JP2013052433A - SOLDER ALLOY OF Pb-FREE Zn SYSTEM - Google Patents

SOLDER ALLOY OF Pb-FREE Zn SYSTEM Download PDF

Info

Publication number
JP2013052433A
JP2013052433A JP2011193548A JP2011193548A JP2013052433A JP 2013052433 A JP2013052433 A JP 2013052433A JP 2011193548 A JP2011193548 A JP 2011193548A JP 2011193548 A JP2011193548 A JP 2011193548A JP 2013052433 A JP2013052433 A JP 2013052433A
Authority
JP
Japan
Prior art keywords
mass
alloy
solder
solder alloy
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011193548A
Other languages
Japanese (ja)
Inventor
Takashi Izeki
隆士 井関
Masahito Takamori
雅人 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011193548A priority Critical patent/JP2013052433A/en
Publication of JP2013052433A publication Critical patent/JP2013052433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solder alloy of Pb-free Zn system for high temperatures having a melting point at about 300-400°C suitable for the assembling or the like of a semiconductor device capable of improving and progressing workability and stress relieving largely and excellent in wettability and reliability.SOLUTION: The solder alloy of the Pb-free Zn system which uses Zn as a main ingredient and does not include Pb contains Al 1.0 mass% or more and 9.0 mass% or less, and contains Cu by 0.001 mass% or more and 3.000 mass% or less, and of which the rest is composed of Zn and inevitable impurities. The solder alloy in the Pb-free Zn system can contain Ag 4.0 mass% or less and/or P by 0.500 mass% or less in order to further progress the wettability or the like.

Description

本発明は、Pbを含まないPbフリーはんだ合金に関し、特に高温用として好適なZnを主成分とするPbフリーはんだ合金に関する。   The present invention relates to a Pb-free solder alloy containing no Pb, and more particularly to a Pb-free solder alloy mainly composed of Zn suitable for high temperatures.

パワートランジスタのダイボンディングを始めとして、各種半導体装置の組立工程におけるはんだ付では高温はんだ付が行われており、300〜400℃程度の比較的高温の融点を有する高温用はんだ合金が用いられている。このような高温用はんだ合金としては、Pb−5質量%Sn合金に代表されるPb系はんだ合金が従来から主に用いられている。   High-temperature soldering is performed in soldering in the assembly process of various semiconductor devices including die bonding of power transistors, and a high-temperature solder alloy having a relatively high melting point of about 300 to 400 ° C. is used. . As such a high-temperature solder alloy, a Pb-based solder alloy represented by a Pb-5 mass% Sn alloy has been mainly used conventionally.

しかし、近年では環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えばRohs指令などではPbが規制対象物質になっている。こうした動きに対応して、半導体装置などの組立の分野においても、使用するはんだ合金としてPbを含まないもの、即ちPbフリーはんだ合金の提供が求められている。   However, in recent years, there has been a strong movement to limit the use of Pb from the viewpoint of environmental pollution. For example, Pb is a regulated substance in the RoHS directive. Corresponding to these movements, in the field of assembling semiconductor devices and the like, it is required to provide a solder alloy that does not contain Pb, that is, a Pb-free solder alloy.

中低温用(約140〜230℃)のはんだ合金に関しては、Snを主成分とするPbフリーのはんだ合金が既に実用化されている。例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを1.0質量%以下、Pを0.2質量%以下含有するPbフリーはんだ合金などが記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーはんだ合金が記載されている。   As for a solder alloy for medium and low temperatures (about 140 to 230 ° C.), a Pb-free solder alloy containing Sn as a main component has already been put into practical use. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 1.0 mass% or less, and P is 0.2 mass%. Pb-free solder alloys containing up to 10% are described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.

一方、高温用のはんだ合金に関しても、Pbフリーを実現するため、Bi系はんだ合金やZn系はんだ合金などが研究されている。例えばBi系はんだ合金では、特許文献3に、Biを30〜80質量%含有し、溶融温度が350〜500℃であるBi/Ag系のろう材が記載されている。また、特許文献4には、Biを含む共晶合金に共晶点温度が異なる2元共晶合金を加え、更にPdなどの添加元素を加えることによって、液相線温度の調整とばらつきの減少が可能な高温はんだ材料の生産方法が開示されている。   On the other hand, with respect to high temperature solder alloys, Bi-based solder alloys and Zn-based solder alloys have been studied in order to realize Pb-free. For example, for a Bi solder alloy, Patent Document 3 describes a Bi / Ag brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. In addition, Patent Document 4 describes adjustment of liquidus temperature and reduction of dispersion by adding a binary eutectic alloy having a different eutectic point temperature to a eutectic alloy containing Bi and further adding an additive element such as Pd. A method for producing a high-temperature solder material capable of achieving the above is disclosed.

また、Zn系はんだ合金については、例えば特許文献5に、Znに融点を下げるべくAlが添加されたZn−Al合金を基本とし、これにGe又はMgを添加した高温用Zn系はんだ合金が記載されている。この特許文献5には、更にSn又はInを添加することによって、より一層融点を下げる効果があることも記載されている。   As for the Zn-based solder alloy, for example, Patent Document 5 describes a high-temperature Zn-based solder alloy based on a Zn—Al alloy in which Al is added to lower the melting point of Zn, and Ge or Mg is added thereto. Has been. Patent Document 5 also describes that the addition of Sn or In has an effect of further lowering the melting point.

具体的には、上記特許文献5には、Alを1〜9質量%、Geを0.05〜1質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを5〜9質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Mgを0.01〜0.5質量%、In及び/又はnを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金が記載されている。   Specifically, in Patent Document 5, a Zn alloy containing 1 to 9% by mass of Al and 0.05 to 1% by mass of Ge, with the balance being Zn and inevitable impurities; 5 to 9% by mass of Al, Zn alloy containing 0.01 to 0.5% by mass of Mg, the balance being Zn and inevitable impurities; 1 to 9% by mass of Al, 0.05 to 1% by mass of Ge, and 0.01 to 0.5% of Mg. Zn alloy containing 5% by mass, the balance being Zn and inevitable impurities; 1-9% by mass of Al, 0.05-1% by mass of Ge, 0.1-25% by mass of Sn and / or In, and the balance Zn alloy consisting of Zn and inevitable impurities; Al 1-9 mass%, Mg 0.01-0.5 mass%, In and / or n 0.1-25 mass%, the balance Zn and inevitable Zn alloy composed of impurities; Al 1-9 mass%, Ge 0.05-1 mass%, Mg 0.01-0. Mass%, the Sn and / or In includes 0.1 to 25 wt%, and the balance are described Zn alloy consisting of Zn and unavoidable impurities.

特開平11−077366号公報Japanese Patent Application Laid-Open No. 11-077366 特開平08−215880号公報Japanese Patent Laid-Open No. 08-215880 特開2002−160089号公報JP 2002-160089 A 特開2006−167790号公報JP 2006-167790 A 特許第3850135号公報Japanese Patent No. 3850135

従来のPbフリーの高温用はんだ合金において、上記特許文献3のBi/Ag系ろう材は、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、半導体素子や基板等が耐えうる温度を超えていると考えられる。また、上記特許文献4の方法は、液相線の温度調整のみで4元系以上の多元系はんだ合金になるうえ、Biの脆弱な機械的特性については効果的な改善がされていない。   In the conventional Pb-free high-temperature solder alloy, the Bi / Ag brazing material of Patent Document 3 has a high liquidus temperature of 400 to 700 ° C., so that the working temperature at the time of joining is 400 to 700 ° C. or higher. It is presumed that the temperature exceeds the temperature that the semiconductor element or the substrate can withstand. In addition, the method of Patent Document 4 becomes a quaternary or higher multi-component solder alloy only by adjusting the temperature of the liquidus, and Bi is not effectively improved in terms of brittle mechanical properties.

更に、特許文献5に開示されているZn系はんだ合金は、その組成の範囲内では合金の濡れ性が不十分である場合が多い。即ち、主成分であるZnは還元性が強く自らが酸化されやすいため、濡れ性が極めて悪いことが問題となっている。しかもAlはZnよりも還元性が強いため、例えば1質量%以上添加した場合、濡れ性を低下させてしまうことがある。そして、これら酸化したZnやAlに対しては、熱力学の平衡論的にはGeやSnが添加されていても還元することができず、濡れ性を向上させることはできないと考えられる。ただし、はんだ接合のように非常に短い時間で溶融と固化が行われる場合、金属反応は非平衡的な反応が支配的な場合も多く、必ずしも平衡論で全てが説明できるわけではない。   Furthermore, the Zn-based solder alloy disclosed in Patent Document 5 often has insufficient wettability within the composition range. That is, Zn, which is the main component, has a strong reducibility and is likely to be oxidized by itself. Moreover, since Al is more reducible than Zn, for example, when 1% by mass or more is added, the wettability may be lowered. Further, it is considered that these oxidized Zn and Al cannot be reduced even if Ge or Sn is added in terms of thermodynamic equilibrium, and the wettability cannot be improved. However, when melting and solidification are performed in a very short time as in the case of soldering, the metal reaction is often dominated by a non-equilibrium reaction, and not all can be explained by equilibrium theory.

しかも、上記特許文献5に開示されているZn系はんだ合金は、上記した濡れ性の問題以外にも、はんだ接合における更に重要な課題として、加工性や応力緩和性に対する課題がある。即ち、ZnとAlは共晶合金を作り、ある程度の柔軟性を有する柔らかい合金である。しかし、接合温度が比較的高い(Zn−Al合金の共晶温度:381℃)ため、接合後に半導体素子(主成分:Si)や基板(主成分:Cu)が常温まで冷却される際に、大きな温度差とSiとCuの冷却時における収縮率の差により大きな応力を発生してしまう。従って、中低温用のはんだに比較して、高温用はんだは温度差が大きい分、一層優れた応力緩和性が要求される。   In addition, the Zn-based solder alloy disclosed in Patent Document 5 has problems with workability and stress relaxation as more important problems in solder bonding, in addition to the above-described problem of wettability. That is, Zn and Al are eutectic alloys and are soft alloys having a certain degree of flexibility. However, since the bonding temperature is relatively high (eutectic temperature of Zn—Al alloy: 381 ° C.), the semiconductor element (main component: Si) and the substrate (main component: Cu) are cooled to room temperature after bonding. A large stress is generated due to a large temperature difference and a difference in shrinkage rate during cooling of Si and Cu. Therefore, as compared with the medium / low temperature solder, the high temperature solder is required to have more excellent stress relaxation because of the large temperature difference.

また、上記Zn−Al系合金は、融点については300〜400℃程度(Zn−Al共晶温度:381℃)と好ましい範囲にあるものの、加工性等の観点から必ずしも最適と言える合金ではない。更に、Zn−Al合金にMgなどが添加されると金属間化合物を生成して極めて硬くなり、良好な加工性や応力緩和性が得られない場合が生じる。例えばMgを5質量%以上含有した場合、ワイヤ状やシート状などに加工することが実質的にできなくなる。   Moreover, although the said Zn-Al type alloy exists in a preferable range with about 300-400 degreeC (Zn-Al eutectic temperature: 381 degreeC) about melting | fusing point, it is not necessarily an optimal alloy from viewpoints of workability. Further, when Mg or the like is added to the Zn—Al alloy, an intermetallic compound is generated and becomes extremely hard, and there are cases where good workability and stress relaxation properties cannot be obtained. For example, when Mg is contained in an amount of 5% by mass or more, it cannot be substantially processed into a wire shape or a sheet shape.

以上述べたように、従来のPb−5質量%Sn合金に代表されるPb系はんだ合金を代替できる高温用のPbフリーはんだ合金は未だ実用化されていないのが実状である。特にZnを主成分とするPbフリーはんだ合金については、濡れ性等の諸特性とのバランスを取りながら、主として加工性や応力緩和性を改善することが大きな課題となっているが、この課題は未だ解決されていない。   As described above, the actual situation is that a high-temperature Pb-free solder alloy that can replace a Pb-based solder alloy represented by a conventional Pb-5 mass% Sn alloy has not yet been put into practical use. In particular, for Pb-free solder alloys containing Zn as a main component, improving workability and stress relaxation properties while maintaining a balance with various properties such as wettability is a major issue. It has not been solved yet.

本発明は、このような従来の事情に鑑みてなされたものであり、半導体装置の組立などで用いるのに好適な300〜400℃程度の融点を有し、加工性と応力緩和性を大幅に改善向上でき、濡れ性及び信頼性に優れた高温用のPbフリーZn系はんだ合金を提供することを目的とする。   The present invention has been made in view of such conventional circumstances, has a melting point of about 300 to 400 ° C. suitable for use in assembling semiconductor devices, and greatly improves workability and stress relaxation properties. An object is to provide a high-temperature Pb-free Zn-based solder alloy that can be improved and improved, and has excellent wettability and reliability.

上記目的を達成するため、本発明が提供する第1のPbフリーZn系はんだ合金は、Znを主成分とし且つPbを含まず、Alを1.0質量%以上9.0質量%以下含有し、Cuを0.001質量%以上3.000質量%以下含有し、残部がZn及び不可避不純物からなることを特徴とする。   In order to achieve the above object, the first Pb-free Zn-based solder alloy provided by the present invention contains Zn as a main component and does not contain Pb, and contains Al in an amount of 1.0% by mass to 9.0% by mass. Cu is contained in an amount of 0.001% to 3.000% by mass, and the balance is made of Zn and inevitable impurities.

上記本発明による第1のPbフリーZn系はんだ合金においては、Alを3.0質量%以上7.0質量%以下含有し、Cuを0.003質量%以上1.000質量%以下含有することが好ましい。   In the first Pb-free Zn solder alloy according to the present invention, Al is contained in an amount of 3.0% to 7.0% by mass and Cu is contained in an amount of 0.003% to 1.000% by mass. Is preferred.

また、本発明が提供する第2のPbフリーZn系はんだ合金は、Znを主成分とし且つPbを含まず、Alを1.0質量%以上9.0質量%以下含有し、Cuを0.001質量%以上3.000質量%以下含有すると共に、Agを4.0質量%以下及び/又はPを0.500質量%以下含有し、残部がZn及び不可避不純物からなることを特徴とする。   Further, the second Pb-free Zn-based solder alloy provided by the present invention contains Zn as a main component and does not contain Pb, contains Al in an amount of 1.0% to 9.0% by mass, and contains Cu in an amount of 0.0%. In addition to being contained in an amount of 001 mass% to 3.000 mass%, Ag is contained in an amount of 4.0 mass% or less and / or P is contained in an amount of 0.500 mass% or less, with the balance being Zn and inevitable impurities.

上記本発明による第2のPbフリーZn系はんだ合金においては、Alを3.0質量%以上7.0質量%以下含有し、Cuを0.003質量%以上1.000質量%以下含有すると共に、Agを3.0質量%以下及び/又はPを0.300質量%以下含有することを特徴とする。   In the second Pb-free Zn-based solder alloy according to the present invention, Al is contained in an amount of 3.0% by mass to 7.0% by mass and Cu is contained in an amount of 0.003% by mass to 1.000% by mass. , Ag is contained in an amount of 3.0% by mass or less and / or P is contained in an amount of 0.30% by mass or less.

本発明によれば、特に加工性や応力緩和性に優れ、濡れ性、接合性及び信頼性等にも優れると同時に、300℃程度のリフロー温度に十分耐えることができ、例えばパワートランジスタ用素子のダイボンディングなどの組立工程におけるはんだ付に好適な高温用のPbフリーZn系はんだ合金を提供することができる。   According to the present invention, it is particularly excellent in workability and stress relaxation properties, is excellent in wettability, bondability, reliability, etc., and can sufficiently withstand a reflow temperature of about 300 ° C. A high-temperature Pb-free Zn-based solder alloy suitable for soldering in an assembly process such as die bonding can be provided.

本発明による第1のPbフリーZn系はんだ合金は、Pbを含まず、AlとCuを含有し、残部がZnと製造上不可避的に含まれる不純物元素からなる。主成分であるZnは融点が419℃であり、半導体素子の接合温度である300〜400℃に対して高すぎるという欠点がある。このようなZnの欠点に対して、本発明においては、必須の元素としてAlを含有させることによりZnとの共晶合金を形成させて、融点を約400℃以下のはんだとして使い易い温度まで下げている。また、Alを含有することによって結晶を微細化させ、加工性を向上させるという効果を得ることもできる。   The first Pb-free Zn-based solder alloy according to the present invention is composed of an impurity element that does not contain Pb, contains Al and Cu, and the balance is inevitably contained in the manufacturing process. Zn which is the main component has a melting point of 419 ° C., which is disadvantageous in that it is too high for 300 to 400 ° C. which is the junction temperature of the semiconductor element. In order to cope with such defects of Zn, in the present invention, by adding Al as an essential element, a eutectic alloy with Zn is formed, and the melting point is lowered to a temperature that is easy to use as a solder of about 400 ° C. or less. ing. Further, by containing Al, it is possible to obtain an effect of making the crystal finer and improving workability.

しかし、上記のごとくAlを添加したZn−Al合金では、中低温用はんだに比較して高い応力緩和性を要求される高温用はんだとして応力緩和性や加工性が不十分である。そこで、本発明では、Zn−Al合金の応力緩和性や加工性を向上させ、使い易い材料とするために必須の元素として更にCuを添加している。即ち、Cuを含有させることにより、はんだの溶融後冷却固化するまでに、まず融点の高いCuが析出し、それを核として結晶が形成されるため、結晶が微細化してはんだの柔軟性を格段に向上させる。また、Cu自身が柔らかい金属であることもZn−Al合金の柔軟性向上に寄与する。その結果、高温用はんだとして十分な応力緩和性と加工性を得ることができる。   However, as described above, Zn—Al alloys to which Al is added have insufficient stress relaxation properties and workability as high temperature solders that require higher stress relaxation properties than medium / low temperature solders. Therefore, in the present invention, Cu is further added as an indispensable element in order to improve the stress relaxation property and workability of the Zn—Al alloy and to make the material easy to use. That is, when Cu is contained, before melting and solidifying after the solder is melted, Cu having a high melting point is first precipitated, and a crystal is formed using it as a nucleus. To improve. In addition, Cu itself being a soft metal also contributes to improving the flexibility of the Zn-Al alloy. As a result, sufficient stress relaxation and workability can be obtained as a high-temperature solder.

また、本発明による第2のPbフリーZn系はんだ合金は、上記Znを主成分としAlとCuを必須成分とする第1のPbフリーZn系はんだ合金に、更にAg及びPの少なくとも1種を添加含有させたものである。この第2のPbフリーZn系はんだ合金は、Ag及びPの少なくとも1種を添加することによって、濡れ性や接合強度等を目的に合わせて適宜調整することができ、高温用はんだとしての信頼性を更に高めることが可能となる。   Further, the second Pb-free Zn-based solder alloy according to the present invention includes at least one of Ag and P in addition to the first Pb-free Zn-based solder alloy containing Zn as a main component and Al and Cu as essential components. It is added and contained. In this second Pb-free Zn-based solder alloy, by adding at least one of Ag and P, wettability, bonding strength, etc. can be appropriately adjusted according to the purpose, and reliability as a high-temperature solder Can be further increased.

上記した本発明による第1及び第2のPbフリーZn系はんだ合金における必須の元素、並びに状況に応じて添加含有させる元素について、以下に詳細に説明する。   The essential elements in the first and second Pb-free Zn-based solder alloys according to the present invention described above and the elements to be added according to the situation will be described in detail below.

<Al>
Alは、本発明のPbフリーZn系はんだ合金において、重要な役割を果たす必須の元素である。本発明のZn系はんだ合金にAlを含有させる効果は、上述したように融点の調整、即ちZn−Al合金として固相線温度の381℃まで融点を下げることにある。また、Zn−Al合金は共晶合金であるため、金属が柔らかくなり、加工性や応力緩和性が向上する。ただし、高温用はんだは高い応力緩和性を求められるため、次に述べるCuを同時に含有させることが必須条件となる。
<Al>
Al is an essential element that plays an important role in the Pb-free Zn-based solder alloy of the present invention. The effect of adding Al to the Zn-based solder alloy of the present invention is to adjust the melting point as described above, that is, to lower the melting point to 381 ° C. of the solidus temperature as a Zn—Al alloy. Further, since the Zn—Al alloy is a eutectic alloy, the metal becomes soft, and the workability and stress relaxation properties are improved. However, since the high temperature solder is required to have high stress relaxation properties, it is essential to simultaneously contain Cu described below.

Alの含有量は1.0質量%以上9.0質量%以下である。Alの含有量が1.0質量%未満では、他の元素を添加したとしても融点の低下が不十分となるため、接合性が低下してしまう。一方、Alの含有量が9.0質量%を超えると、Zn−Al合金の液相線温度が高くなりすぎ、電子部品等の実際の接合温度では十分に溶融せず、ボイドの発生率が高くなりすぎたり接合部の合金化が不十分となったりするため、実用に耐えうる接合ができなくなる。   The Al content is 1.0 mass% or more and 9.0 mass% or less. When the Al content is less than 1.0% by mass, even if other elements are added, the melting point is not sufficiently lowered, so that the bondability is lowered. On the other hand, if the Al content exceeds 9.0% by mass, the liquidus temperature of the Zn-Al alloy becomes too high, and the actual joining temperature of electronic parts and the like does not melt sufficiently, resulting in a void generation rate. Since it becomes too high or alloying of the joint portion becomes insufficient, joining that can withstand practical use cannot be performed.

更に好ましいAlの含有量は3.0質量%以上7.0質量%以下である。その理由は、Alの含有量が上記3.0〜7.0質量%の範囲内であれば、Zn−Al二元系合金の共晶組成(Zn=95質量%、Al=5質量%)に近くなって融点が下がるうえ、結晶も微細化して加工性が向上し、より一層使い易いはんだに近づくからである。   A more preferable Al content is 3.0% by mass or more and 7.0% by mass or less. The reason is that if the Al content is in the range of 3.0 to 7.0% by mass, the eutectic composition of the Zn-Al binary alloy (Zn = 95% by mass, Al = 5% by mass). This is because the melting point is lowered and the crystal becomes finer and the workability is improved, so that the solder becomes easier to use.

<Cu>
Cuは、本発明のPbフリーZn系はんだ合金において、応力緩和性や加工性を向上させるために重要な役割を果たす必須の元素である。CuはZnやAlに比べて融点が高く(Znの融点:419℃、Alの融点:660℃、Cuの融点:1084℃)、はんだ合金の溶融後の冷却過程で固化する際に融点の高いCuがまず析出し、核となって結晶が形成されるため、はんだ合金の結晶が微細化する。この結晶の微細化によって、クラックが進展し難い柔らかなはんだとすることが可能となる。
<Cu>
Cu is an essential element that plays an important role in improving the stress relaxation property and workability in the Pb-free Zn-based solder alloy of the present invention. Cu has a higher melting point than Zn and Al (Zn melting point: 419 ° C., Al melting point: 660 ° C., Cu melting point: 1084 ° C.), and has a high melting point when solidified in the cooling process after melting of the solder alloy. Since Cu first precipitates and forms crystals as nuclei, the crystal of the solder alloy is refined. By making the crystal finer, it becomes possible to obtain a soft solder in which cracks are difficult to progress.

このような柔軟な性質を有するはんだ合金は、加工性や応力緩和性において非常に優れた性質を示す。即ち、ワイヤやシートなどに加工する際、はんだが柔らかいためクラックや欠けなどが発生し難く、硬いはんだ材料に比べてワイヤへの押出速度やシートへの圧延速度等、各種加工速度を速くできるため、生産性が優れ、不良品が発生せず、収率を高めることができる。更に、プリフォーム材に加工する際等には、バリや反りが少なくて加工しやすく、単位量当りの品質検査コストも少なくて済む。このように柔らかいはんだ合金は容易に変形できるため、半導体素子の接合時にはんだの反りなどが少なく、実質的な接触面積が大きくなるために、濡れ性や接合性が非常に優れている。   A solder alloy having such a flexible property exhibits very excellent properties in workability and stress relaxation properties. That is, when processing into wires and sheets, the solder is soft, so cracks and chips are not likely to occur, and various processing speeds such as the extrusion speed to the wire and the rolling speed to the sheet can be increased compared to hard solder materials. , Productivity is excellent, defective products are not generated, and the yield can be increased. Furthermore, when processing into a preform material, etc., it is easy to process with little burr and warpage, and the quality inspection cost per unit amount can be reduced. Since such a soft solder alloy can be easily deformed, there is little warping of the solder at the time of joining the semiconductor elements, and the substantial contact area is increased, so that the wettability and the joining property are very excellent.

また、Cuは金属の中でも非常に柔らかい金属であり、当然、Znよりも柔らかく、このCu自身の柔らかさがZn−Al合金中においても発揮される。そして、はんだ接合は非常に短時間で行われ、非平衡的な現象が起こるため、Cu含有量がZnやAlより圧倒的に少なくても、はんだ組成や接合条件によってCuのリッチ相が生成される。Cu−Zn及びCu−Alの各2元系状態図から分かるようにCuはAl及びZnの固溶量が多いため、Cuリッチ相は多少ZnやAlを含有するが、Cu自身の柔軟性を維持し、このためCuリッチ相でもはんだに加わる応力を吸収することができ、はんだ合金を更に柔らかくする。   Moreover, Cu is a very soft metal among metals, and naturally, it is softer than Zn, and the softness of Cu itself is also exhibited in a Zn-Al alloy. And, since solder bonding is performed in a very short time and a non-equilibrium phenomenon occurs, even if the Cu content is much less than Zn or Al, a Cu rich phase is generated depending on the solder composition and bonding conditions. The As can be seen from each of the binary phase diagrams of Cu-Zn and Cu-Al, Cu has a large amount of Al and Zn, so the Cu-rich phase contains some Zn and Al. Therefore, the stress applied to the solder can be absorbed even in the Cu-rich phase, and the solder alloy is further softened.

そして、本発明のはんだ合金の柔軟な性質が最も顕著に現れるのが応力緩和性である。つまり、半導体素子をはんだ接合した電子部品は自動車や家電、各種装置などに搭載されるが、その使用時に電子部品には電流が流れて発熱し、あるいは外気温が変わるなどして熱応力が加わる。Cuを基本とする基板とSiを基本とする半導体素子で組み立てられた電子部品は熱膨張率が5倍程度異なり、繰り返し加わる熱応力も大きい。本発明のはんだ合金は、この大きな熱応力を吸収する応力緩和性に優れ、厳しい環境下における電子部品の長期使用を可能にするものである。   And it is stress relaxation that the flexible property of the solder alloy of the present invention appears most remarkably. In other words, electronic components soldered with semiconductor elements are mounted on automobiles, home appliances, and various devices, but when they are used, current flows through the electronic components and heat is applied, or thermal stress is applied due to changes in the outside temperature. . Electronic components assembled with a substrate based on Cu and a semiconductor element based on Si differ in thermal expansion coefficient by about five times, and the thermal stress applied repeatedly is large. The solder alloy of the present invention is excellent in stress relaxation property that absorbs this large thermal stress, and enables long-term use of electronic components under severe environments.

Cuの含有量は0.001質量%以上3.000質量%以下である。Cuの添加による効果は、ははんだ合金の微細化とCuリッチ相生成による加工性や柔軟性等の向上である。従って、微細化効果を優先させる場合、Cu含有量は微量でよく、その下限値は0.001質量%で十分である。一方、Cuリッチ相生成による効果を優先する場合、Cu含有量は多いほどよいが、限度を超えると液相線温度が高くなりすぎて良好な接合ができなくなるため、その上限値は3.000質量%とする。更に、Cu含有量が0.003質量%以上1.000質量%以下であれば、上記効果がより一層現れ易くなるため好ましい。   The Cu content is 0.001 mass% or more and 3.000 mass% or less. The effect of the addition of Cu is an improvement in workability, flexibility, etc. due to the refinement of the solder alloy and the formation of a Cu rich phase. Therefore, when giving priority to the effect of miniaturization, the Cu content may be very small, and the lower limit of 0.001% by mass is sufficient. On the other hand, when giving priority to the effect of Cu-rich phase generation, the higher the Cu content, the better. However, if the limit is exceeded, the liquidus temperature becomes too high and good bonding cannot be achieved, so the upper limit is 3.000. Mass%. Furthermore, it is preferable that the Cu content is 0.003 mass% or more and 1.000 mass% or less because the above-described effect is more likely to appear.

<Ag>
Agは、本発明のPbフリーZn系はんだ合金の諸特性を目的に合わせて調整する際に適宜添加含有される元素であり、その添加による主な効果は濡れ性の向上にある。即ち、Agは基板や半導体素子のメタライズの最上層に用いられることからも分かるように、濡れ性を向上させる効果が大きい。これはAgが酸化しづらい性質に起因するものである。また、Zn−Ag合金においてZnリッチ側でAg含有量を増やしていくと液相温度は単調に増加するため、Agは本発明のはんだ合金の融点に影響を与える。
<Ag>
Ag is an element that is added as appropriate when adjusting the various characteristics of the Pb-free Zn-based solder alloy of the present invention in accordance with the purpose, and the main effect of the addition is to improve wettability. In other words, as can be seen from the fact that Ag is used for the uppermost layer of the metallization of the substrate or semiconductor element, the effect of improving the wettability is great. This is because Ag is difficult to oxidize. In addition, when the Ag content is increased on the Zn-rich side in the Zn-Ag alloy, the liquidus temperature increases monotonically, so Ag affects the melting point of the solder alloy of the present invention.

このように、Agは濡れ性向上の面からすると多い方がよいが、融点から考えれば少ない方がよい。従って、融点や濡れ性のバランスを考えてAgを含有させることになるが、Agが4.0質量%を超えて多くなると、Alを含有していても液相温度が高くなりすぎて良好な接合を得ることが難しくなるため、Agの含有量は4.0質量%以下とし、好ましくは3.0質量%以下とする。   As described above, it is better to increase the amount of Ag in terms of improving wettability, but it is preferable to reduce the amount of Ag in view of the melting point. Accordingly, Ag is contained in consideration of the balance between the melting point and wettability. However, if Ag exceeds 4.0% by mass, the liquidus temperature becomes too high even if Al is contained. Since it becomes difficult to obtain bonding, the Ag content is 4.0 mass% or less, preferably 3.0 mass% or less.

<P>
Pは、Agと同様に本発明のPbフリーZn系はんだ合金の諸特性を目的に合わせて調整する際に適宜含有される元素であり、その添加による主な効果は上記Agと同様に濡れ性の向上にある。即ち、Pは還元性が強く、自ら酸化することによりはんだ合金表面の酸化を抑制する。特に本発明では酸化しやすいZnが主成分であり、更にZnより酸化し易いAlを含有しているため、濡れ性が不足する場合においてPの含有による濡れ性向上の役割は大きい。
<P>
P is an element that is appropriately contained when adjusting the various characteristics of the Pb-free Zn-based solder alloy of the present invention in accordance with the purpose as in the case of Ag, and the main effect of the addition is wettability as in the case of Ag. It is in improvement. That is, P is highly reducing and suppresses oxidation of the solder alloy surface by oxidizing itself. In particular, in the present invention, Zn that is easily oxidized is a main component, and Al that is more easily oxidized than Zn is contained. Therefore, when wettability is insufficient, the role of improving wettability by containing P is large.

また、Pの含有により、接合時にボイドの発生を低減させる効果も得られる。即ち、既に述べたようにPは自らが酸化しやすいため、接合時にはんだ合金の主成分であるZnやAlよりも優先的に酸化が進む。その結果、はんだ母相の酸化を防ぎ、半導体素子や基板の接合面を還元して濡れ性を確保することができる。この接合の際には、はんだ表面や半導体素子等の接合面表面の酸化物がなくなるため、酸化膜によって形成される隙間(ボイド)が発生し難くなり、接合性や信頼性等を向上させることができる。   In addition, the inclusion of P also has the effect of reducing the generation of voids during bonding. That is, as already described, since P easily oxidizes itself, oxidation proceeds preferentially over Zn and Al, which are the main components of the solder alloy, at the time of bonding. As a result, it is possible to prevent the solder mother phase from being oxidized and reduce the bonding surface of the semiconductor element or the substrate to ensure wettability. At the time of this joining, the oxide on the soldering surface and the joining surface of the semiconductor element, etc. disappears, so that voids formed by the oxide film are less likely to occur, and the joining property and reliability are improved. Can do.

尚、Pは、上記のごとくはんだ合金や基板など接合面を還元して酸化物になると、気化して雰囲気ガスに流されるため、はんだや基板表面等に残らない。このため、Pの残渣が信頼性等に悪影響を及ぼす可能性はなく、この点からも優れた添加元素と言える。   As described above, P is not left on the surface of the solder, the substrate or the like because it vaporizes and flows into the atmospheric gas when the joint surface such as the solder alloy or the substrate is reduced to an oxide as described above. For this reason, there is no possibility that the residue of P adversely affects reliability and the like, and it can be said that this is an excellent additive element.

Pの含有量は0.500質量%以下とする。Pは非常に還元性が強いため、微量を含有させれば濡れ性向上の効果が得られるが、0.500質量%を超えて含有しても濡れ性向上の効果はあまり変わらず、過剰な含有によってPやP酸化物の気体が多量に発生してボイドの発生率を上げてしまったり、Pが脆弱な相を形成して偏析したり、はんだ接合部を脆化して信頼性を低下させたりする恐れがある。特にワイヤなどの形状に加工する場合、断線の原因になりやすいことが確認されている。また、Pの含有量が0.300重量%以下であれば、還元効果を発揮すると共に脆いP化合物を生成する可能性も低くなるため更に好ましい。   Content of P shall be 0.500 mass% or less. Since P is very reducible, the effect of improving the wettability can be obtained if a trace amount is contained, but the effect of improving the wettability does not change so much even if contained in excess of 0.5% by mass. Inclusion of a large amount of P or P oxide gas increases the generation rate of voids, segregates by forming a fragile phase of P, or embrittles solder joints, reducing reliability. There is a risk that. In particular, it has been confirmed that when processing into a shape such as a wire, it is likely to cause disconnection. Further, if the content of P is 0.300% by weight or less, it is more preferable because the reduction effect is exhibited and the possibility of generating a brittle P compound is reduced.

原料として、それぞれ純度99.99重量%以上のZn、Al、Cu、Ag及びPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら、切断及び粉砕などにより3mm以下の大きさに細かくした。次に、これらの原料から所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   As raw materials, Zn, Al, Cu, Ag and P having a purity of 99.99% by weight or more were prepared. Large flakes and bulk-shaped raw materials were finely cut to a size of 3 mm or less by cutting and pulverizing while paying attention to the uniformity of the composition of the alloy after melting without variation in the sampling location. Next, a predetermined amount of these raw materials was weighed and put into a graphite crucible for a high-frequency melting furnace.

上記各原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融し始めたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混合した。全ての原料が十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出して、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型は、はんだ母合金の製造の際に一般的に使用している形状と同様のものを使用した。   The crucible containing the raw materials was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 liter / min or more per kg of the raw materials in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming that all the raw materials were sufficiently melted, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy. A mold having the same shape as that generally used in the production of a solder mother alloy was used.

このようにして、上記各原料の混合比率を変えることにより、試料1〜19のPbフリーのZn系はんだ母合金を作製した。得られた試料1〜19について、各Zn系はんだ母合金の組成をICP発光分光分析器(SHIMAZU S−8100)を用いて分析した。得られた分析結果をはんだ組成として下記表1に示す。   In this way, Pb-free Zn-based solder mother alloys of Samples 1 to 19 were produced by changing the mixing ratio of the respective raw materials. About the obtained samples 1-19, the composition of each Zn type | system | group solder mother alloy was analyzed using the ICP emission-spectral-analyzer (SHIMAZU S-8100). The obtained analysis results are shown in Table 1 below as the solder composition.

Figure 2013052433
Figure 2013052433

次に、上記試料1〜19の各Zn系はんだ母合金について、下記のごとく圧延機でシート状に加工し、PbフリーZn系はんだ合金の加工性を評価した。また、引張試験機(テンシロン万能試験機)を用いて機械的特性(引張強度、伸び率)を測定した。更に、シート状に加工した各はんだ合金について、下記の方法により濡れ性(接合性)の評価及びヒートサイクル試験による信頼性の評価を行った。尚、はんだの濡れ性ないし接合性等の評価は、はんだ形状に依存しないためワイヤ、ボール、ペーストなどの形状で評価してもよいが、本実施例においてはシートの形状で評価した。   Next, each Zn-based solder mother alloy of Samples 1 to 19 was processed into a sheet shape with a rolling mill as described below, and the workability of the Pb-free Zn-based solder alloy was evaluated. In addition, mechanical properties (tensile strength, elongation) were measured using a tensile tester (Tensilon universal tester). Further, for each solder alloy processed into a sheet shape, wettability (joinability) was evaluated by the following method and reliability was evaluated by a heat cycle test. The evaluation of solder wettability or bondability does not depend on the solder shape, and may be evaluated by the shape of a wire, a ball, a paste, or the like.

<加工性の評価>
上記表1に示す試料1〜19の各はんだ母合金(厚さ5mmの板状インゴット)を、圧延機を用いて厚さ0.05mmまで圧延した。その際、インゴットの送り速度を調整しながら圧延していき、その後スリッター加工により25mmの幅に裁断した。
<Evaluation of workability>
Each solder mother alloy (plate-shaped ingot having a thickness of 5 mm) of Samples 1 to 19 shown in Table 1 was rolled to a thickness of 0.05 mm using a rolling mill. At that time, rolling was performed while adjusting the feed speed of the ingot, and then it was cut into a width of 25 mm by slitting.

このようにしてシート状に加工した後、得られたシート状のZn系はんだ合金を観察し、傷やクラックが全くなかった場合を「○」、シート長さ10m当たり割れやクラックが1〜3箇所ある場合を「△」、4箇所以上ある場合を「×」として、評価結果を下記表2に示した。   After processing into a sheet shape in this way, the obtained sheet-like Zn-based solder alloy was observed, and when there were no scratches or cracks, “◯”, cracks and cracks per 10 m of sheet length were 1 to 3 The evaluation results are shown in Table 2 below, where “Δ” indicates that there are places, and “×” indicates that there are four or more places.

<機械的特性の評価>
機械的特性を評価するため、上記のごとく厚さ0.05mmまで圧延した試料1〜19のシート状のZn系はんだ合金を、スリッターで3mmの幅に加工し、長さを約15cmに切断した。以上のようにして機械的特性を測定するための試料を準備し、引張試験機により引張強度及び伸び率を測定した。引張強度及び伸び率ともに試料1の測定値を100%として相対評価し、評価結果を下記表2に示した。尚、試料1の測定値は、引張強度が135MPa及び伸び率が110%であった。
<Evaluation of mechanical properties>
In order to evaluate mechanical properties, the sheet-like Zn-based solder alloys of Samples 1 to 19 rolled to a thickness of 0.05 mm as described above were processed into a width of 3 mm with a slitter, and the length was cut to about 15 cm. . Samples for measuring mechanical properties were prepared as described above, and tensile strength and elongation were measured with a tensile tester. Both the tensile strength and elongation were evaluated relative to the measured value of Sample 1 as 100%, and the evaluation results are shown in Table 2 below. The measured values of Sample 1 were a tensile strength of 135 MPa and an elongation rate of 110%.

<濡れ性(接合性)の評価>
上記のごとくシート状に加工した試料1〜19の各はんだ合金を、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を用いて評価した。即ち、濡れ性試験機のヒーター部に2重のカバーをして、ヒーター部の周囲4箇所から窒素を12リットル/分の流量で流しながら、ヒーター設定温度を各試料の融点より約10℃高い温度に設定して加熱した。設定したヒーター温度が安定した後、Cu基板(板厚:約0.70mm)をヒーター部にセッティングして25秒間加熱した。
<Evaluation of wettability (bondability)>
Each solder alloy of Samples 1-19 processed into a sheet as described above was evaluated using a wettability tester (device name: atmosphere control type wettability tester). In other words, a double cover is applied to the heater section of the wettability tester, and the heater set temperature is about 10 ° C. higher than the melting point of each sample while flowing nitrogen from four locations around the heater section at a flow rate of 12 liters / minute. Heated to set temperature. After the set heater temperature was stabilized, a Cu substrate (plate thickness: about 0.70 mm) was set in the heater section and heated for 25 seconds.

次に、各試料のはんだ合金をCu基板の上に載せ、25秒間加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却した。十分に冷却した後、大気中に取り出して接合部分を確認した。   Next, the solder alloy of each sample was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was taken up from the heater part, and once installed in a place where the nitrogen atmosphere next to it was kept, it was cooled. After sufficiently cooling, it was taken out into the atmosphere and a joint portion was confirmed.

各試料のはんだ合金とCu基板との接合部分を目視で確認し、接合できなかった場合を「×」、接合できたが濡れ広がりが悪い場合(はんだが広がらなかった場合)を「△」、接合でき且つ濡れ広がりが良い場合(はんだが薄く濡れ広がった状態)を「○」と評価し、評価結果を下記表2に示した。   The joint between the solder alloy of each sample and the Cu substrate is visually checked, and “X” indicates that the bonding cannot be performed, “△” indicates that the bonding is successful but the wetting spread is poor (the solder does not spread), When bonding was possible and wetting spread was good (a state where the solder was thinly spreading), the evaluation was “◯”, and the evaluation results are shown in Table 2 below.

<ヒートサイクル試験>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。尚、この試験は、上記した濡れ性の評価においてはんだ合金がCu基板に接合できた試料(濡れ性の評価が○又は△の試料)を各々2個ずつ用いて行った。即ち、各試料のはんだ合金が接合されたCu基板2個のうちの1個に対しては、−40℃の冷却と+150℃の加熱を1サイクルとするヒートサイクル試験を途中確認のため300サイクルまで繰り返し、残る1個に対しては同様のヒートサイクル試験を500サイクルまで繰り返した。
<Heat cycle test>
A heat cycle test was conducted to evaluate the reliability of solder joints. This test was performed using two samples each of which the solder alloy could be bonded to the Cu substrate in the above-described evaluation of wettability (samples with a wettability evaluation of ◯ or Δ). That is, for one of the two Cu substrates to which the solder alloy of each sample is bonded, 300 cycles are required for confirming the heat cycle test in which one cycle includes cooling at −40 ° C. and heating at + 150 ° C. The same heat cycle test was repeated up to 500 cycles for the remaining one.

その後、300サイクル及び500サイクルのヒートサイクル試験を実施した各試料について、はんだ合金が接合されたCu基板を樹脂に埋め込み、断面研磨を行い、SEM(装置名:HITACHI S−4800)により接合面を観察した。この観察の結果、接合面に剥がれが生じるか又ははんだにクラックが入った場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。これらの評価結果を下記表2に示した。   Then, about each sample which performed the heat cycle test of 300 cycles and 500 cycles, Cu board | substrate with which the solder alloy was joined was embedded in resin, cross-section grinding | polishing was performed, and the joining surface was carried out by SEM (device name: HITACHI S-4800). Observed. As a result of this observation, the case where the joint surface peeled or the solder cracked was indicated as “X”, and the case where there was no such defect and the same joint surface as in the initial state was indicated as “◯”. . The evaluation results are shown in Table 2 below.

Figure 2013052433
Figure 2013052433

上記の表1〜2から分かるように、本発明の実施例である試料1〜13の各Zn系はんだ合金は、全ての評価項目において良好な特性を示している。即ち、シート状に加工しても傷やクラックの発生が無く、引張強度及び伸び率は良好な値を示し、濡れ性及び信頼性も良好であった。   As can be seen from Tables 1 and 2 above, each of the Zn-based solder alloys of Samples 1 to 13, which are examples of the present invention, exhibits good characteristics in all evaluation items. That is, there was no generation of scratches or cracks even when processed into a sheet, the tensile strength and elongation showed good values, and wettability and reliability were also good.

試料1〜13の各Zn系はんだ合金における加工性や濡れ性が良好であった理由は、Zn−Al合金にCuが含有されたことにより、はんだ合金の柔軟性が増し、圧延してもクラック等が発生せず、このため加工性が向上したこと、更に、このような柔軟性を有することによって、はんだと基板の接合時にはんだの反りやバリが発生せず、実質的な接合面積が広くとれたことにより濡れ性が向上したものと考えられる。   The reason why the workability and wettability in each of the Zn-based solder alloys of Samples 1 to 13 are good is that the Cu-containing Zn-Al alloy increases the flexibility of the solder alloy and cracks even when rolled. As a result, the workability has been improved, and further, since such flexibility, solder warpage and burrs do not occur at the time of joining the solder and the substrate, and the substantial joint area is wide. It is considered that the wettability has been improved by the removal.

更に、ヒートサイクル試験においても、試料1〜13の各Zn系はんだ合金は500回まで割れなどが発生せず、良好な接合性と信頼性を示した。この理由についてもCuの添加による効果が大きく、柔らかさの増したZn系はんだ合金が繰り返し加わる熱応力を吸収・緩和したためであると考えられる。   Furthermore, in the heat cycle test, each Zn-based solder alloy of Samples 1 to 13 did not generate cracks up to 500 times, and showed good bondability and reliability. The reason for this is considered to be that the effect of addition of Cu is large and the thermal stress repeatedly applied by the Zn-based solder alloy with increased softness is absorbed and relaxed.

一方、比較例である試料14〜19の各Zn系はんだ合金は、Al、Cu、Ag及びPのいずれかの含有量が適切でないかったため、好ましくない評価結果となった。具体的には、加工性の評価において全ての試料で傷やクラックが発生し、引張強度及び伸び率も高くなく、濡れ性についても全ての試料が好ましくない結果となり、特にヒートサイクル試験では全ての試料(接合できなかった試料14、15を除く)で300回までに不良が発生した。   On the other hand, each of the Zn-based solder alloys of Samples 14 to 19 as the comparative example had an unfavorable evaluation result because the content of any of Al, Cu, Ag, and P was not appropriate. Specifically, in the evaluation of workability, scratches and cracks occurred in all samples, the tensile strength and elongation were not high, and all the samples were unfavorable in terms of wettability. In the samples (excluding samples 14 and 15 that could not be joined), defects occurred up to 300 times.

Claims (4)

Znを主成分とし且つPbを含まず、Alを1.0質量%以上9.0質量%以下含有し、Cuを0.001質量%以上3.000質量%以下含有し、残部がZn及び不可避不純物からなることを特徴とするPbフリーZn系はんだ合金。   Zn as a main component and not containing Pb, Al is contained in an amount of 1.0% to 9.0% by mass, Cu is contained in an amount of 0.001% to 3.000% by mass, and the balance is Zn and inevitable. A Pb-free Zn-based solder alloy comprising impurities. Alを3.0質量%以上7.0質量%以下含有し、Cuを0.003質量%以上1.000質量%以下含有することを特徴とする、請求項1に記載のPbフリーZn系はんだ合金。   2. The Pb-free Zn-based solder according to claim 1, wherein Al is contained in an amount of 3.0% to 7.0% by mass and Cu is contained in an amount of 0.003% to 1,000% by mass. alloy. Znを主成分とし且つPbを含まず、Alを1.0質量%以上9.0質量%以下含有し、Cuを0.001質量%以上3.000質量%以下含有すると共に、Agを4.0質量%以下及び/又はPを0.500質量%以下含有し、残部がZn及び不可避不純物からなることを特徴とするPbフリーZn系はんだ合金。   It contains Zn as a main component and does not contain Pb, Al is contained in an amount of 1.0% to 9.0% by mass, Cu is contained in an amount of 0.001% to 3.000% by mass, and Ag is 4. A Pb-free Zn-based solder alloy comprising 0% by mass or less and / or 0.5% by mass or less of P, the balance being made of Zn and inevitable impurities. Alを3.0質量%以上7.0質量%以下含有し、Cuを0.003質量%以上1.000質量%以下含有すると共に、Agを3.0質量%以下及び/又はPを0.300質量%以下含有することを特徴とする、請求項3に記載のPbフリーZn系はんだ合金。   Al is contained in an amount of 3.0% by mass or more and 7.0% by mass or less, Cu is contained in an amount of 0.003% by mass or more and 1.000% by mass or less, Ag is 3.0% by mass or less, and / or P is 0.0% by mass. The Pb-free Zn-based solder alloy according to claim 3, which is contained in an amount of 300% by mass or less.
JP2011193548A 2011-09-06 2011-09-06 SOLDER ALLOY OF Pb-FREE Zn SYSTEM Pending JP2013052433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193548A JP2013052433A (en) 2011-09-06 2011-09-06 SOLDER ALLOY OF Pb-FREE Zn SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193548A JP2013052433A (en) 2011-09-06 2011-09-06 SOLDER ALLOY OF Pb-FREE Zn SYSTEM

Publications (1)

Publication Number Publication Date
JP2013052433A true JP2013052433A (en) 2013-03-21

Family

ID=48129897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193548A Pending JP2013052433A (en) 2011-09-06 2011-09-06 SOLDER ALLOY OF Pb-FREE Zn SYSTEM

Country Status (1)

Country Link
JP (1) JP2013052433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331531A (en) * 2013-06-20 2013-10-02 中国人民解放军装甲兵工程学院 Brazing rod for repairing damages to thin aluminum alloy plate and using method of brazing rod
JP2015027697A (en) * 2013-07-04 2015-02-12 住友金属鉱山株式会社 CLAD MATERIAL OF Pb-FREE Zn-Al-BASED ALLOY SOLDER AND Cu- BASED BASE MATERIAL AND PRODUCTION METHOD OF THE SAME
KR20160128394A (en) * 2014-04-17 2016-11-07 헤라우스 매터리얼즈 싱가포르 피티이 엘티디 Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107852A (en) * 1978-02-13 1979-08-24 Kunio Yagi Brazing metal for aluminum of alloy thereof
JPS61500896A (en) * 1984-01-18 1986-05-08 ノルスク・ヒドロ・アクシェセルスカ−プ Aluminum shaped article coated with brazing substance and its coating method
EP0498154A1 (en) * 1991-02-06 1992-08-12 Ernst Müller Welding or soldering material
JP2007013064A (en) * 2005-07-04 2007-01-18 Toyota Central Res & Dev Lab Inc Semiconductor module
JP2007209989A (en) * 2006-02-07 2007-08-23 Sumitomo Metal Mining Co Ltd High-temperature brazing filler metal
JP2007281412A (en) * 2006-03-17 2007-10-25 Toyota Central Res & Dev Lab Inc Power semiconductor module
JP2012179632A (en) * 2011-03-01 2012-09-20 Kobe Steel Ltd Zn-Al-Cu ALLOY ROLLED MATERIAL AND METHOD FOR PRODUCING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107852A (en) * 1978-02-13 1979-08-24 Kunio Yagi Brazing metal for aluminum of alloy thereof
JPS61500896A (en) * 1984-01-18 1986-05-08 ノルスク・ヒドロ・アクシェセルスカ−プ Aluminum shaped article coated with brazing substance and its coating method
EP0498154A1 (en) * 1991-02-06 1992-08-12 Ernst Müller Welding or soldering material
JP2007013064A (en) * 2005-07-04 2007-01-18 Toyota Central Res & Dev Lab Inc Semiconductor module
JP2007209989A (en) * 2006-02-07 2007-08-23 Sumitomo Metal Mining Co Ltd High-temperature brazing filler metal
JP2007281412A (en) * 2006-03-17 2007-10-25 Toyota Central Res & Dev Lab Inc Power semiconductor module
JP2012179632A (en) * 2011-03-01 2012-09-20 Kobe Steel Ltd Zn-Al-Cu ALLOY ROLLED MATERIAL AND METHOD FOR PRODUCING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331531A (en) * 2013-06-20 2013-10-02 中国人民解放军装甲兵工程学院 Brazing rod for repairing damages to thin aluminum alloy plate and using method of brazing rod
JP2015027697A (en) * 2013-07-04 2015-02-12 住友金属鉱山株式会社 CLAD MATERIAL OF Pb-FREE Zn-Al-BASED ALLOY SOLDER AND Cu- BASED BASE MATERIAL AND PRODUCTION METHOD OF THE SAME
KR20160128394A (en) * 2014-04-17 2016-11-07 헤라우스 매터리얼즈 싱가포르 피티이 엘티디 Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
US20170036307A1 (en) * 2014-04-17 2017-02-09 Heraeus Materials Singapore, PTE., Ltd. Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
CN106536108A (en) * 2014-04-17 2017-03-22 贺利氏材料新加坡私人有限公司 Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
KR101940894B1 (en) * 2014-04-17 2019-01-21 헤라우스 매터리얼즈 싱가포르 피티이 엘티디 Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
US10399186B2 (en) 2014-04-17 2019-09-03 Heraeus Materials Singapore Pte., Ltd. Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal

Similar Documents

Publication Publication Date Title
WO2014024715A1 (en) High-temperature lead-free solder alloy
JP5206779B2 (en) Pb-free solder alloy based on Zn
TW201418477A (en) Solder alloy
JP5861559B2 (en) Pb-free In solder alloy
JP6036202B2 (en) Au-Ag-Ge solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP2013052433A (en) SOLDER ALLOY OF Pb-FREE Zn SYSTEM
JP5699897B2 (en) Pb-free solder alloy based on Zn
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP5699898B2 (en) Pb-free solder alloy based on Zn
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP5861526B2 (en) Ge-Al solder alloy not containing Pb
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2011235314A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP2011235315A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP2017029996A (en) LEAD-FREE Ag-Sb BASED SOLDER ALLOY
JP2018065170A (en) Pb-FREE Zn-Al-Ag TYPE SOLDER ALLOY FOR HIGH TEMPERATURE AND ELECTRONIC COMPONENT USING THE SAME
JP6128062B2 (en) Au-Ge-Sn solder alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217