(非特許文献1)等が知られている。   In the background as described above, precision parts made of an alloy whose main phase is an amorphous phase, or precision parts made of an alloy whose main phase is an amorphous phase and a crystalline metal, or a semiconductor material. There is a need to form a joined body with a component. As a joining method having a possibility of obtaining such a joined body, for example, a viscous flow joining method (Patent Document 1), a friction stir welding method (Patent Document 2), an electron beam joining method (Non-Patent Document 1), and the like. Are known.

特開平9−323174号公報JP 9-323174 A 特許第3821656号公報Japanese Patent No. 3821656

Y. Kawamura and Y. Ohno、「Successful Electron-Beam Welding of Bulk Metallic Glass」、Materials Transaction、2001年、第42巻、p.2476−2478Y. Kawamura and Y. Ohno, `` Successful Electron-Beam Welding of Bulk Metallic Glass '', Materials Transaction, 2001, Vol. 42, p.2476-2478

しかしながら、従来の接合方法としては上述したような方法を始めとして種々の方法が開発されている。非晶質を主相とする合金からなる接合部品に適用された例はほとんどない。その理由として、従来の接合方法では、接合の際に、接合部品への高圧印加、摩擦による衝撃、熱的変形等が生じることによって、接合した精密部品の形状を変形させたり、特性が損なわれてしまうということが挙げられる。   However, as a conventional joining method, various methods have been developed including the method described above. Few examples have been applied to bonded parts made of an alloy whose main phase is amorphous. The reason for this is that in the conventional joining method, when joining, high pressure is applied to the joined parts, impact due to friction, thermal deformation, etc., the shape of the joined precision parts is deformed, and the characteristics are impaired. It is mentioned that.

また、金属同士を接合するために、部材よりも融点の低い合金を溶かし、部材自体を融解させずに接合する方法として、「ろう付け」が広く用いられているが、非晶質相を主相とする合金からなる接合部品では、加熱により非晶質相の特性が失われてしまったり、接合に対しての安定性、濡れ性の問題から接合は困難であり、適用された例はない。   In order to join metals, an alloy having a melting point lower than that of the member is melted, and “brazing” is widely used as a method of joining without melting the member itself. In joining parts made of alloys as phases, the characteristics of the amorphous phase are lost by heating, and joining is difficult due to problems with stability and wettability, and there are no examples of application. .

本発明はこのような課題に鑑みてなされたものであって、小型アクチュエータやMEMSアプリケーションなどに用いられるようなハンドリングが極めて困難な精密部品の接合において、各々の部品の形状を変形させたり特性を損なうことなく、かつ接合の信頼性が高く実用に耐えうる、非晶質相を主相とする合金からなる精密部品同士、或いは非晶質相を主相とする合金からなる精密部品と結晶性金属、或いは半導体材料からなる精密部品との接合体を提供することにある。   The present invention has been made in view of such problems, and in the joining of precision parts that are extremely difficult to handle, such as those used in small actuators and MEMS applications, the shape of each part is deformed and characteristics are improved. Precision parts made of an alloy with an amorphous phase as the main phase, or precision parts made of an alloy with an amorphous phase as the main phase, and crystallinity, without damage and with high bonding reliability and practical use An object of the present invention is to provide a joined body with a precision component made of a metal or semiconductor material.

上記目的を解決するために、本発明の請求項1に係る発明は、接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する接合母材を接合界面に用いた精密部品の接合体である。   In order to solve the above-mentioned object, the invention according to claim 1 of the present invention is the case where at least one of two or more precision parts joined is made of an alloy having an amorphous phase as a main phase. This is a precision component bonded body using, as a bonding interface, a bonding base material that melts in a temperature range below the crystallization temperature of an alloy having an amorphous phase as a main phase.

また、請求項2に係る発明は、接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する、下記の一般式(1)にて示される組成によって構成された接合母材を接合界面に用いた精密部品の接合体である。また、母材を作製する際の原材料及び作製工程に起因する不純物元素による影響は、例えばエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)にて明瞭に観測されるような量でなければ、特に差し支えない。
一般式(1):Au100-xx
但し、MはSi,Ge,Snのうち少なくとも1種を必ず含む任意の元素群であり、xは原子%で、17.5≦x≦40である。
The invention according to claim 2 is characterized in that the amorphous phase is the main phase when at least one of the two or more precision parts joined is made of an alloy having the amorphous phase as the main phase. This is a precision part joined body using a joining base material composed of a composition represented by the following general formula (1), which melts in a temperature zone equal to or lower than the crystallization temperature of the alloy, as a joining interface. In addition, the influence of the impurity element resulting from the raw material and the manufacturing process in manufacturing the base material is such an amount that can be clearly observed by, for example, an energy dispersive X-ray spectrometer (EDS). Otherwise, there is no problem.
General formula (1): Au 100-x M x
However, M is an arbitrary element group that always includes at least one of Si, Ge, and Sn, and x is atomic%, and 17.5 ≦ x ≦ 40.

また、請求項3に係る発明は、接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する、一般式(1)にて示される組成によって構成された接合界面に用いた精密部品の接合体において、非晶質相を主相とする合金からなる部材の接合界面側に予め設けたAu, Pt, Pd及びNiのうち少なくとも何れか1種を含有する箔層と、接合母材を有することを特徴とする精密部品の接合体である。また、母材を作製する際の原材料及び作製工程に起因する不純物元素による影響は、例えばエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)にて明瞭に観測されるような量でなければ、特に差し支えない。
一般式(1):Au100-xx
但し、MはSi,Ge,Snのうち少なくとも1種を必ず含む任意の元素群であり、xは原子%で、17.5≦x≦40である。
Further, in the invention according to claim 3, when at least one of the two or more precision parts joined is made of an alloy having an amorphous phase as a main phase, the amorphous phase is set as a main phase. In a precision component joined body that is melted in a temperature range equal to or lower than the crystallization temperature of the alloy and that is composed of a composition represented by the general formula (1), the alloy has an amorphous phase as a main phase. A precision component joined body having a foil layer containing at least one of Au, Pt, Pd and Ni provided in advance on the joining interface side of a member and a joining base material. In addition, the influence of the impurity element resulting from the raw material and the manufacturing process in manufacturing the base material is such an amount that can be clearly observed by, for example, an energy dispersive X-ray spectrometer (EDS). Otherwise, there is no problem.
General formula (1): Au 100-x M x
However, M is an arbitrary element group that always includes at least one of Si, Ge, and Sn, and x is atomic%, and 17.5 ≦ x ≦ 40.

請求項4に係る発明は、接合されている2つ以上の精密部品のうち、少なくとも1つが下記の一般式(2)にて示されかつ3種以上の元素の組合せからなる組成によって構成された非晶質相を主相とする合金からなる精密部品である請求項1乃至請求項3のいずれかに記載の精密部品の接合体である。また、母材を作製する際の原材料及び作製工程に起因する不純物元素による影響は、例えばエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)にて明瞭に観測されるような量でなければ、特に差し支えない。
一般式(2):M1aM2bM3cM4dLneM5fM6g
但し、M1はTi,Zr及びHfから選ばれる少なくとも1種の元素、M2はFe,Co,Ni,Cu,V,Cr,Mn及びNbよりなる群から選ばれる少なくとも1種の元素、M3はZn,Be,Al,Ga,Ge,In及びSnよりなる群から選ばれる少なくとも1種の元素、M4はAu,Pt,Pd及びAgよりなる群から選ばれる少なくとも1種の元素、LnはSc,Y,La,Ce,Nd,Sm,Gd,Tb,Dy,Ho,Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、M5はTa,W及びMoよりなる群から選ばれる少なくとも1種の元素、M6はSi,P,B及びCよりなる群から選ばれる少なくとも1種の元素、a,b,c,d,e及びfはそれぞれ原子%で、15≦a≦85,15≦b≦85,0≦c≦25,0≦d≦25,0≦e≦10,0≦f≦10,0≦g≦10である。
The invention according to claim 4 is configured by a composition in which at least one of the two or more precision parts to be joined is represented by the following general formula (2) and includes a combination of three or more elements. 4. The precision part joint according to claim 1, wherein the precision part is made of an alloy having an amorphous phase as a main phase. In addition, the influence of the impurity element resulting from the raw material and the manufacturing process in manufacturing the base material is such an amount that can be clearly observed by, for example, an energy dispersive X-ray spectrometer (EDS). Otherwise, there is no problem.
Formula (2): M1 a M2 b M3 c M4 d Ln e M5 f M6 g
However, M1 is at least one element selected from Ti, Zr and Hf, M2 is at least one element selected from the group consisting of Fe, Co, Ni, Cu, V, Cr, Mn and Nb, and M3 is Zn. , Be, Al, Ga, Ge, In and Sn, at least one element selected from the group consisting of Sn, M4 is at least one element selected from the group consisting of Au, Pt, Pd and Ag, and Ln is Sc, Y , La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Yb and at least one element selected from the group consisting of Mm (Misch metal which is an aggregate of rare earth elements), M5 is Ta, W and Mo At least one element selected from the group consisting of M6, at least one element selected from the group consisting of Si, P, B and C, a, b, c, d, e and f each in atomic percent, 5 is ≦ a ≦ 85,15 ≦ b ≦ 85,0 ≦ c ≦ 25,0 ≦ d ≦ 25,0 ≦ e ≦ 10,0 ≦ f ≦ 10,0 ≦ g ≦ 10.

