JP2018079480A - Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE - Google Patents

Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE Download PDF

Info

Publication number
JP2018079480A
JP2018079480A JP2016221770A JP2016221770A JP2018079480A JP 2018079480 A JP2018079480 A JP 2018079480A JP 2016221770 A JP2016221770 A JP 2016221770A JP 2016221770 A JP2016221770 A JP 2016221770A JP 2018079480 A JP2018079480 A JP 2018079480A
Authority
JP
Japan
Prior art keywords
mass
solder alloy
alloy
solder
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016221770A
Other languages
Japanese (ja)
Inventor
井関 隆士
Takashi Izeki
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016221770A priority Critical patent/JP2018079480A/en
Publication of JP2018079480A publication Critical patent/JP2018079480A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Bi-In-Sn type solder alloy for a low temperature, which can lower a junction temperature more higher than that of a solder alloy for medium and low temperatures of the prior art, which is excellent in bondability, stress relaxation property, and junction temperature, and a lower melting point, an electronic part mounting substrate, and a device mounting that implementation substrate.SOLUTION: A Pb-free solder alloy of Bi-In-Sn type contains In of 42.0 mass % or more and 50.0 mass % or less, Sn of 7.0 mass % or more and 23.0 mass % or less, preferably In of 43.0 mass % or more and 49.0 mass % or less, Sn of 8.0 mass % or more and 21.0 mass % or less, and the remainder is composed of Bi excepting the element which is contained inevitably on the production.SELECTED DRAWING: None

Description

本発明はPbフリーはんだ合金に関し、とくに低温用として好適なBi−In−Sn系はんだ合金に関する。   The present invention relates to a Pb-free solder alloy, and more particularly to a Bi—In—Sn solder alloy suitable for low temperature use.

近年、環境に有害な化学物質に対する規制がますます厳しくなってきており、この規制は電子部品などを基板に接合する目的で使用されるはんだ合金に対しても例外ではない。はんだ合金には古くからPb(鉛)が主成分として使われ続けてきたが、すでにRoHS指令などで鉛は規制対象物質になっている。このため、鉛を含まないはんだ合金(以降、Pbフリーはんだ合金とも称する)の開発が盛んに行われている。   In recent years, regulations on chemical substances harmful to the environment have become stricter, and this regulation is no exception for solder alloys used for the purpose of joining electronic components to a substrate. Pb (lead) has been used as a main component in solder alloys for a long time, but lead has already been a regulated substance under the RoHS directive and the like. For this reason, development of solder alloys that do not contain lead (hereinafter also referred to as Pb-free solder alloys) has been actively conducted.

電子部品を基板に接合する際に使用するはんだ合金は、その使用限界温度によって高温用(約260℃〜400℃)と中低温用(約140℃〜230℃)とに大別され、その中で、低温用のはんだ合金は、一般的に、Pb−63Snの共晶合金の融点183℃よりも融点が低いはんだ合金を指すものとされている。しかしながら、電子部品の中には、耐熱性が非常に低く、高温に晒されるとその機能が劣化したり破壊されたりするものがあり、そのような電子部品の接合には、140℃よりも低温の環境下ではんだ付けするための、より融点の低い低温用のはんだ合金が求められている。   Solder alloys used when joining electronic components to a substrate are roughly classified into high temperature (about 260 ° C. to 400 ° C.) and medium to low temperature (about 140 ° C. to 230 ° C.) depending on the limit temperature of use. The low-temperature solder alloy generally refers to a solder alloy having a melting point lower than the melting point 183 ° C. of the eutectic alloy of Pb-63Sn. However, some electronic components have very low heat resistance, and their functions may deteriorate or be destroyed when exposed to high temperatures. For bonding such electronic components, the temperature is lower than 140 ° C. Therefore, there is a demand for a low-temperature solder alloy having a lower melting point for soldering in such an environment.

従来、このようなより融点の低い低温用はんだ合金としては、例えば、融点が95℃のSn−52Bi−32Pb合金や、融点が113℃のSn−40Pb−40Bi合金等の鉛含有はんだ合金が用いられている。
このようなより融点の低い低温用のはんだ合金のPbフリー化技術としては、特許文献1に、130℃よりも低温の環境下ではんだ付けが可能な、より融点の低い低温用のPbフリーはんだ合金として、Inを48質量%以上52.5質量%以下含有し残部がBiからなり、固相線温度(融点)が85℃以上であるとともに液相線温度が110℃以下であるPbフリーはんだ合金が記載されている。
Conventionally, as such a low-temperature solder alloy having a lower melting point, for example, a lead-containing solder alloy such as a Sn-52Bi-32Pb alloy having a melting point of 95 ° C. or a Sn-40Pb-40Bi alloy having a melting point of 113 ° C. is used. It has been.
As a Pb-free technology for such a low-temperature solder alloy having a lower melting point, Patent Document 1 discloses a low-melting Pb-free solder having a lower melting point that can be soldered in an environment lower than 130 ° C. As an alloy, Pb-free solder containing 48% by mass to 52.5% by mass of In, the balance being Bi, the solidus temperature (melting point) being 85 ° C. or higher and the liquidus temperature being 110 ° C. or lower. Alloys are described.

WO2007/21006WO2007 / 21006

近年、電子部品の小型化に伴い、電子機器類からの発熱が減少すると同時に、電子機器類の回路の細線化などに伴い、電子機器類の耐熱温度もより低くなるため、より融点の低い低温用のはんだ合金として、特許文献1に記載のPbフリーはんだ合金よりも低温の環境下ではんだ付けが可能な、より融点の低い低温用のPbフリーはんだ合金が求められている。また、はんだ合金には、所望の温度で溶融して対象部材を接合させることの他に、接合後にはんだ合金により形成された接合体が十分な応力緩和性を示し、長期にわたる接合信頼性を有することも求められる。
しかるに、従来、130℃よりも低温の環境下ではんだ付けするための、より融点の低い低温用のPbフリーはんだ合金として、接合後にはんだ合金により形成された接合体が十分な応力緩和性を示し、長期にわたる接合信頼性を有するものは存在しなかった。
In recent years, with the miniaturization of electronic components, heat generation from electronic devices has decreased, and at the same time, the heat-resistant temperature of electronic devices has become lower due to the thinning of circuits of electronic devices. As a solder alloy for use, there is a need for a low-temperature Pb-free solder alloy having a lower melting point that can be soldered in a lower temperature environment than the Pb-free solder alloy described in Patent Document 1. In addition to joining the target member by melting at a desired temperature, the joined body formed of the solder alloy exhibits sufficient stress relaxation properties and has long-term joining reliability. It is also required.
However, conventionally, as a low-temperature Pb-free solder alloy having a lower melting point for soldering in an environment at a temperature lower than 130 ° C., a joined body formed of the solder alloy after joining exhibits sufficient stress relaxation properties. None of them has long-term bonding reliability.

本発明はかかる課題に鑑みてなされたものであり、接合温度を従来の中低温用のはんだ合金に比べて大きく下げることができ、且つ、接合性、応力緩和性、及び接合信頼性等に優れた、より融点の低い低温用として好適なPbフリーはんだ合金を提供することを目的としている。   The present invention has been made in view of such a problem, and can greatly reduce the bonding temperature as compared with conventional solder alloys for medium and low temperatures, and is excellent in bonding property, stress relaxation property, bonding reliability, and the like. Another object of the present invention is to provide a Pb-free solder alloy suitable for low temperature use having a lower melting point.

