JP2012200789A - Au-Sn ALLOY SOLDER - Google Patents

Au-Sn ALLOY SOLDER Download PDF

Info

Publication number
JP2012200789A
JP2012200789A JP2011071091A JP2011071091A JP2012200789A JP 2012200789 A JP2012200789 A JP 2012200789A JP 2011071091 A JP2011071091 A JP 2011071091A JP 2011071091 A JP2011071091 A JP 2011071091A JP 2012200789 A JP2012200789 A JP 2012200789A
Authority
JP
Japan
Prior art keywords
solder
mass
alloy
wettability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071091A
Other languages
Japanese (ja)
Other versions
JP5633816B2 (en
Inventor
Takashi Izeki
隆士 井関
Yoshitaka Sueshige
由隆 末繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011071091A priority Critical patent/JP5633816B2/en
Publication of JP2012200789A publication Critical patent/JP2012200789A/en
Application granted granted Critical
Publication of JP5633816B2 publication Critical patent/JP5633816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide lead-free Au-Sn alloy solder for a high temperature being sufficiently used in joining requiring very high reliability, having an operation temperature that is <400°C, preferably, ≤370°C, being excellent in wettability, and obtaining high joining strength.SOLUTION: The Au-Sn alloy solder contains ≥18.5 mass% and ≤23.5 mass% of Sn, and contains at least one of ≥0.001 mass% and ≤0.5 mass% of P or ≥0.03 mass% and ≤1.5 mass% of Ge, and the balance Au.

Description

本発明は、はんだに関するものであり、特に高温用のAu−Sn合金はんだに関する。   The present invention relates to a solder, and more particularly to a high temperature Au—Sn alloy solder.

近年、環境に有害な化学物質に対する規制がますます厳しくなってきており、この規制は電子部品などを基板に接合する目的で使用されるはんだ材料に対しても例外ではない。はんだ材料には古くから鉛が主成分として使われ続けてきたが、すでにRohs指令などで規制対象物質になっている。このため、鉛(Pb)を含まないはんだ(鉛フリーはんだ、無鉛はんだ)の開発が盛んに行われている。   In recent years, regulations on chemical substances harmful to the environment have become stricter, and this regulation is no exception for solder materials used for the purpose of joining electronic components and the like to substrates. Lead has been used as a main component in solder materials for a long time, but it has already been a regulated substance under the Rohs Directive. For this reason, the development of solder that does not contain lead (Pb) (lead-free solder, lead-free solder) has been actively conducted.

電子部品を基板に接合する際に使用するはんだは、その使用限界温度によって高温用(約260℃〜400℃)と中低温用(約140℃〜230℃)に大別され、それらのうち、中低温用はんだに関してはSnを主成分とするもので鉛フリーが実用化されている。例えば、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有する無鉛はんだ合金組成が記載されており(例えば、特許文献1参照。)、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなる合金組成の無鉛はんだが記載されている(例えば、特許文献2参照。)。   Solders used when bonding electronic components to a substrate are roughly classified into high temperature (about 260 ° C. to 400 ° C.) and medium / low temperature (about 140 ° C. to 230 ° C.) depending on the limit temperature of use. As for the solder for medium and low temperature, it is mainly composed of Sn, and is lead-free. For example, lead-free solder containing Sn as a main component, Ag of 1.0 to 4.0% by mass, Cu of 2.0% by mass or less, Ni of 0.5% by mass or less, and P of 0.2% by mass or less. An alloy composition is described (for example, refer to Patent Document 1), containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance consisting of Sn. (See, for example, Patent Document 2).

一方、高温用の鉛フリーはんだ材料に関しても、さまざまな機関で開発が行われている。例えば、Biを30〜80質量%含んだ溶融温度が350〜500℃のBi−Ag系ろう材が開示されている(例えば、特許文献3参照。)。また、Biを含む共晶合金に2元共晶合金を加え、さらに添加元素を加えたはんだ合金が開示されており(例えば、特許文献4参照。)、このはんだ合金は4元系以上の多元系はんだではあるものの、液相線温度の調整とばらつきの減少が可能となることが示されている。   On the other hand, various organizations have also developed lead-free solder materials for high temperatures. For example, a Bi—Ag brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. is disclosed (for example, see Patent Document 3). Further, a solder alloy is disclosed in which a binary eutectic alloy is added to a Bi-containing eutectic alloy and an additional element is further added (see, for example, Patent Document 4). Although it is a system solder, it has been shown that the liquidus temperature can be adjusted and variation can be reduced.

