JP2011251330A - High-temperature lead-free solder paste - Google Patents

High-temperature lead-free solder paste Download PDF

Info

Publication number
JP2011251330A
JP2011251330A JP2010128478A JP2010128478A JP2011251330A JP 2011251330 A JP2011251330 A JP 2011251330A JP 2010128478 A JP2010128478 A JP 2010128478A JP 2010128478 A JP2010128478 A JP 2010128478A JP 2011251330 A JP2011251330 A JP 2011251330A
Authority
JP
Japan
Prior art keywords
powder
solder
mass
alloy
solder paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010128478A
Other languages
Japanese (ja)
Inventor
Takashi Izeki
隆士 井関
Juichi Shimizu
寿一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010128478A priority Critical patent/JP2011251330A/en
Publication of JP2011251330A publication Critical patent/JP2011251330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Abstract

PROBLEM TO BE SOLVED: To provide a Zn-based high-temperature lead-free solder paste which is suitable for die bonding of a power semiconductor element, assembling of various electronic components or the like, prevents crack or peeling of joined chip and can secure high joint reliability.SOLUTION: The Zn-based high-temperature lead-free solder paste comprises Zn-alloy solder powders containing Zn of ≥70 mass%, metal powders consisting mainly of Ni or Cu and the balance flux. The metal powder is an Ni or Cu powder having an average particle size of 1-100 μm, or preferably the coated Ni or Cu powder, on the surface of which a coat comprising Au or Ag having a thickness of ≤1 μm is provided. The total metal powder accounts for 5-65 mass% with respect to 100 mass% of the total of the metal powder and Zn-alloy solder powder.

Description

本発明は、パワー半導体素子のダイボンディング等に用いられる高温鉛フリーはんだペーストに関する。   The present invention relates to a high-temperature lead-free solder paste used for die bonding of power semiconductor elements.

パワー半導体素子のダイボンディングや各種電子部品の組立て等に用いるはんだ材料には、被接合材に対する濡れ性等の通常のはんだ材料に要求される特性に加えて、1)380℃程度以下の温度ではんだ付けが可能なこと、2)はんだ付けした部品をプリント基板へ実装する際に240℃程度の温度で再溶融しないこと、3)はんだ接合部の信頼性が確保できること、即ち比較的高温の使用環境下において接合部の劣化が生じないこと等の性能が要求される。   Solder materials used for die bonding of power semiconductor elements, assembly of various electronic components, etc., in addition to the properties required for ordinary solder materials such as wettability to the material to be joined, 1) at a temperature of about 380 ° C. or lower 2) Soldering is possible, 2) Soldered parts are not re-melted at a temperature of about 240 ° C. when mounted on a printed circuit board, and 3) Reliability of solder joints can be ensured, that is, use at a relatively high temperature. Performance such as no deterioration of the joints under the environment is required.

これらの性能を有するはんだ材料として、パワー半導体素子のダイボンディング等の用途には、従来からPb−5質量%Snに代表される高温はんだが使用されている。しかし、近年では環境汚染防止への配慮から、はんだ材料で使用されている鉛を排除しようとする活動がなされ、鉛を含まない、いわゆる鉛フリーはんだの開発が進められている。   As a solder material having these performances, high-temperature solder represented by Pb-5 mass% Sn has been conventionally used for applications such as die bonding of power semiconductor elements. However, in recent years, from the viewpoint of prevention of environmental pollution, there has been an effort to eliminate lead used in solder materials, and so-called lead-free solder that does not contain lead has been developed.

その結果、プリント基板への実装に用いられるSn−40質量%Pbはんだについては、Sn−Ag−Cuはんだに代表される低温鉛フリーはんだが開発され、既に代替が進みつつある。一方、高温はんだの領域においては、上記1)〜3)の全ての条件を満足するような好適な材料が見出されておらず、鉛系はんだから鉛フリーはんだへの代替がほとんど進んでいないのが現状である。   As a result, low-temperature lead-free solder represented by Sn-Ag-Cu solder has been developed for Sn-40 mass% Pb solder used for mounting on a printed circuit board, and substitution is already progressing. On the other hand, no suitable material that satisfies all the above conditions 1) to 3) has been found in the region of high-temperature solder, and the substitution from lead-based solder to lead-free solder has hardly progressed. is the current situation.

例えば、特許文献1には、高温鉛フリーはんだとして、Alと共にGeやMgを含むZnはんだ合金を用いることが提案されている。また、特許文献2にも、Alと共にMgやGaを含むZnはんだ合金が記載されている。しかしながら、Zn合金には、はんだ付け後に条件によっては収縮が生じ、接合したチップが割れたり剥れたりしてしまうという欠点がある。上記特許文献1及び2のZn合金も、このようなチップの割れや剥がれがおきやすく、必ずしも満足できるものではなかった。   For example, Patent Document 1 proposes to use a Zn solder alloy containing Ge and Mg together with Al as high-temperature lead-free solder. Patent Document 2 also describes a Zn solder alloy containing Mg and Ga together with Al. However, the Zn alloy has a drawback that shrinkage occurs depending on conditions after soldering, and the joined chip is cracked or peeled off. The Zn alloys of Patent Documents 1 and 2 are not always satisfactory because the chip is easily cracked or peeled off.

Zn−Al系合金においてチップ割れが起きる原因は、CuとSiの熱膨張係数の差に加え、凝固時収縮率(+は収縮、−は膨張)がZnで+4.9〜+6.9%及びAlで+6.4〜+6.8%であることも原因の一つと考えられる。また、Zn−Al状態図における280℃付近での相変態のために、例えばダイアタッチ後、冷却時に280℃付近で相の変態が起こるため体積変化を起こし、高い残留応力を発生してしまうことも原因と考えられる。   The cause of chip cracking in a Zn-Al alloy is not only the difference in thermal expansion coefficient between Cu and Si, but also the shrinkage rate during solidification (+ is shrinkage,-is expansion) is +4.9 to + 6.9% for Zn and One of the causes is considered that Al is +6.4 to + 6.8%. In addition, due to the phase transformation near 280 ° C. in the Zn—Al phase diagram, for example, after the die attach, phase transformation occurs near 280 ° C. during cooling, causing volume change and generating high residual stress. May also be the cause.