上記目的を達成するため、本発明者は、環境規制物質を含まない各種元素を組み合わせて、鋭意研究を重ねた結果、Bi、In、Snの組合せで適切な組成範囲とすることにより、単に融点が下がるだけでなく、各種被接合金属との接合性に優れ、かつ応力緩和性に優れるPbフリーBi−In−Sn系はんだ合金とすることができ、接合信頼性に優れた電子部品を製造し得ることを見出し、本発明を完成するに至った。また、発明者は、上記PbフリーBi−In−Snはんだ合金に、さらにPを含有させることにより、濡れ性を更に改善させ、より接合信頼性に優れた電子部品を製造し得ることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventor has combined various elements that do not contain an environmentally regulated substance, and as a result of earnest research, the inventors have simply set the melting point to a suitable composition range by combining Bi, In, and Sn. Not only lowers, but also makes it possible to produce a Pb-free Bi-In-Sn solder alloy with excellent bondability with various metals to be bonded and excellent stress relaxation, and manufactures electronic components with excellent bonding reliability. The present invention has been found and the present invention has been completed. Further, the inventors have found that the Pb-free Bi—In—Sn solder alloy further contains P, thereby further improving the wettability and producing an electronic component with more excellent bonding reliability. The present invention has been completed.

すなわち、本発明によるPbフリーBi−In−Sn系はんだ合金は、Inを42.0質量%以上50.0質量%以下、Snを7.0質量%以上23.0質量%以下含有し、残部が製造上不可避的に含有される元素を除きBiからなることを特徴としている。   That is, the Pb-free Bi—In—Sn solder alloy according to the present invention contains 42.0% by mass to 50.0% by mass of In, 7.0% by mass to 23.0% by mass of Sn, and the balance Is made of Bi except for elements inevitably contained in production.

また、本発明によるPbフリーBi−In−Sn系はんだ合金は、Inを42.0質量%以上50.0質量%以下、Snを7.0質量%以上23.0質量%以下含有し、さらにPを0.001質量%以上0.500質量%以下含有し、残部が製造上不可避的に含有される元素を除きBiからなることを特徴としている。   The Pb-free Bi—In—Sn solder alloy according to the present invention contains 42.0% by mass to 50.0% by mass of In, 7.0% by mass to 23.0% by mass of Sn, P is contained 0.001 mass% or more and 0.500 mass% or less, and the balance is made of Bi except for elements inevitably contained in production.

また、本発明のPbフリーBi−In−Sn系はんだ合金においては、Inを43.0質量%以上49.0質量%以下、Snを8.0質量%以上21.0質量%以下含有するのが好ましい。   In the Pb-free Bi—In—Sn solder alloy of the present invention, In is contained 43.0 mass% or more and 49.0 mass% or less, and Sn is contained 8.0 mass% or more and 21.0 mass% or less. Is preferred.

また、本発明による電子部品実装基板は、上記発明のいずれかのPbフリーBi−In−Sn系はんだ合金を用いて接合された電子部品を有してなることを特徴としている。   In addition, an electronic component mounting board according to the present invention is characterized by having an electronic component joined using any of the Pb-free Bi—In—Sn solder alloys according to the present invention.

また、本発明による装置は、上記発明の電子部品実装基板を有してなることを特徴としている。   An apparatus according to the present invention includes the electronic component mounting board according to the present invention.

本発明のPbフリーBi−In−Sn系はんだ合金は、Pbなどの規制対象物質を含有しないため環境にやさしく、かつ固相線温度を62℃程度の非常に低い温度とすることができるため、低耐熱部品を熱損傷させること無く、好適に製造することが可能となる。しかも、本発明のPbフリーBi−In−Sn系はんだ合金は、接合性、応力緩和性、及び接合信頼性等が極めて優れているため、信頼性の高い接合体を形成することができる。   Since the Pb-free Bi—In—Sn solder alloy of the present invention does not contain a regulated substance such as Pb, it is environmentally friendly, and the solidus temperature can be set to a very low temperature of about 62 ° C. It is possible to manufacture the low heat resistant component suitably without causing thermal damage. Moreover, since the Pb-free Bi—In—Sn solder alloy of the present invention is extremely excellent in bondability, stress relaxation property, bond reliability, and the like, a highly reliable bonded body can be formed.

NiめっきCu基板にはんだ合金を接合した接合体をはんだ合金の上方から見た概略図である。It is the schematic which looked at the joined body which joined the solder alloy to Ni plating Cu board | substrate from the upper direction of the solder alloy. NiめっきCu基板の上にはんだ合金、さらにその上にSiチップを接合した接合体の断面概略図である。It is the cross-sectional schematic of the joined body which joined the solder alloy and also the Si chip on it on Ni plating Cu board | substrate.

以下、Biに所定量のInとSnを含有させた、本発明のPbフリーBi−In−Sn系はんだ合金に関する技術について説明する。   Hereinafter, a technique related to the Pb-free Bi—In—Sn solder alloy according to the present invention in which Bi contains a predetermined amount of In and Sn will be described.

本発明のPbフリーBi−In−Sn系はんだ合金は、Inを42.0質量%以上50.0質量%以下、Snを7.0質量%以上23.0質量%以下含有し、残部が製造上不可避的に含有される元素を除きBiからなる。
また、本発明の他の実施形態のPbフリーBi−In−Sn系はんだ合金は、Inを42.0質量%以上50.0質量%以下、Snを7.0質量%以上23.0質量%以下含有し、さらにPを0.001質量%以上0.500質量%以下含有し、残部が製造上不可避的に含有される元素を除きBiからなる。
また、本発明のPbフリーBi−In−Sn系はんだ合金、本発明の他の実施形態のPbフリーBi−In−Sn系はんだ合金は、好ましくは、Inを43.0質量%以上49.0質量%以下、Snを8.0質量%以上21.0質量%以下含有する。
The Pb-free Bi-In-Sn solder alloy of the present invention contains 42.0% to 50.0% by mass of In, 7.0% to 23.0% by mass of Sn, and the remainder is manufactured. It is made of Bi except for elements inevitably contained.
Further, the Pb-free Bi—In—Sn solder alloy according to another embodiment of the present invention has an In content of 42.0 mass% to 50.0 mass% and an Sn content of 7.0 mass% to 23.0 mass%. It is contained below, and further contains P in an amount of 0.001% by mass to 0.500% by mass, and the balance is made of Bi except for elements which are inevitably contained in production.
In addition, the Pb-free Bi—In—Sn solder alloy of the present invention and the Pb-free Bi—In—Sn solder alloy of other embodiments of the present invention preferably include 43.0% by mass or more of In and 49.0% by mass. % By mass or less, Sn is contained in an amount of 8.0% by mass or more and 21.0% by mass or less.

上記の組成を有するPbフリーBi−In−Sn系はんだ合金を用いてはんだ接合を行う電子部品実装基板やその基板を搭載した装置には、一般的な耐熱温度を有さない低耐熱用の電子部品や基板等が用いられる。本発明のPbフリーBi−In−Sn系はんだ合金を用いれば、上述した接合性、応力緩和性、及び接合信頼性等が極めて優れた、信頼性の高い接合体を形成できる効果に加えて、作製時の接合温度を従来の中低温用のはんだ合金に比べて大きく下げることができるので、はんだ合金を加熱するための製造コストを抑える効果も有する。以下、本発明のPbフリーBi−In−Sn系はんだ合金に用いられる各元素について詳細に説明する。   An electronic component mounting board that performs solder bonding using a Pb-free Bi-In-Sn solder alloy having the above composition and an apparatus having the board mounted thereon have a low heat resistant electron that does not have a general heat resistant temperature. Components, boards, etc. are used. If the Pb-free Bi—In—Sn solder alloy of the present invention is used, in addition to the effect of forming a highly reliable bonded body with excellent bonding properties, stress relaxation properties, bonding reliability, and the like described above, Since the joining temperature at the time of production can be greatly lowered as compared with conventional solder alloys for medium and low temperatures, it also has an effect of suppressing the manufacturing cost for heating the solder alloy. Hereinafter, each element used for the Pb-free Bi—In—Sn solder alloy of the present invention will be described in detail.