高価な高温用の鉛フリーはんだ材料としては既にAu−Sn合金やAu−Ge合金などがMEMS(Micro Electro Mechanical Systems)等で使用されている。例えば、Auを5〜15質量%含有し、さらにBiを0.1〜10質量%、Inを0.1〜10質量%およびSbを0.1〜10質量%のいずれかを含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体に関して記載されている(例えば、特許文献4参照。)。また、特許文献5には、Snを15〜25質量%、酸素を100超〜500ppmを含有し、残りがAuおよび不可避不純物からなる組成、並びに粒径が10〜35μmの粉末を全体の30%以上含みかつ粒径が40μm以下の粉末が全体の90%以上を占めるレーザー散乱・解析法により測定した平均粒径が10〜35μmの範囲内の粒度を有する濡れ広がりの少ないはんだペースト用Au−Sn合金粉末について記載されている(例えば、特許文献5参照。)。   As an expensive lead-free solder material for high temperature, Au—Sn alloy, Au—Ge alloy or the like has already been used in MEMS (Micro Electro Mechanical Systems) or the like. For example, it contains 5 to 15% by mass of Au, 0.1 to 10% by mass of Bi, 0.1 to 10% by mass of In and 0.1 to 10% by mass of Sb, and the rest Describes a mixture of a Sn—Au alloy solder powder having a component composition composed of Sn and inevitable impurities and a flux (see, for example, Patent Document 4). Patent Document 5 contains 15 to 25% by mass of Sn, more than 100 to 500 ppm of oxygen, the remainder composed of Au and inevitable impurities, and 30% of the powder having a particle size of 10 to 35 μm. Au-Sn for solder paste with a small wetting spread and having an average particle size in the range of 10 to 35 μm as measured by a laser scattering / analysis method in which a powder having a particle size of 40 μm or less occupies 90% or more of the whole An alloy powder is described (for example, see Patent Document 5).

特開1999−077366号公報Japanese Patent Laid-Open No. 1999-077366 特開平8−215880号公報JP-A-8-215880 特開2002−160089号公報JP 2002-160089 A 特開2008−161913号公報JP 2008-161913 特開2003−260588号公報JP 2003-260588 A

高温用の鉛フリーはんだ材料に関しては、さまざまな機関で開発されているが、未だ低コストで汎用性のあるはんだ材料は見つかっていない。すなわち、一般的に電子部品や基板には熱可塑性樹脂や熱硬化性樹脂などの比較的耐熱温度の低い材料が多用されているため、作業温度を400℃未満、望ましくは370℃以下にする必要がある。しかしながら、例えば特許文献3に開示されているBi−Ag系ろう材では、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される電子部品や基板の耐熱温度を超えてしまうことになる。   High-temperature lead-free solder materials have been developed by various organizations, but no low-cost and versatile solder materials have yet been found. In other words, since materials having relatively low heat resistance such as thermoplastic resins and thermosetting resins are generally used for electronic parts and substrates, the working temperature must be less than 400 ° C., preferably 370 ° C. or less. There is. However, for example, in the Bi-Ag brazing material disclosed in Patent Document 3, since the liquidus temperature is as high as 400 to 700 ° C, the working temperature at the time of joining is estimated to be 400 to 700 ° C or more, and the joining is performed. It will exceed the heat resistance temperature of electronic components and boards.

そして、高価なAu−Sn系はんだの場合、実用化されているもののMEMSなどの特に信頼性を必要とする箇所のはんだ付けに使用されるため、より一層の信頼性が要求されている。特許文献4では表面張力を低下させる点からBi、In、Sbを添加し、濡れ性を向上させている。この場合のはんだの形態はペーストであるため、フラックスによる還元効果が期待できることから、はんだ表面張力を低下させ濡れ性を向上させられると考えられる。しかし、はんだシートやワイヤなど、はんだ合金単体のみ、つまりはフラックスなどの還元剤がない場合、InはAu、Snより酸化しやすく、Bi、SbはAuよりも酸化しやすい。従って、これらの元素の添加量が1%以下など微量である場合はともかく、熱力学的にははんだ表面が酸化してしまい濡れ性を低下させてしまうことになる。   In the case of an expensive Au—Sn solder, although it is put into practical use, it is used for soldering at a location requiring particularly reliability, such as MEMS, and therefore further reliability is required. In Patent Document 4, Bi, In, and Sb are added from the point of reducing surface tension to improve wettability. In this case, since the form of the solder is a paste, a reduction effect by flux can be expected. Therefore, it is considered that the solder surface tension can be reduced and the wettability can be improved. However, when only a solder alloy, such as a solder sheet or a wire, that is, when there is no reducing agent such as flux, In is easier to oxidize than Au and Sn, and Bi and Sb are easier to oxidize than Au. Therefore, regardless of the addition amount of these elements, such as 1% or less, the solder surface is oxidized thermodynamically and wettability is reduced.