一方、非特許文献1には、Zn−Al系鉛フリーはんだのダイアタッチ時のチップ割れ現象について報告されている。即ち、チップ割れの原因は、基板材料であるCuとチップ材料であるSiの熱膨張係数の差が5倍以上であるため、ダイアタッチ後冷却すると熱膨張の差で応力が発生し、Pb−5質量%Snの場合は塑性変形するが、Zn−Al系はんだは硬く、応力を緩和できないことに起因すると報告されている。   On the other hand, Non-Patent Document 1 reports a chip cracking phenomenon at the time of die-attaching Zn—Al-based lead-free solder. That is, the cause of chip cracking is that the difference in thermal expansion coefficient between Cu as the substrate material and Si as the chip material is 5 times or more, so when cooling after die attach, stress is generated due to the difference in thermal expansion, and Pb− In the case of 5 mass% Sn, plastic deformation occurs, but it is reported that the Zn-Al solder is hard and cannot relieve stress.

このZn−Al系鉛フリーはんだにおけるチップ割れ対策として、上記非特許文献1には、チップ厚さを薄くすることが提案されている。しかし、実際にチップを薄くするには限界があるため、この対策で全てのケースが解決できるとは考え難い。特にZnが70質量%を越えるZn系Pbフリーはんだにおいては、チップ厚みの調整だけでは、チップの割れや剥れの問題は解決困難な場合が多いと考えられる。   As a countermeasure against chip cracking in this Zn—Al-based lead-free solder, Non-Patent Document 1 proposes reducing the chip thickness. However, since there is a limit to how thin the chip can actually be, it is difficult to think that this measure can solve all cases. In particular, in a Zn-based Pb-free solder in which Zn exceeds 70% by mass, it is considered that it is often difficult to solve the problem of chip cracking and peeling only by adjusting the chip thickness.

特許第3850135号公報Japanese Patent No. 3850135 特許第3945915号公報Japanese Patent No. 3945915

6th on “Microjoining and Assembly Technology in Electronics” February 3−4,2000,Yokohama p.339−p.3446th on “Microjoining and Assembly Technology in Electronics” February 3-4, 2000, Yokohama p.339-p.344

本発明は、上記した従来の事情に鑑み、パワー半導体素子のダイボンディングや各種電子部品の組立て等に好適な高温鉛フリーはんだ材料を提供すること、更に具体的には、接合したチップの割れや剥れをなくし、高い接合信頼性を確保できるZn系の高温鉛フリーはんだペーストを提供することを目的とする。   In view of the above-described conventional circumstances, the present invention provides a high-temperature lead-free solder material suitable for die bonding of power semiconductor elements, assembly of various electronic components, and the like. An object of the present invention is to provide a Zn-based high-temperature lead-free solder paste that eliminates peeling and ensures high bonding reliability.

本発明は、Zn合金にNiあるいはCuの金属粉を混合することにより、接合後におけるチップの割れや剥れ等の問題を解決したものである。ただし、Zn合金に金属粉を均一に分散させる必要があることから、はんだペーストの形態をとることで工業的に利用可能なものとなった。   The present invention solves problems such as chip cracking and peeling after bonding by mixing a metal alloy powder of Ni or Cu into a Zn alloy. However, since it is necessary to uniformly disperse the metal powder in the Zn alloy, it has become industrially usable by taking the form of a solder paste.

即ち、本発明の高温鉛フリーはんだペーストは、Znを70質量%以上含有するZn合金はんだ粉と、Ni又はCuを主成分とする金属粉と、残部のフラックスとからなり、金属粉が平均粒径1〜100μmのNi粉、該Ni粉の表面にAu、Agの少なくとも1元素からなる膜厚1μm以下の皮膜を設けた被覆Ni粉、平均粒径1〜100μmのCu粉、及び該Cu粉の表面にAu、Agの少なくとも1元素からなる膜厚1μm以下の皮膜を設けた被覆Cu粉から選ばれた少なくとも1種であって、金属粉とZn合金はんだ粉の合計を100質量%としたとき、金属粉の合計が5〜65質量%であることを特徴とする。   That is, the high-temperature lead-free solder paste of the present invention comprises a Zn alloy solder powder containing 70% by mass or more of Zn, a metal powder mainly composed of Ni or Cu, and the remaining flux, and the metal powder is an average grain. Ni powder having a diameter of 1 to 100 μm, coated Ni powder having a film having a thickness of 1 μm or less composed of at least one element of Au and Ag on the surface of the Ni powder, Cu powder having an average particle diameter of 1 to 100 μm, and the Cu powder And at least one selected from coated Cu powder provided with a film having a film thickness of 1 μm or less composed of at least one element of Au and Ag, and the total of the metal powder and the Zn alloy solder powder is 100% by mass In this case, the total amount of the metal powder is 5 to 65% by mass.

本発明の高温鉛フリーはんだペーストにおいて、前記Zn合金はんだ粉としては、(1)Alを1.0〜7.0質量%含有し、残部がZn及び不可避不純物からなるZn合金、(2)Alを1.0〜7.0質量%含有すると共に、Geを1.5質量%以下及び/又はMgを6.0質量%以下含有し、残部がZn及び不可避不純物からなるZn合金のいずれかが好ましい。   In the high-temperature lead-free solder paste of the present invention, the Zn alloy solder powder includes (1) a Zn alloy containing 1.0 to 7.0% by mass of Al, with the balance being Zn and inevitable impurities, (2) Al Any of Zn alloys containing 1.0 to 7.0% by mass of Ge, 1.5% by mass or less of Ge and / or 6.0% by mass or less of Mg, with the balance being Zn and inevitable impurities. preferable.