<Bi>
Biは本発明のPbフリーBi−In−Sn系はんだ合金において後述するIn、Snと共に主成分をなす元素である。BiはVa族元素(N、P、As、Sb、Bi)に属し、その結晶構造は、対称性の低い三方晶(菱面体晶)であるため非常に脆い金属である。また、Biは凝固時に膨張する金属であり、この凝固時の収縮率(−が膨張、+が収縮を意味する)は−3.2%〜−3.4%である。
本発明のPbフリーBi−In−Sn系はんだ合金のように、Biを含むはんだ合金にInとSnを含有させることにより、Biが凝固時に膨張する問題を改善することができる。すなわち、InやSnは凝固時に体積収縮する。このため、BiにInとSnを含有させることによって、Biの膨張分をInやSnの収縮分で減らし、はんだ合金全体としての体積変化を小さくして、はんだ合金内の残留応力を低減することが可能となる。
更に、Bi−In−Snの三元系合金とすることによって、固相線温度が60℃程度となり、Sn−Pb共晶はんだ合金(固相線温度183℃)よりも格段と融点を下げることができる。また、従来用いられている融点が95℃のSn−52Bi−32Pb合金や、融点が113℃のSn−40Pb−40Bi合金などの、より融点の低い低温用鉛含有はんだ合金よりも融点を下げることができる。このように融点が非常に低いため、はんだ接合環境の温度を下げることができ、耐熱温度が低い物を好適にはんだ接合することができたり、はんだ接合時の電気代などのランニングコストを下げたりできる上、酸化の進行を抑制することもできる。しかも、本発明のPbフリーBi−In−Sn系はんだ合金は極めて柔軟性に富むため、応力緩和性及び接合信頼性にも優れる。
<Bi>
Bi is an element which forms a main component together with In and Sn described later in the Pb-free Bi—In—Sn solder alloy of the present invention. Bi belongs to the Va group element (N, P, As, Sb, Bi), and its crystal structure is a trigonal crystal (rhombohedral crystal) with low symmetry, and is a very brittle metal. Bi is a metal that expands during solidification, and the contraction rate (− means expansion and + means contraction) during solidification is −3.2% to −3.4%.
By incorporating In and Sn into a solder alloy containing Bi like the Pb-free Bi—In—Sn solder alloy of the present invention, it is possible to improve the problem that Bi expands during solidification. That is, In and Sn shrink in volume during solidification. Therefore, by adding In and Sn to Bi, the amount of expansion of Bi is reduced by the amount of contraction of In and Sn, the volume change of the entire solder alloy is reduced, and the residual stress in the solder alloy is reduced. Is possible.
Furthermore, by using a ternary alloy of Bi—In—Sn, the solidus temperature becomes about 60 ° C., and the melting point is significantly lower than that of the Sn—Pb eutectic solder alloy (solidus temperature 183 ° C.). Can do. Moreover, the melting point should be lower than that of a low-temperature lead-containing solder alloy having a lower melting point, such as a Sn-52Bi-32Pb alloy having a melting point of 95 ° C. or a Sn-40Pb-40Bi alloy having a melting point of 113 ° C. Can do. In this way, the melting point is very low, so the temperature of the soldering environment can be lowered, it is possible to suitably solder an object with a low heat-resistant temperature, and the running cost such as electricity bill at the time of soldering can be reduced. In addition, the progress of oxidation can be suppressed. Moreover, since the Pb-free Bi—In—Sn solder alloy of the present invention is extremely flexible, it has excellent stress relaxation properties and bonding reliability.

<In>
Inは本発明のPbフリーBi−In−Sn系はんだ合金において上述のBi、後述するSnと共に主成分をなす元素である。上述した通り、Biを含むはんだ合金にSnと共にInを含有させることにより、残留応力が少なく低融点のはんだ合金とすることができる。
本発明のBi−In−Sn系はんだ合金におけるInの含有量は42.0質量%以上50.0質量%以下である。Inをこの範囲で含有量させると、結晶が微細化して加工性や応力緩和性が向上し、高い信頼性も得られる。Inの含有量が42.0質量%未満であったり、50.0質量%を超えたりすると、液相線温度が高くなり、低温でのはんだ付けの際に、はんだ合金が十分溶融できず溶け別れ現象などを生じ、十分な加工性や応力緩和性を得ることができないなど良好な接合ができない場合がある。Inの含有量が43.0質量%以上49.0質量%以下であれば、より一層良好な特性が得られるため好ましい。
<In>
In is an element which forms a main component together with the above-described Bi and Sn described later in the Pb-free Bi—In—Sn solder alloy of the present invention. As described above, by incorporating In together with Sn in a solder alloy containing Bi, a solder alloy with low residual stress and a low melting point can be obtained.
The In content in the Bi—In—Sn solder alloy of the present invention is 42.0 mass% or more and 50.0 mass% or less. When In is contained in this range, the crystal becomes finer, the workability and stress relaxation properties are improved, and high reliability is also obtained. If the In content is less than 42.0% by mass or exceeds 50.0% by mass, the liquidus temperature becomes high and the solder alloy cannot be sufficiently melted and melted during soldering at a low temperature. There may be a case where a good separation cannot be obtained because a separation phenomenon occurs and sufficient workability and stress relaxation properties cannot be obtained. It is preferable that the content of In is 43.0% by mass or more and 49.0% by mass or less because better characteristics can be obtained.

<Sn>
Snは本発明のPbフリーBi−In−Sn系はんだ合金において上述のBi、Inと共に主成分をなす元素である。上述した通り、Biを含むはんだ合金にInと共にSnを含有させることにより、残留応力を少なくし、はんだ合金の融点を大きく下げることができる。
また、Snは被接合部材に多く用いられるCuやNiなどとの反応性に優れるため、被接合部材との濡れ性や接合性を向上させ、その結果、接合信頼性を向上させる効果も有する。
本発明のBi−In−Sn系はんだ合金におけるSnの含有量は7.0質量%以上23.0質量%以下であり、好ましくは8.0質量%以上21.0質量%以下である。Snの含有量が7.0質量%未満では、含有量が少なすぎて接合面との間に十分な金属間化合物を生成できなかったり、液相線温度と固相線温度の差が大きくなり過ぎて、はんだ合金が十分溶融できず溶け別れ現象などを生じ、十分な加工性や応力緩和性を得ることができなかったりし、良好な接合ができない場合がある。Snの含有量が23.0質量%を超えると、液相線温度が高くなりすぎてしまい、はんだ合金が十分溶融できず溶け別れ現象などを生じ、十分な加工性や応力緩和性が得られなくなり、良好な接合ができない場合がある。
<Sn>
Sn is an element which forms a main component together with the aforementioned Bi and In in the Pb-free Bi—In—Sn solder alloy of the present invention. As described above, by adding Sn to the solder alloy containing Bi together with In, the residual stress can be reduced and the melting point of the solder alloy can be greatly reduced.
Further, Sn is excellent in reactivity with Cu, Ni and the like often used for the members to be joined, so that wetting and joining properties with the members to be joined are improved, and as a result, there is an effect of improving the joining reliability.
The Sn content in the Bi—In—Sn solder alloy of the present invention is 7.0% by mass or more and 23.0% by mass or less, and preferably 8.0% by mass or more and 21.0% by mass or less. If the Sn content is less than 7.0% by mass, the content is too small to produce a sufficient intermetallic compound with the joint surface, or the difference between the liquidus temperature and the solidus temperature becomes large. In some cases, the solder alloy cannot be sufficiently melted, causing a detachment phenomenon and the like, and sufficient workability and stress relaxation properties cannot be obtained. If the Sn content exceeds 23.0% by mass, the liquidus temperature becomes too high, and the solder alloy cannot be sufficiently melted, resulting in a detachment phenomenon, and sufficient workability and stress relaxation properties are obtained. In some cases, good bonding cannot be achieved.