当然、特許文献5のように故意にはんだの酸素量を増加させた場合、還元剤がなくはんだ合金単体で用いれば濡れ性が極端に低下し、場合によっては電子部品等の接合ができないことも容易に想像できる。   Naturally, when the amount of oxygen in the solder is intentionally increased as in Patent Document 5, if there is no reducing agent and the solder alloy is used alone, the wettability is extremely reduced, and in some cases, electronic components or the like cannot be joined. I can imagine it easily.

本発明は、MEMS等の非常に高い信頼性を要求される接合においても十分に使用できる、作業温度が400℃未満、望ましくは370℃以下であって、濡れ性に優れ、高い接合強度が得られる高温用鉛フリーのAu−Sn合金はんだを提供することを目的としている。
ここで十分な濡れ性とは、接合作業の際にボイド(空孔)を生じることなくはんだ合金が溶融して、接合面に適度な面積に拡がることを意味し、これにより被接合物との接触面積が確保され、被接合物を強固に固着して信頼性の高い接合を達成できることとなる。また、高信頼性とは、強固な接合の結果、使用環境の温度変化にも耐えて長寿命で安定した接合を維持できることを意味する。
The present invention can be used satisfactorily for bonding such as MEMS, and the working temperature is less than 400 ° C., desirably 370 ° C. or less, and has excellent wettability and high bonding strength. It is an object to provide a lead-free Au—Sn alloy solder for high temperature.
Sufficient wettability here means that the solder alloy melts without causing voids (voids) during the joining operation and spreads to an appropriate area on the joining surface. A contact area is ensured, and an object to be bonded can be firmly fixed to achieve highly reliable bonding. In addition, high reliability means that, as a result of strong bonding, it is possible to withstand a temperature change in a use environment and maintain a long-life and stable bonding.

本発明のAu−Sn合金はんだは、Au−Sn共晶組成付近、具体的にはSnの含有量が18.5質量%以上23.5質量%以下含有し、PまたはGeの1種以上を所定量含有し、残部がAuから構成されることにより、濡れ性に優れこれに起因し接合強度、信頼性に優れた接合が得られるAu−Sn合金はんだである。
すなわち本発明のAu−Sn合金はんだは、Snを18.5質量%以上23.5質量%以下含有し、0.001質量%以上0.5質量%以下のPまたは0.03質量%以上1.5質量%以下のGeのうち少なくとも1種を含有し、残部がAuからなるAu−Sn合金はんだである。
The Au—Sn alloy solder of the present invention has an Au—Sn eutectic composition, specifically, a Sn content of 18.5 mass% or more and 23.5 mass% or less, and contains one or more of P or Ge. It is an Au—Sn alloy solder that is contained in a predetermined amount and the balance is made of Au, so that it is excellent in wettability and can be bonded with excellent bonding strength and reliability.
That is, the Au—Sn alloy solder of the present invention contains Sn in the range of 18.5% by mass to 23.5% by mass, 0.001% by mass to 0.5% by mass of P, or 0.03% by mass to 1%. It is an Au—Sn alloy solder containing at least one of Ge of 5 mass% or less and the balance being made of Au.

本発明により、電子部品と基板の接合に必要な強度を有する高温用の鉛フリーはんだを提供することができる。すなわち、Au−Sn共晶組成付近にPまたはGeの金属元素を所定の含有率となるように添加することによって、濡れ性に優れ、これに起因して高い接合強度、高信頼性を有するはんだ接合を可能にするAu−Sn合金はんだを提供することができる。   According to the present invention, it is possible to provide a high-temperature lead-free solder having a strength necessary for joining an electronic component and a substrate. That is, by adding a metal element of P or Ge in the vicinity of the Au—Sn eutectic composition so as to have a predetermined content, solder having excellent wettability, resulting in high joint strength and high reliability. An Au—Sn alloy solder that enables bonding can be provided.

図1は、濡れ性試験片の断面構造を示す図である。FIG. 1 is a diagram showing a cross-sectional structure of a wettability test piece.