本発明によれば、高い熱伝導性を有するだけでなく、接合したチップの割れや剥れをなくすことができ、高い接合信頼性を確保できるZn系の高温鉛フリーはんだペーストを提供することができる。従って、本発明の高温鉛フリーはんだペーストは、各種電子部品の組立て等において用いられているPb系はんだの鉛フリー化を達成し、特にパワー半導体素子のダイボンディングに好適に用いることができる。   According to the present invention, it is possible to provide a Zn-based high-temperature lead-free solder paste that not only has high thermal conductivity but also can eliminate cracking and peeling of the bonded chip and ensure high bonding reliability. it can. Therefore, the high-temperature lead-free solder paste of the present invention can achieve lead-free Pb-based solder used in assembling various electronic components and can be suitably used particularly for die bonding of power semiconductor elements.

本発明の高温鉛フリーはんだペーストは、Znを70質量%以上含有するZn合金はんだ粉と、Ni又はCuを主成分とする金属粉と、残部のフラックスとから構成されている。尚、本発明の高温鉛フリーはんだペーストにおいては、パワー半導体素子のダイボンディングや各種電子部品の組立て等における接合温度は450℃以下である。   The high-temperature lead-free solder paste of the present invention is composed of a Zn alloy solder powder containing 70% by mass or more of Zn, a metal powder mainly composed of Ni or Cu, and the remaining flux. In the high-temperature lead-free solder paste of the present invention, the bonding temperature in die bonding of power semiconductor elements and assembly of various electronic components is 450 ° C. or lower.

本発明で用いるNi又はCuを主成分とする金属粉は、Ni粉又はCu粉をそのまま用いてもよいが、表面にAg、Auの少なくとも1元素からなる皮膜を設けた被覆Ni粉又は被覆Cu粉を用いることがより好ましい。Au又はAgの皮膜を施すことで、Ni粉又はCu粉の酸化が防止されると同時に、Znはんだ合金との濡れ性が高くなり、溶融したZn合金中に金属粉を均一に分散させる効果を高めることができる。   The metal powder mainly composed of Ni or Cu used in the present invention may be Ni powder or Cu powder as it is, but coated Ni powder or coated Cu provided with a film made of at least one element of Ag and Au on the surface. More preferably, powder is used. By applying the Au or Ag film, the Ni powder or Cu powder is prevented from being oxidized, and at the same time, the wettability with the Zn solder alloy is increased and the metal powder is uniformly dispersed in the molten Zn alloy. Can be increased.

被覆Ni粉及び被覆Cu粉のAu又はAgの皮膜の膜厚は1μm以下とする。皮膜の膜厚を1μm以下とする理由は、1μmを越えると上記した酸化防止や濡れ性向上の効果が飽和するだけでなく、皮膜材料の使用量が増えてコストが高くなるからである。また、被覆Ni粉及び被覆Cu粉は、Ni粉又はCu粉の表面に電解メッキや無電解メッキを施すことで得られるほか、湿式法による金属粉製造の最終工程でAu又はAgの塩を含む水溶液を添加し、ヒドラジン等の還元剤を用いて還元する方法によって製造することも可能である。   The film thickness of the coated Ni powder and the coated Cu powder of Au or Ag is 1 μm or less. The reason why the film thickness is 1 μm or less is that when it exceeds 1 μm, not only the above-mentioned effects of preventing oxidation and improving wettability are saturated, but also the amount of film material used increases and the cost increases. Further, the coated Ni powder and the coated Cu powder are obtained by subjecting the surface of the Ni powder or Cu powder to electrolytic plating or electroless plating, and also include a salt of Au or Ag in the final step of metal powder production by a wet method. It can also be produced by a method in which an aqueous solution is added and reduction is performed using a reducing agent such as hydrazine.

上記Ni粉及びCu粉の平均粒径は、1〜100μmの範囲とする。Ni粉及びCu粉の平均粒径が1μm未満では、Zn合金中でNi粉やCu粉が均一に分散しにくくなるからであり、逆に平均粒径が100μmを超えるとZn合金はんだからなる接合層の破壊起点として働き、接合部の信頼性が低下する。尚、本発明では、粒径として粉末の最大径を用いる。また、Ni粉及びCu粉の純度や形状は、特に限定されないが、純度については塑性変形し易いものがよいため合金よりも純金属又は共晶合金に近いものが好ましい。形状については、アトマイズ粉の様な真球状、電解粉の様な不規則状、フレーク粉の様な平板状のいずれでもよい。   The average particle diameter of the said Ni powder and Cu powder shall be the range of 1-100 micrometers. If the average particle size of the Ni powder and Cu powder is less than 1 μm, the Ni powder and Cu powder are difficult to uniformly disperse in the Zn alloy. Conversely, if the average particle size exceeds 100 μm, the bonding is made of Zn alloy solder. It acts as a starting point for layer failure, and the reliability of the joint is reduced. In the present invention, the maximum diameter of the powder is used as the particle diameter. Further, the purity and shape of the Ni powder and Cu powder are not particularly limited, but the purity is preferably close to that of a pure metal or eutectic alloy rather than an alloy because it should be easily plastically deformed. The shape may be any of a spherical shape such as atomized powder, an irregular shape such as electrolytic powder, and a flat shape such as flake powder.