<P>
本発明の他の実施形態のPbフリーBi−In−Sn系はんだ合金は、含有元素としてBi、In、Snのほか、さらに、Bi−In−Sn系はんだ合金の濡れ性及び接合性を向上させるために、Pを含有する。Pの含有により濡れ性向上の効果が大きくなる理由は、Pは還元性が強く、自ら酸化することにより、はんだ合金表面の酸化を抑制することによる。
Pを含有させることで、さらに接合時のボイドの発生を低減させる効果も得られる。これは、Pは自らが酸化しやすく、接合時にはんだ合金の主成分であるBi、In、Snよりも優先的に酸化が進むことにより、はんだ母相の酸化が抑えられ、ボイド発生の起因となる酸化物を低減することができるためと考えられる。Pは酸化物になると同時に気化するため、Pの酸化物が接合性を邪魔することは無い。その結果、濡れ性も向上し良好な接合が可能となる。
Pは、上述したように非常に還元性が強いため、微量の含有量で濡れ性向上の効果を発揮する。但し、Pの含有量が所定量に到達すると、それ以上含有させても濡れ性向上の効果は変わらず、逆に過剰な含有量によるPの酸化物がはんだ合金内に取り込まれてボイドになったり、Pが脆弱な相を作って偏析し、はんだ合金を脆化したりするおそれがある。とくにワイヤなどを加工する場合には、断線の原因となることが確認された。したがって、Pの含有量は微量が好ましい。具体的には、濡れ性向上の効果を十分発揮させるはんだ合金中のP含有量は、0.001質量%以上0.500質量%以下である。
<P>
The Pb-free Bi—In—Sn based solder alloy according to another embodiment of the present invention improves the wettability and bonding properties of the Bi—In—Sn based solder alloy in addition to Bi, In, and Sn as contained elements. Therefore, P is contained. The reason why the effect of improving wettability is increased by the inclusion of P is that P is highly reducible and suppresses oxidation of the solder alloy surface by oxidizing itself.
By containing P, the effect of reducing the generation of voids at the time of bonding can also be obtained. This is because P tends to oxidize itself, and oxidation proceeds preferentially over Bi, In, and Sn, which are the main components of the solder alloy at the time of joining, thereby suppressing the oxidation of the solder matrix and This is considered to be because the oxide can be reduced. Since P is vaporized at the same time as an oxide, the oxide of P does not disturb the bonding property. As a result, wettability is improved and good bonding is possible.
Since P is very reducible as described above, it exhibits the effect of improving wettability with a very small amount. However, when the P content reaches a predetermined amount, the effect of improving the wettability does not change even if the P content is further increased. Conversely, the oxide of P due to the excessive content is taken into the solder alloy and becomes a void. There is a risk that P forms a brittle phase and segregates, making the solder alloy brittle. In particular, it was confirmed that wire breakage could be caused when processing wires. Therefore, the P content is preferably a trace amount. Specifically, the P content in the solder alloy that sufficiently exhibits the effect of improving wettability is 0.001% by mass or more and 0.50% by mass or less.

原料として、それぞれ純度99.99質量%以上のBi、In、Sn及びPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるようにするため、切断、粉砕等を行い、3mm以下の大きさに細かくした。なお、Pは溶融し難く、かつ酸化して揮発しやすいうえ、第2類の危険物であり、そのまま含有させると発火してしまうため、予めSnとの合金を作り、3mm以下の大きさに細かくした。
次に、高周波溶解炉用グラファイトるつぼを準備し、このるつぼ内に準備した原料や合金を所定量秤量して投入した。
原料や合金の入ったるつぼを高周波溶解炉に入れ、溶解中の酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流し、溶解エリアを窒素雰囲気とした。この状態で溶解炉の電源を入れ、原料や合金を加熱溶融させた。原料や合金が溶融しはじめた後、混合棒でよく攪拌し、局所的な組成のばらつきが起きないように均一に混合した。十分溶融したことを確認した後、高周波電源を切り、速やかにるつぼを取り出して、るつぼ内の溶湯をはんだ母合金形成用の鋳型に流し込んだ。鋳型には、厚さ5mm×幅40mm×長さ250mmの板状のはんだ母合金が得られるものを使用した。
各原料の混合比率を様々に変え、上述の方法により試料1〜18のはんだ母合金を作製した。これら試料1〜18のはんだ母合金の組成を、ICP発光分光分析器を用いて分析した。その分析結果を下記の表1に示す。なお、試料18は参考例であり、本発明のはんだ合金とは異なる、従来の約140℃〜230℃の環境下ではんだ付けするための中低温用の融点を有するはんだ合金の一例である。
Bi, In, Sn, and P having a purity of 99.99% by mass or more were prepared as raw materials. Large flakes and bulk materials were cut and pulverized to a size of 3 mm or less so that the alloy after melting was uniform without variation in composition depending on the sampling location. In addition, P is difficult to melt and easily oxidizes and volatilizes. Moreover, P is a second kind of hazardous material, and if it is contained as it is, it will ignite, so an alloy with Sn is made in advance and the size is 3 mm or less. I made it fine.
Next, a graphite crucible for a high-frequency melting furnace was prepared, and a predetermined amount of the prepared raw materials and alloys were weighed and put into the crucible.
A crucible containing raw materials and alloys was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per kg of the raw materials in order to suppress oxidation during melting, and the melting area was set to a nitrogen atmosphere. In this state, the melting furnace was turned on to heat and melt the raw materials and alloy. After the raw materials and alloys began to melt, they were thoroughly stirred with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold for forming the solder mother alloy. As the mold, a mold was used from which a plate-like solder mother alloy having a thickness of 5 mm, a width of 40 mm, and a length of 250 mm was obtained.
The mixing ratio of each raw material was changed variously, and the solder mother alloys of Samples 1 to 18 were produced by the method described above. The compositions of the solder mother alloys of Samples 1 to 18 were analyzed using an ICP emission spectroscopic analyzer. The analysis results are shown in Table 1 below. Sample 18 is a reference example and is an example of a solder alloy having a melting point for medium and low temperatures for soldering in a conventional environment of about 140 ° C. to 230 ° C., which is different from the solder alloy of the present invention.

Figure 2018079480
(注)表中の※を付した試料13〜17は比較例、試料18は参考例としての中低温用はんだ合金組成を有するはんだ合金の一例である。
Figure 2018079480
(Note) Samples 13 to 17 marked with * in the table are comparative examples, and sample 18 is an example of a solder alloy having a medium and low temperature solder alloy composition as a reference example.