接合性が良く接合強度等に優れた信頼性の高い接合を得るためには、はんだが溶融した時に基板との間に適度な濡れ性を有することが重要である。はんだ溶融時に十分な濡れ性が確保できれば接合面積も十分確保でき、接合強度も高まり耐久性にも富んだ高信頼性のはんだ接合が得られる。適度な濡れ性とは、はんだ溶融時に接合面積の110%以上に広がることが目安となる。また、強固で確実な接合を得るためには、溶融はんだ内部にボイドを生じないようにしなければならない。ボイドの発生率は5%以下に抑える必要がある。   In order to obtain a highly reliable bond with excellent bondability and excellent bonding strength, it is important to have appropriate wettability with the substrate when the solder is melted. If sufficient wettability can be ensured when the solder is melted, a sufficient bonding area can be ensured, the bonding strength is increased, and highly reliable solder bonding with high durability can be obtained. The appropriate wettability is a standard that spreads to 110% or more of the joint area when the solder is melted. Further, in order to obtain a strong and reliable joint, it is necessary to prevent voids from being generated inside the molten solder. It is necessary to suppress the void generation rate to 5% or less.

本発明のAu−Sn合金はんだの組成は、Snを18.5質量%以上23.5質量%以下含有し、PまたはGeの少なくとも1種以上を含有し、Pを含有する場合は0.001質量%以上0.5質量%以下含有し、Geを含有する場合は0.03質量%以上1.5質量%以下含有し、残部がAuからなる。
Au−Sn共晶組成付近をベースとして、PまたはGeを所定量添加することにより濡れ性が格段に向上し、Au−Sn二元系合金より接合部の信頼性を従来よりも増して高めることが可能となる。
つまり、P、Geは還元性が強く、Au−Sn二元系はんだ合金表面が酸化した場合や電子部品等の酸化膜を還元し除去する性質を有する。
The composition of the Au—Sn alloy solder of the present invention contains 18.5 mass% or more and 23.5 mass% or less of Sn, contains at least one of P or Ge, and contains 0.001 when P is contained. It is contained in an amount of not less than 0.5% by mass and not more than 0.5% by mass. When Ge is contained, it is not less than 0.03% by mass and not more than 1.5% by mass, and the balance is Au.
Based on the vicinity of the Au-Sn eutectic composition, by adding a predetermined amount of P or Ge, the wettability is remarkably improved, and the reliability of the joint is improved more than before by the Au-Sn binary alloy. Is possible.
That is, P and Ge are highly reducible, and have the property of reducing and removing oxide films of electronic parts and the like when the Au—Sn binary solder alloy surface is oxidized.

まず、Pの効果について述べる。Pは特に還元性が強く、酸化膜除去の効果は大きい。更に、Pの添加は接合時にボイドの発生を低減させる効果がある。すなわち、Pは還元性が強く自らが酸化しやすいため、接合時にはんだ成分よりも優先的に酸化が進む。その結果、はんだ母相の酸化を防ぎ、濡れ性を確保することができる。これにより良好な接合が可能となり、ボイドの生成も起こりにくくなる。   First, the effect of P will be described. P is particularly highly reducing and has a great effect of removing the oxide film. Furthermore, the addition of P has the effect of reducing the generation of voids during bonding. That is, since P is highly reducible and easily oxidizes itself, oxidation proceeds preferentially over the solder component during bonding. As a result, it is possible to prevent the solder mother phase from being oxidized and to ensure wettability. As a result, good bonding is possible, and void formation is less likely to occur.

還元性が強いPは、微量の添加でも濡れ性向上の効果を発揮する。逆にある量以上では添加しても濡れ性向上の効果は変わらず、過剰な添加はPの酸化物がはんだ表面に生成されたり、Pが脆弱な相を作り脆化したりするおそれがある。したがって、Pは微量添加が好ましい。
具体的には、Pの還元効果を得るには0.001質量%以上の添加が必要であり、Pの添加量の上限は0.500質量%以下である。Pがこの上限値を超えると、その酸化物がはんだ表面を覆い、逆に濡れ性を落とすおそれがある。さらに、Pは添加量が多いと脆いP酸化物が偏析するなどして信頼性を低下させる。とくにシートやワイヤなどを加工する場合に、クラックや断線、または欠陥の原因になりやすいことを確認している。
P having strong reducibility exhibits the effect of improving wettability even when added in a small amount. On the other hand, if added in a certain amount or more, the effect of improving wettability does not change, and excessive addition may cause P oxide to be generated on the solder surface, or P to form a brittle phase and become brittle. Therefore, P is preferably added in a trace amount.
Specifically, to obtain the reduction effect of P, addition of 0.001% by mass or more is necessary, and the upper limit of the addition amount of P is 0.500% by mass or less. When P exceeds this upper limit, the oxide covers the solder surface, and conversely, wettability may be reduced. Furthermore, when P is added in a large amount, brittle P oxide is segregated, and reliability is lowered. In particular, when processing sheets and wires, it has been confirmed that they are likely to cause cracks, disconnections, or defects.

次にGeについて述べる。GeもP同様に還元効果を有する。しかし、その効果は熱力学的観点から容易に推測でき、Pに劣る。しかし、GeはSnやCuを還元することは可能であるため、接合条件によって少量のGe添加で大きな濡れ性改善効果を示す。さらにGeにはPにはない優れた特性を有する。つまり、GeはAuと共晶合金を作るため、加工性や信頼性を向上させ、加えてその添加量によって融点を調整できるのである。このGeの最適な添加量は0.03質量%以上1.5質量%以下である。0.03質量%以下では添加量が少なすぎて、優れたGeの効果が発揮できない。一方、1.5質量%を越えるとSnと低融点相(Ge−Sn二元合金の固相温度:231℃よりも低い)を作ってしまいリフロー時に電子部品等の固定を維持できなくなってしまうなどの問題が生じる。   Next, Ge will be described. Ge, like P, has a reducing effect. However, the effect can be easily estimated from a thermodynamic point of view and is inferior to P. However, since Ge can reduce Sn and Cu, depending on the bonding conditions, a great improvement in wettability can be achieved by adding a small amount of Ge. Further, Ge has excellent characteristics not found in P. That is, since Ge forms a eutectic alloy with Au, workability and reliability are improved, and in addition, the melting point can be adjusted by the amount of addition. The optimum addition amount of Ge is 0.03% by mass or more and 1.5% by mass or less. If it is 0.03 mass% or less, the amount of addition is too small, and the excellent Ge effect cannot be exhibited. On the other hand, if it exceeds 1.5% by mass, Sn and a low melting point phase (the solid phase temperature of Ge—Sn binary alloy: lower than 231 ° C.) are formed, and it becomes impossible to maintain the electronic components and the like during reflow. Problems arise.

まず、原料として純度99.9質量%以上のAu、Sn、P、およびGeを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさに細かくした。次に、高周波溶解炉用グラファイトるつぼに、これら原料から所定量を秤量して入れた。
原料の入ったるつぼを高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく攪拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかにるつぼを取り出し、るつぼ内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型には、はんだ合金の製造の際に一般的に使用している形状(厚さ5mmの板状)と同様のものを使用した。
First, Au, Sn, P, and Ge having a purity of 99.9% by mass or more were prepared as raw materials. Large flakes and bulk-shaped raw materials were cut and pulverized, etc. so as to be uniform with no variation in composition depending on the sampling location in the alloy after melting, and were reduced to a size of 3 mm or less. Next, a predetermined amount of these raw materials was weighed into a graphite crucible for a high-frequency melting furnace.
The crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly removed, and the molten metal in the crucible was poured into the solder mother alloy mold. As the mold, a mold having the same shape (plate shape having a thickness of 5 mm) generally used in the production of the solder alloy was used.

このようにして試料1のはんだ母合金を作製した。原料の混合比率を変えた以外は試料1と同様にして試料2〜13のはんだ母合金を作製した。これら試料1〜13のはんだ母合金の組成をICP発光分光分析器(SHIMAZU製S−8100)を用いて分析した。その分析結果を下記の表1に示す。   In this way, the solder mother alloy of Sample 1 was produced. Solder mother alloys of Samples 2 to 13 were produced in the same manner as Sample 1 except that the mixing ratio of the raw materials was changed. The compositions of the solder mother alloys of Samples 1 to 13 were analyzed using an ICP emission spectroscopic analyzer (S-8100 manufactured by SHIMAZU). The analysis results are shown in Table 1 below.

Figure 2012200789
Figure 2012200789

次に、上記試料1〜13の各はんだ母合金について、圧延機でシート状に加工した。また、シート状に加工した各Au−Sn系はんだ合金について、濡れ性の評価、ボイド率の評価及びヒートサイクル試験による信頼性の評価を行った。尚、はんだの濡れ性ないし接合性等の評価は、はんだ形状に依存しないためワイヤ、ボール、ペーストなどの形状で評価してもよいが、シートの形状で評価した。得られた結果を下記表2に示す。   Next, each solder mother alloy of the samples 1 to 13 was processed into a sheet shape by a rolling mill. Moreover, about each Au-Sn type solder alloy processed into the sheet form, the wettability evaluation, the void rate evaluation, and the reliability evaluation by the heat cycle test were performed. Note that the evaluation of solder wettability or bondability does not depend on the solder shape, and may be evaluated by the shape of a wire, ball, paste, or the like, but was evaluated by the shape of a sheet. The obtained results are shown in Table 2 below.

