JP5979083B2 - Pb-free Au-Ge-Sn solder alloy - Google Patents

Pb-free Au-Ge-Sn solder alloy Download PDF

Info

Publication number
JP5979083B2
JP5979083B2 JP2013116628A JP2013116628A JP5979083B2 JP 5979083 B2 JP5979083 B2 JP 5979083B2 JP 2013116628 A JP2013116628 A JP 2013116628A JP 2013116628 A JP2013116628 A JP 2013116628A JP 5979083 B2 JP5979083 B2 JP 5979083B2
Authority
JP
Japan
Prior art keywords
solder
mass
alloy
temperature
solder alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013116628A
Other languages
Japanese (ja)
Other versions
JP2014233737A (en
Inventor
井関 隆士
隆士 井関
嵩凱 黄
嵩凱 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013116628A priority Critical patent/JP5979083B2/en
Publication of JP2014233737A publication Critical patent/JP2014233737A/en
Application granted granted Critical
Publication of JP5979083B2 publication Critical patent/JP5979083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、Pbを含まず、Auを主成分とするAu−Ge−Sn系はんだ合金に関する。   The present invention relates to an Au—Ge—Sn based solder alloy that does not contain Pb and contains Au as a main component.

近年、環境に有害な化学物質に対する規制がますます厳しくなってきており、この規制は電子部品などを基板に接合する目的で使用するはんだ材料に対しても例外ではない。はんだ材料には古くから鉛(Pb)が主成分として使われ続けてきたが、既にRohs指令などで鉛は規制対象物質になっている。このため、鉛を含まないはんだ(以降、鉛フリーはんだ又は無鉛はんだと称する)の開発が盛んに行われている。   In recent years, regulations on chemical substances harmful to the environment have become stricter, and this regulation is no exception for solder materials used for the purpose of joining electronic components to a substrate. Lead (Pb) has been used as a main component for solder materials for a long time, but lead has already been a regulated substance under the Rohs Directive. For this reason, development of solder containing no lead (hereinafter referred to as lead-free solder or lead-free solder) has been actively conducted.

半導体素子を基板に接合する際に使用するはんだは、その使用限界温度によって高温用(約260℃〜400℃)と中低温用(約140℃〜230℃)とに大別され、そのうち中低温用はんだに関してはSnを主成分とするもので鉛フリーはんだが実用化されている。例えば、特許文献1にはSnを主成分とし、Agを1.0〜4.0重量%、Cuを2.0重量%以下、Niを0.5重量%以下、Pを0.2重量%以下含有する無鉛はんだ合金組成が記載されており、特許文献2にはAgを0.5〜3.5重量%、Cuを0.5〜2.0重量%含有し、残部がSnからなる合金組成の無鉛はんだが記載されている。   Solder used when bonding a semiconductor element to a substrate is roughly classified into a high temperature (about 260 ° C. to 400 ° C.) and a medium / low temperature (about 140 ° C. to 230 ° C.) depending on the use limit temperature. Regarding solder for solder, lead-free solder has been put into practical use with Sn as a main component. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0% by weight, Cu is 2.0% by weight or less, Ni is 0.5% by weight or less, and P is 0.2% by weight. The following lead-free solder alloy composition is described. Patent Document 2 contains 0.5 to 3.5% by weight of Ag, 0.5 to 2.0% by weight of Cu, and the balance is Sn. A lead-free solder of composition is described.

一方、高温用のPbフリーはんだに関しても、さまざまな機関で研究開発が行われている。例えば、特許文献3には、Biを30〜80質量%含み、溶融温度が350〜500℃のBi/Agろう材が開示されている。また、特許文献4には、Biを含む共昌合金に2元共昌合金を加え、更に添加元素を加えたはんだ合金が開示されており、このはんだ合金は4元系以上の多元系はんだではあるものの、液相線温度の調整とばらつきの減少が可能となることが示されている。   On the other hand, research and development has been conducted on various high-temperature Pb-free solders. For example, Patent Document 3 discloses a Bi / Ag brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. Patent Document 4 discloses a solder alloy in which a binary Kyochang alloy is added to a Bi-containing alloy containing Bi and an additional element is further added. This solder alloy is a multi-component solder of a quaternary system or higher. However, it has been shown that the liquidus temperature can be adjusted and variations can be reduced.

高価な高温用のPbフリーはんだ材料としては、既にAu−Sn合金やAu−Ge合金などが水晶デバイス、SAWフィルター、MEMS(微小電子機械システム)等で使用されている。例えば、特許文献5にはAu−Ge、Au−Sb又はAu−Siの板状低融点Au合金ろうを予加熱し、次に加熱保温部を設けたプレス金型にその材料を順次送って100℃〜350℃の温度範囲でプレス加工を行うことを特徴とする板状低融点Au合金ろうのプレス加工方法について記載されている。   As an expensive high-temperature Pb-free solder material, an Au—Sn alloy, an Au—Ge alloy, or the like has already been used in a crystal device, a SAW filter, a MEMS (microelectromechanical system), or the like. For example, in Patent Document 5, Au—Ge, Au—Sb, or Au—Si plate-like low melting point Au alloy brazing is preheated, and then the material is sequentially sent to a press die provided with a heat insulation section. It describes a pressing method for a plate-shaped low melting point Au alloy brazing, characterized in that pressing is performed in a temperature range of from 0C to 350C.

また、特許文献6には、半導体パッケージの外部リードのろう付けに用いられるろう材であって、Agを10〜35wt%、In、Ge及びGaのうち少なくとも1種類を合計で3〜15wt%、及び残部のAuからなるAu合金であり、且つエレクトロマイグレーションテストにおいて短絡するまでの時間が1.5時間以上であることを特徴とするエレクトロマイグレーション防止性ろう材について記載されている。   Patent Document 6 discloses a brazing material used for brazing an external lead of a semiconductor package, and Ag is 10 to 35 wt%, and at least one of In, Ge and Ga is 3 to 15 wt% in total, In addition, the electromigration-preventing brazing material is characterized in that it is an Au alloy composed of the balance Au and the time until short-circuiting in the electromigration test is 1.5 hours or more.

更に特許文献7には、Au/Ge/Snを含む3元合金のロウ材であり、液相が発生し始める温度をTs、完全に液相になる温度をTlとした場合に、Tl−Ts<50度であることを特徴とするロウ材について記載されている。そして、この特許文献7によれば、Pbフリーを実現しつつ、リフロー温度で溶融せず、接合のための温度が高すぎて接着剤や部品自体に損傷を与えることがない、接合に好適なロウ材を提供できるとされている。   Further, Patent Document 7 describes a ternary alloy brazing material containing Au / Ge / Sn, where Ts is a temperature at which the liquid phase starts to be generated and Tl is a temperature at which the liquid phase is completely formed. It describes a brazing material characterized by <50 degrees. And according to this patent document 7, while realizing Pb-free, it does not melt at the reflow temperature, and the temperature for joining is too high, so that it does not damage the adhesive or the component itself. It is said that brazing material can be provided.