次に、上記表1に示す試料1〜18のはんだ母合金の各々に対して、下記に示すように、濡れ性の評価として目視による基板上でのはんだ合金の広がりの判定、接合性の第1の評価としてボイド率の測定、接合性の第2の評価としてシェア強度の測定、信頼性の評価としてヒートサイクル試験を行った。なお、はんだ合金の濡れ性等の評価は、通常、はんだ形状に依存しないため、ワイヤ、ボール、ペーストなどの形状で評価してもよいが、本実施例においては、打抜き品に成形して評価した。   Next, for each of the solder mother alloys of Samples 1 to 18 shown in Table 1 above, as shown below, as a wettability evaluation, the determination of the spread of the solder alloy on the substrate visually, A void ratio was measured as an evaluation of 1, a shear strength was measured as a second evaluation of bondability, and a heat cycle test was performed as an evaluation of reliability. In addition, since the evaluation of the wettability of the solder alloy does not normally depend on the solder shape, it may be evaluated with the shape of a wire, a ball, a paste, etc. In this example, the evaluation is performed by forming a punched product. did.

<打抜き品への加工>
準備した厚さ5mm×幅40mm×長さ250mmの板状母合金試料を温間圧延機で圧延した。各試料を、圧延回数は5回、圧延速度は15〜30cm/秒、ロール温度は250℃の条件下で、5回の圧延で厚さ30.0±1.2μmのリボン状になるように圧延した。
リボン状に加工した各試料をプレス機で、0.4mm×0.5mmの長方形状に、各試料1000個ずつ打抜いて、打抜き品を製造した。
<Processing to punched products>
The prepared plate-shaped mother alloy sample having a thickness of 5 mm, a width of 40 mm, and a length of 250 mm was rolled with a warm rolling mill. Each sample was rolled 5 times, rolled at a speed of 15 to 30 cm / sec, and rolled at a temperature of 250 ° C., so that it rolled into a ribbon shape with a thickness of 30.0 ± 1.2 μm by rolling 5 times. Rolled.
Each sample processed into a ribbon shape was punched into a rectangular shape of 0.4 mm × 0.5 mm with a press machine, and 1000 samples were punched out to produce punched products.

<濡れ性の評価>
濡れ性の評価は、上記はんだ合金の打抜き品を用いて行った。まず、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素を流した(窒素流量:各12L/分)。その後、ヒーター設定温度を融点より50℃高い温度にして加熱した。
ヒーター部が窒素雰囲気となり、かつ、ヒーター温度が安定した後、Niめっき層2(膜厚:5.0μm)が形成されたCu基板1(板厚:約0.70mm)をヒーター部にセッティングし、25秒加熱した。次に、はんだ合金3を上記Cu基板の上に載せ、さらに25秒加熱した。加熱が完了した後、Cu基板1をヒーター部から取り上げてその横の窒素雰囲気が保たれている場所に一旦移して冷却し、濡れ性評価用の試料を得た(図1参照)。十分に冷却した後、大気中に取り出して接合状態を確認した。接合できなかった場合を「×」、接合できたが濡れ広がりが悪かった場合(はんだが盛り上がった状態)を「△」、良好に濡れ広がった状態で接合できた場合(はんだがCu基板に薄く広がった場合)を「○」と評価した。
<Evaluation of wettability>
The evaluation of wettability was carried out using the solder alloy punched product. First, a wettability tester (device name: atmosphere control type wettability tester) was started, a double cover was applied to the heater part to be heated, and nitrogen was flowed from four locations around the heater part (nitrogen flow rate: each 12 L / min). Thereafter, the heater was set to a temperature higher than the melting point by 50 ° C. and heated.
After the heater part becomes a nitrogen atmosphere and the heater temperature is stabilized, the Cu substrate 1 (plate thickness: about 0.70 mm) on which the Ni plating layer 2 (film thickness: 5.0 μm) is formed is set in the heater part. And heated for 25 seconds. Next, the solder alloy 3 was placed on the Cu substrate and further heated for 25 seconds. After the heating was completed, the Cu substrate 1 was picked up from the heater portion, temporarily moved to a place where the nitrogen atmosphere next to the Cu substrate 1 was maintained, and cooled to obtain a sample for wettability evaluation (see FIG. 1). After sufficiently cooling, it was taken out into the atmosphere and the bonding state was confirmed. “X” when the bonding was not possible, “△” when the bonding was successful but the wetting and spreading was poor (the solder was swelled), and when the welding was performed with the wetting and spreading well (the solder was thin on the Cu substrate) (When spread) was evaluated as “◯”.

<接合性の評価1(ボイド率の測定)>
上記濡れ性の評価に用いたものと同様に作製した、図1に示す接合体を用いて、Cu基板に接合したはんだ合金の接合体のボイド率を、X線透過装置を用いて測定した。具体的には、はんだ合金とCu基板の接合面に対し上部から垂直にX線を透過し、得られたX線画像よりボイド面積とはんだ合金とCu基板の接合面積を求め、下記計算式1を用いてボイド率を算出した。接合体のボイド率の算出結果を表2に示す。
[計算式1]
ボイド率(%)=ボイド面積÷(ボイド面積+はんだ合金とCu基板の接合面積)×100
<Evaluation of bondability 1 (measurement of void fraction)>
Using the joined body shown in FIG. 1 manufactured in the same manner as that used for the evaluation of the wettability, the void ratio of the joined body of the solder alloy joined to the Cu substrate was measured using an X-ray transmission device. Specifically, X-rays are transmitted perpendicularly from the top to the bonding surface of the solder alloy and the Cu substrate, and the void area and the bonding area of the solder alloy and the Cu substrate are obtained from the obtained X-ray image. Was used to calculate the void fraction. Table 2 shows the calculation results of the void ratio of the joined body.
[Calculation Formula 1]
Void ratio (%) = void area / (void area + solder alloy / Cu substrate bonding area) × 100

<接合性の評価2(シェア強度の比較)>
各はんだ合金の接合性を確認する第2の評価のため、はんだ合金3を用いて、Siチップ4と、Niめっき層2(膜厚:3.0μm)を有するCu基板1(板厚:0.3mm)との接合体(図2参照)を作製し、シェア強度を測定した。接合体の作製にはダイボンダーを用いた。すなわち、まず装置のヒーター部に窒素ガスを流しながら各はんだ試料の融点より50℃高い温度になるように設定し、ヒーター部が窒素雰囲気で満たされ、かつ、所定の温度になった後、ヒーター部にNiめっき層2を有するCu基板1を載せ15秒加熱した。その後、その上に各試料のはんだ合金3を載せ20秒加熱し、さらに溶融したはんだ合金3の上にSiチップ4を載せスクラブを3秒かけた。スクラブ終了後、接合体を速やかに窒素雰囲気中の冷却部に移し、室温まで冷却した。その後、接合体を大気中に取り出し、シェア強度を測定した。次に、従来の中低温用のはんだ合金組成を有するはんだ合金の一例である試料18におけるシェア強度の測定値を100%として、各試料のシェア強度の測定値の相対的な比率を算出した。算出した各シェア強度の比率を表2に示す。
<Evaluation of bondability 2 (Comparison of shear strength)>
For the second evaluation for confirming the bondability of each solder alloy, a Cu substrate 1 (plate thickness: 0) having a Si chip 4 and a Ni plating layer 2 (film thickness: 3.0 μm) using the solder alloy 3 is used. .3 mm) (see FIG. 2) and a shear strength was measured. A die bonder was used for manufacturing the joined body. That is, first, while flowing nitrogen gas through the heater part of the apparatus, the temperature was set to 50 ° C. higher than the melting point of each solder sample. After the heater part was filled with a nitrogen atmosphere and reached a predetermined temperature, the heater The Cu substrate 1 having the Ni plating layer 2 was placed on the part and heated for 15 seconds. Thereafter, the solder alloy 3 of each sample was placed thereon and heated for 20 seconds, and the Si chip 4 was placed on the molten solder alloy 3 and scrubbed for 3 seconds. After scrubbing, the joined body was quickly transferred to a cooling part in a nitrogen atmosphere and cooled to room temperature. Thereafter, the joined body was taken out into the atmosphere and the shear strength was measured. Next, the relative value of the measured value of the shear strength of each sample was calculated by setting the measured value of the shear strength in the sample 18 which is an example of a solder alloy having a conventional solder alloy composition for medium and low temperatures as 100%. Table 2 shows the ratios of the calculated share strengths.

<信頼性の評価(ヒートサイクル試験)>
はんだ接合体の信頼性を評価するためにヒートサイクル試験を行った。なお、この試験は、上記接合性の評価2に用いたものと同様に作製した、はんだ合金にてSiチップを接合したCu基板を用いて行った。まず、はんだ合金にてSiチップを接合したCu基板に対して、−55℃の冷却と50℃の加熱を1サイクルとして、これを500サイクルと700サイクル繰り返すヒートサイクル試験を行った。その後、ヒートサイクル試験を実施した、はんだ合金にてSiチップを接合したCu基板を樹脂に埋め込み、断面研磨を行い、SEM(Scanning Electron Microscope:走査型電子顕微鏡)により接合面の観察を行った。接合面に剥がれやはんだにクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。なお、本ヒートサイクル試験で500サイクルまで欠陥が確認されなければ十分製品として使用可能であるが、本発明の範囲内のはんだ合金組成を有する試料のうち、In及びSnがより好適な含有量の範囲内となっているはんだ合金組成を有する試料とそれ以外のはんだ合金組成を有する試料とにおける信頼性の比較評価のため700サイクルまで確認を行った。上記の評価結果を表2に示す。
<Reliability evaluation (heat cycle test)>
A heat cycle test was performed to evaluate the reliability of the solder joint. This test was performed using a Cu substrate made by bonding a Si chip with a solder alloy, which was produced in the same manner as that used in the evaluation 2 of the bondability. First, a heat cycle test was performed on a Cu substrate bonded with a Si chip with a solder alloy, with cooling at −55 ° C. and heating at 50 ° C. as one cycle, and repeating this for 500 cycles and 700 cycles. Thereafter, a Cu substrate bonded with a Si chip with a solder alloy, which was subjected to a heat cycle test, was embedded in a resin, subjected to cross-sectional polishing, and the bonded surface was observed with an SEM (Scanning Electron Microscope). The case where the joint surface was peeled off or the solder was cracked was indicated as “X”, and the case where there was no such defect and the same joint surface as in the initial state was maintained as “◯”. In addition, although it can be used as a product as long as no defect is confirmed up to 500 cycles in this heat cycle test, among samples having a solder alloy composition within the scope of the present invention, In and Sn have more preferable contents. For a comparative evaluation of reliability between a sample having a solder alloy composition within the range and a sample having a solder alloy composition other than that, confirmation was performed up to 700 cycles. The evaluation results are shown in Table 2.

Figure 2018079480
(注)表中の※を付した試料13〜17は比較例についての評価結果、試料18は参考例としての中低温用はんだ合金組成を有するはんだ合金の一例についての評価結果である。
Figure 2018079480
(Note) Samples 13 to 17 marked with * in the table are evaluation results for the comparative example, and sample 18 is an evaluation result for an example of a solder alloy having a medium and low temperature solder alloy composition as a reference example.

上記表2の結果から分かるように、本発明の範囲内のはんだ合金組成を有する試料1〜12は、各評価項目において概ね良好な特性を示した。
濡れ性の評価では、Inの含有量が43.0質量%以上49.0質量%以下、Snの含有量が8.0%以上21.0質量%以下である試料1〜3、8〜10は、Niめっき層を有するCu基板への濡れ性が良好であり、特にPを0.001質量%以上0.500質量%以下で含有した試料8〜10は非常に濡れ広がり方が早く良好であり、試料がCu基板に接した瞬間に薄く濡れ広がった。Inの含有量、Snの含有量のいずれかが上記数値の範囲外であるものの、Inの含有量が42.0質量%以上50.0質量%以下、Snの含有量が7.0質量%以上23.0質量%以下である試料4〜7、11、12のうち、Pを0.001質量%以上0.500質量%以下で含有する試料11、12は、濡れ性が良好であった。一方、Pを含有しない試料4〜7は、はんだがやや盛り上がり濡れ広がりがやや悪くなったが、接合が出来る程度の濡れ性は得られた。
接合性の評価1としてのボイド率の測定では、試料1〜12の全てにおいてボイドは確認されなかった。
接合性の評価2としてのシェア強度の測定では、試料1〜12の全てにおいてシュア強度が110%以上であり、高い接合強度が得られることを確認できた。特に、試料1〜3、8〜10は、シュア強度が120%以上であり、より高い接合強度が得られることを確認できた。
接合信頼性の評価としてのヒートサイクル試験においても、良好な結果が得られ、試料1〜12のいずれも500サイクル後の観察で不良は確認されなかった。特に、試料1〜3、8〜10は、700サイクル後の観察でも不良は確認されなかった。
As can be seen from the results in Table 2 above, Samples 1 to 12 having a solder alloy composition within the scope of the present invention exhibited generally good characteristics in each evaluation item.
In the evaluation of wettability, Samples 1 to 3, 8 to 10 in which the In content is 43.0% by mass or more and 49.0% by mass or less and the Sn content is 8.0% or more and 21.0% by mass or less. Has good wettability to a Cu substrate having a Ni plating layer, and in particular, Samples 8 to 10 containing P in an amount of 0.001% by mass to 0.500% by mass are very fast and good in spreading. Yes, the sample spread thinly and wet at the moment of contact with the Cu substrate. Although either the In content or the Sn content is outside the above range, the In content is 42.0 mass% or more and 50.0 mass% or less, and the Sn content is 7.0 mass%. Among samples 4 to 7, 11, and 12 that are 23.0% by mass or less, Samples 11 and 12 that contain P in an amount of 0.001% by mass to 0.500% by mass have good wettability. . On the other hand, in Samples 4 to 7 not containing P, the solder was slightly raised and the wet spread was slightly deteriorated, but the wettability to the extent that bonding was possible was obtained.
In the measurement of the void ratio as the bondability evaluation 1, no void was confirmed in all of the samples 1 to 12.
In the measurement of the shear strength as the bondability evaluation 2, in all the samples 1 to 12, the Sure strength was 110% or more, and it was confirmed that high joint strength was obtained. In particular, Samples 1 to 3 and 8 to 10 had a Sure strength of 120% or more, and it was confirmed that higher bonding strength was obtained.
Also in the heat cycle test as an evaluation of the bonding reliability, good results were obtained, and none of the samples 1 to 12 was confirmed by observation after 500 cycles. In particular, Samples 1 to 3 and 8 to 10 were not confirmed to be defective even when observed after 700 cycles.