<シート形状への加工>
表1に示す試料1〜13の各はんだ母合金(厚さ5mmの板状インゴット)を、圧延機を用いて厚さ0.1mmまで圧延した。その際、インゴットの送り速度を調整しながら圧延し、その後スリッター加工により25mmの幅に裁断した。このようにシート形状にした試料をプレス機に設置した金型を用いて、10mm角の形状に打ち抜き、評価用試料として用いた。なお、一般的にAu−Snはんだが使用される場合、はんだ厚みは0.020〜0.050mm程度で使用されることが多いが、ここでは濡れ広がりの評価を行う際、濡れ性が濡れ広がり面積に反映され易いようにはんだ厚みを故意に厚くした。
<Processing into sheet shape>
Each solder mother alloy (plate-shaped ingot having a thickness of 5 mm) of Samples 1 to 13 shown in Table 1 was rolled to a thickness of 0.1 mm using a rolling mill. At that time, the sheet was rolled while adjusting the feed speed of the ingot, and then cut into a width of 25 mm by slitting. The sample thus formed into a sheet shape was punched into a 10 mm square shape using a mold installed in a press machine, and used as an evaluation sample. In general, when Au—Sn solder is used, the solder thickness is often about 0.020 to 0.050 mm. However, here, when evaluating wet spread, wettability spreads. The thickness of the solder was intentionally increased so that it was easily reflected in the area.

<濡れ性評価(濡れ広がり性)>
まず、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素を流した(窒素流量:各12L/分)。その後、ヒーター設定温度を340℃にして加熱した。
340℃に設定したヒーター温度が安定した後、図1に示すようなNiめっき膜(2)(膜厚:2.0μm)、さらに最上層にAuめっき膜(3)(膜厚:1.0μm)を施したCu基板(1)(板厚:0.3mm)をヒーター部にセッティング後、25秒加熱した。次に、試料のはんだ(4)をCu基板(1)の上に載せ、25秒加熱した。加熱が完了した後はCu基板(1)をヒーター部から取り上げてその横の窒素雰囲気が保たれている場所に一旦設置して冷却した。十分に冷却した後、大気中に取り出して接合部分を確認した。溶融前の面積を100%として、溶融・冷却後の面積を光学顕微鏡(キーエンス社製VHX−900)の面積測定機能を用いて測定した。その結果を表2に示す。
<Evaluation of wettability (wet spreadability)>
First, a wettability tester (device name: atmosphere control type wettability tester) was started, a double cover was applied to the heater part to be heated, and nitrogen was flowed from four locations around the heater part (nitrogen flow rate: each 12 L / min). Then, the heater set temperature was set to 340 ° C. and heated.
After the heater temperature set at 340 ° C. has stabilized, the Ni plating film (2) (film thickness: 2.0 μm) as shown in FIG. 1, and the Au plating film (3) (film thickness: 1.0 μm) as the uppermost layer The Cu substrate (1) (thickness: 0.3 mm) subjected to () was set on the heater part and then heated for 25 seconds. Next, the sample solder (4) was placed on the Cu substrate (1) and heated for 25 seconds. After the heating was completed, the Cu substrate (1) was picked up from the heater part, and once installed in a place where the nitrogen atmosphere next to it was maintained, it was cooled. After sufficiently cooling, it was taken out into the atmosphere and a joint portion was confirmed. The area before melting was defined as 100%, and the area after melting and cooling was measured using the area measuring function of an optical microscope (VHX-900 manufactured by Keyence Corporation). The results are shown in Table 2.

<ボイド率の評価>
接合性を確認するため、上記濡れ性評価と同様にして得たはんだが接合されたCu基板のボイド率を、X線透過装置(株式会社東芝製TOSMICRON−6125)を用いて測定した。試料のはんだとCu基板接合面をはんだ上部から垂直にX線を透過し、取り込んだ画像データを処理して以下の計算式(1)を用いてボイド率を算出した。その結果を表2に示す。
<Evaluation of void fraction>
In order to confirm the bondability, the void ratio of the Cu substrate to which the solder obtained in the same manner as in the wettability evaluation was bonded was measured using an X-ray transmission device (TOSMICRON-6125 manufactured by Toshiba Corporation). The sample solder and Cu substrate bonding surface were transmitted through X-rays perpendicularly from the upper part of the solder, the captured image data was processed, and the void ratio was calculated using the following calculation formula (1). The results are shown in Table 2.