請求項5に係る発明は、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する接合母材によって接合された接合体において、接合後の接合界面の融解温度が非晶質相を主相とする合金の結晶化温度以上に改善された請求項1乃至請求項3のいずれかに記載の精密部品の接合体である。   According to a fifth aspect of the present invention, there is provided a joined body joined by a joining base material that melts in a temperature range equal to or lower than a crystallization temperature of an alloy having an amorphous phase as a main phase. 4. The precision part joined body according to claim 1, which is improved to a temperature higher than a crystallization temperature of an alloy having a crystalline phase as a main phase.

請求項1から請求項5でいう「非晶質相を主相とする合金」とは、X線回折法による分析によって結晶性の回折ピークが見られないか、或いはX線回折法による分析によって結晶の混在が認められた場合でも、示差走差熱量分析で非晶質相の存在による明瞭な発熱反応を示すものを指す。ここで、数nm程度の超微結晶相からなる場合でも、X線回折法による分析で結晶性の回折ピークが発現せず、示差走差熱量分析でガラス遷移や粗大な結晶化に起因する明瞭な発熱反応が確認されるものについては、ここでは非晶質相であるとみなす。結晶化温度は、等温変態温度曲線(TTT曲線)で示される等温保持温度と等温保持時間によって定まる温度である。   The “alloy having an amorphous phase as a main phase” as used in claims 1 to 5 means that no crystalline diffraction peak is observed by analysis by X-ray diffraction or analysis by X-ray diffraction. Even when a mixture of crystals is observed, a differential exothermic calorimetry indicates a clear exothermic reaction due to the presence of an amorphous phase. Here, even in the case of an ultrafine crystal phase of about several nanometers, no crystalline diffraction peak appears in the analysis by the X-ray diffraction method, and it is clear that it is caused by the glass transition or coarse crystallization in the differential scanning calorimetry. In this case, it is assumed that the exothermic reaction is an amorphous phase. The crystallization temperature is a temperature determined by an isothermal holding temperature and an isothermal holding time indicated by an isothermal transformation temperature curve (TTT curve).

請求項1の発明によれば、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する接合母材を接合界面に用いて接合体を形成することによって、非晶質相を主相とする合金からなる部品の特性を接合後も損なうことなく他方の部品と接合された接合体を提供することが可能になる。   According to the invention of claim 1, an amorphous body is formed by forming a bonded body using a bonding base material that melts in a temperature zone equal to or lower than a crystallization temperature of an alloy having an amorphous phase as a main phase, as a bonding interface. It becomes possible to provide a joined body joined to the other part without damaging the characteristics of the part made of an alloy whose phase is the main phase even after joining.

一般に、非晶質相を主相とする合金からなる部品の特性が損なわれる最も大きな要因としては、非晶質とみなされる相の結晶化が挙げられる。結晶化が開始されると共に、非晶質相(準安定相)から結晶相(安定相)への移行に伴う発熱が生じるが、このときの結晶化の駆動速度は極めて速く、瞬時に非晶質とみなされる相が消失する。よって、本来非晶質合金が有する優れた特性などが失われてしまう危険性が極めて高い。そのためには、「結晶化温度以下」という条件が必要である。   In general, the biggest factor that impairs the characteristics of a part made of an alloy having an amorphous phase as a main phase is crystallization of a phase regarded as amorphous. As crystallization starts, heat is generated due to the transition from the amorphous phase (metastable phase) to the crystalline phase (stable phase). At this time, the driving speed of crystallization is extremely fast, and the amorphous state is instantaneously generated. The phase considered quality disappears. Therefore, there is a very high risk that the excellent characteristics inherent to the amorphous alloy will be lost. For that purpose, the condition of “below the crystallization temperature” is necessary.

請求項2の発明によれば、接合母材の融点をより確実に下げることができるため、より安定性に優れた接合体を提供できるという効果を有する。AuとSi,Ge,Snとの合金は何れも極めて深い2元共晶組成を有しており、各々の2元共晶組成の融点は、Au81.4Si18.6:363℃、Au72Ge28:361℃、Au71Ge29:278℃(何れも原子%)である。また、これらの2元共晶組成を基に多元化することによって更に低融点化することも可能である。例えば、Au−Si系2元共晶組成にBiを加えた3元組成の融点は、Au69.4Si18.6Bi12.0:295℃、Au−Sn系2元共晶組成にNiを加えた3元組成の融点は、Au65.7Sn27.2Ni7.1:257℃であり、各々の2元共晶組成よりも低融点となる。すなわち、一般式(1)で示される接合母材は、結晶化温度以下において接合界面で融解させることが可能となる。 According to invention of Claim 2, since melting | fusing point of a joining base material can be lowered | reduced more reliably, it has the effect that a joined body excellent in stability can be provided. The alloys of Au, Si, Ge, and Sn all have a very deep binary eutectic composition. The melting point of each binary eutectic composition is Au 81.4 Si 18.6 : 363 ° C., Au 72 Ge 28 : 361 ° C., Au 71 Ge 29 : 278 ° C. (both atomic%). Further, it is possible to further lower the melting point by increasing the number based on these binary eutectic compositions. For example, the melting point of the ternary composition obtained by adding Bi to the Au—Si binary eutectic composition is Au 69.4 Si 18.6 Bi 12.0 : 295 ° C., and the ternary composition obtained by adding Ni to the Au—Sn binary eutectic composition. The melting point of Au 65.7 Sn 27.2 Ni 7.1 is 257 ° C., which is lower than the respective binary eutectic composition. That is, the bonding base material represented by the general formula (1) can be melted at the bonding interface below the crystallization temperature.

また、上記の効果に加えて、接合母材に主成分としてAuを含有するため、接合部品との濡れ性が向上するという効果を有する。接合界面に主成分としてAuを含有する場合、Auは非晶質相を主相とする合金の主要な構成元素との間で、多くの場合に液体生成時の混合エンタルピーが負となる、すなわち元素間で積極的に結び付こうとする性質を有するため、接合部品との濡れ性に大きな寄与を果たす。例えば、混合エンタルピーの値は、Au−Ti:−47kJ/mol、Au−Zr:−74kJ/mol、Au−Hf:−63kJ/mol、Au−Cu:−9kJ/molなどである。   Further, in addition to the above effects, since the bonding base material contains Au as a main component, the wettability with the bonded component is improved. When Au is contained as a main component in the joint interface, Au is negatively mixed with the main constituent element of the alloy having an amorphous phase as a main phase, and in many cases, the mixing enthalpy at the time of liquid generation is negative. Since it has the property of actively linking elements, it contributes greatly to the wettability with the joined parts. For example, the value of mixed enthalpy is Au-Ti: -47 kJ / mol, Au-Zr: -74 kJ / mol, Au-Hf: -63 kJ / mol, Au-Cu: -9 kJ / mol, and the like.

請求項3の発明によれば、非晶質相を主相とする合金からなる部品の接合界面側に、予めAu、Pt、Pd及びNiのうち少なくとも何れか1種を含有する箔層を設けているので、上述した効果に加えて、前記部品の加熱に伴う表面酸化を防止できるという効果を有する。非晶質相を主相とする合金からなる部品は、合金成分元素中で大気中の酸素に対して最も活性な元素が表面近傍に濃縮して酸化不動態皮膜を形成する傾向があるが、加熱下においては、室温以上に厚く安定な酸化不動態皮膜を形成しやすい。そのため、上述したような箔層を設けることで、酸化不動態被膜の形成を防ぐことができる。箔層の形成方法としては、例えばPVDやCVD、スパッタリング、プリント等が挙げられる。   According to the invention of claim 3, the foil layer containing at least one of Au, Pt, Pd and Ni is provided in advance on the joint interface side of the component made of an alloy having an amorphous phase as a main phase. Therefore, in addition to the above-described effects, the surface oxidation due to the heating of the component can be prevented. Parts made of an alloy having an amorphous phase as a main phase tend to form an oxidation passivated film by concentrating the most active elements with respect to oxygen in the atmosphere in the alloy constituent elements in the vicinity of the surface. Under heating, it is easy to form a stable oxidation passivation film that is thicker than room temperature. Therefore, the formation of the oxidation passive film can be prevented by providing the foil layer as described above. Examples of the method for forming the foil layer include PVD, CVD, sputtering, and printing.