一方、Zn合金はんだ粉は、溶融して金属粉(Ni粉又は被覆Ni粉、Cu粉又は被覆Cu粉)同士を接合すると同時に、通常のはんだとしての働きをする。Znをはんだの主成分として選定した理由は、Znの持つ高い熱伝導性による。つまり、ZnはPbに比較して約3倍の熱伝導率を有し、大電流が流れるため、高温になるパワー半導体素子の接合に好適である。ただし、純Znでは実用的なはんだとしての加工性や濡れ性を有しないため、Znを70質量%以上含有するZn合金を用いる必要がある。尚、Zn合金はんだ粉の粒径については、特に限定されないが、製造のしやすさから10〜50μm程度の粉末を用いる場合が多い。   On the other hand, the Zn alloy solder powder melts and joins metal powders (Ni powder or coated Ni powder, Cu powder or coated Cu powder), and at the same time, functions as a normal solder. The reason for selecting Zn as the main component of solder is due to the high thermal conductivity of Zn. In other words, Zn has a thermal conductivity approximately three times that of Pb, and a large current flows. Therefore, Zn is suitable for bonding power semiconductor elements that have a high temperature. However, since pure Zn does not have workability and wettability as a practical solder, it is necessary to use a Zn alloy containing 70% by mass or more of Zn. In addition, although it does not specifically limit about the particle size of Zn alloy solder powder, The powder of about 10-50 micrometers is often used from the ease of manufacture.

Zn合金はんだ粉としては、従来から使用され又は提案されているZn系Pbフリーはんだ材料の粉末を用いることができる。好ましいZn合金はんだ粉としては、下記(1)及び(2)のZn合金からなるものがある。即ち、Zn合金(1)は、Alを1.0〜7.0質量%含有し、残部がZn及び不可避不純物からなるZn合金である。ZnにAlを添加することによって、AlがZn中に溶解して脆さを改善することができる。特にZnの含有割合が95.0質量%においてZn−Alの共晶点になるが、この付近では特に脆さ改善の効果が大きく、加工性を格段に向上させることができる。   As the Zn alloy solder powder, conventionally used or proposed Zn-based Pb-free solder material powder can be used. Preferred Zn alloy solder powders include those composed of the following Zn alloys (1) and (2). That is, the Zn alloy (1) is a Zn alloy containing 1.0 to 7.0% by mass of Al, with the balance being Zn and inevitable impurities. By adding Al to Zn, Al can be dissolved in Zn to improve brittleness. In particular, the Zn-Al eutectic point is obtained when the Zn content is 95.0% by mass, but in this vicinity, the effect of improving brittleness is particularly great, and the workability can be remarkably improved.

Zn合金(2)は、Alを1.0〜7.0質量%含有すると共に、Geを1.5質量%以下及び/又はMgを6.0質量%以下含有し、残部がZn及び不可避不純物からなるZn合金である。Mgの添加は、Alと同様に加工性の向上に効果があると共に、融点を下げる効果も有する。また、Geは特に融点調整を目的として添加する元素であり、はんだ分野においては比較的高い419℃という融点をもつZnの融点を下げるために添加される。   The Zn alloy (2) contains 1.0 to 7.0% by mass of Al, 1.5% by mass or less of Ge and / or 6.0% by mass or less of Mg, with the balance being Zn and inevitable impurities. Zn alloy consisting of The addition of Mg is effective in improving workability as well as Al, and has an effect of lowering the melting point. Ge is an element added particularly for the purpose of adjusting the melting point, and is added to lower the melting point of Zn having a relatively high melting point of 419 ° C. in the solder field.

本発明における金属粉とZnはんだ合金粉の割合は、両者の合計を100質量%としたとき、金属粉の合計を5〜65質量%の範囲とする。金属粉の含有量が5質量%未満では、添加量が少なすぎるため、Zn合金はんだの収縮を緩和するには不十分である。逆に65質量%を超えると、Zn合金はんだの量が少なくなりすぎて、電子部品と基板を十分な強度で接合できず、チップ剥れ等の問題が生じてしまう。   The ratio of the metal powder and the Zn solder alloy powder in the present invention is such that the total of the metal powder is in the range of 5 to 65 mass% when the total of both is 100 mass%. If the content of the metal powder is less than 5% by mass, the amount of addition is too small, which is insufficient to alleviate the shrinkage of the Zn alloy solder. On the other hand, if it exceeds 65% by mass, the amount of Zn alloy solder becomes too small, and the electronic component and the substrate cannot be joined with sufficient strength, resulting in problems such as chip peeling.

本発明の高温鉛フリーはんだペーストは、上記した金属粉とZn合金はんだ粉に、液状フラックスを加えて混練することにより製造することができる。フラックスについては、Sn系やPb系のはんだペーストで用いられるものをそのまま用いてよく、高温用のものは更に好ましい。好ましいフラックスとしては、例えば、ロジン化合物、有機酸、有機アミン化合物などを、アルコール類、エチレングリコール類、グリセリン類などの溶剤に溶かしたものを挙げることができる。   The high-temperature lead-free solder paste of the present invention can be produced by adding a liquid flux to the metal powder and the Zn alloy solder powder and kneading them. As for the flux, those used for Sn-based or Pb-based solder pastes may be used as they are, and those for high temperatures are more preferable. As a preferable flux, for example, a rosin compound, an organic acid, an organic amine compound and the like dissolved in a solvent such as alcohols, ethylene glycols and glycerins can be exemplified.

フラックスの添加量は、金属粉とZn合金はんだ粉の合計を100質量%としたとき、7〜13質量%の範囲であることが好ましい。フラックスの添加量が7質量%未満では、フラックス量が不足して十分な還元性が得られないうえ、ペーストの粘性が高すぎるため接合時の取り扱いが困難となる。また、13質量%を超えると、ボイド率が高くなって必要な接合強度を得られなかったり、熱伝導性が極端に低下したり、更には粘性が低くなりすぎるため取り扱いが不便になる。   The addition amount of the flux is preferably in the range of 7 to 13% by mass when the total of the metal powder and the Zn alloy solder powder is 100% by mass. If the added amount of the flux is less than 7% by mass, the flux amount is insufficient and sufficient reducing property cannot be obtained, and the viscosity of the paste is too high, so that handling at the time of joining becomes difficult. On the other hand, if it exceeds 13% by mass, the void ratio becomes high and the required bonding strength cannot be obtained, the thermal conductivity is extremely lowered, and the viscosity becomes too low, which makes the handling inconvenient.