特開1999−077366号公報Japanese Patent Laid-Open No. 1999-077366 特開平08−215880号公報Japanese Patent Laid-Open No. 08-215880 特開2002−160089号公報JP 2002-160089 A 特開2008−161913号公報JP 2008-161913 特開平03−204191号公報Japanese Patent Laid-Open No. 03-204191 特開平03−138096号公報Japanese Patent Laid-Open No. 03-138096 特開2007−160340号公報JP 2007-160340 A

高温用のPbフリーはんだ材料に関しては、上記特許文献以外にも様々な報告ないし提案があるが、未だ低コストで汎用性のあるはんだ材料は見つかっていない。即ち、一般的に半導体素子や基板には熱可塑性樹脂や熱硬化性樹脂などの比較的耐熱温度の低い材料が多用されているため、接合時の作業温度を400℃未満に、望ましくは370℃以下にするという要望がある。しかしながら、例えば特許文献3に開示されているBi/Agろう材では、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される半導体素子や基板の耐熱温度を超えてしまうことになる。   Regarding Pb-free solder materials for high temperatures, there are various reports or proposals other than the above-mentioned patent documents, but a low-cost and versatile solder material has not yet been found. That is, in general, a material having a relatively low heat-resistant temperature such as a thermoplastic resin or a thermosetting resin is frequently used for a semiconductor element or a substrate. Therefore, the working temperature at the time of bonding is less than 400 ° C., preferably 370 ° C. There is a demand to make it below. However, for example, in the Bi / Ag brazing material disclosed in Patent Document 3, since the liquidus temperature is as high as 400 to 700 ° C., it is estimated that the working temperature at the time of joining is also 400 to 700 ° C. or more and is joined. This would exceed the heat resistance temperature of the semiconductor element or substrate.

また、高価なAu系はんだではAu−Sn系はんだやAu−Ge系はんだが実用化されているが、これらのAu系はんだは極めて高価なAuを多量に使用するため、汎用のPb系はんだやSn系はんだなどに比較して非常に高価である。そのため、主に水晶デバイス、SAWフィルター、MEMSなどの特に高い信頼性を必要とする箇所のはんだ付けに使用されているにすぎない。   In addition, although Au—Sn solder and Au—Ge solder have been put to practical use as expensive Au solders, these Au solders use a large amount of extremely expensive Au. It is very expensive compared to Sn solder. Therefore, it is mainly used only for soldering a portion requiring particularly high reliability, such as a crystal device, a SAW filter, and a MEMS.

加えて、Au系はんだは、非常に硬くて加工し難いため、例えば、シート形状に圧延加工する際に時間がかかったり、ロールに疵のつき難い特殊な材質のものを用いたりしなければならないため、余分なコストがかかる。また、プレス成形時にも、Au系はんだは硬くて脆い性質のため、クラックやバリが発生し易く、他のはんだに比較して収率が格段に低い。ワイヤ形状に加工する場合にも似たような深刻な問題があり、非常に圧力の高い押出機を使用しても、硬いため押出速度を速くできず、Pb系はんだの数100分の1程度の生産性しかない。   In addition, Au-based solder is very hard and difficult to process. For example, it is necessary to use a special material that does not easily wrinkle the roll or take a long time to roll into a sheet shape. Therefore, extra costs are incurred. Even during press molding, the Au-based solder is hard and brittle, so cracks and burrs are likely to occur, and the yield is much lower than other solders. There is a similar serious problem when processing into a wire shape. Even if an extruder with a very high pressure is used, the extrusion speed cannot be increased because it is hard, and it is about 1 / 100th of Pb solder. There is only productivity.

以上のような問題を含め、さまざまなAu系はんだの問題に対処すべく、上記した特許文献5〜特許文献7に記載の技術が提案されている。しかしながら、上記特許文献5の技術には次のような問題がある。即ち、Au−Ge、Au−Sb、Au−Si等の板状(シート状)低融点Au合金ろうの素材特性は、室温においてガラス板のような脆性を示し、また方向性があるため、一般に長手方向に平行な面においては僅かな曲げに対しても破断し易く、亀裂の伝播が進み易いという欠点がある。   In order to deal with various problems of Au solder including the above problems, the techniques described in Patent Documents 5 to 7 have been proposed. However, the technique of Patent Document 5 has the following problems. That is, the material characteristics of a plate-like (sheet-like) low melting point Au alloy brazing material such as Au—Ge, Au—Sb, and Au—Si are brittle like glass plates at room temperature and generally have a directionality. The plane parallel to the longitudinal direction is liable to break even with a slight bending, and has a drawback that the propagation of cracks easily proceeds.

そこで、従来からコンパウンド金型を用いてプレス加工を行ってきているが、このコンパウンド金型技術においても金型精度の問題や金型寿命の問題があるため、特許文献5には加熱保温部を設けたプレス金型に材料を順次送って100〜350℃の温度範囲でプレス加工する技術が開示されている。しかし、このような温間でのプレス加工でも課題は山積しているのである。   Therefore, press working has conventionally been performed using a compound mold. However, in this compound mold technology, there is a problem of mold accuracy and a problem of mold life. A technology is disclosed in which materials are sequentially sent to a provided press die and pressed in a temperature range of 100 to 350 ° C. However, there are many problems even in such warm press working.

即ち、温間プレスでは、はんだ合金の酸化が進行してしまう。そのため、Auを多く含有するはんだであっても、その他の金属、例えばGeやSb、又はSnなどを含んでいるAu系はんだは、これらの元素の酸化進行を防ぐことができず、常温より高い温度でプレスしたとき表面が酸化して濡れ性が大きく低下してしまう。更に、温度が高い状態であるから常温と比較してはんだが膨張し、工夫をしても常温でのプレスに比較して形状の精度が出せない。加えて、比較的柔らかくなったはんだは金型に張り付き易くなり、はんだが撓んだり歪んだりした状態でプレスすることになるため、バリや欠けが発生しやすくなる。   That is, in the warm press, the oxidation of the solder alloy proceeds. Therefore, even if the solder contains a large amount of Au, Au-based solder containing other metals such as Ge, Sb, or Sn cannot prevent oxidation of these elements and is higher than room temperature. When pressed at a temperature, the surface is oxidized and the wettability is greatly reduced. Furthermore, since the temperature is high, the solder expands compared to the normal temperature, and even if it is devised, the accuracy of the shape cannot be obtained compared to the press at the normal temperature. In addition, since the solder that has become relatively soft is likely to stick to the mold and is pressed in a state where the solder is bent or distorted, burrs and chips are likely to occur.

また、上記特許文献6には、既に述べたようにAgを10〜35wt%、In、Ge及びGaの少なくとも1種類を合計で3〜15wt%含有し、残部がAuからなるAu合金のエレクトロマイグレーション防止性ろう材が記載されている。そして、これらの添加元素の効果として、Auを主成分とすることでエレクトロマイグレーションを防止でき、Agを10〜35wt%加えるのはろう付け強度を得るためであり、またIn、Ge及びGaのうち少なくとも1種類を合計で3〜15wt%加えるのは融点を下げるためであると記載されている。   Further, in Patent Document 6, as described above, electromigration of an Au alloy containing 10 to 35 wt% of Ag, 3 to 15 wt% in total of at least one of In, Ge, and Ga, with the balance being Au. A preventive brazing material is described. As an effect of these additive elements, electromigration can be prevented by using Au as a main component, and Ag is added in an amount of 10 to 35 wt% in order to obtain brazing strength, and among In, Ge, and Ga It is described that at least one kind is added in a total of 3 to 15 wt% in order to lower the melting point.