更に、上述したような箔層を設けることで、接合部品との濡れ性がより向上し、接合界面との安定的な接合に大きな役割を果たす得ることができる。なぜなら、Au,Pt,Pd及びNiは多くの元素との間で液体生成時の混合エンタルピーが負であることから、互いに引きつけ合う性質を有する。すなわち、これらの元素からなる箔層は、上述した酸化不動態皮膜の形成防止に加えて、部品との濡れ性の向上にも寄与する。また同時に組成式(1)からなる接合界面との間で拡散を基とした結合が生じる。このとき、上記元素が組成式(1)からなる接合界面側に箔層を構成する元素或いは元素群が傾斜的或いは断続的に拡散した組成を有する接合界面となることが特徴である。   Furthermore, by providing the foil layer as described above, the wettability with the joining component is further improved, and a large role can be obtained for stable joining with the joining interface. This is because Au, Pt, Pd, and Ni have a property of attracting each other because they have a negative mixing enthalpy at the time of liquid generation among many elements. That is, the foil layer composed of these elements contributes to the improvement of the wettability with the parts in addition to the prevention of the formation of the above-described oxidation passive film. At the same time, a bond based on diffusion occurs between the bonding interface composed of the composition formula (1). In this case, the element is a bonding interface having a composition in which the element or element group constituting the foil layer diffuses in a gradient or intermittent manner on the bonding interface side of the composition formula (1).

請求項4の発明によれば、接合界面に主成分としてAuを含有する場合、Auは一般式(2)で示された非晶質相を主相とする合金の主要な構成元素との間で多くの場合に、液体生成時の混合エンタルピーが大きく負となる元素が必ず存在し、元素間で積極的に結び付こうとする性質が高くなる。その結果、安定した濡れ性が実現でき、高い接合強度を得ることができるという効果を有する。   According to the invention of claim 4, when Au is contained as a main component in the bonding interface, Au is between the main constituent elements of the alloy having the amorphous phase represented by the general formula (2) as the main phase. In many cases, there is always an element that has a large negative enthalpy of mixing during liquid generation, and the property of actively linking elements is enhanced. As a result, stable wettability can be realized and high bonding strength can be obtained.

請求項5の発明によれば、接合後の接合界面の融合温度を、非晶質相を主相とする合金の結晶化温度以上に改善させることによって、融点の低い接合母材の耐熱性の問題を解決できるという効果を有する。   According to the invention of claim 5, the heat resistance of the bonding base material having a low melting point is improved by improving the fusion temperature of the bonded interface after bonding to the crystallization temperature or higher of the alloy having the amorphous phase as the main phase. The effect is that the problem can be solved.

以上のとおり、本発明によって、精密部品の少なくとも1つが非晶質相を主相とする合金からなる場合において、従来法では接合が困難になる大きさであっても、非晶質相を主相とする合金からなる部品の特性や部品形状を接合後も損なうことなく他方の部品と接合された接合体を提供することが可能となった。   As described above, according to the present invention, when at least one precision component is made of an alloy having an amorphous phase as a main phase, the amorphous phase is mainly used even if the size is difficult to bond by the conventional method. It has become possible to provide a joined body joined to the other part without damaging the properties and part shape of the part made of the alloy as the phase even after joining.

本実施例における熱板加熱時の代表的な温度変化曲線を示す図である。It is a figure which shows the typical temperature change curve at the time of the hot-plate heating in a present Example. 本実施例において得られた精密部品の接合体の外観を示す図である。It is a figure which shows the external appearance of the conjugate | zygote of the precision component obtained in the present Example. 走査型電子顕微鏡(Scanning Electron Microscope:SEM)によって拡大倍率2万倍で観察された接合界面の断面図を示す図である。It is a figure which shows sectional drawing of the joining interface observed with the scanning magnification electron microscope (Scanning Electron Microscope: SEM) at the magnification of 20,000 times. 図3で観察された領域の元素分布をエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)を用いて分析した結果を示す図である。It is a figure which shows the result of having analyzed the element distribution of the area | region observed in FIG. 3 using the energy dispersive X-ray spectrometer (Energy Dispersive X-ray Spectrometer: EDS). 図4で示された元素分布量を相対的にグラフ化した結果を示す図である。It is a figure which shows the result of having graphed the element distribution amount shown by FIG. 4 relatively.

本発明の接合体は、接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で融解する接合母材を接合界面に用いることを特徴としている。   The bonded body of the present invention is a crystal of an alloy having an amorphous phase as a main phase when at least one of two or more precision parts being bonded is made of an alloy having an amorphous phase as a main phase. The present invention is characterized in that a bonding base material that melts in a temperature range equal to or lower than the annealing temperature is used for the bonding interface.

本発明の接合体は、非晶質相を主相とする合金からなる精密部品同士、或いは非晶質相を主相とする合金からなる精密部品と結晶性金属、或いは半導体材料からなる部品との接合体である。   The joined body of the present invention includes a precision part made of an alloy having an amorphous phase as a main phase, or a precision part made of an alloy having an amorphous phase as a main phase and a part made of a crystalline metal or a semiconductor material. It is a joined body.

前述したように、「非晶質相を主相とする合金」とは、X線回折法による分析によって結晶性の回折ピークが見られないか、或いは結晶の混在が認められた場合でも、示差走差熱量分析で非晶質合金相の存在による明瞭な発熱反応を示す合金を指す。   As described above, an “alloy having an amorphous phase as a main phase” means that even if a crystalline diffraction peak is not observed or a mixture of crystals is observed by analysis by X-ray diffraction, It refers to an alloy that shows a clear exothermic reaction due to the presence of an amorphous alloy phase in differential thermal analysis.

本発明の接合体に用いる接合母材には、接合による接合部品の特性が劣化するのを防ぐために、前記精密部品の結晶化温度以下の温度帯で融解する接合母材を用いることが必要である。具体的には、一般式(1)にて示される組成によって構成された接合母材を用いることが好ましい。また、母材を作製する際の原材料及び作製工程に起因する不純物元素による影響は、例えばエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)にて明瞭に観測されるような量でなければ、特に差し支えない。
一般式(1):Au100-xx
但し、MはSi,Ge,Snのうち少なくとも1種を必ず含む任意の元素群であり、xは原子%で、17.5≦x≦40である。
In order to prevent deterioration of the characteristics of the joined part due to joining, it is necessary to use a joining base material that melts in a temperature range below the crystallization temperature of the precision part. is there. Specifically, it is preferable to use a bonding base material constituted by the composition represented by the general formula (1). In addition, the influence of the impurity element resulting from the raw material and the manufacturing process in manufacturing the base material is such an amount that can be clearly observed by, for example, an energy dispersive X-ray spectrometer (EDS). Otherwise, there is no problem.
General formula (1): Au 100-x M x
However, M is an arbitrary element group that always includes at least one of Si, Ge, and Sn, and x is atomic%, and 17.5 ≦ x ≦ 40.

接合界面の組成範囲xについて、xが17.5未満であると、接合母材の融点が上昇するため、結晶化温度以下の温度帯で溶融する接合界面を形成し得ない可能性が極めて高くなり好ましくない。また、xが40を超えると組成によっては接合母材の融点が上昇するため、結晶化温度以下の温度帯で溶融する接合界面を形成し得ない可能性が極めて高くなるほか、接合界面に対するAuの濡れ性への寄与が得られにくくなる可能性が高くなるため好ましくない。故に、接合界面の組成範囲xは、17.5≦x≦40が好ましい。   With regard to the composition range x of the bonding interface, if x is less than 17.5, the melting point of the bonding base material is increased, so that there is a very high possibility that a bonding interface that melts in a temperature zone below the crystallization temperature cannot be formed. It is not preferable. In addition, if x exceeds 40, the melting point of the bonding base material increases depending on the composition. Therefore, there is a very high possibility that a bonding interface that melts in a temperature range below the crystallization temperature cannot be formed. This is not preferable because it is difficult to contribute to the wettability. Therefore, the composition range x of the bonding interface is preferably 17.5 ≦ x ≦ 40.

非晶質相を主相とする合金からなる部品は、合金成分元素中で大気中の酸素に対して最も活性な元素が表面近傍に濃縮して酸化不動態皮膜を形成する傾向がある。特に加熱下においては、室温時以上に厚く安定な酸化不動態皮膜を形成しやすい。この酸化不動態被膜は、接合不良が生じる大きな要因となる。   Parts made of an alloy having an amorphous phase as a main phase tend to form an oxidation passive film by concentrating the most active elements with respect to oxygen in the atmosphere in the vicinity of the surface among the alloy constituent elements. In particular, under heating, it is easy to form a stable oxide passivation film that is thicker than at room temperature. This oxidation passivated film is a major cause of poor bonding.

そのため、非晶質相を主相とする合金からなる部品の表面への酸化不動態皮膜の形成を抑えるためには、接合前の段階で非晶質相を主相とする合金の接合界面側にAu, Pt, Pd及びNiのうち少なくとも何れか1種を含有する箔層を設けておくとよい。Au,Pt,Pd及びNiは、非晶質相を主相とする合金からなる部品の加熱に伴う表面酸化を防止する。更に、非晶質相を主相とする合金からなる部品と組成式(1)からなる接合界面との安定的な接合に大きな役割を果たす。但し、Niに関しては酸化に対する標準生成自由エネルギーが低いことから、Au,Pt及びPdと共に形成することがより好ましい。   Therefore, in order to suppress the formation of an oxidation passivating film on the surface of a part made of an alloy having an amorphous phase as the main phase, the bonding interface side of the alloy having the amorphous phase as the main phase is the stage before bonding. It is preferable to provide a foil layer containing at least one of Au, Pt, Pd and Ni. Au, Pt, Pd, and Ni prevent surface oxidation accompanying heating of a component made of an alloy having an amorphous phase as a main phase. Furthermore, it plays a major role in stable joining between a part made of an alloy having an amorphous phase as a main phase and a joining interface consisting of the composition formula (1). However, it is more preferable to form Ni together with Au, Pt and Pd because the standard free energy of formation for oxidation is low.

本発明の接合体を構成する「非晶質相を主相とする合金からなる精密部品」とは、下記の一般式(2)にて示される組成によって構成されていると好適である。また、母材を作製する際の原材料及び作製工程に起因する不純物元素による影響は、例えばエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)にて明瞭に観測されるような量でなければ、特に差し支えない。
一般式(2):M1aM2bM3cM4dLneM5fM6g
但し、M1はTi,Zr及びHfから選ばれる少なくとも1種の元素、M2はFe,Co,Ni,Cu,V,Cr,Mn及びNbよりなる群から選ばれる少なくとも1種の元素、M3はZn,Be,Al,Ga,Ge,In及びSnよりなる群から選ばれる少なくとも1種の元素、M4はAu,Pt,Pd及びAgよりなる群から選ばれる少なくとも1種の元素、LnはSc,Y,La,Ce,Nd,Sm,Gd,Tb,Dy,Ho,Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、M5はTa,W及びMoよりなる群から選ばれる少なくとも1種の元素、M6はSi,P,B及びCよりなる群から選ばれる少なくとも1種の元素、a,b,c,d,e及びfはそれぞれ原子%で、15≦a≦85,15≦b≦85,0≦c≦25,0≦d≦25,0≦e≦10,0≦f≦10,0≦g≦10である
一般式(2)に示される合金は、下記一般式(2−a)〜(2−y)に示される合金を含む。
一般式(2−a):M1aM2b
一般式(2−b):M1aM2bM3c
一般式(2−c):M1aM2bM4d
一般式(2−d):M1aM2bLne
一般式(2−e):M1aM2bM5f
一般式(2−f):M1aM2bM6g
一般式(2−g):M1aM2bM3cM4d
一般式(2−h):M1aM2bM3cLne
一般式(2−i):M1aM2bM3cM5f
一般式(2−j):M1aM2bM3cM6g
一般式(2−k):M1aM2bM4dLne
一般式(2−l):M1aM2bM4dM5f
一般式(2−m):M1aM2bM4dM6g
一般式(2−n):M1aM2bLneM5f
一般式(2−o):M1aM2bM5fM6g
一般式(2−p):M1aM2bM3cM4dLne
一般式(2−q):M1aM2bM3cM4dM5f
一般式(2−r):M1aM2bM3cM4dM6g
一般式(2−s):M1aM2bM4dLneM5f
一般式(2−t):M1aM2bM4dM5fM6g
一般式(2−u):M1aM2bLneM5fM6g
一般式(2−v):M1aM2bM3cM4dLneM5f
一般式(2−w):M1aM2bM3cM4dM5fM6g
一般式(2−x):M1aM2bM4dLneM5fM6g
一般式(2−y):M1aM2bM3cM4dLneM5fM6g
The “precise part made of an alloy having an amorphous phase as a main phase” constituting the joined body of the present invention is preferably composed of a composition represented by the following general formula (2). In addition, the influence of the impurity element resulting from the raw material and the manufacturing process in manufacturing the base material is such an amount that can be clearly observed by, for example, an energy dispersive X-ray spectrometer (EDS). Otherwise, there is no problem.
Formula (2): M1 a M2 b M3 c M4 d Ln e M5 f M6 g
However, M1 is at least one element selected from Ti, Zr and Hf, M2 is at least one element selected from the group consisting of Fe, Co, Ni, Cu, V, Cr, Mn and Nb, and M3 is Zn. , Be, Al, Ga, Ge, In and Sn, at least one element selected from the group consisting of Sn, M4 is at least one element selected from the group consisting of Au, Pt, Pd and Ag, and Ln is Sc, Y , La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Yb and at least one element selected from the group consisting of Mm (Misch metal which is an aggregate of rare earth elements), M5 is Ta, W and Mo At least one element selected from the group consisting of M6, at least one element selected from the group consisting of Si, P, B and C, a, b, c, d, e and f each in atomic percent, 5 ≦ a ≦ 85, 15 ≦ b ≦ 85, 0 ≦ c ≦ 25, 0 ≦ d ≦ 25, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 ≦ g ≦ 10, shown in the general formula (2) Examples of the alloys include alloys represented by the following general formulas (2-a) to (2-y).
Formula (2-a): M1 a M2 b
Formula (2-b): M1 a M2 b M3 c
Formula (2-c): M1 a M2 b M4 d
Formula (2-d): M1 a M2 b Ln e
Formula (2-e): M1 a M2 b M5 f
General formula (2-f): M1 a M2 b M6 g
Formula (2-g): M1 a M2 b M3 c M4 d
Formula (2-h): M1 a M2 b M3 c Ln e
Formula (2-i): M1 a M2 b M3 c M5 f
General formula (2-j): M1 a M2 b M3 c M6 g
Formula (2-k): M1 a M2 b M4 d Ln e
General formula (2-1): M1 a M2 b M4 d M5 f
General formula (2-m): M1 a M2 b M4 d M6 g
Formula (2-n): M1 a M2 b Ln e M5 f
Formula (2-o): M1 a M2 b M5 f M6 g
Formula (2-p): M1 a M2 b M3 c M4 d Ln e
General formula (2-q): M1 a M2 b M3 c M4 d M5 f
Formula (2-r): M1 a M2 b M3 c M4 d M6 g
Formula (2-s): M1 a M2 b M4 d Ln e M5 f
General formula (2-t): M1 a M2 b M4 d M5 f M6 g
Formula (2-u): M1 a M2 b Ln e M5 f M6 g
Formula (2-v): M1 a M2 b M3 c M4 d Ln e M5 f
General formula (2-w): M1 a M2 b M3 c M4 d M5 f M6 g
Formula (2-x): M1 a M2 b M4 d Ln e M5 f M6 g
Formula (2-y): M1 a M2 b M3 c M4 d Ln e M5 f M6 g

一般式(2−a)の組合せからなる合金は、M1とM2との2元組成においても非晶質相を形成する組合せが数多く存在しており、3種以上の元素の組合せとすることで、より容易に非晶質相が形成される。特に、M1は安定した接合界面を得るための重要な元素であり、M1の組成範囲aが15未満であると濡れ性の低下を招く。これに伴い、M2の組成範囲bも85以下に限定される。また、M1の組成範囲aが85を超えると、M2にいかなる元素を有していても非晶質相が極めて形成されにくくなる。これに伴い、M2の組成範囲bも15以上に限定される。   An alloy composed of the combination of the general formula (2-a) has many combinations that form an amorphous phase even in the binary composition of M1 and M2, and by combining three or more elements, An amorphous phase is more easily formed. In particular, M1 is an important element for obtaining a stable bonding interface, and if the composition range a of M1 is less than 15, the wettability is reduced. Accordingly, the composition range b of M2 is also limited to 85 or less. When the composition range a of M1 exceeds 85, an amorphous phase is very difficult to be formed regardless of what element M2 has. Accordingly, the composition range b of M2 is also limited to 15 or more.

一般式(2−b)〜(2−y)の組合せからなる合金は、一般式(2−a)を基にM3,Ln,M4及びM5を添加したものである。本発明の接合部材に用いられる非晶質相を主相とする合金からなる精密部品において、添加元素或いは添加元素群であるM3,Ln,M4及びM5は合金の主要成分とはなり得ない。なぜならば、M1とM2の何れかが主成分となることでより高い結晶化温度が得られ、本発明の接合体に適しているからである。しかしながら、これらの添加元素或いは添加元素群は、非晶質相の安定化などに寄与する一方で接合に大きな支障をきたさないことから、含有していても何ら問題はない。   An alloy composed of a combination of the general formulas (2-b) to (2-y) is obtained by adding M3, Ln, M4 and M5 based on the general formula (2-a). In precision parts made of an alloy having an amorphous phase as a main phase used in the joining member of the present invention, the additive elements or additive element groups M3, Ln, M4 and M5 cannot be the main components of the alloy. This is because a higher crystallization temperature can be obtained when either M1 or M2 is a main component, which is suitable for the joined body of the present invention. However, since these additive elements or additive element groups contribute to the stabilization of the amorphous phase and the like and do not cause a major problem in bonding, there is no problem even if they are contained.

但し、M3及びM4は、その組成範囲c及びdが25を超えると非晶質相が極めて形成されにくくなるため、これらの組成範囲c及びdは25以下に限定される。また、Ln及びM5及び非金属であるM6は、これらの組成範囲e,f及びgが10を超えると非晶質相が極めて形成されにくくなるため、これらの組成範囲e,f及びgは10以下に限定される。   However, when the composition ranges c and d of M3 and M4 exceed 25, an amorphous phase is very difficult to be formed. Therefore, these composition ranges c and d are limited to 25 or less. In addition, since Ln, M5, and M6, which is a non-metal, have their composition ranges e, f, and g exceeding 10, it is difficult to form an amorphous phase. Therefore, these composition ranges e, f, and g are 10 It is limited to the following.

更に、接合部品を構成する元素(群)或いは接合界面に形成された箔層を構成する元素(群)と接合母材との間で拡散を生じさせたり、接合母材を意図的に酸化させたりすることによって、接合母材の耐熱性に問題がある場合、接合後の接合界面の融解温度を非晶質相を主相とする合金の結晶化温度以上に改善することも可能である。その方法としては、一般式(1)で示される接合母材を用いた場合においては、Si、Ge或いはSnを接合部品の接合界面に拡散させることによって亜共晶化させる方法、箔層をより厚くすると共に接合母材よりも薄くして双方を拡散させることによって亜共晶化させる方法などが挙げられる。   Further, the element (group) constituting the joining component or the element (group) constituting the foil layer formed at the joining interface and the joining base material may cause diffusion, or the joining base material may be intentionally oxidized. If there is a problem with the heat resistance of the bonding base material, it is possible to improve the melting temperature of the bonded interface after bonding to be higher than the crystallization temperature of the alloy having the amorphous phase as the main phase. As the method, in the case where the bonding base material represented by the general formula (1) is used, a method of hypoeutecticizing by diffusing Si, Ge, or Sn into the bonding interface of the bonded component, and a foil layer Examples thereof include a method of hypoeutecticization by increasing the thickness and reducing the thickness of the bonding base material to diffuse both.

本実施例は、非晶質相を主相とする合金からなる精密部品同士、或いは非晶質相を主相とする合金からなる精密部品と結晶性金属、或いは半導体材料からなる精密部品との接合体を提供するための代表的な手法や条件の一例であり、これらの手法や条件のみに限定されない。以下の本実施例においては、非晶質相を主相とする合金からなる精密部品に、Zr55Cu30Al10Ni5(以下、Z合金と称す)、Cu60Zr30Ti10(以下、C合金と称す)、Ti40Zr10Cu36Pd14(以下、T合金と称す)、及びNi53Nb20Ti10Zr8Co6Cu3(以下、N合金と称す)をそれぞれ適用した場合について示す。 In this embodiment, precision parts made of an alloy having an amorphous phase as a main phase, or precision parts made of an alloy having an amorphous phase as a main phase and precision parts made of a crystalline metal or a semiconductor material are used. It is an example of a typical technique and conditions for providing a joined body, and is not limited only to these techniques and conditions. In the following examples, Zr 55 Cu 30 Al 10 Ni 5 (hereinafter referred to as Z alloy), Cu 60 Zr 30 Ti 10 (hereinafter referred to as Z alloy) are used as precision parts made of an alloy having an amorphous phase as a main phase. C alloy), Ti 40 Zr 10 Cu 36 Pd 14 (hereinafter referred to as T alloy), and Ni 53 Nb 20 Ti 10 Zr 8 Co 6 Cu 3 (hereinafter referred to as N alloy) respectively. Show.

Z合金に代表されるZr−TM(遷移金属)−Al系合金は、1500MPa超の高い強度を有し、酸等に対する耐食性にも優れていることが知られている。更に、ガラス遷移温度(Tg)と結晶化温度との温度差で示される過冷却液体領域(ガラス遷移領域)が極めて広く、Z合金では40K/分の加熱において80〜90K、更に組成を調製することにより100K超にも及ぶ合金が作製可能である。また、非晶質を形成するための臨界冷却速度が数〜数10K/s程度であり、これは最も安定な非晶質状態を有する合金系の一つであると位置付けられる。このため、非晶質相からなるcm級の試料や部品が形成可能であり、非晶質合金として最も盛んに実用化の検討が進められている合金系である。   It is known that a Zr-TM (transition metal) -Al-based alloy typified by a Z alloy has a high strength exceeding 1500 MPa and is excellent in corrosion resistance against acids and the like. Furthermore, the supercooled liquid region (glass transition region) indicated by the temperature difference between the glass transition temperature (Tg) and the crystallization temperature is extremely wide, and in the case of Z alloy, 80 to 90 K is further heated at 40 K / min, and the composition is further prepared. As a result, alloys exceeding 100K can be produced. Further, the critical cooling rate for forming the amorphous is about several to several tens of K / s, which is regarded as one of the alloy systems having the most stable amorphous state. For this reason, it is possible to form cm-class samples and parts made of an amorphous phase, and this alloy system is most actively studied for practical use as an amorphous alloy.

C合金に代表されるCu−(Zr,Hf)−Ti系合金は、Zr−TM(遷移金属)−Al系合金と比較すると非晶質状態の安定性に劣るものの、Zr−TM(遷移金属)−Al系合金と類似の特性を備えている上に、より優れた強度特性を有しており、2000MPaオーダの強度を有することが知られている。Cu−(Zr,Hf)−Ti系合金にNi,Nb,Ta,Beなどを数%程度添加することによって耐食性や強度を更に改善した例も報告されている。Zr−TM(遷移金属)−Al系合金で機械的特性が不足する場合に特に有効な合金系であり、やはり盛んに実用化の検討が進められている合金系である。   Cu- (Zr, Hf) -Ti-based alloys represented by C alloy are inferior to the stability of the amorphous state compared to Zr-TM (transition metal) -Al-based alloys, but Zr-TM (transition metal) It has been known that it has properties similar to those of a) Al-based alloy and has superior strength properties, and has a strength of the order of 2000 MPa. An example in which corrosion resistance and strength are further improved by adding about several percent of Ni, Nb, Ta, Be or the like to a Cu— (Zr, Hf) —Ti alloy is reported. Zr-TM (transition metal) -Al alloy is an alloy system that is particularly effective when mechanical properties are insufficient, and is also an alloy system that has been actively studied for practical use.

T合金に代表されるTi−Cu−Zr−Pd系合金は、生体毒性元素を含まない生体材料用途として開発され、Zr−TM(遷移金属)−Al系合金と同等レベルの機械的特性を持ち、Hanks溶液に対して純TiやTi−6Al−4V合金を上回る優れた耐食性を有するほか、生体活性化処理を行うことによって優れた生体親和性を有することが知られている。高価なPdを大量に含み得るため、機械構造材料としては現実的ではないが、生体内に挿入したり埋め込んだりする精密部品やそれを用いた低侵襲精密アプリケーションなどの用途で、実用化が検討されている合金系である。   Ti-Cu-Zr-Pd alloys, represented by T alloys, were developed as biomaterials that do not contain biotoxic elements, and have mechanical properties equivalent to Zr-TM (transition metal) -Al alloys. In addition to having excellent corrosion resistance with respect to Hanks solution over pure Ti and Ti-6Al-4V alloy, it is known to have excellent biocompatibility by performing bioactivation treatment. Since it can contain a large amount of expensive Pd, it is not practical as a mechanical structural material, but it is considered to be put to practical use in applications such as precision parts to be inserted or embedded in living bodies and minimally invasive precision applications using the parts. It is an alloy system.

N合金に代表されるNi−Nb−(Ti,Zr)系合金は、実施例中で最も非晶質状態の安定性に乏しいが、引張強度が3000MPaと非常に高く、かつ全ての酸に対して卓越した耐食性を有していることが知られている。この引張強度は、非晶質相を塊として形成可能な合金の中では最も高い部類に当たる。本発明者らは、モジュール0.04のN合金製超精密歯車を用いた遊星歯車機構の耐久性に関する基礎評価試験において、同諸元の工具鋼製超精密歯車を用いた遊星歯車機構と比較して100倍オーダもの優れた耐久性を有することを確認している。また、Z合金を用いた遊星歯車機構と比較しても10倍オーダの優れた耐久性を有することが明らかとなっており、高い負荷を要する微細構造部材に対して、実用化が検討されている合金系である。また同時に、優れた耐食性と水素透過性を利用して、セパレータへの応用も期待されている合金系である。   Ni-Nb- (Ti, Zr) -based alloys represented by N alloys have the least amorphous stability in the examples, but have a very high tensile strength of 3000 MPa and are suitable for all acids. It is known to have excellent corrosion resistance. This tensile strength corresponds to the highest class among alloys capable of forming an amorphous phase as a lump. In the basic evaluation test on the durability of the planetary gear mechanism using the N alloy ultra-precision gear of the module 0.04, the present inventors compared with the planetary gear mechanism using the tool steel ultra-precision gear of the same specifications. And it has been confirmed that it has excellent durability on the order of 100 times. In addition, it has become clear that it has excellent durability on the order of 10 times as compared with a planetary gear mechanism using a Z alloy, and practical application has been studied for a microstructure member requiring a high load. Alloy system. At the same time, it is an alloy system that is expected to be applied to separators by utilizing its excellent corrosion resistance and hydrogen permeability.

以上のように、非晶質相を主相とする合金の種々の優れた特性を有する精密部品を、その特性や部品の形状などを損なうことなく、適切に接合された接合体は必要不可欠である。   As described above, it is indispensable to properly join a precision part that has various excellent characteristics of an alloy having an amorphous phase as a main phase without damaging the characteristics or the shape of the part. is there.

以下、本発明の実施例を図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例に用いられる精密部品の模型として、従来の方法では接合加工が困難になることが想定される大きさである直径φ1mm,厚み1mmからなる形状を有する微小片を作製した。次に、微小片の接合対象の表面について、平均粒径1μm未満の酸化物系流動研磨剤を水系溶媒に10〜20体積%混合した研磨液を用いて、樹脂製プレートによる鏡面研磨加工を行った。その後、酸を用いた浸漬洗浄により接合対象面を清浄化した。更に、1Paオーダまで真空引きを行った上でAu及び/或いはNi,Ptなどを総厚み100nm程度となるように蒸着した。   As a model of a precision part used in this example, a small piece having a shape of a diameter φ1 mm and a thickness 1 mm, which is a size expected to be difficult to join by a conventional method, was produced. Next, the surface of the object to be joined is subjected to mirror polishing using a resin plate with a polishing liquid in which an oxide fluid abrasive having an average particle size of less than 1 μm is mixed with an aqueous solvent in an amount of 10 to 20% by volume. It was. Thereafter, the surfaces to be joined were cleaned by immersion cleaning using an acid. Further, after evacuating to the order of 1 Pa, Au and / or Ni, Pt, etc. were deposited to a total thickness of about 100 nm.

一方、接合界面を構成する接合母材には、Au71Sn29を用いた。この接合母材は、10-3Paオーダの真空引きの後Ar置換により約0.02MPa減圧下とした密閉環境下で、単ロールを用いた液体急冷凝固プロセスによって作製された。接合部材の厚みは、おおよそ20μm程度となるようにロールの回転数を制御した。 On the other hand, Au 71 Sn 29 was used as a bonding base material constituting the bonding interface. This joining base material was manufactured by a liquid rapid solidification process using a single roll in a sealed environment in which a vacuum was reduced to about 0.02 MPa by Ar substitution after evacuation of the order of 10 −3 Pa. The number of rotations of the roll was controlled so that the thickness of the joining member was about 20 μm.

作製した接合母材を1mm×1mmに切り出し、接合対象の2つの精密部品に挟み密着させた状態とした。その後、大気圧下のAr置換雰囲気による加熱処理を熱板上にて所定時間行った。本実施例における加熱処理については、各材料の最適条件であるとは言えないが、最高加熱温度を400℃、最高温度での保持時間を10分に統一して行った。熱板加熱時の代表的な温度変化曲線を図1に示す。これによると、200℃〜400℃の間の昇温速度はおおよそ30〜50K/分程度、冷却速度は温度によって異なるがおおよそ10〜25K/分である。なお、本実施例においては、部品の組合せが同種材からなる接合体の試作のみ実施した。但し、Z合金に関してのみ、種々の代表として結晶金属材料との接合体の試作も実施した。接合部材の可否についてはハンドリングに十分耐えうる接合が行われたものを可とした。また、非晶質相を主相とする合金からなる精密部品の結晶化の有無については、精密部品の接合界面の対面に付着した箔層を除去した上で、X線回折プロファイルを接合前後で比較し、更に示差走査熱量分析において、昇温速度40K/分にて結晶化に伴う発熱ピークの存在の有無を確認することによって評価した。   The produced joining base material was cut out into 1 mm x 1 mm, and it was set as the state pinched | interposed into two precision components of joining object. Thereafter, heat treatment in an Ar-substituted atmosphere under atmospheric pressure was performed on the hot plate for a predetermined time. Although it cannot be said that the heat treatment in this example is the optimum condition for each material, the maximum heating temperature was set to 400 ° C. and the holding time at the maximum temperature was unified to 10 minutes. A typical temperature change curve at the time of heating the hot plate is shown in FIG. According to this, the temperature rising rate between 200 ° C. and 400 ° C. is about 30 to 50 K / min, and the cooling rate is about 10 to 25 K / min although it varies depending on the temperature. In this example, only a trial manufacture of a joined body in which the combination of parts is made of the same kind of material was carried out. However, only for the Z alloy, prototypes of joined bodies with crystalline metal materials were also produced as various representatives. Regarding the possibility of the joining member, it was accepted that the joining was sufficiently performed to withstand handling. In addition, regarding the presence or absence of crystallization of precision parts made of an alloy having an amorphous phase as a main phase, the X-ray diffraction profile is measured before and after joining after removing the foil layer adhering to the face of the joining interface of the precision parts. In comparison, the differential scanning calorimetry was further evaluated by confirming the presence or absence of an exothermic peak accompanying crystallization at a heating rate of 40 K / min.

比較例として、非晶質相を主相とする合金からなる精密部品に、La55Al25Cu10Ni5Co5(以下、L合金と称す)をそれぞれ適用した場合について示す。L合金は、強度が他の合金系と比較してやや劣るものの、Z合金同様に非晶質状態の安定性に優れ、過冷却液体領域(ガラス遷移領域)は40K/分の加熱において90〜100Kに及ぶ。この安定した過冷却液体において非常に優れた流動性を有していることから、粘性流動加工において極めて優れた微細形状転写性を有する精密部品の作製例が多数報告されており、精密部品の作製に適した合金系である。しかしながら、この合金系はLaが主成分であり、一般式(2)で示すM1或いはM2が主成分である条件から外れている。Ln(希土類元素)を主成分とすると、結晶化温度はM1或いはM2を主成分とする合金系と比べてかなり低く、40K/分の加熱下では約270℃である。これは一般式(1)で示されるAu65.7Sn27.2Ni7.1の融点257℃と比べて僅かな温度差である。L合金については、400℃の加熱処理では結晶化してしまうため、一般式(1)で示されるAu65.7Sn27.2Ni7.1の融点257℃より僅かに高い260℃を最高到達温度とし、保持時間無し(0分)及び10分の加熱処理を行った。 As a comparative example, a case where La 55 Al 25 Cu 10 Ni 5 Co 5 (hereinafter referred to as L alloy) is applied to precision parts made of an alloy having an amorphous phase as a main phase will be described. Although the L alloy is slightly inferior in strength to other alloy systems, the L alloy is excellent in stability in an amorphous state like the Z alloy, and the supercooled liquid region (glass transition region) is 90 to 100 K when heated at 40 K / min. It extends to. Since this stable supercooled liquid has very good fluidity, there have been many reports on the production of precision parts with extremely fine shape transferability in viscous fluid processing. It is an alloy system suitable for. However, this alloy system is mainly composed of La and deviates from the condition where M1 or M2 represented by the general formula (2) is the main component. When Ln (rare earth element) is a main component, the crystallization temperature is considerably lower than that of an alloy system mainly containing M1 or M2, and is about 270 ° C. under heating at 40 K / min. This is a slight temperature difference compared to the melting point 257 ° C. of Au 65.7 Sn 27.2 Ni 7.1 represented by the general formula (1). L alloy is crystallized by heat treatment at 400 ° C. Therefore, 260 ° C, which is slightly higher than the melting point 257 ° C of Au 65.7 Sn 27.2 Ni 7.1 represented by the general formula (1), is set as the highest temperature, and there is no holding time. (0 minutes) and 10 minutes of heat treatment were performed.

本実施例の結果を表1に示す。また、精密部品の接合体の外観を図2に示す。接合後においても接合部品の形状に変化は全く見られなかった。 The results of this example are shown in Table 1. Moreover, the external appearance of the joined body of precision parts is shown in FIG. Even after joining, no change was found in the shape of the joined parts.

以上のとおり、本発明例である1〜7では、何れも2つの精密部品の接合していることが確認できた。また、本実施例における処理条件において処理前後のX線回折プロファイルに有意な結晶性回折ピークの発現は認められなかった。また、示差走査熱量分析において結晶化に伴う明瞭な発熱ピークが認められた。一方で、比較例である8では、10分の加熱によって接合することは可能であったものの、結晶化を示唆する結晶性回折ピークの発現が認められた。保持時間無しの場合は、接合するに至らなかった。更に、保持時間無しであっても結晶化を示唆する結晶性回折ピークの発現が認められた。また、示差走査熱量分析において結晶化に伴う明瞭な発熱ピークは認められなかった。   As described above, in Examples 1 to 7 according to the present invention, it was confirmed that any two precision parts were joined. In addition, no significant crystal diffraction peak was observed in the X-ray diffraction profiles before and after the treatment under the treatment conditions in this example. In addition, a clear exothermic peak accompanying crystallization was observed in differential scanning calorimetry. On the other hand, in Comparative Example 8, although it was possible to join by heating for 10 minutes, expression of a crystalline diffraction peak suggesting crystallization was observed. When there was no holding time, it did not come to join. Furthermore, the expression of a crystalline diffraction peak suggesting crystallization was observed even without holding time. Further, in the differential scanning calorimetry, no clear exothermic peak accompanying crystallization was observed.

次に、本発明例の接合体の接合界面における詳細な分析結果を、代表して本発明例1を基に説明する。接合体を接合界面に対して垂直な方向に切断し、平均粒径1μm未満の酸化物系流動研磨剤を水系溶媒に10〜20体積%混合した研磨液を用いて、樹脂製プレートによる鏡面研磨加工を行い、接合界面の断面を得た。図3に、走査型電子顕微鏡(Scanning Electron Microscope:SEM)によって拡大倍率2万倍で観察された接合界面の断面像を示す。左側の明るい像が接合母材成分からなる部位、右側の暗い像が非晶質相を有するZ合金からなる部位である。それらの接合界面は、剥離やクラックなどが全く見られず、良好な接合界面が得られていることが確認できた。また、比較的明瞭なコントラストを有していることが見て取れた。   Next, a detailed analysis result at the bonding interface of the joined body of the example of the present invention will be described based on Example 1 of the present invention. The bonded body is cut in a direction perpendicular to the bonding interface, and mirror polishing is performed with a resin plate using a polishing liquid in which 10 to 20% by volume of an oxide-based fluid abrasive having an average particle size of less than 1 μm is mixed with an aqueous solvent. Processing was performed to obtain a cross section of the bonding interface. FIG. 3 shows a cross-sectional image of the bonding interface observed at a magnification of 20,000 with a scanning electron microscope (SEM). The bright image on the left is a portion made of a bonding base material component, and the dark image on the right is a portion made of a Z alloy having an amorphous phase. No peeling or cracking was observed at all at the bonding interface, and it was confirmed that a good bonding interface was obtained. Moreover, it has been seen that it has a relatively clear contrast.

また、接合母材の構成元素及びZ合金の主要な構成元素であるAu,Sn,Zr,Cu,Al,Niについて、同観察像からなる領域の元素分布をエネルギー分散型X線分光器(Energy Dispersive X−ray Spectrometer:EDS)を用いて分析した。その結果を図4に示す。この分析結果からも、接合界面の外観によく一致した各元素の分布が確認された。更に、元素分布量を相対的にグラフ化した結果を図5に示す。接合界面付近において濃度勾配が生じていると予想されるが、その範囲はおおよそ500nm〜1μm程度であり、EDSの測定分解能(15kV,数nA程度の場合の理論値はおおよそ500nm前後である)であることから、接合界面付近の濃度勾配の範囲は500nmよりも狭い可能性が示唆された。   In addition, regarding the constituent elements of the bonding base material and the main constituent elements of the Z alloy, Au, Sn, Zr, Cu, Al, and Ni, the element distribution in the region formed by the same observation image is expressed by an energy dispersive X-ray spectrometer (Energy). Analysis was performed using Dispersive X-ray Spectrometer (EDS). The result is shown in FIG. Also from this analysis result, the distribution of each element that closely matched the appearance of the bonding interface was confirmed. Further, FIG. 5 shows the result of relatively graphing the element distribution amount. A concentration gradient is expected to occur near the junction interface, but the range is approximately 500 nm to 1 μm, and the measurement resolution of EDS (theoretical value in the case of 15 kV and several nA is approximately 500 nm). From this, it was suggested that the range of the concentration gradient near the bonding interface may be narrower than 500 nm.

また、明るい像で観察される接合母材及び暗い像で観察されるZ合金それぞれの領域について、接合界面から約1μm、約2μm及び約5μm離れた点における定量分析を行った結果を表2に示す。   In addition, Table 2 shows the results of quantitative analysis at the points of about 1 μm, about 2 μm, and about 5 μm away from the bonding interface for each region of the bonding base material observed in the bright image and the Z alloy observed in the dark image. Show.

この結果から、Z合金の組成比はほぼ均質であるとみなすことが可能な状態であることが明らかとなった。一方で、接合界面近傍の接合母材の組成は、Au−Sn2元状態図で示されるβ相に近い組成を有しており、接合前の組成よりも有意にAu過剰な組成であることが明らかとなった。また、接合界面から離れるに従いSn含有量が増加する傾向にあり、約2μm離れた点ではζ相が主体であると予想される組成となり、更に約5μm離れた点では僅かにSn過剰な過共晶組成を有することが明らかとなった。これは、Z合金の主要な構成元素であるZrやCuとの間で液体生成時の混合エンタルピーが負となるAuが、濡れ性に大きく寄与していることを示唆する結果である。   From this result, it has been clarified that the composition ratio of the Z alloy can be regarded as almost homogeneous. On the other hand, the composition of the bonding base material in the vicinity of the bonding interface has a composition close to the β phase shown in the Au-Sn binary phase diagram, and the composition is significantly more Au than the composition before bonding. It became clear. In addition, the Sn content tends to increase as the distance from the bonding interface increases. The composition is expected to be mainly composed of the ζ phase at a distance of about 2 μm, and a slight excess of Sn is excessive at a distance of about 5 μm. It was found to have a crystal composition. This is a result that suggests that Au having a negative mixing enthalpy at the time of liquid generation contributes greatly to wettability with Zr and Cu, which are the main constituent elements of the Z alloy.

以上のことから、接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、従来の方法では接合加工が困難になることが想定される大きさであっても、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する接合母材を接合界面に用いて接合体を形成することによって、非晶質相を主相とする合金からなる部品の特性や部品形状を接合後も損なうことなく他方の部品と接合された接合体を提供することが可能となった。すなわち、小型アクチュエータやMEMSアプリケーションなどに用いられるようなハンドリングが極めて困難な精密部品の接合において、各々の部品の特性を接合後も損なうことなく、かつ接合の信頼性が高く実用に耐えうる、非晶質相を主相とする合金からなる精密部品同士、或いは非晶質相を主相とする合金からなる精密部品と結晶性金属、或いは半導体材料からなる精密部品との接合体を提供することが可能となった。   From the above, when at least one of two or more precision parts being joined is made of an alloy having an amorphous phase as a main phase, it is assumed that joining is difficult with the conventional method. The bonded phase is formed by using a bonding base material that melts in a temperature zone below the crystallization temperature of an alloy having an amorphous phase as a main phase as a bonding interface. It has become possible to provide a joined body joined to the other part without damaging the characteristics and part shape of the part made of an alloy having the main phase after joining. In other words, in the joining of precision parts that are extremely difficult to handle, such as those used in small actuators and MEMS applications, the characteristics of each part are not impaired even after joining, and the joining reliability is high and can withstand practical use. To provide a joined body of precision parts made of an alloy having a crystalline phase as a main phase or a precision part made of an alloy having an amorphous phase as a main phase and a precision part made of a crystalline metal or a semiconductor material. Became possible.

Claims (5)

接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する接合母材を接合界面に用いた精密部品の接合体。   In the case where at least one of the two or more precision parts being joined is made of an alloy having an amorphous phase as a main phase, in a temperature range lower than the crystallization temperature of the alloy having an amorphous phase as a main phase. A precision component assembly using a molten base material for the joint interface. 接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する、一般式(1)にて示される組成によって構成された接合母材を接合界面に用いた精密部品の接合体
一般式(1):Au100-xx
但し、MはSi,Ge,Snのうち少なくとも1種を必ず含む任意の元素群であり、xは原子%で、17.5≦x≦40である。
In the case where at least one of the two or more precision parts being joined is made of an alloy having an amorphous phase as a main phase, in a temperature range lower than the crystallization temperature of the alloy having an amorphous phase as a main phase. Bonded general formula (1) of a precision part using a bonding base material having a composition represented by the general formula (1) that melts as a bonding interface: Au 100-x M x
However, M is an arbitrary element group that always includes at least one of Si, Ge, and Sn, and x is atomic%, and 17.5 ≦ x ≦ 40.
接合されている2つ以上の精密部品のうち、少なくとも1つが非晶質相を主相とする合金からなる場合において、非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する、一般式(1)にて示される組成によって構成された接合界面に用いた精密部品の接合体において、非晶質相を主相とする合金からなる部材の接合界面側に予めAu, Pt, Pd及びNiのうち少なくとも何れか1種を含有する箔層と接合母材、及び接合母材を有することを特徴とする精密部品の接合体
一般式(1):Au100-xx
但し、MはSi,Ge,Snのうち少なくとも1種を必ず含む任意の元素群であり、xは原子%で、17.5≦x≦40である。
In the case where at least one of the two or more precision parts being joined is made of an alloy having an amorphous phase as a main phase, in a temperature range lower than the crystallization temperature of the alloy having an amorphous phase as a main phase. In the precision component joint used for the joining interface constituted by the composition represented by the general formula (1) to be melted, Au, in advance on the joining interface side of a member made of an alloy having an amorphous phase as a main phase. Bonded base material of precision parts characterized by having a foil layer containing at least one of Pt, Pd and Ni, a bonding base material, and a bonding base material: Au 100-x M x
However, M is an arbitrary element group that always includes at least one of Si, Ge, and Sn, and x is atomic%, and 17.5 ≦ x ≦ 40.
接合されている2つ以上の精密部品のうち、少なくとも1つが一般式(2)にて示されかつ3種以上の元素の組合せからなる組成によって構成された非晶質相を主相とする合金からなる精密部品である請求項1乃至請求項3のいずれかに記載の精密部品の接合体
一般式(2):M1aM2bM3cM4dLneM5fM6g
但し、M1はTi,Zr及びHfから選ばれる少なくとも1種の元素、M2はFe,Co,Ni,Cu,V,Cr,Mn及びNbよりなる群から選ばれる少なくとも1種の元素、M3はZn,Be,Al,Ga,Ge,In及びSnよりなる群から選ばれる少なくとも1種の元素、M4はAu,Pt,Pd及びAgよりなる群から選ばれる少なくとも1種の元素、LnはSc,Y,La,Ce,Nd,Sm,Gd,Tb,Dy,Ho,Yb及びMm(希土類元素の集合体であるミッシュメタル)よりなる群から選ばれる少なくとも1種の元素、M5はTa,W及びMoよりなる群から選ばれる少なくとも1種の元素、M6はSi,P,B及びCよりなる群から選ばれる少なくとも1種の元素、a,b,c,d,e及びfはそれぞれ原子%で、15≦a≦85,15≦b≦85,0≦c≦25,0≦d≦25,0≦e≦10,0≦f≦10,0≦g≦10である。
An alloy whose main phase is an amorphous phase composed of a composition of at least one of the two or more precision parts being joined represented by the general formula (2) and comprising a combination of three or more elements. a precision parts made of a conjugate of general formula precision part according to any one of claims 1 to 3 (2): M1 a M2 b M3 c M4 d Ln e M5 f M6 g
However, M1 is at least one element selected from Ti, Zr and Hf, M2 is at least one element selected from the group consisting of Fe, Co, Ni, Cu, V, Cr, Mn and Nb, and M3 is Zn. , Be, Al, Ga, Ge, In and Sn, at least one element selected from the group consisting of Sn, M4 is at least one element selected from the group consisting of Au, Pt, Pd and Ag, and Ln is Sc, Y , La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Yb and at least one element selected from the group consisting of Mm (Misch metal which is an aggregate of rare earth elements), M5 is Ta, W and Mo At least one element selected from the group consisting of M6, at least one element selected from the group consisting of Si, P, B and C, a, b, c, d, e and f each in atomic percent, 5 is ≦ a ≦ 85,15 ≦ b ≦ 85,0 ≦ c ≦ 25,0 ≦ d ≦ 25,0 ≦ e ≦ 10,0 ≦ f ≦ 10,0 ≦ g ≦ 10.
非晶質相を主相とする合金の結晶化温度以下の温度帯で溶融する接合母材によって接合された接合体において、接合後の融解温度が、非晶質相を主相とする合金の結晶化温度以上に改善された請求項1乃至請求項3のいずれかに記載の精密部品の接合体。   In a joined body joined by a joining base material that melts in a temperature zone below the crystallization temperature of an alloy having an amorphous phase as a main phase, the melting temperature after joining of the alloy having an amorphous phase as a main phase The precision part joined body according to any one of claims 1 to 3, which is improved to a temperature equal to or higher than a crystallization temperature.
JP2009255590A 2009-11-07 2009-11-07 Joined body of precision component Pending JP2011098383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255590A JP2011098383A (en) 2009-11-07 2009-11-07 Joined body of precision component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255590A JP2011098383A (en) 2009-11-07 2009-11-07 Joined body of precision component

Publications (1)

Publication Number Publication Date
JP2011098383A true JP2011098383A (en) 2011-05-19

Family

ID=44189999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255590A Pending JP2011098383A (en) 2009-11-07 2009-11-07 Joined body of precision component

Country Status (1)

Country Link
JP (1) JP2011098383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273219A (en) * 2013-06-28 2013-09-04 深圳市富维德电子科技有限公司 Tin, silver, copper and nickel welding material and preparation method thereof
CN105671355A (en) * 2016-04-15 2016-06-15 浙江佳博科技股份有限公司 Low-cost alloy bonding wire and preparation method and application thereof
CN110747383A (en) * 2019-12-10 2020-02-04 辽宁工业大学 High-entropy alloy based on intermetallic compound and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501691A (en) * 1984-03-05 1986-08-14 ドレッサ−・インダストリ−ズ・インコ−ポレ−テッド Liquid phase bonded amorphous material and its preparation method
JP2004055924A (en) * 2002-07-22 2004-02-19 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer laminate
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501691A (en) * 1984-03-05 1986-08-14 ドレッサ−・インダストリ−ズ・インコ−ポレ−テッド Liquid phase bonded amorphous material and its preparation method
JP2004055924A (en) * 2002-07-22 2004-02-19 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer laminate
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273219A (en) * 2013-06-28 2013-09-04 深圳市富维德电子科技有限公司 Tin, silver, copper and nickel welding material and preparation method thereof
CN103273219B (en) * 2013-06-28 2015-04-15 深圳市富维德电子科技有限公司 Tin, silver, copper and nickel welding material and preparation method thereof
CN105671355A (en) * 2016-04-15 2016-06-15 浙江佳博科技股份有限公司 Low-cost alloy bonding wire and preparation method and application thereof
CN110747383A (en) * 2019-12-10 2020-02-04 辽宁工业大学 High-entropy alloy based on intermetallic compound and preparation method thereof

Similar Documents

Publication Publication Date Title
Lee et al. Interfacial properties of Zn–Sn alloys as high temperature lead-free solder on Cu substrate
JP6076358B2 (en) Bulk metallic glass sheet bonding using pressurized fluid formation
JP4402015B2 (en) Single-phase amorphous alloy with excellent ductility
JP5123386B2 (en) Zr-Ti-Ni (Cu) -based low melting point brazing filler metal alloy composition for titanium brazing
JPH03158446A (en) Amorphous alloy excellent in workability
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
EP3872197A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
KR20200101984A (en) Fabrication of bulk metallic glass composites using powder-based additive manufacturing
KR102253406B1 (en) Bonding material for dissimilar metal and brazing method using the same
JP6439795B2 (en) Ni-based amorphous alloy ribbon for brazing and stainless steel joint using the same
WO2012086490A1 (en) Rotary tool
JP2014525837A (en) Heat staking joint
WO2014169133A1 (en) Ti-based filler alloy compositions
EP2343150A2 (en) High temperature melting braze materials for bonding niobium based alloys
KR101781692B1 (en) Brazing filler alloy composition with lower melting point for the brazing of titanium alloys
JP2011098383A (en) Joined body of precision component
EP2897762B1 (en) Brazing alloys
KR101657459B1 (en) LOW TEMPERATURE Al BRAZING ALLOY COMPOSITION AND MANUFACTURING METHOD OF LOW TEMPERATURE Al BRAZING ALLOY
Wang et al. Interfacial reaction between Sn-Bi alloy and Ni substrate
JP2009084681A (en) Stress buffer material composed of aluminum alloy
JP4974834B2 (en) Brazing material
KR101539647B1 (en) Polycrystalline alloy having glass forming ability, method of fabricating the same, alloy target for sputtering and method of fabricating the same
Li et al. Progress, applications, and perspectives of titanium-based braze filler metal: a review
KR100980475B1 (en) Active brazing filler metal alloy composition with high strength and low melting point
WO2016139860A1 (en) Alloy brazing powder and joined component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140331