[実施例1]
金属原料として純度99.9質量%以上のZnと純度99.95%以上のAlを用いて、下記表1に示す試料1〜20の各Zn合金はんだ粉を製造した。即ち、これらの金属原料を、酸化を防ぐために金属原料1kgあたり700ml/分以上の流速で窒素を流しながら高周波溶解炉で溶解し、Zn−Al合金鋳塊を得た。これらのZn−Al系合金鋳塊の組成をそれぞれICP発光分光分析器(SHIMAZU S−8100)を用いて測定した。各Zn−Al合金鋳塊をスタンプミルで粉砕した後、篩い分けすることにより、平均粒径が約25μmのZn合金はんだ粉を得た。尚、平均粒径は、レーザー回折式粒度分布計(日本レーザー(株)製)によって測定した(以下、平均粒径は同様の装置で測定した)。一方、金属粉については、下記表2に示す平均粒径のNi粉及びCu粉をアトマイズ法により製造した。
[Example 1]
Using Zn having a purity of 99.9% by mass or more and Al having a purity of 99.95% or more as metal raw materials, each Zn alloy solder powder of Samples 1 to 20 shown in Table 1 below was manufactured. That is, in order to prevent oxidation, these metal raw materials were melted in a high-frequency melting furnace while flowing nitrogen at a flow rate of 700 ml / min or more per 1 kg of the metal raw material to obtain a Zn-Al alloy ingot. The compositions of these Zn—Al based ingots were measured using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). Each Zn—Al alloy ingot was pulverized with a stamp mill and then sieved to obtain a Zn alloy solder powder having an average particle size of about 25 μm. The average particle size was measured with a laser diffraction particle size distribution meter (manufactured by Nippon Laser Co., Ltd.) (hereinafter, the average particle size was measured with the same apparatus). On the other hand, about the metal powder, the Ni powder and Cu powder of the average particle diameter shown in following Table 2 were manufactured by the atomizing method.

Figure 2011251330
Figure 2011251330

得られたZn合金はんだ粉と金属粉(Ni粉又はCu粉)を、下記表2に示す添加量で混合し、アルコールと還元性有機材料からなるフラックス(青木メタル(株)製)を加え、混合機((株)シンキー製SR−500)を用いて撹拌混合することにより、下記表2に示す試料1〜20の各はんだペーストを得た。尚、試料1〜20の全ての試料において、フラックスの添加量はZn合金はんだ粉と金属粉の合計100質量%に対し8質量%とした。   The obtained Zn alloy solder powder and metal powder (Ni powder or Cu powder) are mixed in the addition amounts shown in Table 2 below, and a flux made of alcohol and a reducing organic material (Aoki Metal Co., Ltd.) is added. Each solder paste of Samples 1 to 20 shown in Table 2 below was obtained by stirring and mixing using a mixer (SR-500 manufactured by Shinky Corp.). In all samples 1 to 20, the amount of flux added was 8% by mass with respect to 100% by mass in total of the Zn alloy solder powder and the metal powder.

Figure 2011251330
Figure 2011251330

次に、上記試料1〜20の各はんだペーストについて、以下の方法により、ダイボンディング性、高温はんだ特性、接合信頼性を評価した。得られた結果を下記表3に示した。尚、接合信頼性の評価は、直接評価することが困難な応力緩和性の評価に代わるものである。   Next, for each of the solder pastes of Samples 1 to 20, the die bonding property, the high temperature solder property, and the bonding reliability were evaluated by the following methods. The obtained results are shown in Table 3 below. Note that the evaluation of bonding reliability is an alternative to the evaluation of stress relaxation, which is difficult to evaluate directly.

(ダイボンディング性)
はんだダイボンダー(dage社製、EDB−200)を用いて、Agメッキを施したCu製リードフレームに、表面上に順番にNiとAgを蒸着したダミーチップを、420±3℃の温度範囲内において上記各試料のはんだペーストを使用して接合した。はんだペーストの供給は、リードフレームのAgメッキ上に予め適量のはんだペーストを滴下することで行った。得られたリードフレームとダミーチップの接合部を、X線透過装置(東研X線検査(株)製、TUX−3000W)を用いて観察し、ボイド率が5%未満を「○」、5%以上8%未満を「△」、8%以上を「×」と評価した。尚、上記ボイド率は、X線透過装置によりはんだ接合部を接合面に対し垂直方向から観察し、ボイド面積と接合部面積を求め、下式により算出した。
ボイド率(%)=ボイド面積÷(ボイド面積+接合部面積)×100
(Die bonding)
Using a solder die bonder (manufactured by dage, EDB-200), on a Cu lead frame subjected to Ag plating, a dummy chip in which Ni and Ag were sequentially deposited on the surface was within a temperature range of 420 ± 3 ° C. It joined using the solder paste of said each sample. The solder paste was supplied by dropping a suitable amount of solder paste in advance on the Ag plating of the lead frame. The joint part of the obtained lead frame and the dummy chip was observed using an X-ray transmission device (TUX-3000W, manufactured by Token X-ray Inspection Co., Ltd.). % Or more and less than 8% were evaluated as “Δ”, and 8% or more were evaluated as “x”. The void ratio was calculated by the following equation by observing the solder joint from a direction perpendicular to the joint surface with an X-ray transmission device, obtaining the void area and the joint area.
Void ratio (%) = void area / (void area + joint area) × 100

(高温はんだ特性)
高温はんだとしての使用適性を、JIS Z 3198−7:2003に準じる高温シェア試験により評価した。即ち、上記ダイボンディング後の試料を、ボンドテスタ(テクノアルファ(株)製)にセットし、窒素を流しながら240℃に再加熱し、その状態でチップとはんだ接合部にせん断力を加えた。詳しくは、シェア試験用冶具をはんだとダミーチップ接合面に水平方向にチップ引っかけ、90Nのせん断力を加えた。チップ部には割れが発生したが、接合部やはんだ部に割れや変形がなかった場合を「○」、チップが動いてずれたり、接合部やはんだ部で割れや変形があった場合を「×」と評価した。
(High temperature solder properties)
The suitability for use as a high temperature solder was evaluated by a high temperature shear test according to JIS Z 3198-7: 2003. That is, the sample after die bonding was set in a bond tester (manufactured by Techno Alpha Co., Ltd.), reheated to 240 ° C. while flowing nitrogen, and in that state, shear force was applied to the chip and the solder joint. Specifically, a shear test jig was horizontally hooked on the solder / dummy chip joint surface, and a shearing force of 90 N was applied. “○” indicates that the chip has cracked, but there is no crack or deformation in the joint or solder, and “chip” indicates that the chip has moved or shifted, or if there is a crack or deformation in the joint or solder. “×”.

(接合信頼性)
信頼性評価1として、上記ダイボンディングを行った後、トランスファーモールド型モールド機により、エポキシ樹脂(住友ベークライト(株)製、EME−6300)をモールドした試料について、温度80℃及び湿度80%にて1000時間保持の恒温恒湿試験を施した後、樹脂を開封して接合部の観察を行い、チップや接合部界面に割れや剥離の発生が無い場合を「○」、割れや剥離があった場合を「×」と評価した。
(Joint reliability)
As the reliability evaluation 1, after performing the above-mentioned die bonding, a sample obtained by molding an epoxy resin (manufactured by Sumitomo Bakelite Co., Ltd., EME-6300) with a transfer mold molding machine was used at a temperature of 80 ° C. and a humidity of 80%. After performing a constant temperature and humidity test for 1000 hours, the resin was unsealed and the joint was observed. If there was no crack or peeling at the chip or joint interface, there was a crack or peeling. The case was evaluated as “x”.

また、接合信頼性における信頼性評価2として、上記と同様のエポキシ樹脂をモールドした試料について、−50℃と125℃の冷却と加熱を1サイクルとし、このサイクルを400回繰り返した後、樹脂を開封して接合部の観察を行い、チップや接合部界面に割れの発生が無い場合を「○」、割れや剥離があった場合を「×」と評価した。   Further, as reliability evaluation 2 in bonding reliability, for a sample molded with an epoxy resin similar to the above, cooling and heating at −50 ° C. and 125 ° C. were set as one cycle, and after repeating this cycle 400 times, The joint was observed after opening, and the case where there was no crack at the chip or the interface of the joint was evaluated as “◯”, and the case where there was a crack or peeling was evaluated as “x”.

Figure 2011251330
Figure 2011251330

これらの結果から明らかなように、本発明による試料1〜12の各はんだペーストは、高温はんだとして良好なダイボンディング性と高温はんだ特性を具え、優れた接合信頼性を有している。一方、金属粉であるNi粉又はCu粉の添加量あるいは平均粒径が本発明の範囲から外れている比較例の試料13〜20の各はんだペーストでは、各評価の1つ以上において不十分な結果となった。   As is apparent from these results, each of the solder pastes of Samples 1 to 12 according to the present invention has excellent die bonding properties and high temperature solder characteristics as high temperature solder, and has excellent bonding reliability. On the other hand, each solder paste of Comparative Samples 13 to 20 in which the addition amount or average particle diameter of Ni powder or Cu powder, which is a metal powder, is out of the scope of the present invention is insufficient in one or more of each evaluation. As a result.

[実施例2]
Zn合金はんだ粉として、上記実施例1と同様の方法により、下記表4に示す組成を有する試料21〜28の各Znはんだ合金粉を製造した。一方、金属粉として、上記実施例1と同様に通常のアトマイズ法を用いてCu粉を製造し、無電解処理により、下記表5に示す膜厚のAu又はAgからなる皮膜を有する被覆Cu粉を製造した。このCu粉を樹脂に埋め込み、研磨機を用い粗い研磨紙から順に細かいものを用いて研磨し、最後にバフ研磨を行い、その後、EPMA(装置名:SHIMADZU EPMA−1600)を用いてライン分析を行い、皮膜の膜厚を測定した。
[Example 2]
As the Zn alloy solder powder, each Zn solder alloy powder of Samples 21 to 28 having the composition shown in Table 4 below was manufactured by the same method as in Example 1 above. On the other hand, as a metal powder, a Cu powder is produced using a normal atomization method in the same manner as in Example 1 above, and has a film made of Au or Ag having a film thickness shown in Table 5 below by electroless treatment. Manufactured. This Cu powder is embedded in a resin, polished using a polishing machine in order from coarse abrasive paper, and finally polished with buff, and finally buffed, followed by line analysis using EPMA (device name: SHIMADZU EPMA-1600). The film thickness of the film was measured.

Figure 2011251330
Figure 2011251330

得られたZn合金はんだ粉と被覆Cu粉を下記表5に示す添加量で混合し、上記実施例1と同様にアルコールと還元性有機材料からなるフラックスを加えて混合することにより、下記表5に示す本発明による試料21〜28の各はんだペーストを製造した。尚、試料21〜28の全ての試料において、フラックスの添加量はZn合金はんだ粉と金属粉の合計100質量%に対し8質量%とした。   The obtained Zn alloy solder powder and coated Cu powder were mixed in the addition amounts shown in Table 5 below, and the flux composed of alcohol and a reducing organic material was added and mixed in the same manner as in Example 1 to obtain Table 5 below. Each solder paste of Samples 21 to 28 according to the present invention shown in FIG. In all the samples 21 to 28, the addition amount of the flux was 8% by mass with respect to 100% by mass in total of the Zn alloy solder powder and the metal powder.

Figure 2011251330
Figure 2011251330

上記試料21〜28の本発明による各はんだペーストについて、上記実施例1と同様の方法により、ダイボンディング性、高温はんだ特性、及び接合信頼性を評価した。得られた結果を、下記表6に示した。   About each solder paste by this invention of the said samples 21-28, the die bonding property, the high temperature solder characteristic, and joining reliability were evaluated by the method similar to the said Example 1. FIG. The obtained results are shown in Table 6 below.

Figure 2011251330
Figure 2011251330

これらの結果から明らかなように、本発明による被覆Cu粉を用いた各はんだペーストは、高温はんだとして良好なダイボンディング性と高温はんだ特性を具え、優れた接合信頼性を有している。   As is clear from these results, each solder paste using the coated Cu powder according to the present invention has excellent die bonding properties and high temperature solder characteristics as a high temperature solder, and has excellent bonding reliability.

[実施例3]
金属原料として、純度99.9質量%以上のZn、Al、Mgと、純度は99.95%以上のGeを用い、上記実施例1と同様の方法により、下記表7に示す組成を有する試料29〜37の各Zn合金はんだ粉を製造した。一方、金属粉として、上記実施例2と同様にして、Cu粉をアトマイズ法で製造した後、Cu粉の表面にAg皮膜を施して被覆Cu粉を製造した。
[Example 3]
Samples having the compositions shown in Table 7 below were used in the same manner as in Example 1, using Zn, Al, Mg having a purity of 99.9% by mass or more and Ge having a purity of 99.95% or more as metal raw materials. Each Zn alloy solder powder of 29-37 was manufactured. On the other hand, as a metal powder, Cu powder was manufactured by the atomizing method in the same manner as in Example 2 above, and then an Ag film was applied to the surface of the Cu powder to manufacture a coated Cu powder.

Figure 2011251330
Figure 2011251330

得られた被覆Cu粉とZn合金はんだ粉とを、被覆Cu粉が30質量%となるように混合し、上記実施例1と同様にアルコールと還元性有機材料からなるフラックスを加えて混合することによって、下記表8に示す試料29〜37の各はんだペーストを製造した。尚、試料29〜37の全ての試料において、フラックスの添加量はZn合金はんだ粉と金属粉の合計100質量%に対し8質量%とした。   The obtained coated Cu powder and Zn alloy solder powder are mixed so that the coated Cu powder is 30% by mass, and a flux composed of alcohol and a reducing organic material is added and mixed as in Example 1 above. The solder pastes of Samples 29 to 37 shown in Table 8 below were manufactured. In all the samples 29 to 37, the addition amount of the flux was 8% by mass with respect to the total of 100% by mass of the Zn alloy solder powder and the metal powder.

Figure 2011251330
Figure 2011251330

上記試料29〜37の各はんだペーストについて、上記実施例1と同様の方法により、ダイボンディング性、高温はんだ特性、及び接合信頼性を評価した。得られた結果を、下記表9に示した。   About each solder paste of the said samples 29-37, the die bonding property, the high temperature solder characteristic, and the joining reliability were evaluated by the method similar to the said Example 1. FIG. The obtained results are shown in Table 9 below.

Figure 2011251330
Figure 2011251330

これらの結果から分かるように、試料29〜34の各はんだペーストは、ダイボンディング性、高温はんだ特性及び接合信頼性の全てに優れており、高温はんだとして極めて良好なものであることが分かる。一方、試料35〜37の各はんだペーストは、Zn合金はんだ粉の組成が適切でないため、被覆Cu粉を用いていても、ダイボンディング性、高温はんだ特性及び接合信頼性の各評価において不十分な結果となっている。   As can be seen from these results, it can be seen that the solder pastes of Samples 29 to 34 are all excellent in die bonding property, high-temperature solder characteristics, and bonding reliability, and are extremely good as high-temperature solder. On the other hand, since the composition of the Zn alloy solder powder is not appropriate for each of the solder pastes of Samples 35 to 37, even when the coated Cu powder is used, it is insufficient in each evaluation of die bonding property, high-temperature solder characteristics, and bonding reliability. It is the result.

Claims (2)

Znを70質量%以上含有するZn合金はんだ粉と、Ni又はCuを主成分とする金属粉と、残部のフラックスとからなり、金属粉が平均粒径1〜100μmのNi粉、該Ni粉の表面にAu、Agの少なくとも1元素からなる膜厚1μm以下の皮膜を設けた被覆Ni粉、平均粒径1〜100μmのCu粉、及び該Cu粉の表面にAu、Agの少なくとも1元素からなる膜厚1μm以下の皮膜を設けた被覆Cu粉から選ばれた少なくとも1種であって、金属粉とZn合金はんだ粉の合計を100質量%としたとき、金属粉の合計が5〜65質量%であることを特徴とする高温鉛フリーはんだペースト。   It consists of Zn alloy solder powder containing 70 mass% or more of Zn, metal powder mainly composed of Ni or Cu, and the remaining flux, and the metal powder is Ni powder having an average particle diameter of 1 to 100 μm, Coated Ni powder provided with a film having a film thickness of 1 μm or less composed of at least one element of Au and Ag on the surface, Cu powder having an average particle diameter of 1 to 100 μm, and composed of at least one element of Au and Ag on the surface of the Cu powder It is at least one selected from coated Cu powder provided with a film having a thickness of 1 μm or less, and when the total of the metal powder and the Zn alloy solder powder is 100 mass%, the total of the metal powder is 5 to 65 mass%. A high-temperature lead-free solder paste characterized by 前記Zn合金はんだ粉が、下記(1)又は(2)のZn合金からなることを特徴とする、請求項1に記載の高温鉛フリーはんだペースト。
(1)Alを1.0〜7.0質量%含有し、残部がZn及び不可避不純物からなるZn合金。
(2)Alを1.0〜7.0質量%含有すると共に、Geを1.5質量%以下及び/又はMgを6.0質量%以下含有し、残部がZn及び不可避不純物からなるZn合金。
2. The high-temperature lead-free solder paste according to claim 1, wherein the Zn alloy solder powder is composed of the following (1) or (2) Zn alloy.
(1) A Zn alloy containing 1.0 to 7.0% by mass of Al with the balance being Zn and inevitable impurities.
(2) A Zn alloy containing 1.0 to 7.0% by mass of Al and containing 1.5% by mass or less of Ge and / or 6.0% by mass or less of Mg, with the balance being Zn and inevitable impurities. .
JP2010128478A 2010-06-04 2010-06-04 High-temperature lead-free solder paste Pending JP2011251330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128478A JP2011251330A (en) 2010-06-04 2010-06-04 High-temperature lead-free solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128478A JP2011251330A (en) 2010-06-04 2010-06-04 High-temperature lead-free solder paste

Publications (1)

Publication Number Publication Date
JP2011251330A true JP2011251330A (en) 2011-12-15

Family

ID=45415706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128478A Pending JP2011251330A (en) 2010-06-04 2010-06-04 High-temperature lead-free solder paste

Country Status (1)

Country Link
JP (1) JP2011251330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221484A (en) * 2013-05-13 2014-11-27 住友金属鉱山株式会社 Pb-FREE Zn-BASED SOLDER PASTE
US9520347B2 (en) 2013-05-03 2016-12-13 Honeywell International Inc. Lead frame construct for lead-free solder connections
US10046417B2 (en) 2011-08-17 2018-08-14 Honeywell International Inc. Lead-free solder compositions
JP7444575B2 (en) 2019-10-04 2024-03-06 古河電気工業株式会社 Bonding material for aluminum-containing members and bonded structure using the bonding material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303858A (en) * 1994-05-13 1995-11-21 Nippon Light Metal Co Ltd Method for applying slurry for brazing
JP2000158179A (en) * 1998-11-25 2000-06-13 Showa Denko Kk Solder paste
JP2002307188A (en) * 2001-04-11 2002-10-22 Hitachi Ltd PRODUCT USING Zn-Al BASED SOLDER
WO2003021664A1 (en) * 2001-08-31 2003-03-13 Hitachi, Ltd. Semiconductor device, structural body and electronic device
JP2004095907A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Solder joint structure and solder paste
JP2007273982A (en) * 2007-03-26 2007-10-18 Hitachi Ltd Method of manufacturing semiconductor module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303858A (en) * 1994-05-13 1995-11-21 Nippon Light Metal Co Ltd Method for applying slurry for brazing
JP2000158179A (en) * 1998-11-25 2000-06-13 Showa Denko Kk Solder paste
JP2002307188A (en) * 2001-04-11 2002-10-22 Hitachi Ltd PRODUCT USING Zn-Al BASED SOLDER
WO2003021664A1 (en) * 2001-08-31 2003-03-13 Hitachi, Ltd. Semiconductor device, structural body and electronic device
JP2004095907A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Solder joint structure and solder paste
JP2007273982A (en) * 2007-03-26 2007-10-18 Hitachi Ltd Method of manufacturing semiconductor module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046417B2 (en) 2011-08-17 2018-08-14 Honeywell International Inc. Lead-free solder compositions
US10661393B2 (en) 2011-08-17 2020-05-26 Honeywell International Inc. Lead-free solder compositions
US9520347B2 (en) 2013-05-03 2016-12-13 Honeywell International Inc. Lead frame construct for lead-free solder connections
JP2014221484A (en) * 2013-05-13 2014-11-27 住友金属鉱山株式会社 Pb-FREE Zn-BASED SOLDER PASTE
JP7444575B2 (en) 2019-10-04 2024-03-06 古河電気工業株式会社 Bonding material for aluminum-containing members and bonded structure using the bonding material

Similar Documents

Publication Publication Date Title
JP7135171B2 (en) solder composition
JP6842500B2 (en) Lead-free solder paste and its manufacturing method
JP6281916B2 (en) Solder material and joint structure
WO2015087588A1 (en) Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP4807465B1 (en) Pb-free solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP2012200789A (en) Au-Sn ALLOY SOLDER
JP2011251330A (en) High-temperature lead-free solder paste
US20160234945A1 (en) Bi-BASED SOLDER ALLOY, METHOD OF BONDING ELECTRONIC COMPONENT USING THE SAME, AND ELECTRONIC COMPONENT-MOUNTED BOARD
JP2016026884A (en) Bi-Sn-Al BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP2011251329A (en) High-temperature lead-free solder paste
JP2011251332A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE USING Al POWDER
JP6887183B1 (en) Solder alloys and molded solders
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2017177122A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF
JP2016026883A (en) Bi-Sn-Zn BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
WO2016170906A1 (en) Au-Sn-Ag BASED SOLDER PASTE, AND ELECTRONIC COMPONENT JOINED OR SEALED BY USING Au-Sn-Ag BASED SOLDER PASTE
WO2016139848A1 (en) Au-Sn-Ag-BASED SOLDER PASTE, AND ELECTRONIC COMPONENT JOINED OR SEALED USING Au-Sn-Ag-BASED SOLDER PASTE
JP5633812B2 (en) Au-Sn alloy solder
JP2012183576A (en) Pb-FREE SOLDER PASTE
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP2015020189A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au
JP2017070959A (en) Au-Sb-Sn SOLDER PASTE
JP2015208777A (en) BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, AND DEVICE MOUNTED WITH THE ELECTRONIC COMPONENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212