一方、比較例である本発明の範囲外のはんだ合金組成を有する試料13〜17は、少なくともいずれかの特性において好ましくない結果となった。
濡れ性の評価では、試料13、15は、Niめっき層を有するCu基板への濡れ性が悪く、接合できなかった。
接合性の評価1としてのボイド率の測定では、試料13〜17の全てにおいて少なくとも5%以上のボイドが発生した。特に、Pの含有量が本発明における上限値である0.500質量%を大きく上回る試料17は、ボイドの発生率が15%にまで達した。
接合性の評価2としてのシェア強度の測定では、試料13〜17の全てにおいてシュア強度が90%以下であった。特に、試料17は、シェア強度が75%以下となった。
信頼性の評価としてのヒートサイクル試験においては、試料18を除き全ての試料において500サイクルまでに不良が発生した。なお、試料18は、従来の中低温用のはんだ合金であり、濡れ性が良く、接合性やシェア強度も本発明の範囲よりは劣るものの良好な結果が得られ、接合信頼性に関しても本発明と同様に良好な評価結果が得られたが、融点が高く、130℃よりも低温の環境下ではんだ付けすることはできなかった。
On the other hand, Samples 13 to 17 having a solder alloy composition outside the scope of the present invention, which is a comparative example, gave undesirable results in at least any of the characteristics.
In the evaluation of wettability, Samples 13 and 15 had poor wettability to a Cu substrate having a Ni plating layer and could not be joined.
In the measurement of the void ratio as the bondability evaluation 1, at least 5% or more voids were generated in all the samples 13-17. In particular, Sample 17 in which the P content greatly exceeds the upper limit of 0.500% by mass in the present invention has a void generation rate of 15%.
In the measurement of the shear strength as the bondability evaluation 2, the Sure strength was 90% or less in all the samples 13 to 17. In particular, the sample 17 had a shear strength of 75% or less.
In the heat cycle test as an evaluation of reliability, defects occurred in all samples except sample 18 by 500 cycles. Sample 18 is a conventional solder alloy for medium and low temperatures, has good wettability, and has good results although the bondability and shear strength are inferior to the scope of the present invention. As well as the above, good evaluation results were obtained, but the melting point was high and soldering could not be performed in an environment lower than 130 ° C.

1 Cu基板
2 Ni層
3 はんだ合金
4 Siチップ
1 Cu substrate 2 Ni layer 3 Solder alloy 4 Si chip

本発明はPbフリーはんだ合金に関し、とくに低温用として好適なBi−In−Sn系はんだ合金、それを用いた電子部品実装基板及びその実装基板を搭載した装置に関する。 The present invention relates to a Pb-free solder alloy, and more particularly to a Bi-In-Sn solder alloy suitable for low temperature use, an electronic component mounting board using the same, and an apparatus on which the mounting board is mounted .

WO2007/21006号公報WO2007 / 21006

本発明はかかる課題に鑑みてなされたものであり、接合温度を従来の中低温用のはんだ合金に比べて大きく下げることができ、且つ、接合性、応力緩和性、及び接合信頼性等に優れた、より融点の低い低温用として好適なPbフリーはんだ合金、それを用いた電子部品実装基板及びその実装基板を搭載した装置を提供することを目的としている。 The present invention has been made in view of such a problem, and can greatly reduce the bonding temperature as compared with conventional solder alloys for medium and low temperatures, and is excellent in bonding property, stress relaxation property, bonding reliability, and the like. Another object of the present invention is to provide a Pb-free solder alloy suitable for low temperature use having a lower melting point, an electronic component mounting board using the same, and a device on which the mounting board is mounted .

上記目的を達成するため、本発明者は、環境規制物質を含まない各種元素を組み合わせて、鋭意研究を重ねた結果、Bi、In、Snの組合せで適切な組成範囲とすることにより、単に融点が下がるだけでなく、各種被接合金属との接合性に優れ、かつ応力緩和性に優れるPbフリーBi−In−Sn系はんだ合金とすることができ、それを用いた電子部品実装基板及びその実装基板を搭載した装置において接合信頼性に優れた接合体を形成し得ることを見出し、本発明を完成するに至った。また、発明者は、上記PbフリーBi−In−Snはんだ合金に、さらにPを含有させることにより、濡れ性を更に改善させ、それを用いた電子部品実装基板及びその実装基板を搭載した装置においてより接合信頼性に優れた接合体を形成し得ることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventor has combined various elements that do not contain an environmentally regulated substance, and as a result of earnest research, the inventors have simply set the melting point to a suitable composition range by combining Bi, In, and Sn. Pb-free Bi-In-Sn solder alloy having excellent bondability with various bonded metals and excellent stress relaxation properties, and an electronic component mounting board using the same and its mounting It has been found that a bonded body excellent in bonding reliability can be formed in an apparatus equipped with a substrate , and the present invention has been completed. Further, the inventor further improves the wettability by further adding P to the Pb-free Bi-In-Sn solder alloy, and in an electronic component mounting board using the same and an apparatus on which the mounting board is mounted. The present inventors have found that a bonded body with higher bonding reliability can be formed, and have completed the present invention.

本発明のPbフリーBi−In−Sn系はんだ合金は、Pbなどの規制対象物質を含有しないため環境にやさしく、かつ固相線温度を62℃程度の非常に低い温度とすることができるため、低耐熱部品を熱損傷させること無く、電子部品実装基板及びその実装基板を搭載した装置を好適に製造することが可能となる。しかも、本発明のPbフリーBi−In−Sn系はんだ合金は、接合性、応力緩和性、及び接合信頼性等が極めて優れているため、それを用いた電子部品実装基板及びその実装基板を搭載した装置において信頼性の高い接合体を形成することができる。 Since the Pb-free Bi—In—Sn solder alloy of the present invention does not contain a regulated substance such as Pb, it is environmentally friendly, and the solidus temperature can be set to a very low temperature of about 62 ° C. An electronic component mounting substrate and a device on which the mounting substrate is mounted can be suitably manufactured without causing thermal damage to the low heat resistant component. Moreover, since the Pb-free Bi—In—Sn solder alloy of the present invention is extremely excellent in bondability, stress relaxation, and bonding reliability, an electronic component mounting board using the same and mounting the mounting board is mounted. A highly reliable bonded body can be formed in the above apparatus .

上記の組成を有するPbフリーBi−In−Sn系はんだ合金を用いてはんだ接合を行う電子部品実装基板やその実装基板を搭載した装置には、一般的な耐熱温度を有さない低耐熱用の電子部品や基板等が用いられる。本発明のPbフリーBi−In−Sn系はんだ合金を用いれば、それを用いた電子部品実装基板及びその実装基板を搭載した装置において上述した接合性、応力緩和性、及び接合信頼性等が極めて優れた、信頼性の高い接合体を形成できる効果に加えて、作製時の接合温度を従来の中低温用のはんだ合金に比べて大きく下げることができるので、はんだ合金を加熱するための製造コストを抑える効果も有する。以下、本発明のPbフリーBi−In−Sn系はんだ合金に用いられる各元素について詳細に説明する。 An electronic component mounting board that performs solder bonding using a Pb-free Bi-In-Sn solder alloy having the above composition, and a device mounted with the mounting board have a low heat resistance that does not have a general heat resistance temperature. Electronic parts, substrates, etc. are used. If the Pb-free Bi—In—Sn solder alloy of the present invention is used, the above-described bonding property, stress relaxation property, bonding reliability, etc. are extremely high in an electronic component mounting substrate using the same and a device mounting the mounting substrate. In addition to the effect of forming an excellent and reliable bonded body, the manufacturing temperature for heating the solder alloy can be greatly reduced because the bonding temperature at the time of fabrication can be greatly reduced compared to conventional solder alloys for medium and low temperatures. It also has the effect of suppressing Hereinafter, each element used for the Pb-free Bi—In—Sn solder alloy of the present invention will be described in detail.

Claims (5)

Inを42.0質量%以上50.0質量%以下、Snを7.0質量%以上23.0質量%以下含有し、残部が製造上不可避的に含有される元素を除きBiからなることを特徴とするPbフリーBi−In−Sn系はんだ合金。   It contains 42.0% to 50.0% by mass of In, 7.0% to 23.0% by mass of Sn, and the balance is made of Bi except for elements inevitably contained in production. A Pb-free Bi-In-Sn solder alloy characterized. Inを42.0質量%以上50.0質量%以下、Snを7.0質量%以上23.0質量%以下含有し、さらにPを0.001質量%以上0.500質量%以下含有し、残部が製造上不可避的に含有される元素を除きBiからなることを特徴とするPbフリーBi−In−Sn系はんだ合金。   In is contained 42.0 mass% or more and 50.0 mass% or less, Sn is contained 7.0 mass% or more and 23.0 mass% or less, P is further contained 0.001 mass% or more and 0.500 mass% or less, A Pb-free Bi—In—Sn solder alloy characterized in that the balance is made of Bi except for elements inevitably contained in production. Inを43.0質量%以上49.0質量%以下、Snを8.0質量%以上21.0質量%以下含有することを特徴とする請求項1または2に記載のPbフリーBi−In−Sn系はんだ合金。   The Pb-free Bi-In- according to claim 1 or 2, wherein In is contained 43.0 mass% or more and 49.0 mass% or less, and Sn is contained 8.0 mass% or more and 21.0 mass% or less. Sn solder alloy. 請求項1〜3のいずれかに記載のBi−In−Sn系はんだ合金を用いて電子部品が接合された電子部品実装基板。   The electronic component mounting board | substrate with which the electronic component was joined using the Bi-In-Sn type solder alloy in any one of Claims 1-3. 請求項4に記載の電子部品実装基板を搭載した装置。   An apparatus on which the electronic component mounting board according to claim 4 is mounted.
JP2016221770A 2016-11-14 2016-11-14 Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE Pending JP2018079480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221770A JP2018079480A (en) 2016-11-14 2016-11-14 Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221770A JP2018079480A (en) 2016-11-14 2016-11-14 Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE

Publications (1)

Publication Number Publication Date
JP2018079480A true JP2018079480A (en) 2018-05-24

Family

ID=62198486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221770A Pending JP2018079480A (en) 2016-11-14 2016-11-14 Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE

Country Status (1)

Country Link
JP (1) JP2018079480A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971793A (en) * 2018-08-24 2018-12-11 云南科威液态金属谷研发有限公司 A kind of low-temperature lead-free solder
CN110306079A (en) * 2019-07-18 2019-10-08 云南科威液态金属谷研发有限公司 A kind of low melting point liquid metal and the preparation method and application thereof
WO2021049437A1 (en) * 2019-09-11 2021-03-18 株式会社新菱 Sn-bi-in-based low melting-point joining member, production method therefor, semiconductor electronic circuit, and mounting method therefor
JP2021041430A (en) * 2019-09-11 2021-03-18 株式会社新菱 Sn-Bi-In TYPE LOW-MELTING-POINT BONDING MEMBER AND SEMICONDUCTOR ELECTRONIC CIRCUIT
JP2021048392A (en) * 2019-09-11 2021-03-25 株式会社新菱 Sn-Bi-In-BASED LOW MELTING-POINT JOINING MEMBER, AND SEMICONDUCTOR ELECTRONIC CIRCUIT
JP2021048391A (en) * 2019-09-11 2021-03-25 株式会社新菱 Sn-Bi-In-BASED LOW MELTING-POINT JOINING MEMBER AND PRODUCTION METHOD THEREFOR, AND SEMICONDUCTOR ELECTRONIC CIRCUIT AND MOUNTING METHOD THEREFOR

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108971793A (en) * 2018-08-24 2018-12-11 云南科威液态金属谷研发有限公司 A kind of low-temperature lead-free solder
CN110306079A (en) * 2019-07-18 2019-10-08 云南科威液态金属谷研发有限公司 A kind of low melting point liquid metal and the preparation method and application thereof
WO2021049437A1 (en) * 2019-09-11 2021-03-18 株式会社新菱 Sn-bi-in-based low melting-point joining member, production method therefor, semiconductor electronic circuit, and mounting method therefor
JP2021041430A (en) * 2019-09-11 2021-03-18 株式会社新菱 Sn-Bi-In TYPE LOW-MELTING-POINT BONDING MEMBER AND SEMICONDUCTOR ELECTRONIC CIRCUIT
JP2021048392A (en) * 2019-09-11 2021-03-25 株式会社新菱 Sn-Bi-In-BASED LOW MELTING-POINT JOINING MEMBER, AND SEMICONDUCTOR ELECTRONIC CIRCUIT
JP2021048391A (en) * 2019-09-11 2021-03-25 株式会社新菱 Sn-Bi-In-BASED LOW MELTING-POINT JOINING MEMBER AND PRODUCTION METHOD THEREFOR, AND SEMICONDUCTOR ELECTRONIC CIRCUIT AND MOUNTING METHOD THEREFOR
JP7080867B2 (en) 2019-09-11 2022-06-06 株式会社新菱 Sn-Bi-In system low melting point bonding member, micro member and semiconductor electronic circuit, bump manufacturing method and semiconductor electronic circuit mounting method
JP7091405B2 (en) 2019-09-11 2022-06-27 株式会社新菱 Sn-Bi-In system low melting point bonding member and its manufacturing method, semiconductor electronic circuit and its mounting method
JP7091406B2 (en) 2019-09-11 2022-06-27 株式会社新菱 Sn-Bi-In system low melting point bonding member, micro member and semiconductor electronic circuit, bump manufacturing method and semiconductor electronic circuit mounting method
EP4029639A4 (en) * 2019-09-11 2023-04-12 Shinryo Corporation Sn-bi-in-based low melting-point joining member, production method therefor, semiconductor electronic circuit, and mounting method therefor

Similar Documents

Publication Publication Date Title
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
Takaku et al. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP6387522B2 (en) Mounting structure
JP5633816B2 (en) Au-Sn alloy solder
JP5861559B2 (en) Pb-free In solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP2017113756A (en) SOLDER ALLOY INCLUDING Sn EXCELLENT IN SURFACE PROPERTY AS MAIN COMPONENT, AND SELECTION METHOD THEREFOR
CN115139009B (en) Preformed solder and preparation method thereof, and preparation method of welded joint
JP2014097521A (en) Au-Ag-Ge TYPE SOLDER ALLOY
JP2016026884A (en) Bi-Sn-Al BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP2011251330A (en) High-temperature lead-free solder paste
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2016059943A (en) BALL-SHAPED Au-Ge-Sn-BASED SOLDER ALLOY AND ELECTRONIC COMPONENT USING THE SOLDER ALLOY
JP5633815B2 (en) Au-Sn alloy solder
JP2016026883A (en) Bi-Sn-Zn BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP2016165751A (en) Pb-FREE In-BASED SOLDER ALLOY
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP5633812B2 (en) Au-Sn alloy solder
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP2015208777A (en) BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, AND DEVICE MOUNTED WITH THE ELECTRONIC COMPONENT

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161117