しかし、上記特許文献6に記載のAu合金は、Ag−28wt%CuやAg−15wt%CuのAg系ろう材との比較において、エレクトロマイグレーションの発生を防止でき、強固で安定したろう付け強度が得られるろう材として開発されたものである。そのため、Agの含有量が比較的多く、融点が下がって使い難いはんだ材料となり易いうえ、従来のAu−Ge合金などのAu系合金と比べて強度やエレクトロマイグレーション防止効果が十分であるとはいえない。   However, the Au alloy described in Patent Document 6 can prevent the occurrence of electromigration and has a strong and stable brazing strength in comparison with an Ag-based brazing material of Ag-28 wt% Cu or Ag-15 wt% Cu. It was developed as a brazing material to be obtained. For this reason, the Ag content is relatively high, the melting point is lowered, and the solder material is easy to use, and the strength and the electromigration preventing effect are sufficient as compared with conventional Au-based alloys such as Au-Ge alloys. Absent.

更に、上記特許文献7には、Au/Ge/Snを含む3元合金のロウ材であり、液相が発生し始める温度をTs、完全に液相になる温度をTlとした場合に、Tl−Ts<50度であることを特徴とするロウ材について記載されており、これによって、Pbフリーを実現しつつ、リフロー温度に溶融せず、接合のための温度が高すぎて、例えば接着剤や部品自体に損傷を与えることがない電気・半導体素子の接合に好適なロウ材を提供できることが示されている。   Further, the above-mentioned Patent Document 7 describes a ternary alloy brazing material containing Au / Ge / Sn, where Ts is a temperature at which the liquid phase starts to be generated and Tl is a temperature at which the liquid phase is completely formed. -Ts <50 degrees, which describes a brazing material, which realizes Pb-free, does not melt to the reflow temperature, and is too hot for bonding, for example an adhesive In addition, it has been shown that a brazing material suitable for joining electrical / semiconductor elements that does not damage the components themselves can be provided.

しかし、上記特許文献7に記載のAu/Ge/Snを含む3元合金のロウ材は、液相線温度と固相線温度の差が50℃未満という余りにも広い組成範囲であるが、このような広い組成範囲において同じ効果や特性を有するロウ材のみが得られることはない。最も分かり易い例として、上記組成範囲に属するAu−12.5質量%Ge合金(共晶点の組成)とAu−20質量%Sn合金(共晶点の組成)を比較した場合、その特性は明らかに異なる。   However, the ternary alloy brazing material containing Au / Ge / Sn described in Patent Document 7 has an extremely wide composition range in which the difference between the liquidus temperature and the solidus temperature is less than 50 ° C. Only a brazing material having the same effects and characteristics in such a wide composition range is not obtained. As an easy-to-understand example, when comparing an Au-12.5 mass% Ge alloy (eutectic point composition) and an Au-20 mass% Sn alloy (eutectic point composition) belonging to the above composition range, the characteristics are as follows: Obviously different.

即ち、Geが半金属であるために、Au−12.5質量%Ge合金はAu−20質量%Sn合金に比較して明らかに加工性に劣る。例えば、圧延加工する際に、クラック等の発生により収率はAu−12.5質量%Geの方が低くなる。当然、これらに少量の第三元素が含有させた場合、第三元素が固溶して特性が大きく変わらない組成範囲は存在するため、例えばAu−12.5質量%Ge−Sn合金とAu−20質量%Sn−Ge合金の特性は大きく異なる。   That is, since Ge is a metalloid, the Au-12.5 mass% Ge alloy is clearly inferior in workability compared to the Au-20 mass% Sn alloy. For example, when rolling, the yield of Au-12.5 mass% Ge is lower due to the occurrence of cracks and the like. Naturally, when a small amount of the third element is contained in these, there is a composition range in which the third element is dissolved and the characteristics do not change greatly. For example, Au-12.5 mass% Ge—Sn alloy and Au— The properties of the 20 mass% Sn-Ge alloy are greatly different.

更に、Ge−Sn合金について考えた場合、固相線温度が231℃であり、高温用はんだとしては融点が低すぎる。当然、Ge−Sn合金に少量のAuが固溶した場合でも、上記特許文献7の特許請求の範囲に規定された液相線温度と固相線温度の差が50℃未満の領域は存在するが、高温用はんだとしては融点が低すぎることに変わりはない。   Furthermore, when considering the Ge—Sn alloy, the solidus temperature is 231 ° C., and the melting point is too low as a high-temperature solder. Naturally, even when a small amount of Au is dissolved in the Ge—Sn alloy, there is a region where the difference between the liquidus temperature and the solidus temperature defined in the claims of Patent Document 7 is less than 50 ° C. However, the melting point is still too low for high-temperature solder.

本発明は、上記した従来の事情に鑑みてなされたものであり、加工性や濡れ性、応力緩和性等の各種の特性に優れ、水晶デバイス、SAWフィルター、MEMS等の非常に高い信頼性を要求される接合においても十分に使用することができ、しかもAuを主成分としながら安価であって、Pbフリーで高温用のAu−Ge−Sn系はんだ合金を提供することを目的としている。   The present invention has been made in view of the above-described conventional circumstances, and is excellent in various properties such as workability, wettability, and stress relaxation properties, and has extremely high reliability such as a crystal device, a SAW filter, and a MEMS. An object of the present invention is to provide an Au—Ge—Sn based solder alloy that can be used sufficiently even in the required bonding, is inexpensive and contains Pb as a main component, and is free from Pb.

上記目的を達成するため、本発明が提供するAu−Ge−Sn系はんだ合金は、SAWフィルター用若しくはMEMS用のAu−Ge−Sn系はんだ合金であって、Geを0.01質量%以上10.0質量以下含有し、Snを32.0質量%以上40.0質量%以下含有し、残部がAu及び不可避不純物からなり、液相線温度と固相線温度との差が50℃未満であることを特徴とする。 In order to achieve the above object, an Au—Ge—Sn solder alloy provided by the present invention is an Au—Ge—Sn solder alloy for a SAW filter or MEMS , and contains 0.01 mass% or more of Ge. .0 mass contains less, and Sn contained less 40.0 mass% or more 32.0% by weight, the balance Ri Do from Au and unavoidable impurities, the difference between the liquidus temperature and the solidus temperature is less than 50 ° C. It is characterized by being.

上記本発明のSAWフィルター用若しくはMEMS用のAu−Ge−Sn系はんだ合金は、Geを2.0質量%以上3.5質量%以下含有し、Snを34.0質量%以上39.0質量%以下含有し、残部がAu及び不可避不純物からなることが好ましい。 The Au-Ge-Sn solder alloy for SAW filter or MEMS of the present invention contains 2.0 mass% to 3.5 mass% of Ge, and Sn is 34.0 mass% to 39.0 mass%. % Or less, and the balance is preferably composed of Au and inevitable impurities.

また、上記本発明のSAWフィルター用若しくはMEMS用のAu−Ge−Sn系はんだ合金は、上記したGe、Sn及びAuに加えてこれらGe、Sn及びAuの合計100質量%に対してPを0.500質量%以下含有することができる。 The Au-Ge-Sn solder alloy for SAW filter or MEMS of the present invention has a P content of 100% by mass in total of Ge, Sn and Au in addition to the above Ge, Sn and Au. Ru can contain 0.500 wt% or less.

更に、本発明は、上記した本願発明のAu−Ge−Sn系はんだ合金を用いて封止した水晶デバイス及びSAWフィルターを提供するものである。   Furthermore, the present invention provides a quartz crystal device and a SAW filter sealed using the Au—Ge—Sn solder alloy of the present invention described above.

本発明によれば、鉛を含有せず、従来のAu系はんだと同等の濡れ性を有し、加工性や応力緩和性等の各種の特性に優れ、しかもAu含有量が少ないため安価であって、水晶デバイス、SAWフィルター、MEMSなどの非常に高い信頼性を要求される箇所にも使用することが可能な、Pbフリーで高温用のAu−Ge−Sn系はんだ合金を提供することができる。しかも、本発明のAu−Ge−Sn系はんだ合金は、加工性に優れるため、生産性の向上を図ることができ、より一層の低コスト化を実現することができる。   According to the present invention, it does not contain lead, has wettability equivalent to that of a conventional Au-based solder, is excellent in various properties such as workability and stress relaxation properties, and is low in price because of low Au content. In addition, it is possible to provide a Pb-free, high-temperature Au—Ge—Sn solder alloy that can be used in places where extremely high reliability is required, such as quartz devices, SAW filters, and MEMS. . Moreover, since the Au—Ge—Sn solder alloy of the present invention is excellent in workability, productivity can be improved and further cost reduction can be realized.

Au−Sn−Ge系状態図である。It is an Au-Sn-Ge system phase diagram. Ni層を有するCu基板上にはんだ合金をはんだ付けした濡れ性試験の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically embodiment of the wettability test which soldered the solder alloy on Cu substrate which has Ni layer. 図2の濡れ性試験でのアスペクト比測定状態を模式的に示す側面図である。It is a side view which shows typically the aspect-ratio measurement state in the wettability test of FIG. 図2の濡れ性試験でのアスペクト比測定状態を模式的に示す平面図である。It is a top view which shows typically the aspect-ratio measurement state in the wettability test of FIG.

本発明のAu−Ge−Sn系はんだ合金の組成は、基本的に、0.01質量%以上10.0質量%以下のGeと、32.0質量%以上40.0質量%以下のSnと、残部のAu及び不可避不純物からなり、更にPを含有してもよく、その場合のPの含有量は0.500質量%以下である。   The composition of the Au—Ge—Sn solder alloy of the present invention basically includes 0.01 mass% to 10.0 mass% Ge, 32.0 mass% to 40.0 mass% Sn, and the like. Further, it consists of the balance Au and inevitable impurities, and may further contain P, in which case the P content is 0.500% by mass or less.

本発明のAu−Ge−Sn系はんだ合金は、非常に高コストであるAu−Ge系はんだやAu−Sn系はんだのコストを下げると共に、優れた加工性を持たせるために、主成分であるAuにSnとGeを添加含有させている。即ち、Au、Sn、Geの3元系合金において、共晶点付近の組成を基本とすることにより、優れた加工性と応力緩和性、ひいては高い接合信頼性を実現し、且つ、SnとGeの含有量が多いためAu含有量を下げることが可能となり、以って低コストな高温用でPbフリーのはんだ材料として提供できる。   The Au—Ge—Sn solder alloy of the present invention is a main component in order to reduce the cost of Au—Ge solder and Au—Sn solder, which are very expensive, and to have excellent workability. Sn and Ge are added to Au. In other words, in a ternary alloy of Au, Sn, and Ge, based on the composition near the eutectic point, excellent workability and stress relaxation properties, and consequently high bonding reliability, and Sn and Ge Therefore, it is possible to reduce the Au content, so that it can be provided as a Pb-free solder material for high temperature use at a low cost.

以下、本発明のAu−Ge−Sn系はんだ合金に必須の元素、及び必要に応じて含有する任意の元素について、更に詳しく説明する。   Hereinafter, elements essential to the Au—Ge—Sn solder alloy of the present invention and optional elements contained as necessary will be described in more detail.

<Au>
Auは本発明のはんだ合金の主成分であり、必須の元素である。Auは非常に酸化し難いため、高い信頼性が要求される半導体素子類の接合用や封止用のはんだとして特性面では最も適している。そのため、水晶デバイスやSAWフィルターの封止用としてAu系はんだが多用されており、本発明のはんだ合金もAuを基本とし、上記技術分野での使用に好適なはんだを提供する。
<Au>
Au is a main component of the solder alloy of the present invention and is an essential element. Since Au is very difficult to oxidize, it is most suitable in terms of characteristics as a solder for joining and sealing semiconductor elements that require high reliability. Therefore, Au-based solder is frequently used for sealing quartz devices and SAW filters, and the solder alloy of the present invention is also based on Au, and provides a solder suitable for use in the above technical field.

ただし、Auは非常に高価な金属であるため、コストの点からは使用しないことが望ましく、従って汎用品にはほとんど使用されていない。一方、本発明のはんだ合金はAuを主成分としながら、接合性や信頼性などの特性面ではAu−20質量%SnやAu−12.5質量%Geはんだ合金と同等であって、同時にAuの含有量を減らしてコストを下げるべく、後述するようにAuにSnとGeを同時に含有させている。   However, since Au is a very expensive metal, it is desirable not to use it from the viewpoint of cost. Therefore, it is rarely used for general-purpose products. On the other hand, the solder alloy of the present invention is mainly composed of Au, but is equivalent to Au-20 mass% Sn or Au-12.5 mass% Ge solder alloy in terms of characteristics such as bondability and reliability. In order to reduce the content and reduce the cost, Au and Sn are simultaneously contained in the Au as described later.

<Ge>
Geは本発明のはんだ合金において必須の元素である。GeはAuと共晶合金を作り、固相線温度を280℃と低くできるため、従来からAu−12.5質量%Geはんだとして実用的に使われている。しかし、Auを90質量%近く含有するため非常に高価である。このAu含有量を下げるべく、Au−Ge−Sn系合金の3元系において共晶点付近の組成としたものが本発明のはんだ合金である。
<Ge>
Ge is an essential element in the solder alloy of the present invention. Since Ge makes a eutectic alloy with Au and the solidus temperature can be lowered to 280 ° C., it has been practically used as Au-12.5 mass% Ge solder. However, since it contains nearly 90% by mass of Au, it is very expensive. In order to reduce the Au content, the solder alloy of the present invention has a composition in the vicinity of the eutectic point in the ternary Au—Ge—Sn alloy.

Au−Ge−Snの3元系において、共晶点の組成は、Au=47原子%、Ge=6原子%、Sn=47原子%付近である。即ち、質量%では、Au=60.6質量%、Ge=2.8質量%、Sn=36.5質量%付近となる。Au−Ge−Sn系状態図を示す図1から分かるように、この共晶点付近の組成とすることによって、加工性や応力緩和性などの諸特性に優れたはんだ合金となる。加えて融点を410℃程度まで下げることが可能となるため、はんだとして非常に使い易くなる。   In the Au—Ge—Sn ternary system, the composition of eutectic points is around Au = 47 atomic%, Ge = 6 atomic%, and Sn = 47 atomic%. That is, in mass%, Au = 60.6 mass%, Ge = 2.8 mass%, and Sn = 36.5 mass%. As can be seen from FIG. 1 showing the Au—Ge—Sn phase diagram, by setting the composition in the vicinity of the eutectic point, a solder alloy having excellent properties such as workability and stress relaxation properties can be obtained. In addition, since the melting point can be lowered to about 410 ° C., it becomes very easy to use as solder.

具体的なGeの含有量は0.01質量%以上10.0質量%以下である。Geの含有量が0.01質量%未満では、Ge量が少なすぎるためGeを含有させた効果が実質的に現れない。一方、10.0質量%を超えると、液相線温度が高くなりすぎるため、溶融させることが困難になってしまう。また、Snを本発明の組成範囲で含有する場合においてGeの含有量が10.0質量%を超えると、はんだ合金が酸化し易くなってしまい、Au系はんだの特徴である高い信頼性を有する良好な接合ができなくなる。   The specific Ge content is 0.01 mass% or more and 10.0 mass% or less. If the Ge content is less than 0.01% by mass, the Ge content is too small, so that the effect of containing Ge does not substantially appear. On the other hand, if it exceeds 10.0% by mass, the liquidus temperature becomes too high, which makes it difficult to melt. Further, in the case where Sn is contained in the composition range of the present invention, if the content of Ge exceeds 10.0 mass%, the solder alloy is likely to be oxidized, and has high reliability that is characteristic of Au-based solder. Good bonding cannot be achieved.

特に好ましいGeの含有量は、2.0質量%以上3.5質量%以下であり、この範囲であると共晶点の組成に近く、加工性に優れ、柔軟性も有しているため、より一層良好な接合が可能となる。   The particularly preferable Ge content is 2.0% by mass or more and 3.5% by mass or less, and if it is within this range, it is close to the composition of the eutectic point, has excellent workability, and has flexibility. Even better bonding is possible.

<Sn>
Snは本発明のはんだ合金において必須の元素であって、3元系の共晶点付近の組成とするために欠かせない元素である。
<Sn>
Sn is an essential element in the solder alloy of the present invention, and is an element indispensable for obtaining a composition near the ternary eutectic point.

Au−Ge合金やAu−Sn合金の代表的なはんだであるAu−12.5質量%GeはんだやAu−20質量%Snはんだは、共晶点の組成であり、このため結晶が微細化し、比較的柔軟である。しかし、共晶合金と言っても、Geは半金属であり、しかもAu−20質量%Snの場合は金属間化合物から構成されるため、一般的なPb系はんだやSn系はんだに比べると遥かに硬くて脆い。   Au-12.5 mass% Ge solder and Au-20 mass% Sn solder, which are typical solders of Au-Ge alloy and Au-Sn alloy, have a composition of eutectic points, and thus the crystal is refined, It is relatively flexible. However, even if it is called a eutectic alloy, Ge is a semimetal, and in the case of Au-20 mass% Sn, since it is composed of an intermetallic compound, it is far more than general Pb solder or Sn solder. Hard and brittle.

そのため、加工が難しく、例えば圧延によってシート状に加工する場合には、少しずつしか薄くしていくことができないため生産性が悪く、多数のクラックが入って収率が低下しやすい。また、ボール状に加工する場合には、例えばアトマイズ法でボール状にする際にノズル先端が詰まりやすく、ボールの粒度分布が広くなってしまい収率が低い。特に油中アトマイズの場合には、油の発火や劣化を防ぐためアトマイズ時の温度をAu−Ge合金の固相線温度(356℃)より十分高い温度に上げることができず、このためノズル先端に合金が偏析しやすくなり、ノズルの詰まりが起きやすくなって収率の低下を招きやすい。   For this reason, it is difficult to process. For example, when processing into a sheet by rolling, the thickness can only be reduced little by little, so that productivity is poor, and a large number of cracks are likely to occur, and the yield tends to decrease. In the case of processing into a ball shape, for example, when the ball is formed by an atomizing method, the tip of the nozzle tends to be clogged, and the particle size distribution of the ball becomes wide, resulting in a low yield. In particular, in the case of atomizing in oil, the temperature during atomization cannot be raised to a temperature sufficiently higher than the solidus temperature (356 ° C.) of the Au—Ge alloy in order to prevent ignition and deterioration of the oil. In addition, the alloy is easily segregated, and the nozzle is easily clogged, resulting in a decrease in yield.

SnをGeと同時にAuに含有させることによって、上記した加工性や生産性の問題、更には信頼性等の問題を解決することが可能となる。即ち、SnとGeを同時に含有させることにより、Au−Sn金属間化合物とGe固溶体の共晶組成とすることが可能となり、結晶が微細化し、加工性、生産性、応力緩和性、更には信頼性に優れたはんだ材料となる。当然、SnとGeを合計で約30〜50質量%含有させることにより、代表的なAu−12.5質量%やAu−20質量%Snよりも大幅にコストを低減することができる。   By incorporating Sn into Au at the same time as Ge, it becomes possible to solve the problems of workability and productivity as well as problems such as reliability. That is, by containing Sn and Ge at the same time, it becomes possible to obtain a eutectic composition of Au-Sn intermetallic compound and Ge solid solution, the crystal becomes finer, workability, productivity, stress relaxation, and further reliability. It becomes a solder material with excellent properties. Naturally, by adding about 30 to 50% by mass of Sn and Ge in total, the cost can be greatly reduced as compared with typical Au-12.5% by mass and Au-20% by mass Sn.

具体的なSnの含有量は、32.0質量%以上40.0質量%以下である。Snの含有量が32.0質量%未満では、柔軟性向上等の効果が十分に発揮されず、また液相線温度と固相線温度の差が大きくなり溶け別れ現象を起こしてしまう。一方、Snの含有量が40.0質量%を超えると、やはり溶け別れ現象が発生し易くなると共に、Auに比較して酸化しやすいSn含有量が多くなりすぎるため濡れ性の低下を招いてしまう可能性が高い。   The specific Sn content is 32.0 mass% or more and 40.0 mass% or less. When the Sn content is less than 32.0% by mass, effects such as improvement in flexibility are not sufficiently exhibited, and the difference between the liquidus temperature and the solidus temperature becomes large, causing a phenomenon of separation. On the other hand, if the Sn content exceeds 40.0% by mass, the melting and separation phenomenon is likely to occur, and the Sn content that is likely to be oxidized as compared with Au is excessively increased, resulting in a decrease in wettability. There is a high possibility that it will end.

特に好ましいSnの含有量は34.0質量%以上39.0質量%以下であり、この範囲であれば共晶点の組成に近く、上記したSnの効果が十分に発揮される。   The particularly preferable Sn content is 34.0% by mass or more and 39.0% by mass or less, and if it is within this range, the composition of the eutectic point is close and the above-described effect of Sn is sufficiently exhibited.

<P>
Pは本発明のはんだ合金において必要に応じて含有してよい任意の元素であり、その効果は濡れ性の向上にある。Pが濡れ性を向上させるメカニズムは、還元性が強く、自ら酸化することによって、はんだ合金表面の酸化を抑制すると共に基板面を還元し、濡れ性を向上させることにある。
<P>
P is an arbitrary element that may be contained as necessary in the solder alloy of the present invention, and its effect is in improving wettability. The mechanism by which P improves the wettability is that the reducibility is strong, and by oxidizing itself, the surface of the solder alloy is suppressed and the substrate surface is reduced to improve the wettability.

一般にAu系はんだが酸化し難く、濡れ性に優れていると言っても、接合面の酸化物を除去することはできない。ところが、Pは、はんだ表面の酸化膜の除去だけでなく、基板などの接合面の酸化膜も除去することが可能である。このはんだ表面と接合面の酸化膜除去の効果により、酸化膜によって形成される隙間(ボイド)も低減することができる。このPの効果によって、接合性や信頼性等が更に向上する。   In general, even if Au solder is difficult to oxidize and is excellent in wettability, the oxide on the joint surface cannot be removed. However, P can remove not only the oxide film on the solder surface but also the oxide film on the bonding surface such as the substrate. Due to the effect of removing the oxide film on the solder surface and the joint surface, gaps (voids) formed by the oxide film can also be reduced. This effect of P further improves the bondability and reliability.

尚、Pは、はんだ合金や基板を還元して酸化物になると同時に気化し、雰囲気ガスに流されるため、はんだや基板等に残らない。このため、Pの残渣が信頼性等に悪影響を及ぼす可能性はなく、この点からもPは優れた元素と言える。   Note that P does not remain on the solder, the substrate, or the like because the solder alloy or the substrate is reduced to become an oxide and is vaporized at the same time and flows into the atmosphere gas. For this reason, there is no possibility that the residue of P adversely affects reliability and the like, and P can be said to be an excellent element from this point.

本発明のはんだ合金がPを含有する場合、Pの含有量は0.500質量%以下が好ましい。Pは非常に還元性が強いため、微量を含有させれば濡れ性向上の効果が得られるが、0.500質量%を超えて含有しても濡れ性向上の効果はあまり変わらず、過剰な含有によってPやP酸化物の気体が多量に発生し、ボイド率を上げてしまったり、Pが脆弱な相を形成して偏析し、はんだ接合部を脆化して信頼性を低下させたりする恐れがある。   When the solder alloy of the present invention contains P, the content of P is preferably 0.500% by mass or less. Since P is very reducible, the effect of improving the wettability can be obtained if a trace amount is contained, but the effect of improving the wettability does not change so much even if contained in excess of 0.5% by mass. Containment may cause a large amount of P or P oxide gas to increase the void ratio, or P may segregate by forming a fragile phase, embrittle the solder joint and reduce reliability. There is.

以下に具体的な実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.

まず、原料として、それぞれ純度99.99質量%以上のAu、Ge、Sn及びPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく、均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさに細かくした。これらの原料から所定量を秤量して、高周波溶解炉用グラファイトるつぼに入れた。   First, Au, Ge, Sn, and P each having a purity of 99.99% by mass or more were prepared as raw materials. Large flakes and bulk-shaped raw materials were cut and pulverized, etc. so as to be uniform, with no variation in composition depending on the sampling location in the alloy after melting, and were made fine to 3 mm or less. A predetermined amount of these raw materials was weighed and placed in a graphite crucible for a high-frequency melting furnace.

尚、Pを含有させる場合には、Sn−P合金を用いて溶解すると、気化し易いPが初めから合金化されているため、はんだに含有させやすくなるので、原料としてSn−P合金を用いることができる。   In addition, when it contains P, when it melt | dissolves using a Sn-P alloy, since P which is easy to vaporize is alloyed from the beginning, since it becomes easy to make it contain in a solder, Sn-P alloy is used as a raw material. be able to.

次に、原料の入ったグラファイトるつぼを高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7l/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融し始めたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかにるつぼを取り出して、るつぼ内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型には、液中アトマイズ用に直径24mmの円筒形状のものを使用した。   Next, the graphite crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 l / min or more per kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly removed, and the molten metal in the crucible was poured into the solder mother alloy mold. A cylindrical mold having a diameter of 24 mm was used for submerged atomization.

このようにして試料1のはんだ母合金を作製した。また、原料の混合比率を変えた以外は上記試料1と同様にして、試料2〜22のはんだ母合金を作製した。これらの試料1〜22の各はんだ母合金について、ICP発光分光分析器(SHIMAZU S−8100)を用いて組成分析を行った。得られた分析結果を下記表1に示した。   In this way, the solder mother alloy of Sample 1 was produced. Moreover, the solder mother alloys of Samples 2 to 22 were produced in the same manner as Sample 1 except that the mixing ratio of the raw materials was changed. About each solder mother alloy of these samples 1-22, the composition analysis was performed using the ICP emission-spectral-analyzer (SHIMAZU S-8100). The analysis results obtained are shown in Table 1 below.

Figure 0005979083
Figure 0005979083

上記試料1〜22の各はんだ母合金を、下記の方法により液中アトマイズ装置を用いてボール状に加工した。その際の液体としては、はんだの酸化抑制効果が大きい油を用いた。得られた各試料のボールは、下記の方法により所定の粒径に分級して収率を調べ、加工性を評価した。得られたボール収率(加工性評価)を下記表2に示した。   Each solder mother alloy of Samples 1 to 22 was processed into a ball shape using a submerged atomizer by the following method. As the liquid at that time, oil having a large effect of suppressing the oxidation of solder was used. The obtained balls of each sample were classified into a predetermined particle size by the following method, the yield was examined, and the workability was evaluated. The obtained ball yield (workability evaluation) is shown in Table 2 below.

<ボールの製造方法>
準備した試料1〜22の各はんだ母合金(直径24mm)を液中アトマイズ装置のノズルに投入し、このノズルを390℃に加熱した油の入った石英管の上部(高周波溶解コイルの中)にセットした。ノズル中の母合金を高周波により650℃まで加熱して5分保持した後、不活性ガスによりノズルに圧力を加えてアトマイズを行い、ボール状のはんだ合金とした。尚、ボール直径は設定値を0.30mmとし、予めノズル先端の直径を調整した。
<Ball manufacturing method>
Each solder mother alloy (diameter: 24 mm) of the prepared samples 1 to 22 is put into a nozzle of a submerged atomizer, and this nozzle is placed on the upper part of a quartz tube containing oil heated to 390 ° C. (in a high-frequency melting coil). I set it. The mother alloy in the nozzle was heated to 650 ° C. by high frequency and held for 5 minutes, and then the nozzle was pressurized with an inert gas and atomized to obtain a ball-shaped solder alloy. The ball diameter was set to 0.30 mm, and the nozzle tip diameter was adjusted in advance.