Figure 2012200789
Figure 2012200789

<ヒートサイクル試験>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。なお、この試験は、上記濡れ性評価と同様にして得たはんだが接合されたCu基板を用いて行った。まず、はんだが接合されたCu基板に対して、−40℃の冷却と150℃の加熱を1サイクルとして、これを所定のサイクル繰り返した。その後、はんだが接合されたCu基板を樹脂に埋め込み、断面研磨を行い、SEM(日立製作所株式会社製 S−4800)により接合面の観察を行った。接合面にはがれやはんだにクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。その結果を表2に示す。
<Heat cycle test>
A heat cycle test was conducted to evaluate the reliability of solder joints. In addition, this test was done using Cu board | substrate with which the solder obtained similarly to the said wettability evaluation was joined. First, with respect to the Cu board | substrate with which solder was joined, -40 degreeC cooling and 150 degreeC heating were made into 1 cycle, and this was repeated predetermined cycle. Thereafter, the Cu substrate to which the solder was bonded was embedded in the resin, the cross section was polished, and the bonded surface was observed by SEM (S-4800, manufactured by Hitachi, Ltd.). The case where the joint surface was peeled or cracked in the solder was indicated as “×”, and the case where there was no such defect and the same joint surface as in the initial state was maintained as “◯”. The results are shown in Table 2.

Figure 2012200789
Figure 2012200789

表2から分かるように、本発明の要件を満たしている試料1〜8のはんだ母合金は、各評価項目において良好な特性を示している。つまり、Au層が形成されているCu基板への濡れ性は非常に良好であり、とくにPを多く添加した試料5、PとGeの両方を添加した試料8は非常に濡れ広がり方が早く、はんだの濡れ広がり面積は35%も増加した。信頼性に関する試験であるヒートサイクル試験においても良好な結果が得られており、ヒートサイクル試験では500回経過後も不良が現れなかった。
一方、本発明の要件を満たしていない比較例の試料9〜13のはんだ母合金は、少なくともいずれかの特性において好ましくない結果となった。つまり、試料9〜13は試料1〜8に比較しボイド率が高く、全て4%以上であった。さらに試料9、10、12、13はヒートサイクル試験において300回で不良が発生した。
As can be seen from Table 2, the solder mother alloys of Samples 1 to 8 that satisfy the requirements of the present invention show good characteristics in each evaluation item. That is, the wettability to the Cu substrate on which the Au layer is formed is very good. Particularly, the sample 5 added with a large amount of P and the sample 8 added with both P and Ge are very quickly wetted and spread. The solder spreading area increased by 35%. Good results were also obtained in the heat cycle test, which is a test relating to reliability, and no defects appeared after 500 times in the heat cycle test.
On the other hand, the solder mother alloys of Comparative Samples 9 to 13 that did not satisfy the requirements of the present invention had undesirable results in at least any of the characteristics. That is, Samples 9 to 13 had a higher void ratio than Samples 1 to 8, and all were 4% or more. Further, Samples 9, 10, 12, and 13 were defective in 300 times in the heat cycle test.

1 Cu基板
2 Niめっき膜
3 Auめっき膜
4 はんだ
1 Cu substrate 2 Ni plating film 3 Au plating film 4 Solder

Claims (1)

Snを18.5質量%以上23.5質量%以下含有し、0.001質量%以上0.5質量%以下のPまたは0.03質量%以上1.5質量%以下のGeのうち少なくとも1種を含有し、残部がAuからなることを特徴とするAu−Sn合金はんだ。   Sn is contained in an amount of 18.5% by mass to 23.5% by mass, and at least one of P of 0.001% by mass to 0.5% by mass and Ge of 0.03% by mass to 1.5% by mass. An Au—Sn alloy solder comprising a seed and the balance being made of Au.
JP2011071091A 2011-03-28 2011-03-28 Au-Sn alloy solder Expired - Fee Related JP5633816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071091A JP5633816B2 (en) 2011-03-28 2011-03-28 Au-Sn alloy solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071091A JP5633816B2 (en) 2011-03-28 2011-03-28 Au-Sn alloy solder

Publications (2)

Publication Number Publication Date
JP2012200789A true JP2012200789A (en) 2012-10-22
JP5633816B2 JP5633816B2 (en) 2014-12-03

Family

ID=47182296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071091A Expired - Fee Related JP5633816B2 (en) 2011-03-28 2011-03-28 Au-Sn alloy solder

Country Status (1)

Country Link
JP (1) JP5633816B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200794A (en) * 2013-04-01 2014-10-27 住友金属鉱山株式会社 Au-Sn BASED SOLDER ALLOY
JP2014226681A (en) * 2013-05-21 2014-12-08 住友金属鉱山株式会社 Extrusion die for manufacturing extrusion wire and method for manufacturing wire using the same
WO2015087588A1 (en) * 2013-12-10 2015-06-18 住友金属鉱山株式会社 Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP2015157307A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Au-Sn-Ag TYPE SOLDER ALLOY, ELECTRONIC PARTS SEALED BY USING Au-Sn-Ag TYPE SOLDER ALLOY AND ELECTRONIC PARTS MOUNTED DEVICE
JP2016087608A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY WITH CONTROLLED ENERGY ABSORPTION AMOUNT AND ELECTRONIC COMPONENT ENCAPSULATED OR BONDED USING THE SAME
JP2016112588A (en) * 2014-12-15 2016-06-23 住友金属鉱山株式会社 Au-Sn-BASED SOLDER ALLOY WHERE SURFACE CONDITION IS CONTROLLED AND SEALED OR BONDED ELECTRONIC COMPONENT USING THE SAME
CN106695163A (en) * 2016-12-29 2017-05-24 安徽华众焊业有限公司 Au-base slicken solder and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520403A (en) * 1978-07-20 1980-02-13 Seiko Epson Corp Soldering material of armor part for portable watch
JP2007160340A (en) * 2005-12-13 2007-06-28 Epson Toyocom Corp Brazing filler metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520403A (en) * 1978-07-20 1980-02-13 Seiko Epson Corp Soldering material of armor part for portable watch
JP2007160340A (en) * 2005-12-13 2007-06-28 Epson Toyocom Corp Brazing filler metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200794A (en) * 2013-04-01 2014-10-27 住友金属鉱山株式会社 Au-Sn BASED SOLDER ALLOY
JP2014226681A (en) * 2013-05-21 2014-12-08 住友金属鉱山株式会社 Extrusion die for manufacturing extrusion wire and method for manufacturing wire using the same
WO2015087588A1 (en) * 2013-12-10 2015-06-18 住友金属鉱山株式会社 Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP2015131340A (en) * 2013-12-10 2015-07-23 住友金属鉱山株式会社 Au-Sn-Ag SERIES SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE Au-Sn-Ag SERIES SOLDER ALLOY AND ELECTRONIC COMPONENT-EQUIPPED DEVICE
CN105813801A (en) * 2013-12-10 2016-07-27 住友金属矿山株式会社 Au-Sn-Ag series solder alloy, electronic component sealed using same Au-Sn-Ag series solder alloy, and electronic component-equipped device
JP2015157307A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Au-Sn-Ag TYPE SOLDER ALLOY, ELECTRONIC PARTS SEALED BY USING Au-Sn-Ag TYPE SOLDER ALLOY AND ELECTRONIC PARTS MOUNTED DEVICE
JP2016087608A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY WITH CONTROLLED ENERGY ABSORPTION AMOUNT AND ELECTRONIC COMPONENT ENCAPSULATED OR BONDED USING THE SAME
JP2016112588A (en) * 2014-12-15 2016-06-23 住友金属鉱山株式会社 Au-Sn-BASED SOLDER ALLOY WHERE SURFACE CONDITION IS CONTROLLED AND SEALED OR BONDED ELECTRONIC COMPONENT USING THE SAME
CN106695163A (en) * 2016-12-29 2017-05-24 安徽华众焊业有限公司 Au-base slicken solder and preparation method thereof

Also Published As

Publication number Publication date
JP5633816B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5633816B2 (en) Au-Sn alloy solder
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP6892568B2 (en) A method for selecting a solder alloy containing Sn as a main component, which has excellent surface properties.
JP6036202B2 (en) Au-Ag-Ge solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP5716332B2 (en) Pb-free solder alloy
JP2011062736A (en) Lead-free high-temperature solder material
JP2016026884A (en) Bi-Sn-Al BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP5633815B2 (en) Au-Sn alloy solder
JP5589642B2 (en) Pb-free solder alloy with excellent stress relaxation
JP2016059943A (en) BALL-SHAPED Au-Ge-Sn-BASED SOLDER ALLOY AND ELECTRONIC COMPONENT USING THE SOLDER ALLOY
JP5640915B2 (en) Lead-free solder alloy
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP5633812B2 (en) Au-Sn alloy solder
JP2011161495A (en) Pb-FREE SOLDER ALLOY
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP2016026883A (en) Bi-Sn-Zn BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP2014200794A (en) Au-Sn BASED SOLDER ALLOY
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP5464113B2 (en) Pb-free solder alloy containing Ge
JP2011235314A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP2015208777A (en) BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, AND DEVICE MOUNTED WITH THE ELECTRONIC COMPONENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5633816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees