JP2017035708A - Sb-Cu SOLDER ALLOY CONTAINING NO Pb - Google Patents

Sb-Cu SOLDER ALLOY CONTAINING NO Pb Download PDF

Info

Publication number
JP2017035708A
JP2017035708A JP2015157286A JP2015157286A JP2017035708A JP 2017035708 A JP2017035708 A JP 2017035708A JP 2015157286 A JP2015157286 A JP 2015157286A JP 2015157286 A JP2015157286 A JP 2015157286A JP 2017035708 A JP2017035708 A JP 2017035708A
Authority
JP
Japan
Prior art keywords
mass
solder
alloy
content
solder alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015157286A
Other languages
Japanese (ja)
Inventor
井関 隆士
Takashi Izeki
隆士 井関
昌彦 小室
Masahiko Komuro
昌彦 小室
嵩凱 黄
Shunkai Bong
嵩凱 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015157286A priority Critical patent/JP2017035708A/en
Publication of JP2017035708A publication Critical patent/JP2017035708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature solder alloy having a solidus temperature of 540°C or lower suited for use in the assembly of an electronic component, excellent in not only bondability but also workability and reliability and far more inexpensive than Au solder.SOLUTION: An Sb-Cu solder alloy containing no Pb has a Cu content of 11.0 mass % to 38.0 mass%, and the remainder being Sb and an inevitable impurity. This Pb-free Sb-Cu solder alloy may further contain at least one kind of Ag, Al, Ge, In, Mg, Ni, Sn, Zn and P individually within individually predetermined content ranges.SELECTED DRAWING: None

Description

本発明は、Pbを含まない、いわゆるPbフリーのはんだ合金に関し、特に高温用として好適なPbフリーSb−Cu系はんだ合金に関する。   The present invention relates to a so-called Pb-free solder alloy containing no Pb, and more particularly to a Pb-free Sb—Cu solder alloy suitable for high temperature use.

パワートランジスタ用素子のダイボンディングを始めとする各種電子部品の組立工程におけるはんだ付けでは高温はんだ付けが行われており、その際、300〜400℃程度の比較的高温の融点を有するはんだ合金(以下、「高温用はんだ合金」とも称する)が用いられている。このような高温用はんだ合金としては、Pb−5質量%Sn合金に代表されるPb系はんだ合金が従来から主に用いられている。しかし、近年、環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えばRoHS指令ではPbは規制対象物質になっている。こうした動きに対応して、電子部品などの組立の分野においても、Pbを含まない(無鉛)はんだ合金、即ちPbフリーはんだ合金によるはんだ付けが求められている。   High-temperature soldering is performed in soldering in the assembly process of various electronic components including die bonding of power transistor elements. At that time, a solder alloy having a relatively high melting point of about 300 to 400 ° C. , Also referred to as “high temperature solder alloy”). As such a high-temperature solder alloy, a Pb-based solder alloy represented by a Pb-5 mass% Sn alloy has been mainly used conventionally. However, in recent years, there has been a strong movement to limit the use of Pb due to consideration for environmental pollution. For example, Pb is a regulated substance in the RoHS directive. Corresponding to such movement, in the field of assembling electronic components and the like, soldering using a Pb-free (lead-free) solder alloy, that is, a Pb-free solder alloy is required.

かかる要望に対して、中低温用(約140〜230℃)のはんだ合金では、Snを主成分とするPbフリーのはんだ合金が既に実用化されている。例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有するPbフリーのはんだ合金が記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーのはんだ合金が記載されている。一方、高温用のPbフリーはんだ合金としては、Au−Sn系はんだ合金やAu−Ge系はんだ合金がある。しかし、これらはAuを主成分とするため非常に高価であり、高い信頼性が求められる光デバイス関係の素子など非常に限られた用途以外には用いられておらず、一般的な電子部品等に用いられることはほとんどない。   In response to such a demand, a Pb-free solder alloy containing Sn as a main component has already been put to practical use as a solder alloy for medium and low temperatures (about 140 to 230 ° C.). For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 0.5 mass% or less, and P is 0.2 mass%. Pb-free solder alloys containing up to 10% are described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn. On the other hand, examples of high temperature Pb-free solder alloys include Au—Sn solder alloys and Au—Ge solder alloys. However, since these are based on Au, they are very expensive and are not used except for very limited applications such as optical device elements that require high reliability. Is rarely used.

そこで、一般的な電子部品等に用いられる比較的安価な高温用のはんだ合金においてもPbフリーを実現するため、Bi系はんだ合金やZn系はんだ合金などが研究開発されている。例えば、Bi系はんだ合金については、特許文献3に、Biを30〜80質量%含有し、溶融温度が350〜500℃であるBi/Ag系のろう材が開示されている。また、特許文献4には、Biを含む共晶合金に2元共晶合金を加え、更に添加元素を加えることによって、液相線温度の調整とばらつきの減少が可能なはんだ合金の生産方法が開示されている。Zn系はんだ合金については、例えば特許文献5に、Znに融点を下げるべくAlが添加されたZn−Al合金を基本とし、これにGe又はMgを添加した高温用Zn系はんだ合金が記載されている。この特許文献5には、更にSn又はInを添加することによって、より一層融点を下げる効果があることも記載されている。   Therefore, Bi-based solder alloys and Zn-based solder alloys have been researched and developed in order to realize Pb-free even in relatively inexpensive high-temperature solder alloys used for general electronic components and the like. For example, for Bi-based solder alloys, Patent Document 3 discloses a Bi / Ag-based brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. Patent Document 4 discloses a method for producing a solder alloy that can adjust a liquidus temperature and reduce variations by adding a binary eutectic alloy to a eutectic alloy containing Bi and further adding additional elements. It is disclosed. As for the Zn-based solder alloy, for example, Patent Document 5 describes a high-temperature Zn-based solder alloy based on a Zn-Al alloy in which Al is added to lower the melting point of Zn and Ge or Mg is added thereto. Yes. Patent Document 5 also describes that the addition of Sn or In has an effect of further lowering the melting point.

具体的には、特許文献5には、Alを1〜9質量%、Geを0.05〜1質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを5〜9質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Mgを0.01〜0.5質量%、In及び/又はSnを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金が記載されている。   Specifically, in Patent Document 5, a Zn alloy containing 1 to 9% by mass of Al and 0.05 to 1% by mass of Ge, with the balance being Zn and inevitable impurities; 5 to 9% by mass of Al, Mg Zn alloy composed of 0.01 to 0.5% by mass with the balance being Zn and inevitable impurities; Al is 1 to 9% by mass, Ge is 0.05 to 1% by mass, Mg is 0.01 to 0.5% Zn alloy containing Zn and the balance consisting of Zn and unavoidable impurities; Al containing 1 to 9% by mass; Ge containing 0.05 to 1% by mass; Sn and / or In containing 0.1 to 25% by mass and the balance being Zn alloy composed of Zn and inevitable impurities; Al 1-9 mass%, Mg 0.01-0.5 mass%, In and / or Sn 0.1-25 mass%, the balance Zn and inevitable impurities Zn alloy comprising: Al 1-9 mass%, Ge 0.05-1 mass%, Mg 0.01-0.5 The amount%, Sn and / or In includes 0.1 to 25 wt%, and the balance are described Zn alloy consisting of Zn and unavoidable impurities.

特開平11−077366号公報Japanese Patent Application Laid-Open No. 11-077366 特開平08−215880号公報Japanese Patent Laid-Open No. 08-215880 特開2002−160089号公報JP 2002-160089 A 特開2006−167790号公報JP 2006-167790 A 特許第3850135号公報Japanese Patent No. 3850135

一般的な電子部品や基板の材料には熱可塑性樹脂や熱硬化性樹脂などが多用されているため、はんだ接合時の作業温度は400℃未満であることが望ましく、SiC半導体デバイスなどの小型で高耐熱のデバイスが使用される場合やレーザーによる接合の場合でも540℃以下が望ましい。しかしながら、上記した特許文献3のBi/Ag系ろう材は液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される電子部品や基板が耐えうる温度を超えていると考えられる。また、上記特許文献4の方法は、液相線の温度調整のみで4元系以上の多元系はんだ合金になるうえ、Biの脆弱な機械的特性については効果的な改善がされていない。   Thermoplastic resins and thermosetting resins are often used as materials for general electronic components and substrates. Therefore, the working temperature during soldering is preferably less than 400 ° C, and it is desirable for small-sized SiC semiconductor devices and the like. Even when a high heat-resistant device is used or when joining by laser, 540 ° C. or lower is desirable. However, since the Bi / Ag brazing material of Patent Document 3 described above has a high liquidus temperature of 400 to 700 ° C., it is estimated that the working temperature at the time of joining is 400 to 700 ° C. or higher, It is considered that the temperature is higher than the substrate can withstand. In addition, the method of Patent Document 4 becomes a quaternary or higher multi-component solder alloy only by adjusting the temperature of the liquidus, and Bi is not effectively improved in terms of brittle mechanical properties.

上記した特許文献5に開示されているZn系はんだ合金は、その組成の範囲内では合金の濡れ性が不十分である場合が多い。即ち、主成分であるZnは還元性が強いため自らは酸化されやすく、その結果、濡れ性が極めて悪くなることが問題になっている。また、AlはZnよりも更に還元性が強いため、例えば1質量%以上添加した場合でも濡れ性を大きく低下させてしまう。そして、これら酸化されたZnやAlに対しては、GeやSnを添加しても還元することができず、濡れ性を向上させることはできない。   The Zn-based solder alloy disclosed in Patent Document 5 described above often has insufficient wettability within the composition range. That is, Zn, which is the main component, has a strong reducibility, so that it is easily oxidized by itself, and as a result, the wettability is extremely deteriorated. Moreover, since Al is more reducible than Zn, for example, even when added in an amount of 1% by mass or more, the wettability is greatly reduced. These oxidized Zn and Al cannot be reduced even if Ge or Sn is added, and the wettability cannot be improved.

このように、Zn−Al系合金は融点については300〜400℃程度(Zn−Al共晶温度:381℃)と好ましい範囲にあるものの、濡れ性の観点からは好ましくない合金である。更に、Zn−Al系合金にMgなどが添加されると金属間化合物を生成して極めて硬くなり、良好な加工性が得られない場合が生じるという問題がある。例えば、Mgを5質量%以上含有したZn−Al系合金は、加工の困難なワイヤ状やシート状などに加工することが実質的にできなくなる。   As described above, the Zn—Al-based alloy is an alloy that has a melting point of about 300 to 400 ° C. (Zn—Al eutectic temperature: 381 ° C.), but is not preferable from the viewpoint of wettability. Furthermore, when Mg or the like is added to the Zn—Al-based alloy, an intermetallic compound is generated and becomes extremely hard, and there is a problem that good workability may not be obtained. For example, a Zn—Al-based alloy containing 5% by mass or more of Mg cannot be processed into a wire shape or a sheet shape that is difficult to process.

以上述べたように、高温用のPbフリーはんだ合金、特にZnを主成分とするPbフリーはんだ合金については、加工性等の諸特性とのバランスを図りながら濡れ性を改善することが大きな課題となっているが、未だこの課題は解決されていない。このように、従来のPb−5質量%Sn合金、Au−Sn系合金、Au−Ge系合金などに代表される高温用はんだ合金に代替でき、Pbフリーであって且つ安価な高温用はんだ合金は、未だ実用化されていないのが実状である。   As described above, with respect to high-temperature Pb-free solder alloys, particularly Pb-free solder alloys mainly composed of Zn, it is a major issue to improve wettability while balancing with various properties such as workability. However, this problem has not been solved yet. Thus, it can be replaced with a conventional high-temperature solder alloy represented by Pb-5 mass% Sn alloy, Au-Sn alloy, Au-Ge alloy, etc., and is a Pb-free and inexpensive high-temperature solder alloy. Is not yet put into practical use.

本発明は、かる事情に鑑みてなされたものであり、電子部品の組立などで用いるのに好適な約540℃以下の固相線温度を有し、接合性に優れるとともに、加工性、信頼性にも優れ、Pbを含まず且つAu系はんだに比較し格段に安価なSb−Cu系合金から成る高温用はんだ合金を提供することを目的とする。   The present invention has been made in view of such circumstances, has a solidus temperature of about 540 ° C. or less suitable for use in assembling electronic components, and has excellent bondability, workability, and reliability. Another object of the present invention is to provide a high-temperature solder alloy made of an Sb—Cu-based alloy that is superior to the Au-based solder and is much less expensive than an Au-based solder.

上記目的を達成するため、本発明が提供する第1のPbフリーSb−Cu系はんだ合金は、Cu含有量が11.0質量%以上38.0質量%以下であり、残部がSb及び不可避不純物からなることを特徴とする。   In order to achieve the above object, the first Pb-free Sb—Cu solder alloy provided by the present invention has a Cu content of 11.0% by mass or more and 38.0% by mass or less, with the balance being Sb and inevitable impurities. It is characterized by comprising.

また、本発明が提供する第2のPbフリーSb−Cu系はんだ合金は、上記第1のPbフリーSb−Cu系はんだ合金が更にAg、Al、Ge、In、Mg、Ni、Sn、Zn及びPの内の少なくとも1種を含有し、Agを含有する場合はその含有量が0.01質量%以上15.0質量%以下であり、Alを含有する場合はその含有量が0.01質量%以上2.0質量%以下であり、Geを含有する場合はその含有量が0.01質量%以上10.0質量%以下であり、Inを含有する場合はその含有量が0.01質量%以上5.0質量%以下であり、Mgを含有する場合はその含有量が0.01質量%以上0.5質量%以下であり、Niを含有する場合はその含有量が0.01質量%以上0.7質量%以下であり、Snを含有する場合はその含有量が0.01質量%以上3.0質量%以下であり、Znを含有する場合はその含有量が0.01質量%以上2.0質量%以下であり、Pを含有する場合はその含有量が0.500質量%以下であることを特徴とする。   Further, the second Pb-free Sb—Cu solder alloy provided by the present invention is the same as the first Pb-free Sb—Cu solder alloy, but Ag, Al, Ge, In, Mg, Ni, Sn, Zn, and When it contains at least one of P and contains Ag, its content is 0.01 mass% or more and 15.0 mass% or less, and when it contains Al, its content is 0.01 mass%. % Or more and 2.0% by mass or less. When Ge is contained, the content is 0.01% by mass or more and 10.0% by mass or less. When In is contained, the content is 0.01% by mass. % Or more and 5.0% by mass or less. When Mg is contained, the content is 0.01% by mass or more and 0.5% by mass or less. When Ni is contained, the content is 0.01% by mass. % Or more and 0.7% by mass or less, and when Sn is contained, its content is 0.01 quality. When Zn is contained, the content is 0.01 mass% or more and 2.0 mass% or less, and when P is contained, the content is 0.500. It is characterized by being not more than mass%.

本発明によれば、電子部品の組立などで用いるのに好適な約540℃以下の固相線温度を有し、接合性に優れるとともに、加工性、信頼性にも優れ、Pbを含まず、且つAu系はんだに比較し格段に安価なSb−Cu系合金から成る高温用はんだ合金を提供することができる。このSb−Cu系合金は300℃程度のリフロー温度に十分耐えることができ、高温用の中でも特に動作温度が高いSi半導体素子接合体、SiC半導体素子接合体、及びGaN半導体素子接合体などのパワートランジスタ用素子のダイボンディングなどの接合用やレーザーによる接合用、更には水晶振動子の封止用として好適に使用することができる。   According to the present invention, it has a solidus temperature of about 540 ° C. or less suitable for use in the assembly of electronic components, etc., and has excellent bondability, excellent workability and reliability, does not contain Pb, In addition, it is possible to provide a high temperature solder alloy made of an Sb—Cu alloy that is much cheaper than Au solder. This Sb—Cu-based alloy can sufficiently withstand a reflow temperature of about 300 ° C., and the power of Si semiconductor element bonded bodies, SiC semiconductor element bonded bodies, GaN semiconductor element bonded bodies, etc., which are particularly high in operating temperature even in high temperature applications. It can be suitably used for bonding such as die bonding of transistor elements, bonding by laser, and sealing of a crystal resonator.

Cu−Sb二元系合金の状態図である。It is a phase diagram of a Cu-Sb binary system alloy. 濡れ性試験のために作製したNi層を有するCu基板上にはんだ合金試料がはんだ付けされた接合体の模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the joined body by which the solder alloy sample was soldered on Cu substrate which has Ni layer produced for the wettability test. 図2の接合体のアスペクト比の算出に用いる最大はんだ高さYを示す側面図である。It is a side view which shows the maximum solder height Y used for calculation of the aspect ratio of the joined body of FIG. 図2の接合体のアスペクト比の算出に用いる最大はんだ濡れ広がり長さX1及び最小はんだ濡れ広がり長さX2を示す平面図である。FIG. 3 is a plan view showing a maximum solder wetting spread length X1 and a minimum solder wetting spread length X2 used for calculating the aspect ratio of the joined body in FIG. 2.

本発明による第1のPbフリーSb−Cu系はんだ合金は、Pbを含まず、必須成分としてCuを11.0質量%以上38.0質量%以下含有し、残部が製造上不可避的に含まれる元素(不可避不純物)及びSbからなる。SbとCuはη相とSb固溶体から成る共晶合金を生成し、その共晶温度は526℃である。Cuの融点は1085℃、Sbの融点は631℃であり、合金化することにより融点を526℃まで下げることができる。   The first Pb-free Sb—Cu-based solder alloy according to the present invention does not contain Pb, contains Cu as an essential component in an amount of 11.0% by mass to 38.0% by mass, and the remainder is unavoidably included in production. It consists of elements (inevitable impurities) and Sb. Sb and Cu produce a eutectic alloy composed of η phase and Sb solid solution, and the eutectic temperature is 526 ° C. The melting point of Cu is 1085 ° C., the melting point of Sb is 631 ° C., and the melting point can be lowered to 526 ° C. by alloying.

固相線温度526℃は高温用はんだ合金としては比較的高いが、このような高い融点を持つことで、電子部品使用時に温度が上がってもはんだ合金の軟化や強度低下を抑えることができ、よって高い接合信頼性を得ることができるので、高温動作を特徴とするSiC半導体素子用などの接合材として好適である。また、レーザー接合によって例えば水晶振動子やSAWフィルターなどを封止する場合はレーザーの照射部分しか温度が上がらず周辺部材に悪影響を及ぼすことがないため非常に使い易く優れた材料と言える。   The solidus temperature of 526 ° C. is relatively high as a high-temperature solder alloy, but having such a high melting point can suppress the softening and strength reduction of the solder alloy even if the temperature rises when using electronic components, Therefore, since high bonding reliability can be obtained, it is suitable as a bonding material for SiC semiconductor elements characterized by high-temperature operation. Further, when sealing, for example, a crystal resonator or a SAW filter by laser bonding, it can be said that it is an excellent material that is very easy to use because it only raises the temperature of the laser irradiated portion and does not adversely affect the peripheral members.

また、本発明による第2のPbフリーSb−Cu系はんだ合金は、上記の第1のPbフリーSb−Cu系はんだ合金に対して更にAg、Al、Ge、In、Mg、Ni、Sn、Zn及びPの内の少なくとも1種を必要に応じて含有させることによって固相線温度や液相線温度を下げたり、濡れ性、接合性、加工性、および信頼性などを使用要求に合わせて適宜調整したりすることが可能となり、より一層使い易いはんだ材料にすることができる。   Further, the second Pb-free Sb—Cu based solder alloy according to the present invention is further made of Ag, Al, Ge, In, Mg, Ni, Sn, Zn and the first Pb free Sb—Cu based solder alloy. In addition, the solidus temperature and the liquidus temperature are decreased by containing at least one of P and P as necessary, and wettability, bondability, workability, reliability, and the like are appropriately adjusted according to usage requirements. It is possible to make adjustments, and the solder material can be made even easier to use.

このように、本発明のSb−Cu系合金は共晶点の組成(Sb=76.5質量%、Cu23.5質量%)を基本とし、必要に応じてAg、Al、Ge、In、Mg、Ni、Sn、Zn及びPの内の少なくとも1種を適宜含有させることによって、融点、濡れ性、接合性、加工性などのはんだに求められる諸特性を満たしたはんだ合金を提供することができる。   Thus, the Sb—Cu based alloy of the present invention is based on the composition of eutectic points (Sb = 76.5 mass%, Cu 23.5 mass%), and Ag, Al, Ge, In, Mg as required. By appropriately containing at least one of Ni, Sn, Zn and P, it is possible to provide a solder alloy satisfying various properties required for solder such as melting point, wettability, bondability, and workability. .

尚、PはSbやCuよりも還元性が強く、接合時に気体の酸化燐として接合面やはんだ中から酸素を持ち去ってくれるため、濡れ性を向上させるには最も適した元素である。当然、PはCu基板やNiメッキCu基板の表面酸化膜も還元除去できるため、接合時にフォーミングガス(基板の酸化膜を還元するために水素を含有させたガス)を使用しなくても濡れ性を向上させることができる。次に、上記した本発明のPbフリーSb−Cu系はんだ合金に含有される各元素について、詳細に説明する。   Note that P is the most suitable element for improving wettability because P is more reducing than Sb and Cu and removes oxygen from the bonding surface and solder as gaseous phosphorus oxide during bonding. Naturally, P can also reduce and remove the surface oxide film of Cu substrate or Ni-plated Cu substrate, so wettability can be achieved without using forming gas (gas containing hydrogen to reduce the oxide film on the substrate) during bonding. Can be improved. Next, each element contained in the above-described Pb-free Sb—Cu solder alloy of the present invention will be described in detail.

<Sb、Cu>
SbとCuは本発明のPbフリーSb−Cu系はんだ合金において、必須の成分をなす元素である。図1のCu−Sb二元系状態図に示すように、SbとCuはη相とSb固溶体から成る共晶合金を生成し、その共晶温度は526℃である。Cuの融点は1085℃、Sbの融点は631℃であり、合金化することにより融点を526℃まで下げることができる。さらに必要に応じて後述する各種の元素を含有させることによって固相線温度、液相線温度を下げることが可能となり、より一層使い易いはんだ材料になる。
<Sb, Cu>
Sb and Cu are elements constituting essential components in the Pb-free Sb—Cu solder alloy of the present invention. As shown in the Cu—Sb binary phase diagram of FIG. 1, Sb and Cu form a eutectic alloy composed of η phase and Sb solid solution, and the eutectic temperature is 526 ° C. The melting point of Cu is 1085 ° C., the melting point of Sb is 631 ° C., and the melting point can be lowered to 526 ° C. by alloying. Furthermore, if various elements described later are contained as necessary, the solidus temperature and the liquidus temperature can be lowered, and the solder material becomes easier to use.

前述したように、本発明のSb−Cu系はんだ合金は共晶点の組成(Sb=76.5質量%、Cu23.5質量%)を基本としているため、Cuの含有量は11.0質量%以上38.0質量%以下である。このように、Cu含有量が11.0質量%以上38.0質量%以下の範囲内にあれば、固相線温度526℃という高い融点を活かして高温動作を特徴とするSiC半導体素子用などの接合材として好適となり、また、電子部品が使用時に高温になってもはんだ合金の軟化や強度低下を抑えることができ、よって高い接合信頼性を得ることができる。さらに、レーザー接合によって例えば水晶振動子やSAWフィルターなどを封止する場合は、接合時に部分的にしか温度が上がらず周辺部材に悪影響を及ぼさないため非常に使い易く優れた材料と言える。   As described above, since the Sb—Cu based solder alloy of the present invention is based on the composition of eutectic points (Sb = 76.5 mass%, Cu 23.5 mass%), the Cu content is 11.0 mass. % Or more and 38.0% by mass or less. Thus, if the Cu content is in the range of 11.0% by mass or more and 38.0% by mass or less, for SiC semiconductor elements characterized by high-temperature operation utilizing a high melting point of 526 ° C. In addition, it is possible to suppress the softening and strength reduction of the solder alloy even when the electronic component becomes high temperature during use, so that high bonding reliability can be obtained. Further, when sealing, for example, a crystal resonator or a SAW filter by laser bonding, it can be said that it is an easy-to-use and excellent material because the temperature rises only partially during bonding and does not adversely affect the peripheral members.

これに対して、Cu含有量が11.0質量%未満では液相線温度が高くなりすぎて溶け別れ現象を引き起こしてしまったり、Sbの割合が多くなりすぎて脆くなってしまったりしてしまう。逆に、Cu含有量が38.0質量%を超えてしまうと基板等とはんだ合金の反応が不十分で接合強度を低下させてしまったり、β相、ε相、ζ相などが部分的に生成し、共析組織が現れはじめて複雑な結晶構造になり、はんだ合金の強度や応力緩和性を極端に低下させてしまう。   On the other hand, when the Cu content is less than 11.0% by mass, the liquidus temperature becomes too high, causing a phenomenon of melting and separation, or the Sb ratio becomes too high and becomes brittle. . On the other hand, if the Cu content exceeds 38.0% by mass, the reaction between the substrate and the solder alloy may be insufficient and the bonding strength may be lowered, or the β phase, ε phase, ζ phase, etc. may be partially As a result, a eutectoid structure begins to appear and a complex crystal structure is formed, and the strength and stress relaxation properties of the solder alloy are extremely reduced.

<Ag、Ge、In>
Ag、Ge及びInは本発明のSb−Cu系はんだ合金において各種特性を改善または調整するために適宜含有される元素であり、これらの元素を含有させることで得られる主な効果は同じであり、加工性の向上にある。AgはSbとはSb固溶体とε相の共晶合金を生成する。そしてCuとはCu固溶体とAg固溶体から成る共晶合金を生成する。このようにAgはSb及びCuのいずれとも共晶合金を生成するため、AgをSb−Cu合金に含有させることにより比較的柔軟な合金となって加工性や応力緩和性が向上する。
<Ag, Ge, In>
Ag, Ge, and In are elements that are appropriately contained in order to improve or adjust various properties in the Sb—Cu solder alloy of the present invention, and the main effects obtained by containing these elements are the same. , To improve workability. Ag forms a eutectic alloy of Sb solid solution and ε phase with Sb. And Cu produces | generates the eutectic alloy which consists of Cu solid solution and Ag solid solution. Thus, since Ag forms a eutectic alloy with both Sb and Cu, inclusion of Ag in the Sb—Cu alloy results in a relatively soft alloy and improved workability and stress relaxation.

Sb−Cu系はんだ合金にAgを含有させる場合はその含有量は0.01質量%以上15.0質量%以下が好ましい。Ag含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れず、15.0質量%を超えると液相線温度が高くなりすぎ良好な接合ができなくなる。Agの含有量が0.3質量%以上8.0質量%以下であれば前述した効果がより一層顕著に現れるので好ましい。   When Ag is contained in the Sb—Cu solder alloy, the content is preferably 0.01% by mass or more and 15.0% by mass or less. If the Ag content is less than 0.01% by mass, the content is too small and substantially no effect is exhibited. If the Ag content exceeds 15.0% by mass, the liquidus temperature becomes too high and good bonding cannot be performed. If the content of Ag is 0.3% by mass or more and 8.0% by mass or less, it is preferable because the above-described effect appears more remarkably.

GeはSbとはSb固溶体とGe固溶体から成る共晶合金を生成する。そしてCuとは共析合金を生成する。このようにGeはSbやCuと共晶合金や共析合金を生成するため、Geを添加することで加工性を向上させることが可能となり、さらに強度や融点等といった他の特性をバランスよく調整することができる。このようにGeの添加が加工性の向上効果だけでなく、諸特性を調整することが可能になる理由は、GeがSbと似通った性質を有するため、一部置換するような形を取るためである。   Ge produces a eutectic alloy composed of Sb solid solution and Ge solid solution. And Cu produces a eutectoid alloy. Since Ge forms eutectic alloys and eutectoid alloys with Sb and Cu in this way, it is possible to improve workability by adding Ge, and further adjust other properties such as strength and melting point in a well-balanced manner. can do. The reason why the addition of Ge makes it possible to adjust not only the workability improvement effect but also various characteristics in this way is that Ge has a property similar to Sb, and thus takes a form of partial replacement. It is.

このような優れた効果を付与することができるGeをSb−Cu系はんだ合金に含有させる場合はその含有量は0.01質量%以上10.0質量%以下が好ましい。Ge含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れない。一方、10.0質量%を超えると含有量が多すぎて液相線温度が上がり過ぎたり、基板等と十分な接合層を形成できなかったりするなど諸特性のバランスを欠いた材料となってしまう。   When Ge that can provide such an excellent effect is contained in the Sb—Cu based solder alloy, the content is preferably 0.01% by mass or more and 10.0% by mass or less. If the Ge content is less than 0.01% by mass, the content is too small and substantially no effect appears. On the other hand, if it exceeds 10.0% by mass, the content is too high and the liquidus temperature rises too much, or a sufficient bonding layer cannot be formed with the substrate, etc. End up.

InはSbとはSb固溶体とInSb金属間化合物の共晶合金を生成する。そしてCuには数質量%固溶する。このようにInは共晶合金を生成する上、もともと非常に柔らかい性質を持つため、加工性や応力緩和性の向上に寄与する。つまり、Inを添加することでその柔らかさが発揮され、伸び率等が向上することから圧延加工やプレス加工などが容易になり、さらに熱応力等を緩和する能力がより一層向上する。このような優れた効果を発揮するInをSb−Cu系はんだ合金に含有させる場合はその含有量は0.01質量%以上5.0質量%以下である。Inの含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れない。一方、5.0質量%を超えると金属間化合物の割合が多くなりすぎ逆に加工性等を低下させてしまう。   In, Sb forms a eutectic alloy of Sb solid solution and InSb intermetallic compound. Then, several mass% is dissolved in Cu. In this way, In generates a eutectic alloy, and since it originally has a very soft property, it contributes to the improvement of workability and stress relaxation properties. That is, by adding In, the softness is exhibited and the elongation rate and the like are improved, so that the rolling process and the press process are facilitated, and the ability to alleviate the thermal stress is further improved. When In exhibiting such an excellent effect is contained in the Sb—Cu based solder alloy, the content is 0.01 mass% or more and 5.0 mass% or less. If the In content is less than 0.01% by mass, the content is too small, and substantially no effect appears. On the other hand, if it exceeds 5.0% by mass, the ratio of the intermetallic compound is excessively increased, and conversely, the workability is lowered.

<Al、Mg、Sn、Zn>
Al、Mg、Sn及びZnは本発明のSb−Cu系はんだ合金において各種特性を改善または調整するために適宜含有される元素であり、これらの元素を含有させることで得られる主な効果は同じであり、濡れ性の向上にある。具体的には、AlはSbと高融点のAl−Sb金属間化合物(融点:1063℃)を生成する。そしてCuには8質量%程度固溶する。このような高融点の金属間化合物が生成されると接合時にチップ傾きや溶け別れ現象など引き起こしてしまうのでAlはSb−Cu系合金に多く含有させることはできない。
<Al, Mg, Sn, Zn>
Al, Mg, Sn, and Zn are elements that are appropriately contained in order to improve or adjust various properties in the Sb—Cu solder alloy of the present invention, and the main effects obtained by containing these elements are the same. And improving wettability. Specifically, Al generates Sb and a high melting point Al—Sb intermetallic compound (melting point: 1063 ° C.). And about 8% by mass is dissolved in Cu. If such an intermetallic compound having a high melting point is produced, tip tilt or melting phenomenon is caused at the time of bonding, so that a large amount of Al cannot be contained in the Sb—Cu alloy.

Alを含有させることにより得られる効果は濡れ性の向上にあるが、Alは比較的酸化され易い金属であり、SbやCuよりも酸化され易い。このため、Alを少量含有させることによってAlははんだ表面に薄い酸化物層を形成し濡れ性を向上させる。すでに述べたようにAlは多く含有させることができず、Al含有量の上限値は2.0質量%である。Al含有量が2.0質量%を超えてしまうとチップ傾きや溶け別れ現象が発生するだけでなく、酸化物層が厚くなって濡れ性の低下までも引き起こしてしまう。一方、Al含有量の下限値は0.01質量%である。Al含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れない。   Although the effect obtained by containing Al is in improving wettability, Al is a metal that is relatively easily oxidized and is more easily oxidized than Sb and Cu. For this reason, when Al is contained in a small amount, Al forms a thin oxide layer on the solder surface and improves wettability. As already described, a large amount of Al cannot be contained, and the upper limit of the Al content is 2.0% by mass. If the Al content exceeds 2.0% by mass, not only the tip tilt and melting phenomenon occur, but also the oxide layer becomes thicker and the wettability is reduced. On the other hand, the lower limit of the Al content is 0.01% by mass. If the Al content is less than 0.01% by mass, the content is too small and substantially no effect appears.

MgはSbにはほとんど固溶せず、比較的融点の高いMgSb金属間化合物(融点:621℃)を有する共晶合金を生成する。そしてCuには数質量%固溶する。MgもAlと同様に多く含有させると融点の高い金属間化合物を許容量以上生成し、チップ傾き等を引き起こしてしまうのでSb−Cu系合金に多量に含有させることはできない。MgはAlよりもさらに還元性の強い元素であるため、Alよりも少ない量で薄い酸化物層を形成し、濡れ性を向上させることができる。このため、Sb−Cu系はんだ合金にMgを含有させる場合はその含有量は0.01質量%以上0.5質量%以下が好ましい。Mg含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れない。一方、Mg含有量が0.5質量%を超えるとチップ傾きや濡れ性低下を招いてしまう。 Mg hardly dissolves in Sb and forms a eutectic alloy having a relatively high melting point Mg 3 Sb 2 intermetallic compound (melting point: 621 ° C.). Then, several mass% is dissolved in Cu. If Mg is contained in a large amount in the same manner as Al, an intermetallic compound having a high melting point is generated in an allowable amount or more, causing tip tilt and the like, so that it cannot be contained in a large amount in an Sb—Cu alloy. Since Mg is an element having a stronger reducibility than Al, a thin oxide layer can be formed in a smaller amount than Al, and wettability can be improved. For this reason, when Mg is contained in the Sb—Cu solder alloy, the content is preferably 0.01% by mass or more and 0.5% by mass or less. If the Mg content is less than 0.01% by mass, the content is too small and substantially no effect appears. On the other hand, if the Mg content exceeds 0.5% by mass, tip tilt and wettability are reduced.

SnはSbには数質量%固溶し、Cuには少し固溶する。このようにSnはSbやCuに固溶するが、固溶することによって機械的特性等に悪影響を及ぼすことはない。そして、SnはCuやNiなどとの反応性に富むため、基板等との界面にCuSnなどの金属間化合物を生成し、強固な接合を実現する。すなわち、Sb−Cu系合金にSnを含有させることによって濡れ性や接合性を向上させることができるので、はんだの特性を向上させることができる。 Sn is a solid solution of several mass% in Sb and a little solid solution in Cu. As described above, Sn dissolves in Sb and Cu, but does not adversely affect the mechanical characteristics and the like. Since Sn is rich in reactivity with Cu, Ni and the like, an intermetallic compound such as Cu 3 Sn is generated at the interface with the substrate and the like, thereby realizing strong bonding. That is, by adding Sn to the Sb—Cu-based alloy, the wettability and the bondability can be improved, so that the characteristics of the solder can be improved.

このようにはんだ合金の諸特性を向上させる効果のあるSnをSb−Cu系合金に含有させる場合はその含有量は0.01質量%以上3.0質量%以下が好ましい。Sn含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れない。一方、Sn含有量が3.0質量%を超えると接合界面に生成される金属間化合物層が厚くなり、はんだが硬くなって応力緩和性を低下させるおそれがある。   Thus, when Sn which has the effect of improving various properties of the solder alloy is contained in the Sb—Cu-based alloy, the content is preferably 0.01% by mass or more and 3.0% by mass or less. If the Sn content is less than 0.01% by mass, the content is too small and substantially no effect appears. On the other hand, when Sn content exceeds 3.0 mass%, the intermetallic compound layer produced | generated in a joining interface will become thick, and there exists a possibility that a solder may become hard and stress relaxation property may be reduced.

ZnはSbにはほとんど固溶せず、Sb固溶体とSbZn金属間化合物の共晶合金を生成する。ZnはSb−Cu系合金に少量含有させることで濡れ性を向上させることができるが、多く含有させるとSbZn金属間化合物の割合が多くなりすぎて加工性等を低下させてしまう。Znが濡れ性を向上させる理由はまずZnの反応性の高さにあり、具体的にはCuやNiに対して優れた反応性を有するため、濡れ性や接合性が向上するのである。さらにZnはSbやCuよりも酸化され易いため、少量の添加で薄い酸化物層を生成し濡れ性を向上させるのである。   Zn hardly dissolves in Sb, and forms a eutectic alloy of Sb solid solution and SbZn intermetallic compound. Zn can be improved in wettability by being contained in a small amount in the Sb—Cu alloy, but if it is contained in a large amount, the proportion of the SbZn intermetallic compound becomes too high and the workability and the like are lowered. The reason why Zn improves wettability is the high reactivity of Zn. Specifically, it has excellent reactivity with Cu and Ni, so that wettability and bondability are improved. Furthermore, since Zn is more easily oxidized than Sb and Cu, a thin oxide layer is formed with a small amount of addition and wettability is improved.

ZnをSb−Cu系合金に含有させる場合はその含有量は0.01質量%以上2.0質量%以下が好ましい。Zn含有量が0.01質量%未満では含有量が少なすぎて実質的に効果が現れない。Zn含有量が2.0質量%を超えると金属化合物の割合が多くなって加工性や応力緩和性を低下させたり、酸化物層が厚くなって濡れ性低下を招いたりしてしまう。   When Zn is contained in the Sb—Cu-based alloy, the content is preferably 0.01% by mass or more and 2.0% by mass or less. If the Zn content is less than 0.01% by mass, the content is too small and substantially no effect appears. If the Zn content exceeds 2.0% by mass, the ratio of the metal compound increases, and the workability and stress relaxation properties decrease, and the oxide layer becomes thick, leading to a decrease in wettability.

<Ni>
Niは本発明のSb−Cu系はんだ合金において各種特性を改善または調整するために適宜含有される元素であり、Niを含有させることにより得られる主な効果は加工性や応力緩和性の向上にあるが、そのメカニズムは前述したAgなどとは根本的に異なる。すなわち、Niは融点が1455℃と非常に高く、はんだが溶融してから固化する際に最初に析出し、それを核として微細な結晶が成長していくため組織が微細結晶構造となり、その結果、クラックの進行が粒界で止められ易くなる。これによってはんだに様々な応力が加わってもクラックが進展しづらくなり、シート材などに加工をしてもクラック等の不良の発生が抑えられ、接合信頼性なども飛躍的に向上する。
<Ni>
Ni is an element contained as appropriate in order to improve or adjust various properties in the Sb-Cu solder alloy of the present invention, and the main effect obtained by including Ni is to improve workability and stress relaxation. However, the mechanism is fundamentally different from Ag and the like described above. That is, Ni has a very high melting point of 1455 ° C., and when the solder is melted and solidified, it first precipitates, and fine crystals grow using it as a nucleus, so that the structure becomes a fine crystal structure. The progress of cracks is easily stopped at the grain boundaries. As a result, even if various stresses are applied to the solder, it is difficult for the cracks to progress, and even if the sheet material is processed, the occurrence of defects such as cracks can be suppressed, and the joining reliability and the like are dramatically improved.

Niは上記したメカニズムにより加工性向上の効果を発揮するため、Niの含有量をあまり多くすることは好ましくない。Ni含有量が多すぎると、Niの核の密度が多くなり、結晶粒が微細化せずに大きくなりすぎて、Ni添加効果が半減してしまうからである。従って、Niを含有させる場合の上限値は0.7質量%とする。一方、下限値は0.01質量%であり、この値に満たないと核の析出が少なすぎて実質的に加工性向上の効果が得られない。   Since Ni exhibits the effect of improving workability by the above-described mechanism, it is not preferable to increase the Ni content too much. If the Ni content is too large, the density of Ni nuclei increases, the crystal grains become too large without being refined, and the Ni addition effect is halved. Therefore, the upper limit when Ni is contained is set to 0.7 mass%. On the other hand, the lower limit is 0.01% by mass. If the lower limit is not reached, the precipitation of nuclei is too small to substantially improve the workability.

<P>
Pは、本発明のPbフリーSb−Cu系はんだ合金において更に向上させたい特性がある場合に必要に応じて含有させる元素であり、その添加により得られる主な効果は濡れ性の向上である。Pが濡れ性を向上させるメカニズムは以下のとおりである。即ち、Pは還元性が強く、自ら酸化することによって、はんだ合金表面の酸化を抑制する。極めて高い濡れ性が求められる水晶振動子の封止用としてはんだ合金を使う際などに十分な濡れ性が確保できなかった場合には、Pを含有させることによる濡れ性向上の役割は大きい。
<P>
P is an element to be included as necessary when there is a characteristic to be further improved in the Pb-free Sb—Cu solder alloy of the present invention, and the main effect obtained by the addition is an improvement in wettability. The mechanism by which P improves wettability is as follows. That is, P is highly reducible and suppresses oxidation of the solder alloy surface by oxidizing itself. When sufficient wettability cannot be ensured when using a solder alloy for sealing a crystal resonator that requires extremely high wettability, the role of improving wettability by containing P is significant.

また、Pの含有により、接合時にボイドの発生を低減させる効果も得られる。即ち、既に述べているようにPは自らが酸化しやすいため、接合時にはんだ合金の主成分であるSbやCuよりも優先的に酸化が進むので、はんだ母相の酸化を防ぎ、また、電子部品等の接合面を還元して濡れ性を確保することができる。そして、この接合の際に、はんだや接合面表面の酸化物がなくなるため、酸化膜によって形成される隙間(ボイド)が発生し難くなり、接合性や信頼性等を向上させることができる。尚、PはSbやCu等のはんだ合金や基板を還元して酸化物になると気化して雰囲気ガスに流されるため、はんだや基板表面等に残ることがない。このためPの残渣が信頼性等に悪影響を及ぼす可能性はなく、この点からもPは優れた元素と言える。   In addition, the inclusion of P also has the effect of reducing the generation of voids during bonding. That is, as already described, since P is easily oxidized by itself, oxidation proceeds preferentially over Sb and Cu, which are the main components of the solder alloy, at the time of joining. It is possible to ensure wettability by reducing the joint surfaces of components and the like. In this joining, since solder and oxides on the surface of the joining surface disappear, gaps (voids) formed by the oxide film are hardly generated, and the joining property, reliability, and the like can be improved. Note that P is not left on the surface of the solder, the substrate or the like because it vaporizes and flows to the atmosphere gas when the solder alloy such as Sb or Cu or the substrate is reduced to become an oxide. For this reason, there is no possibility that the residue of P adversely affects reliability and the like, and P can be said to be an excellent element from this point.

PをSb−Cu系はんだ合金に含有させる場合はその含有量は0.500質量%以下とする。Pは非常に還元性が強いため、微量でも含有させれば濡れ性向上の効果が得られる。ただし、0.500質量%を超えて含有しても濡れ性向上の効果はあまり変わらず、過剰な含有によってPやP酸化物の気体が多量に発生してボイド率を上げてしまったり、Pが脆弱な相を形成して偏析し、はんだ接合部を脆化して信頼性を低下させたりする恐れがある。特にワイヤなどの形状に加工する場合に断線の原因になりやすいことが確認されている。なお、Pの含有量が0.300質量%以下であれば、上記した効果がより一層顕著に現れるので好ましい。   When P is contained in the Sb—Cu-based solder alloy, the content is set to 0.500% by mass or less. Since P is very reducible, the effect of improving wettability can be obtained if it is contained even in a trace amount. However, the effect of improving the wettability does not change much even if the content exceeds 0.50% by mass, and excessive amounts of P and P oxide gases are generated and the void ratio is increased. May form a fragile phase and segregate, embrittle the solder joint and reduce reliability. In particular, it has been confirmed that wire breakage tends to be caused when processing into a shape such as a wire. In addition, if content of P is 0.300 mass% or less, since the above-mentioned effect appears more notably, it is preferable.

原料として、それぞれ純度99.9質量%以上のSb、Cu、Ag、Al、Ge、In、Mg、Ni、Sn、Zn、P及びAuを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく、均一になるように留意しながら、切断及び粉砕などにより3mm以下の大きさに細かくした。次に、これらの原料からそれぞれ所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   Sb, Cu, Ag, Al, Ge, In, Mg, Ni, Sn, Zn, P, and Au, each having a purity of 99.9% by mass or more, were prepared as raw materials. Large flakes and bulk-shaped raw materials were reduced to a size of 3 mm or less by cutting and crushing while paying attention to ensure that the alloy after melting did not vary in composition depending on the sampling location. Next, a predetermined amount of each of these raw materials was weighed and placed in a graphite crucible for a high-frequency melting furnace.

上記各原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素ガスを原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型にはボール製造用として直径24mm×長さ80mmの円柱状のインゴットが得られるものと、打抜き品製造用として厚さ5mm×幅46mm×長さ240mmの板状のインゴットが得られるものとを使用した。このようにして、上記の各種原料の混合比率がそれぞれ異なる試料1〜40のPbフリーSb−Cu系はんだ母合金のインゴットを各試料2種類ずつ(すなわち、円柱状及び板状のインゴット)作製した。得られた試料1〜40のはんだ母合金の組成をICP発光分光分析器(SHIMAZU S−8100)を用いて組成分析した。その組成分析結果を下記表1に示す。   The crucible containing the raw materials was placed in a high-frequency melting furnace, and nitrogen gas was flowed at a flow rate of 0.7 liter / min or more per kg of the raw materials in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy. For molds, a cylindrical ingot having a diameter of 24 mm × 80 mm in length can be obtained for ball production, and a plate-shaped ingot having a thickness of 5 mm × width of 46 mm × length of 240 mm can be obtained for the production of punched products. used. In this way, two types of Pb-free Sb—Cu-based solder mother alloy ingots of samples 1 to 40 having different mixing ratios of the above-described various raw materials (ie, cylindrical and plate-like ingots) were prepared. . The composition of the obtained solder mother alloys of Samples 1 to 40 was subjected to composition analysis using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The composition analysis results are shown in Table 1 below.

Figure 2017035708
Figure 2017035708

次に、上記の試料1〜40の板状のインゴットに対して、圧延機とプレス機を用いて打抜き品に加工した。そして得られた打抜き品の収率で加工性を評価した。一方、上記試料1〜40の円柱状のインゴットに対して、液中アトマイズ装置を用いてボール状に加工した。その際の液体としては、はんだ合金の酸化抑制効果が大きい油を用いた。以下、これらリボン状はんだ合金及びボール状はんだ合金の加工方法、並びにそれらはんだ合金を用いて行った各種評価について具体的に説明する。   Next, the plate-like ingots of Samples 1 to 40 were processed into punched products using a rolling mill and a press. And workability was evaluated by the yield of the obtained punched product. On the other hand, the cylindrical ingots of Samples 1 to 40 were processed into balls using a submerged atomizer. As the liquid at that time, oil having a large effect of suppressing the oxidation of the solder alloy was used. Hereinafter, the processing method of these ribbon-shaped solder alloys and ball-shaped solder alloys and various evaluations performed using these solder alloys will be specifically described.

<リボン状はんだ合金の加工方法>
まず、上記した方法で準備した厚さ5mm×幅46mm×長さ240mmの板状のはんだ母合金試料を温間圧延機で圧延した。圧延条件は全ての試料において同じ条件で行った。すなわち、圧延回数は5回、圧延速度は15〜30cm/秒、ロール温度は290℃とし、5回の圧延で59.0±1.0μmまで圧延した。このようにしてリボン状のはんだ合金試料を作製した。
<Ribbon solder alloy processing method>
First, a plate-like solder mother alloy sample having a thickness of 5 mm, a width of 46 mm, and a length of 240 mm prepared by the above-described method was rolled with a warm rolling mill. The rolling conditions were the same for all samples. That is, the number of rolling was 5 times, the rolling speed was 15 to 30 cm / second, the roll temperature was 290 ° C., and rolling was performed to 59.0 ± 1.0 μm by 5 times of rolling. In this way, a ribbon-shaped solder alloy sample was produced.

<加工性の評価(打抜き品の収率)>
次に、上記にて作製したリボン状のはんだ合金試料に対してプレス機で打抜いて打抜き品を製造し、その際の打抜き収率(良品率)で加工性を評価した。具体的には、まずリボン状の各はんだ合金試料をプレス機にセットし、潤滑油を供給しながら0.7mm×0.3mmの長方形に打抜いていった。各はんだ合金試料に対して1000個ずつ打抜いた。得られた打抜き品を有機溶剤の入った容器に回収し、該有機溶剤によって打抜き品を洗浄した後、真空乾燥機で真空引きしながら2時間かけて乾燥した。このようにして作製した打抜き品を確認し、ワレ、カケ、バリ、反りなどがあった場合を不良品とし、そのようなものが無くきれいな長方形に打抜けた場合を良品と評価した。そして、良品の数を打抜き数(1000)で割り100をかけて打抜き収率(%)を算出した。
<Evaluation of workability (yield of punched product)>
Next, the ribbon-shaped solder alloy sample produced above was punched with a press to produce a punched product, and the workability was evaluated by the punching yield (good product rate) at that time. Specifically, first, each ribbon-shaped solder alloy sample was set in a press machine and punched into a 0.7 mm × 0.3 mm rectangle while supplying lubricating oil. 1000 pieces were punched out for each solder alloy sample. The obtained punched product was collected in a container containing an organic solvent, washed with the organic solvent, and then dried for 2 hours while evacuating with a vacuum dryer. The punched product thus produced was confirmed, and a case where cracks, burrs, burrs, warpage, and the like were found to be defective, and a case where there was no such product and punched into a clean rectangle was evaluated as a good product. Then, the number of non-defective products was divided by the number of punching (1000) and multiplied by 100 to calculate the punching yield (%).

<ボール状はんだ合金の加工方法>
上記した方法で準備した直径24mm×長さ80mmの円柱状のはんだ母合金試料を液中アトマイズ装置のノズルに投入し、このノズルを380℃に加熱した油の入った石英管の上部(高周波溶解コイルの中)にセットした。ノズル中の母合金を高周波により500℃まで加熱して3分保持した後、不活性ガスによりノズルに圧力を加えてアトマイズを行い、ボール状のはんだ合金を作製した。尚、ボール径は設定値0.30mmとなるように予めノズル先端部の内径を調整しておいた。得られたボール状はんだを分級してボール径0.30±0.015mmのものを取り出し、これを各種評価に用いた。
<Processing method for ball-shaped solder alloy>
A cylindrical solder mother alloy sample having a diameter of 24 mm and a length of 80 mm prepared by the above method was put into a nozzle of a submerged atomizer, and the nozzle was heated at 380 ° C. above the quartz tube containing oil (high-frequency dissolution). Set in the coil). The mother alloy in the nozzle was heated to 500 ° C. by high frequency and held for 3 minutes, and then pressure was applied to the nozzle with an inert gas to perform atomization, thereby producing a ball-shaped solder alloy. The inner diameter of the nozzle tip was adjusted in advance so that the ball diameter would be a set value of 0.30 mm. The obtained ball-shaped solder was classified and a ball having a diameter of 0.30 ± 0.015 mm was taken out and used for various evaluations.

上記した試料1〜40のボール状はんだ合金の各々に対して下記に示すように基板に接合した後、接合後のはんだのアスペクト比を測定して濡れ性を評価し、ボイド率を測定して接合性を評価した。更に、上記接合試験で得た基板とはんだとの接合体を用いてヒートサイクル試験を行って信頼性を評価した。得られたアスペクト比(濡れ性評価)、ボイド率(接合性評価)、及びヒートサイクル試験(信頼性評価)の結果を下記表2に示す。   For each of the ball-shaped solder alloys of Samples 1 to 40 described above, after bonding to the substrate as shown below, the aspect ratio of the solder after bonding is measured to evaluate the wettability, and the void ratio is measured. Bondability was evaluated. Furthermore, the heat cycle test was done using the joined body of the board | substrate and solder obtained by the said joining test, and reliability was evaluated. Table 2 shows the results of the obtained aspect ratio (wetability evaluation), void ratio (bondability evaluation), and heat cycle test (reliability evaluation).

<濡れ性の評価(アスペクト比の測定)>
濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12L/分の流量で流した。その後、ヒーター設定温度を融点より50℃高い温度にして加熱した。ヒーター温度が上記設定値で安定した後、Niめっき(膜厚:3.0μm)したCu基板(板厚:0.3mm)をヒーター部にセッティングして25秒加熱し、次に各試料のボール状はんだ合金をCu基板上に載せて25秒加熱した。加熱が完了した後、ボール状はんだ合金が接合されたCu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却し、十分に冷却した後大気中に取り出した。
<Evaluation of wettability (measurement of aspect ratio)>
A wettability tester (device name: atmosphere control type wettability tester) was started, a double cover was applied to the heater part to be heated, and nitrogen gas was allowed to flow from four locations around the heater part at a flow rate of 12 L / min. . Thereafter, the heater was set to a temperature higher than the melting point by 50 ° C. and heated. After the heater temperature is stabilized at the above set value, a Cu substrate (plate thickness: 0.3 mm) plated with Ni (film thickness: 3.0 μm) is set in the heater section and heated for 25 seconds, and then each sample ball The solder alloy was placed on a Cu substrate and heated for 25 seconds. After heating is completed, the Cu substrate to which the ball-shaped solder alloy is bonded is picked up from the heater section, once installed and cooled in a place where the nitrogen atmosphere is maintained next to it, cooled sufficiently, and taken out to the atmosphere It was.

これにより得た図2に示すようなCu基板1のNi層2にはんだ合金3が接合された接合体を得た。この接合体に対して、はんだ合金3のアスペクト比を求めた。具体的には、図3に示す最大はんだ高さYと、図4に示す最大はんだ濡れ広がり長さX1及び最小はんだ濡れ広がり長さX2を測定し、下記計算式2によりアスペクト比を算出した。アスペクト比が高いほど、接合されたはんだ厚さが薄く且つ面積が広くなっていることになり、濡れ性がよいと判断できる。   A bonded body in which the solder alloy 3 was bonded to the Ni layer 2 of the Cu substrate 1 as shown in FIG. 2 was obtained. The aspect ratio of the solder alloy 3 was determined for this joined body. Specifically, the maximum solder height Y shown in FIG. 3, the maximum solder wetting spread length X1 and the minimum solder wetting spread length X2 shown in FIG. 4 were measured, and the aspect ratio was calculated by the following calculation formula 2. It can be determined that the higher the aspect ratio, the thinner the joined solder and the wider the area, and the better the wettability.

[計算式2]
アスペクト比=[(X1+X2)÷2]÷Y
[Calculation Formula 2]
Aspect ratio = [(X1 + X2) ÷ 2] ÷ Y

<接合性の評価(ボイド率の測定)>
上記濡れ性の評価の際と同様にして得た図2に示すような各試料の接合体に対して、はんだ合金が接合されたCu基板のボイド率をX線透過装置(株式会社東芝製、TOSMICRON−6125)を用いて測定した。具体的には、はんだ合金とCu基板との接合面に対して上部から垂直にX線を透過させ、下記計算式3を用いてボイド率を算出した。
<Evaluation of bondability (measurement of void fraction)>
With respect to the joined body of each sample as shown in FIG. 2 obtained in the same manner as in the evaluation of the wettability, the void ratio of the Cu substrate to which the solder alloy is joined is determined by an X-ray transmission device (manufactured by Toshiba Corporation, Measured using TOSCMICRON-6125). Specifically, X-rays were transmitted vertically from the top to the joint surface between the solder alloy and the Cu substrate, and the void ratio was calculated using the following formula 3.

[計算式3]
ボイド率(%)=ボイド面積÷(ボイド面積+はんだ合金とCu基板との接合面積)×100
[Calculation Formula 3]
Void ratio (%) = void area / (void area + joint area between solder alloy and Cu substrate) × 100

<信頼性の評価(ヒートサイクル試験)>
上記濡れ性の評価の際と同様にして得た図2に示すような接合体を各試料に対して2個ずつ作製し、それらの内の1個に対して−40℃の冷却と250℃の加熱を1サイクルとするヒートサイクル試験を途中確認のため300サイクル繰り返し、残る1個は500サイクル繰り返した。そして、ヒートサイクル試験完了後の接合体を樹脂に埋め込み、断面研磨を行い、SEM(日立製作所製 S−4800)により接合面を観察した。接合面に剥がれがある場合又ははんだ合金にクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」と評価した。
<Reliability evaluation (heat cycle test)>
Two bonded bodies as shown in FIG. 2 obtained in the same manner as in the evaluation of the wettability were prepared for each sample, and one of them was cooled at −40 ° C. and 250 ° C. The heat cycle test with 1 cycle of heating was repeated 300 cycles for confirmation on the way, and the remaining one was repeated 500 cycles. Then, the bonded body after completion of the heat cycle test was embedded in the resin, cross-sectional polishing was performed, and the bonded surface was observed with SEM (S-4800, manufactured by Hitachi, Ltd.). The case where there was peeling on the joint surface or a crack in the solder alloy was evaluated as “X”, and the case where there was no such defect and the same joint surface as in the initial state was evaluated as “◯”.

Figure 2017035708
Figure 2017035708

上記表2の結果から分かるように、本発明の要件を満たす試料1〜25の各はんだ合金は、全ての評価項目において良好な特性を示している。即ち、加工性の評価である打抜き収率は高く、現在Au系はんだとして使用されている比較例の試料39(Au−12.5質量%Ge)、試料40(Au−20質量%Sn)と比較しても高収率であった。また、アスペクト比は全て6以上であって、はんだが薄く且つ広く濡れ広がっており、良好な濡れ性を有していた。ボイド率は最も高いものでも0.2%であり、良好な接合性を示した。そして、ヒートサイクル試験においては、500サイクル経過後も不良が現れず、高い信頼性を示した。   As can be seen from the results in Table 2, the solder alloys of Samples 1 to 25 that satisfy the requirements of the present invention exhibit good characteristics in all evaluation items. That is, the punching yield, which is an evaluation of workability, is high. Sample 39 (Au-12.5 mass% Ge) and Sample 40 (Au-20 mass% Sn) of comparative examples currently used as Au-based solder Even in comparison, the yield was high. Further, all of the aspect ratios were 6 or more, the solder was thin and spread widely and had good wettability. The highest void ratio was 0.2%, indicating good bondability. In the heat cycle test, no defect appeared even after 500 cycles, and high reliability was shown.

一方、比較例である試料26〜38(比較例のうち、試料39、40を除く)のはんだ合金は、少なくともいずれかの特性において好ましくない結果となった。即ち、打抜き収率は高くても62%と本発明の要件を満たす試料1〜25のいずれよりも低く、ボイド率も2.8〜7.3%と本発明の要件を満たす試料1〜25のいずれよりも明らかに悪かった。また、アスペクト比は全て4.0以下であり、ヒートサイクル試験においては全ての試料で300回までに不良が発生した。尚、本発明の試料1〜25のはんだ合金はAuを含有していないため非常に安価であることは明らかであり、実用性の高いはんだ合金であると言える。   On the other hand, the solder alloys of samples 26 to 38 as comparative examples (excluding samples 39 and 40 among the comparative examples) had undesirable results in at least any of the characteristics. That is, even if the punching yield is high, it is 62%, which is lower than any of the samples 1-25 satisfying the requirements of the present invention, and the void ratio is 2.8-7.3%, which satisfies the requirements of the present invention. Obviously worse than any of the. In addition, all the aspect ratios were 4.0 or less, and in the heat cycle test, defects occurred in all samples up to 300 times. In addition, it is clear that the solder alloys of Samples 1 to 25 of the present invention are very inexpensive because they do not contain Au, and can be said to be highly practical solder alloys.

1 Cu基板
2 Ni層
3 はんだ合金


1 Cu substrate 2 Ni layer 3 Solder alloy


Claims (4)

Cu含有量が11.0質量%以上38.0質量%以下であり、残部がSb及び不可避不純物からなることを特徴とするPbフリーSb−Cu系はんだ合金。   A Pb-free Sb—Cu solder alloy, characterized in that the Cu content is 11.0 mass% or more and 38.0 mass% or less, and the balance is made of Sb and inevitable impurities. Ag、Al、Ge、In、Mg、Ni、Sn、Zn及びPの内の少なくとも1種を更に含有し、Agを含有する場合はその含有量が0.01質量%以上15.0質量%以下であり、Alを含有する場合はその含有量が0.01質量%以上2.0質量%以下であり、Geを含有する場合はその含有量が0.01質量%以上10.0質量%以下であり、Inを含有する場合はその含有量が0.01質量%以上5.0質量%以下であり、Mgを含有する場合はその含有量が0.01質量%以上0.5質量%以下であり、Niを含有する場合はその含有量が0.01質量%以上0.7質量%以下であり、Snを含有する場合はその含有量が0.01質量%以上3.0質量%以下であり、Znを含有する場合はその含有量が0.01質量%以上2.0質量%以下であり、Pを含有する場合はその含有量が0.500質量%以下であることを特徴とする、請求項1に記載のPbフリーSb−Cu系はんだ合金。   It further contains at least one of Ag, Al, Ge, In, Mg, Ni, Sn, Zn and P, and when it contains Ag, its content is 0.01 mass% or more and 15.0 mass% or less. In the case where Al is contained, the content is 0.01% by mass or more and 2.0% by mass or less, and in the case where Ge is contained, the content is 0.01% by mass or more and 10.0% by mass or less. In the case of containing In, the content is 0.01 mass% or more and 5.0 mass% or less, and in the case of containing Mg, the content is 0.01 mass% or more and 0.5 mass% or less. In the case where Ni is contained, the content is 0.01 mass% or more and 0.7 mass% or less, and in the case where Sn is contained, the content is 0.01 mass% or more and 3.0 mass% or less. In the case where Zn is contained, the content is 0.01 mass% or more and 2.0 mass% or less, and P is contained. 2. The Pb-free Sb—Cu solder alloy according to claim 1, wherein the content thereof is 0.500 mass% or less. 請求項1または2に記載のPbフリーSb−Cu系はんだ合金を用いて接合されていることを特徴とする接合体。   A bonded body characterized by being bonded using the Pb-free Sb-Cu-based solder alloy according to claim 1 or 2. 請求項1または2に記載のPbフリーSb−Cu系はんだ合金を用いて封止されていることを特徴とする水晶振動子封止体。


3. A crystal resonator sealed body, which is sealed using the Pb-free Sb—Cu solder alloy according to claim 1.


JP2015157286A 2015-08-07 2015-08-07 Sb-Cu SOLDER ALLOY CONTAINING NO Pb Pending JP2017035708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157286A JP2017035708A (en) 2015-08-07 2015-08-07 Sb-Cu SOLDER ALLOY CONTAINING NO Pb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157286A JP2017035708A (en) 2015-08-07 2015-08-07 Sb-Cu SOLDER ALLOY CONTAINING NO Pb

Publications (1)

Publication Number Publication Date
JP2017035708A true JP2017035708A (en) 2017-02-16

Family

ID=58047797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157286A Pending JP2017035708A (en) 2015-08-07 2015-08-07 Sb-Cu SOLDER ALLOY CONTAINING NO Pb

Country Status (1)

Country Link
JP (1) JP2017035708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018235925A1 (en) * 2017-06-22 2020-05-21 Agc株式会社 Window material, optical package
CN115008061A (en) * 2022-06-15 2022-09-06 深圳市宇航金属新材料有限公司 Tin-copper-antimony lead-free solder and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018235925A1 (en) * 2017-06-22 2020-05-21 Agc株式会社 Window material, optical package
JP7205470B2 (en) 2017-06-22 2023-01-17 Agc株式会社 Window materials, optical packages
CN115008061A (en) * 2022-06-15 2022-09-06 深圳市宇航金属新材料有限公司 Tin-copper-antimony lead-free solder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP6036202B2 (en) Au-Ag-Ge solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP5699897B2 (en) Pb-free solder alloy based on Zn
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2013052433A (en) SOLDER ALLOY OF Pb-FREE Zn SYSTEM
JP2016093831A (en) Pb-FREE Mg-Cu-BASED SOLDER ALLOY
JP2015139777A (en) Au-Sb TYPE SOLDER ALLOY
JP2017196647A (en) Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL
JP2016165751A (en) Pb-FREE In-BASED SOLDER ALLOY
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP5861526B2 (en) Ge-Al solder alloy not containing Pb
JP2016097444A (en) Pb-FREE Sb-In-BASED SOLDER ALLOY
JP5699898B2 (en) Pb-free solder alloy based on Zn
JP2015139776A (en) Au-In TYPE SOLDER ALLOY
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2016087641A (en) Pb-FREE Al-Cu-BASED SOLDER ALLOY
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP6128062B2 (en) Au-Ge-Sn solder alloy
JP2017029996A (en) LEAD-FREE Ag-Sb BASED SOLDER ALLOY