<加工性の評価(ボール収率)>
はんだ合金の加工性を評価するため、2軸分級器を用いて上記の方法により得られたボールを直径0.30±0.015mmの範囲で分級し、分級によって得られたボールの収率を下記計算式1により算出した。
<Evaluation of workability (ball yield)>
In order to evaluate the workability of the solder alloy, the balls obtained by the above method using a biaxial classifier are classified within a range of diameter of 0.30 ± 0.015 mm, and the yield of the balls obtained by classification is determined. It was calculated by the following calculation formula 1.

[計算式1]
ボール収率(%)=直径0.30±0.015mmのボール重量÷分級投入ボール重量×100
[Calculation Formula 1]
Ball yield (%) = ball weight of diameter 0.30 ± 0.015 mm ÷ classified ball weight × 100

次に、上記した試料1〜22のボール状の各はんだ合金を用い、基板との接合試験を行った後、接合されたはんだのアスペクトを測定して濡れ性の評価とし、ボイド率を測定して接合性の評価とした。更に、上記接合試験で得られた基板とはんだの接合体を用いて、ヒートサイクル試験による信頼性評価を行った。得られたアスペクト比(濡れ性評価)、ボイド率(接合性評価)、及びヒートサイクル試験(信頼性評価)の結果を下記表2に示した。   Next, after performing the joining test with the substrate using each of the ball-shaped solder alloys of Samples 1 to 22 described above, the aspect of the joined solder is measured to evaluate the wettability, and the void ratio is measured. Therefore, the bondability was evaluated. Furthermore, the reliability evaluation by a heat cycle test was performed using the board | substrate and solder joined body obtained by the said joining test. The obtained aspect ratio (wetability evaluation), void ratio (bondability evaluation), and heat cycle test (reliability evaluation) results are shown in Table 2 below.

<濡れ性の評価(アスペクト比の測定)>
濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12l/粉の流量で流した。その後、ヒーター設定温度を融点より50℃高い温度にして加熱した。
<Evaluation of wettability (measurement of aspect ratio)>
A wettability tester (device name: atmosphere control type wettability tester) was started, a double cover was applied to the heater part to be heated, and nitrogen gas was flowed at a flow rate of 12 l / powder from four locations around the heater part . Thereafter, the heater was set to a temperature higher than the melting point by 50 ° C. and heated.

ヒーター温度が設定値で安定した後、Niめっき(膜厚:3.0μm)したCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次にボール状のはんだ合金をCu基板上に載せて25秒加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却し、十分に冷却した後大気中に取り出した。   After the heater temperature has stabilized at the set value, a Cu substrate (plate thickness: 0.3 mm) plated with Ni (film thickness: 3.0 μm) is set in the heater and heated for 25 seconds, and then a ball-shaped solder alloy Was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was picked up from the heater part, once installed in a place where the nitrogen atmosphere next to it was maintained, cooled, and after sufficiently cooled, taken out into the atmosphere.

得られた接合体、即ち図2に示すようにCu基板1のNi層2にはんだ合金3が接合された接合体について、はんだ合金3のアスペクト比を求めた。具体的には、図3に示す最大はんだ高さYと、図4に示す最大はんだ濡れ広がり長さX1及び最小はんだ濡れ広がり長さX2を測定し、下記計算式2によりアスペクト比を算出した。アスペクト比が高いほど、接合されたはんだ厚さが薄く且つ面積が広くなっていることになり、濡れ性がよいと判断できる。   The aspect ratio of the solder alloy 3 was determined for the obtained joined body, that is, the joined body in which the solder alloy 3 was joined to the Ni layer 2 of the Cu substrate 1 as shown in FIG. Specifically, the maximum solder height Y shown in FIG. 3, the maximum solder wetting spread length X1 and the minimum solder wetting spread length X2 shown in FIG. 4 were measured, and the aspect ratio was calculated by the following calculation formula 2. It can be determined that the higher the aspect ratio, the thinner the joined solder and the wider the area, and the better the wettability.

[計算式2]
アスペクト比=[(X1+X2)÷2]÷Y
[Calculation Formula 2]
Aspect ratio = [(X1 + X2) ÷ 2] ÷ Y

<接合性の評価(ボイド率の測定)>
上記濡れ性の評価の際と同様にして得られた図2に示す接合体について、はんだ合金3が接合されたCu基板1のボイド率をX線透過装置(株式会社東芝製、TOSMICRON−6125)を用いて測定した。具体的には、はんだ合金3とCu基板1の接合面を上部から垂直にX線を透過し、下記計算式3を用いてボイド率を算出した。
<Evaluation of bondability (measurement of void fraction)>
For the joined body shown in FIG. 2 obtained in the same manner as in the evaluation of the wettability, the void ratio of the Cu substrate 1 to which the solder alloy 3 is joined is expressed by an X-ray transmission device (TOSMICRON-6125, manufactured by Toshiba Corporation). It measured using. Specifically, X-rays were transmitted vertically through the joint surface of the solder alloy 3 and the Cu substrate 1 from above, and the void ratio was calculated using the following calculation formula 3.

[計算式3]
ボイド率(%)=ボイド面積÷(ボイド面積+はんだ合金とCu基板の接合面積)×100
[Calculation Formula 3]
Void ratio (%) = void area / (void area + solder alloy / Cu substrate bonding area) × 100

<信頼性の評価(ヒートサイクル試験)>
上記濡れ性の評価の際と同様にして得られた図2に示す接合体に対し、−40℃の冷却と250℃の加熱を1サイクルとして、所定のサイクル数だけ繰り返した。その後、はんだ合金が接合されたCu基板(接合体)を樹脂に埋め込み、断面研磨を行い、SEM(日立製作所製 S−4800)により接合面を観察した。接合面に剥がれがある場合又ははんだ合金にクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。
<Reliability evaluation (heat cycle test)>
The joined body shown in FIG. 2 obtained in the same manner as in the evaluation of the wettability was repeated a predetermined number of cycles, with -40 ° C. cooling and 250 ° C. heating taken as one cycle. Thereafter, a Cu substrate (bonded body) to which the solder alloy was bonded was embedded in the resin, cross-section polishing was performed, and the bonding surface was observed with SEM (S-4800, manufactured by Hitachi, Ltd.). The case where the joint surface was peeled off or the solder alloy was cracked was indicated as “X”, and the case where there was no such defect and the same joint surface as in the initial state was maintained as “◯”.

Figure 0005979083
Figure 0005979083

上記表2から分かるように、本発明による試料1〜11の各はんだ合金は、各評価項目において良好な特性を示している。即ち、加工性の評価であるボール収率は高く、比較例である試料21のAu−12.5質量%Ge及び試料22のAu−20質量%Snと比較しても高収率であることが分かる。また、アスペクト比は全て6以上であって、はんだが薄く且つ広く濡れ広がっており、良好な濡れ性を有していた。ボイド率は最も高いものでも0.3%であり、良好な接合性を示した。そして、信頼性に関する試験であるヒートサイクル試験においては、500サイクル経過後も不良が現れず、良好な結果が得られた。   As can be seen from Table 2, each of the solder alloys of Samples 1 to 11 according to the present invention exhibits good characteristics in each evaluation item. That is, the ball yield, which is an evaluation of workability, is high, and the yield is high even when compared with Au-12.5 mass% Ge of sample 21 and Au-20 mass% Sn of sample 22 which are comparative examples. I understand. Further, all of the aspect ratios were 6 or more, the solder was thin and spread widely and had good wettability. The highest void ratio was 0.3%, indicating good bondability. And in the heat cycle test which is a test regarding reliability, no defect appeared even after 500 cycles, and good results were obtained.

一方、比較例である試料12〜22の各はんだ合金は、少なくともいずれかの特性において好ましくない結果となった。即ち、ボール収率は高くても46%と本発明の全試料よりも低く、ボイド率も0.7〜7.5%と本発明の全試料よりも明らかに悪かった。また、アスペクト比は試料17、21及び22を除いて4以下であり、ヒートサイクル試験においては試料21及び22を除いて500回までに全ての試料で不良が発生した。   On the other hand, each solder alloy of Samples 12 to 22 as a comparative example had an undesirable result in at least any of the characteristics. That is, even if the ball yield was high, it was 46% which was lower than that of all the samples of the present invention, and the void ratio was 0.7 to 7.5%, which was clearly worse than that of all the samples of the present invention. Further, the aspect ratio was 4 or less except for samples 17, 21, and 22, and in the heat cycle test, defects occurred in all the samples up to 500 times except for samples 21 and 22.

尚、上記実施例における試料1〜11の本発明のはんだ合金は、上記各特性の評価において良好な結果であるだけに留まらず、Au含有量が最高でも64.0質量%と少ない。このAu含有量はAu−Ge系はんだ合金において最も一般的な共晶組成である試料21のAu−12.5質量%Geや試料22のAu−20質量%Snよりも少なく、このことからも本発明のAu−Ge−Sn系はんだ合金は低コストであることが分かる。   In addition, the solder alloys of the present invention of Samples 1 to 11 in the above examples have not only good results in the evaluation of the above characteristics, but the Au content is as low as 64.0% by mass at the maximum. This Au content is smaller than Au-12.5 mass% Ge of sample 21 and Au-20 mass% Sn of sample 22 which are the most common eutectic compositions in Au-Ge solder alloys. It can be seen that the Au—Ge—Sn solder alloy of the present invention is low cost.

1 Cu基板
2 Ni層
3 はんだ合金
1 Cu substrate 2 Ni layer 3 Solder alloy

Claims (5)

Geを0.01質量%以上10.0質量%以下含有し、Snを32.0質量%以上40.0質量%以下含有し、残部がAu及び不可避不純物からなり、液相線温度と固相線温度との差が50℃未満であることを特徴とする、SAWフィルター用若しくはMEMS用のAu−Ge−Sn系はんだ合金。 Ge contained 10.0 wt% 0.01 wt% and containing Sn or less 32.0 mass% or more 40.0% by weight, the balance Ri Do from Au and unavoidable impurities, the liquidus temperature and the solid An Au—Ge—Sn solder alloy for SAW filters or MEMS, characterized in that the difference from the phase line temperature is less than 50 ° C. Geを2.0質量%以上3.5質量%以下含有し、Snを34.0質量%以上39.0質量%以下含有し、残部がAu及び不可避不純物からなることを特徴とする、請求項1に記載のSAWフィルター用若しくはMEMS用のAu−Ge−Sn系はんだ合金。 The Ge is contained in an amount of 2.0 to 3.5% by mass, Sn is contained in an amount of 34.0 to 39.0% by mass, and the balance is made of Au and inevitable impurities. 2. Au—Ge—Sn solder alloy for SAW filter or MEMS according to 1. 前記Ge、Sn及びAuに加えてこれらGe、Sn及びAuの合計100質量%に対してPを0.500質量%以下含有することを特徴とする、請求項1又は2に記載のSAWフィルター用若しくはMEMS用のAu−Ge−Sn系はんだ合金。 3. The SAW filter according to claim 1, wherein, in addition to Ge, Sn, and Au, P is contained in an amount of 0.500% by mass or less with respect to a total of 100% by mass of Ge, Sn, and Au. Au-Ge-Sn solder alloy for use in MEMS or MEMS . 請求項1〜3のいずれかに記載のAu−Ge−Sn系はんだ合金を用いて封止したことを特徴とするMEMSA MEMS, which is sealed with the Au—Ge—Sn solder alloy according to claim 1. 請求項1〜3のいずれかに記載のAu−Ge−Sn系はんだ合金を用いて封止したことを特徴とするSAWフィルター。   A SAW filter sealed with the Au—Ge—Sn based solder alloy according to claim 1.
JP2013116628A 2013-06-03 2013-06-03 Pb-free Au-Ge-Sn solder alloy Expired - Fee Related JP5979083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116628A JP5979083B2 (en) 2013-06-03 2013-06-03 Pb-free Au-Ge-Sn solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116628A JP5979083B2 (en) 2013-06-03 2013-06-03 Pb-free Au-Ge-Sn solder alloy

Publications (2)

Publication Number Publication Date
JP2014233737A JP2014233737A (en) 2014-12-15
JP5979083B2 true JP5979083B2 (en) 2016-08-24

Family

ID=52136844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116628A Expired - Fee Related JP5979083B2 (en) 2013-06-03 2013-06-03 Pb-free Au-Ge-Sn solder alloy

Country Status (1)

Country Link
JP (1) JP5979083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020189A (en) * 2013-07-18 2015-02-02 住友金属鉱山株式会社 Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016087608A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY WITH CONTROLLED ENERGY ABSORPTION AMOUNT AND ELECTRONIC COMPONENT ENCAPSULATED OR BONDED USING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516732A (en) * 1978-07-20 1980-02-05 Seiko Epson Corp Brazing material for portable watch
JP2007160340A (en) * 2005-12-13 2007-06-28 Epson Toyocom Corp Brazing filler metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020189A (en) * 2013-07-18 2015-02-02 住友金属鉱山株式会社 Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au

Also Published As

Publication number Publication date
JP2014233737A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
JP6423447B2 (en) Lead-free eutectic solder alloy containing zinc as the main component and aluminum as alloying metal
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP5206779B2 (en) Pb-free solder alloy based on Zn
WO2015087588A1 (en) Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP5861559B2 (en) Pb-free In solder alloy
JP6036202B2 (en) Au-Ag-Ge solder alloy
JP5633816B2 (en) Au-Sn alloy solder
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2016059943A (en) BALL-SHAPED Au-Ge-Sn-BASED SOLDER ALLOY AND ELECTRONIC COMPONENT USING THE SOLDER ALLOY
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP5633815B2 (en) Au-Sn alloy solder
JP2015139777A (en) Au-Sb TYPE SOLDER ALLOY
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP2016093831A (en) Pb-FREE Mg-Cu-BASED SOLDER ALLOY
JP2015020189A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au
JP6128062B2 (en) Au-Ge-Sn solder alloy
JP2017185520A (en) Au-Sn-BASED SOLDER ALLOY
JP5633812B2 (en) Au-Sn alloy solder
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2016087641A (en) Pb-FREE Al-Cu-BASED SOLDER ALLOY
JP2016097444A (en) Pb-FREE Sb-In-BASED SOLDER ALLOY
JP2016087608A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY WITH CONTROLLED ENERGY ABSORPTION AMOUNT AND ELECTRONIC COMPONENT ENCAPSULATED OR BONDED USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5979083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees