JP5699897B2 - Pb-free solder alloy based on Zn - Google Patents

Pb-free solder alloy based on Zn Download PDF

Info

Publication number
JP5699897B2
JP5699897B2 JP2011225198A JP2011225198A JP5699897B2 JP 5699897 B2 JP5699897 B2 JP 5699897B2 JP 2011225198 A JP2011225198 A JP 2011225198A JP 2011225198 A JP2011225198 A JP 2011225198A JP 5699897 B2 JP5699897 B2 JP 5699897B2
Authority
JP
Japan
Prior art keywords
mass
alloy
solder
wettability
solder alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011225198A
Other languages
Japanese (ja)
Other versions
JP2013081995A (en
Inventor
井関 隆士
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011225198A priority Critical patent/JP5699897B2/en
Publication of JP2013081995A publication Critical patent/JP2013081995A/en
Application granted granted Critical
Publication of JP5699897B2 publication Critical patent/JP5699897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Pbを含まないいわゆるPbフリーはんだ合金に関し、特に高温用として好適なZnを主成分とするPbフリーはんだ合金に関する。   The present invention relates to a so-called Pb-free solder alloy containing no Pb, and more particularly to a Pb-free solder alloy mainly composed of Zn suitable for high temperatures.

パワートランジスタ用素子のダイボンディングを始めとして、各種電子部品の組立工程におけるはんだ付では高温はんだ付が行われており、300〜400℃程度の比較的高温の融点を有するはんだ合金(以下、「高温用のはんだ合金」とも称する)が用いられている。このような高温用のはんだ合金としては、Pb−5質量%Sn合金に代表されるPb系はんだ合金が従来から主に用いられている。   Starting with die bonding of power transistor elements, high temperature soldering is performed in soldering in the assembly process of various electronic components, and a solder alloy having a relatively high melting point of about 300 to 400 ° C. (hereinafter referred to as “high temperature”). Also referred to as “solder alloy for use”). As such a high temperature solder alloy, a Pb solder alloy represented by a Pb-5 mass% Sn alloy has been mainly used conventionally.

しかし、近年では環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えばRoHS指令などではPbは規制対象物質になっている。こうした動きに対応して、電子部品などの組立の分野においても、Pbを含まない(無鉛)はんだ合金、即ちPbフリーはんだ合金の提供が求められている。   However, in recent years, there has been a strong movement to limit the use of Pb due to consideration for environmental pollution. For example, Pb is a regulated substance in the RoHS directive. Corresponding to such a movement, in the field of assembling electronic components and the like, it is required to provide a Pb-free (lead-free) solder alloy, that is, a Pb-free solder alloy.

中低温用(約140〜230℃)のはんだ合金に関しては、Snを主成分とするPbフリーのはんだ合金が既に実用化されている。例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有するPbフリーのはんだ合金が記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーのはんだ合金が記載されている。   As for a solder alloy for medium and low temperatures (about 140 to 230 ° C.), a Pb-free solder alloy containing Sn as a main component has already been put into practical use. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 0.5 mass% or less, and P is 0.2 mass%. Pb-free solder alloys containing up to 10% are described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.

一方、高温用のはんだ合金に関しても、Pbフリーを実現するため、Bi系はんだ合金やZn系はんだ合金などがさまざまな機関で開発されている。例えばBi系はんだ合金では、特許文献3に、Biを30〜80質量%含有し、溶融温度が350〜500℃であるBi/Ag系のろう材が開示されている。また、特許文献4には、Biを含む共晶合金に2元共晶合金を加え、更に添加元素を加えることによって、液相線温度の調整とばらつきの減少が可能な生産方法が開示されている。   On the other hand, Bi-based solder alloys, Zn-based solder alloys, and the like have been developed by various organizations in order to realize Pb-free soldering alloys for high temperatures. For example, for a Bi-based solder alloy, Patent Document 3 discloses a Bi / Ag-based brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. Patent Document 4 discloses a production method in which a binary eutectic alloy is added to a Bi-containing eutectic alloy and an additive element is further added to adjust the liquidus temperature and reduce variations. Yes.

また、Zn系はんだ合金では、例えば特許文献5に、Znに融点を下げるべくAlが添加されたZn−Al合金を基本とし、これにGe又はMgを添加した高温用Zn系はんだ合金が記載されている。特許文献5には、更にSn又はInを添加することによって、より一層融点を下げる効果があることも記載されている。   As for a Zn-based solder alloy, for example, Patent Document 5 describes a high-temperature Zn-based solder alloy based on a Zn—Al alloy in which Al is added to lower the melting point of Zn, and Ge or Mg is added thereto. ing. Patent Document 5 also describes that there is an effect of further lowering the melting point by further adding Sn or In.

具体的には、特許文献5には、Alを1〜9質量%、Geを0.05〜1質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを5〜9質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金;Alを1〜9質量%、Geを0.05〜1質量%、Mgを0.01〜0.5質量%、Sn及び/又はInを0.1〜25質量%含み、残部がZn及び不可避不純物からなるZn合金が記載されている。   Specifically, in Patent Document 5, a Zn alloy containing 1 to 9% by mass of Al and 0.05 to 1% by mass of Ge, with the balance being Zn and inevitable impurities; 5 to 9% by mass of Al, Mg Zn alloy composed of 0.01 to 0.5% by mass with the balance being Zn and inevitable impurities; Al is 1 to 9% by mass, Ge is 0.05 to 1% by mass, Mg is 0.01 to 0.5% Zn alloy containing Zn and the balance consisting of Zn and unavoidable impurities; Al containing 1 to 9% by mass; Ge containing 0.05 to 1% by mass; Sn and / or In containing 0.1 to 25% by mass and the balance being Zn alloy composed of Zn and inevitable impurities; Al 1-9 mass%, Mg 0.01-0.5 mass%, Sn and / or In 0.1-25 mass%, the balance Zn and inevitable impurities Zn alloy comprising: Al 1-9 mass%, Ge 0.05-1 mass%, Mg 0.01-0.5 The amount%, Sn and / or In includes 0.1 to 25 wt%, and the balance are described Zn alloy consisting of Zn and unavoidable impurities.

特開1999−077366号公報Japanese Patent Laid-Open No. 1999-077366 特開平8−215880号公報JP-A-8-215880 特開2002−160089号公報JP 2002-160089 A 特開2006−167790号公報JP 2006-167790 A 特許第3850135号Patent No. 3850135

一般的な電子部品や基板の材料には熱可塑性樹脂や熱硬化性樹脂などが多用されているため、接合時の作業温度は400℃未満が望ましく、370℃以下がより望ましい。しかしながら、特許文献3のBi/Ag系ろう材は、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される電子部品や基板が耐えうる温度を超えていると考えられる。また、特許文献4の方法は、液相線の温度調整のみで4元系以上の多元系はんだ合金になるうえ、Biの脆弱な機械的特性については効果的な改善がされていない。   Thermoplastic resins and thermosetting resins are often used as materials for general electronic components and substrates, and therefore, the working temperature during bonding is preferably less than 400 ° C., more preferably 370 ° C. or less. However, since the Bi / Ag brazing material of Patent Document 3 has a liquidus temperature as high as 400 to 700 ° C., it is presumed that the working temperature at the time of joining is 400 to 700 ° C. or more, and the electronic parts and substrates to be joined It is considered that the temperature exceeds the allowable temperature. In addition, the method of Patent Document 4 becomes a quaternary or higher multi-component solder alloy only by adjusting the temperature of the liquidus, and the fragile mechanical characteristics of Bi are not effectively improved.

更に、特許文献5に開示されているZn系はんだ合金は、その組成の範囲内では合金の濡れ性が不十分である場合が多い。つまり、主成分であるZnは還元性が強いため自らは酸化されやすく、その結果、濡れ性が極めて悪くなることが問題となっている。更にAlはZnよりも還元性が強いため、例えば1重量%以上添加した場合、濡れ性を低下させてしまうことがある。   Furthermore, the Zn-based solder alloy disclosed in Patent Document 5 often has insufficient wettability within the composition range. That is, Zn, which is the main component, has a strong reducibility, so that it is easily oxidized by itself, and as a result, the wettability is extremely deteriorated. Furthermore, since Al is more reducible than Zn, for example, when it is added by 1% by weight or more, wettability may be lowered.

そして、これら酸化されたZnやAlに対しては、熱力学の平衡論的にはGeやSnが添加されていても還元することができず、濡れ性を向上させることはできないと考えられる。ただし、はんだ接合のように非常に短い時間で溶融、固化をする場合、金属反応は非平衡的な反応が支配的な場合も多く、必ずしも平衡論で全てが説明できるわけではない。   And it is considered that these oxidized Zn and Al cannot be reduced even if Ge or Sn is added in terms of thermodynamic equilibrium, and the wettability cannot be improved. However, when melting and solidifying in a very short time, such as soldering, the metal reaction is often a non-equilibrium reaction, and not all can be explained by equilibrium theory.

特許文献5に開示されているZn系はんだ合金は、濡れ性の問題に加え、加工性や応力緩和性に対する課題もある。即ち、ZnとAlは共晶合金を作り、ある程度の柔軟性を持った柔らかい合金である。しかし、接合温度が比較的高い(Zn−Al合金の共晶温度:381℃)ため、接合後、Siを主成分とする電子部品やCuを主成分とする基板が常温まで冷却される際の温度差が大きくなり、収縮による応力の影響を大きく受けてしまう。したがって、中低温用のはんだに比較してより一層優れた応力緩和性が要求される。   In addition to the problem of wettability, the Zn-based solder alloy disclosed in Patent Document 5 has problems with workability and stress relaxation. That is, Zn and Al are eutectic alloys and are soft alloys with a certain degree of flexibility. However, since the bonding temperature is relatively high (eutectic temperature of Zn—Al alloy: 381 ° C.), after bonding, an electronic component mainly composed of Si or a substrate mainly composed of Cu is cooled to room temperature. The temperature difference becomes large and is greatly affected by the stress due to shrinkage. Therefore, even more excellent stress relaxation properties are required as compared with the solder for medium and low temperatures.

特許文献5には、Alを1〜9質量%、Geを0.05〜1質量%含み、残部がZn及び不可避不純物からなるZn合金が開示されている。GeはZnやAlと共晶合金を作るため、Zn−Al合金よりもZn−Al−Ge合金の方が柔らかい合金であるかのように思われる。しかし、Geは脆く、延性に乏しい金属であるため、共晶合金としてGeを添加してもその効果は大きくない。つまり、共晶合金による柔軟性の向上と脆いGeを含有することによる脆化とが相殺される形となるのである。   Patent Document 5 discloses a Zn alloy containing 1 to 9% by mass of Al and 0.05 to 1% by mass of Ge, with the balance being Zn and inevitable impurities. Since Ge forms a eutectic alloy with Zn or Al, it seems that the Zn-Al-Ge alloy is softer than the Zn-Al alloy. However, since Ge is a brittle metal with poor ductility, even if Ge is added as a eutectic alloy, the effect is not great. In other words, the improvement in flexibility due to the eutectic alloy and the embrittlement due to the inclusion of brittle Ge are offset.

更に、Zn−Al合金にMgなどが添加されると金属間化合物を生成して極めて硬くなり、良好な加工性や応力緩和性が得られない場合が生じ得る。例えばMgを5質量%以上含有した場合、加工の困難なワイヤ状やシート状などに加工することが実質的にできなくなる。このように、Zn−Al系合金は、融点については300〜400℃程度と好ましい範囲にあるものの、濡れ性、応力緩和性、加工性等の観点から必ずしも最適と言える合金ではない。   Further, when Mg or the like is added to the Zn—Al alloy, an intermetallic compound is generated and becomes extremely hard, and there may be a case where good workability and stress relaxation properties cannot be obtained. For example, when Mg is contained in an amount of 5% by mass or more, it is practically impossible to process into a wire shape or a sheet shape that is difficult to process. As described above, although the Zn—Al-based alloy has a melting point in a preferable range of about 300 to 400 ° C., it is not always an optimum alloy from the viewpoint of wettability, stress relaxation, workability, and the like.

以上述べたように、高温用のPbフリーはんだ合金、特にZnを主成分とするPbフリーはんだ合金については、濡れ性、応力緩和性、加工性等の諸特性のバランスが取れた材料とすることが必要になるが、未だこの課題は解決されていない。このように、従来のPb−5質量%Sn合金に代表されるPb系はんだ合金を代替できる高温用のはんだ合金は未だ実用化されていないのが実状である。   As described above, high-temperature Pb-free solder alloys, especially Pb-free solder alloys mainly composed of Zn, should be made of a material that balances various characteristics such as wettability, stress relaxation, and workability. However, this problem has not been solved yet. As described above, in reality, a high-temperature solder alloy that can replace a Pb-based solder alloy typified by a conventional Pb-5 mass% Sn alloy has not yet been put into practical use.

本発明はかかる事情に鑑みてなされたものであり、電子部品の組立などで用いるのに好適な300〜400℃程度の融点を有し、濡れ性、応力緩和性及び加工性に優れた、Pbを含まない高温用のZn系はんだ合金を提供することを目的としている。   The present invention has been made in view of such circumstances, has a melting point of about 300 to 400 ° C. suitable for use in assembling electronic components, and has excellent wettability, stress relaxation properties and workability. An object of the present invention is to provide a high-temperature Zn-based solder alloy that does not contain copper.

上記目的を達成するため、本発明が提供するZnを主成分とするPbフリーはんだ合金は、Alを1.0質量%以上9.0質量%以下含有し、Geを0.001質量%以上0.050質量%未満含有し、Mgを0.01質量%以上4.0質量%以下含有し(但し、0.5質量%以下を除く)、Agは4.0質量%を超えて含有しておらず、Pは0.500質量%を超えて含有しておらず、残部が製造上、不可避的に含まれる元素を除きZnから成ることを特徴とする。 In order to achieve the above object, the Pb-free solder alloy containing Zn as a main component provided by the present invention contains Al in an amount of 1.0 to 9.0% by mass and Ge in an amount of 0.001 to 0% by mass. containing less than .050 wt%, the Mg containing 4.0 wt% or less than 0.01 mass% (excluding 0.5 wt% or less), Ag is contained exceeding 4.0% by mass P is not contained in excess of 0.500% by mass, and the balance is made of Zn except for elements that are inevitably contained in the production.

また、上記本発明のZnを主成分とするPbフリーはんだ合金は、更にA0.1質量%以上含有してもよい。更に、上記本発明のZnを主成分とするPbフリーはんだ合金は、Alを3.0質量%以上7.0質量%以下含有し、Geを0.003質量%以上含有し、Agは3.0質量%を超えて含有しておらず、Pは0.300質量%を超えて含有していないのが好ましい。 Furthermore, Pb-free solder alloy mainly containing Zn of the present invention, further the A g may contain more than 0.1 mass%. Furthermore, the Pb-free solder alloy containing Zn as a main component of the present invention contains Al in an amount of 3.0% by mass or more and 7.0% by mass or less, Ge is contained in an amount of 0.003% by mass or more, and Ag is 3. It is preferable that it does not contain more than 0% by mass, and P does not contain more than 0.300% by mass.

本発明によれば、特に濡れ性、応力緩和性及び加工性に優れると同時に300℃程度のリフロー温度に十分耐えることができ、よってパワートランジスタ用素子のダイボンディングなど各種電子部品の組立工程でのはんだ付に好適な、接合性及び信頼性に優れた高温用のPbフリーはんだ合金を提供することができる。   According to the present invention, in particular, it has excellent wettability, stress relaxation and workability, and at the same time can sufficiently withstand a reflow temperature of about 300 ° C. Therefore, in the assembly process of various electronic components such as die bonding of power transistor elements. A high-temperature Pb-free solder alloy suitable for soldering and excellent in bondability and reliability can be provided.

本発明によるZnを主成分とするPbフリーはんだ合金は、Pbを含まず、AlとGeとを含有し、残部が製造上、不可避的に含まれる元素を除きZnから成る。Znは融点が419℃と電子部品等の接合温度である300〜400℃に対し高すぎるという欠点がある。このようなZnの欠点に対して、本発明においては、Alを含有させることにより融点をはんだとして使いやすい温度まで下げるとともにある程度加工性等を向上させている。更に、Geを少量含有させることにより、良好な濡れ性と高温用はんだに特に強く要求される高い応力緩和性とを持たせている。   The Pb-free solder alloy containing Zn as a main component according to the present invention does not contain Pb, contains Al and Ge, and the balance is made of Zn except for elements that are inevitably contained in production. Zn has a disadvantage that its melting point is 419 ° C., which is too high for 300 to 400 ° C., which is the bonding temperature of electronic components and the like. In order to cope with such defects of Zn, in the present invention, by incorporating Al, the melting point is lowered to a temperature that is easy to use as solder, and the workability and the like are improved to some extent. Further, by containing a small amount of Ge, it has good wettability and high stress relaxation properties that are particularly strongly required for high-temperature solder.

Alを含有することによって、Znとの共晶合金を形成させて融点を約400℃以下に下げると同時に、結晶を微細化させて加工性を向上させるという効果を得ることもできる。しかし、高温用はんだとして使用されるZn−Al合金は、中低温用はんだと比べて高い応力緩和性を要求されるが、必ずしも十分な応力緩和を有しているとは言い難い。そこで、このZn−Al合金に対して応力緩和性や加工性を向上させ、かつ濡れ性も向上させるべくGeを添加している。   By containing Al, an eutectic alloy with Zn can be formed to lower the melting point to about 400 ° C. or less, and at the same time, the effect of improving the workability by refining the crystal can be obtained. However, Zn-Al alloys used as high-temperature solders are required to have higher stress relaxation properties than medium- and low-temperature solders, but it is not always possible to have sufficient stress relaxation. Therefore, Ge is added to the Zn—Al alloy in order to improve stress relaxation and workability and to improve wettability.

即ち、Geを少量含有することにより、はんだが溶融後、Znより比重の小さいGe(Znの比重:7.1、Geの比重:5.4)が溶融はんだの表面に表出し易くなる。その結果、表面付近に多く存在するGeが酸化されることにより主成分であるZnの酸化を抑制し、濡れ性を向上させる。加えて、溶融はんだ中に存在する微量のGeは融点が高いため(Geの融点:938℃)、はんだ固化時には先ずGeが析出し、これが核となって結晶を微細化する。これによって、はんだ合金の柔軟性が増し、加工性や応力緩和性が向上する。   That is, by containing a small amount of Ge, Ge having a specific gravity smaller than that of Zn (Zn specific gravity: 7.1, Ge specific gravity: 5.4) is easily exposed on the surface of the molten solder after the solder is melted. As a result, Ge present in the vicinity of the surface is oxidized to suppress oxidation of Zn as a main component and improve wettability. In addition, since a very small amount of Ge present in the molten solder has a high melting point (Ge melting point: 938 ° C.), Ge is first precipitated at the time of solidification of the solder, and this serves as a nucleus to refine the crystal. This increases the flexibility of the solder alloy and improves the workability and stress relaxation properties.

また、上記Znを主成分とするPbフリーはんだ合金に、更にP、Mg及びAgのうちの少なくとも1種を含有することによって、融点、濡れ性、接合強度、そして信頼性等を目的に合わせて適宜調整することが可能となる。このような本発明のZn系はんだ合金に添加される各元素について、以下に詳細に説明する。   Further, the Pb-free solder alloy containing Zn as a main component further contains at least one of P, Mg, and Ag, so that the melting point, wettability, bonding strength, reliability, and the like are adjusted according to the purpose. It becomes possible to adjust appropriately. Each element added to the Zn-based solder alloy of the present invention will be described in detail below.

<Al>
Alは本発明のZnを主成分とするPbフリーはんだ合金において重要な役割を果たす必須元素であり、その含有量は、1.0質量%以上9.0質量%以下である。Alの含有量が1.0質量%未満では、他の元素を添加したとしても融点の低下が不十分となるため、接合性が低下してしまう。一方、Alの含有量が9.0質量%を超えると、Zn−Al合金の液相線温度が高くなりすぎ、電子部品等の実際の接合温度では十分に溶融せず、ボイド率が高くなりすぎたり接合部の合金化が不十分となったりするため、実用に耐えうる接合ができなくなる。
<Al>
Al is an essential element that plays an important role in the Pb-free solder alloy containing Zn as a main component of the present invention, and its content is 1.0 mass% or more and 9.0 mass% or less. When the Al content is less than 1.0% by mass, even if other elements are added, the melting point is not sufficiently lowered, so that the bondability is lowered. On the other hand, if the Al content exceeds 9.0% by mass, the liquidus temperature of the Zn-Al alloy becomes too high, and it does not melt sufficiently at the actual bonding temperature of electronic parts and the void ratio increases. Since it is too much or alloying of the joint portion becomes insufficient, joining that can withstand practical use cannot be performed.

Alの含有量は、3.0質量%以上7.0質量%以下であると更に好ましい。なぜなら、Alの含有量がこの範囲内であれば、Zn−Al二元系合金の共晶組成(Zn=95質量%、Al=5質量%)に近くなって液相線温度が下がるうえ、結晶も微細化して加工性が向上し、使いやすいはんだにより一層近づくからである。   The Al content is more preferably 3.0% by mass or more and 7.0% by mass or less. Because, if the Al content is within this range, the eutectic composition of the Zn—Al binary alloy (Zn = 95 mass%, Al = 5 mass%) becomes close to the liquidus temperature, This is because the crystal is also refined to improve the workability and closer to the easy-to-use solder.

Alを含有させる効果は、まず融点の調整、つまりはZn−Al合金として固相線温度の381℃まで融点を下げることにある。当然、共晶合金であるため、金属が柔らかくなり、加工性や応力緩和性が向上する。ただし、高温用はんだは高い応力緩和性を求められるため、次に述べるGeを含有させることが必須条件となる。更にAlの含有量がある量以上になるとZnよりも酸化されやすいAlが増えたことによって濡れ性が低下してしまう。この濡れ性を改善するためにもGeを少量含有させることが欠かすことのできない条件となる。   The effect of including Al is to first adjust the melting point, that is, to lower the melting point to a solidus temperature of 381 ° C. as a Zn—Al alloy. Naturally, since it is a eutectic alloy, the metal becomes soft and the workability and stress relaxation properties are improved. However, since high temperature solder is required to have high stress relaxation properties, it is essential to contain Ge described below. Furthermore, when the Al content exceeds a certain level, the wettability decreases due to the increase in Al that is more easily oxidized than Zn. In order to improve the wettability, it is an indispensable condition to contain a small amount of Ge.

<Ge>
Geは本発明のZnを主成分とするPbフリーはんだ合金において、濡れ性に加え、加工性や応力緩和性を向上させるために重要な役割を果たす必須元素である。GeはZnやAlに比べて融点が高く(Znの融点:419℃、Alの融点:660℃、Geの融点:938℃)、本発明のはんだ合金が溶融後、冷却過程で固化する際、この融点の高いGeがまず析出し、これが核となって結晶が形成されるため、はんだ合金が微結晶化する。
<Ge>
Ge is an essential element that plays an important role in improving workability and stress relaxation properties in addition to wettability in the Pb-free solder alloy of the present invention containing Zn as a main component. Ge has a higher melting point than Zn or Al (Zn melting point: 419 ° C., Al melting point: 660 ° C., Ge melting point: 938 ° C.), and when the solder alloy of the present invention is solidified in the cooling process after melting, The Ge having a high melting point first precipitates and forms crystals as nuclei, so that the solder alloy is microcrystallized.

本発明のPbフリーはんだ合金は、特許文献5に開示されているGeを含んだZn合金とは本質的に異なっている。なぜなら、特許文献5のZn合金は、Geの含有量が0.05〜1質量%である上、Geを含有する目的は融点を下げるか、あるいはZn−Al−Geの三元共晶を作る上での加工性を向上することにあるからである。これに対して本発明においては、Geの含有量は後述するように0.001質量%以上0.050質量%未満と極めて微量である。Geを含有する場合は、このように微量である方が得られる効果が大きいのである。   The Pb-free solder alloy of the present invention is essentially different from the Zn alloy containing Ge disclosed in Patent Document 5. This is because the Zn alloy of Patent Document 5 has a Ge content of 0.05 to 1% by mass, and the purpose of containing Ge is to lower the melting point or to form a Zn—Al—Ge ternary eutectic. This is because the processability is improved. On the other hand, in the present invention, the Ge content is extremely small as 0.001% by mass or more and less than 0.050% by mass as described later. When Ge is contained, the effect that can be obtained with such a small amount is large.

更に、特許文献5とは異なり、Geの添加によって、濡れ性と応力緩和性の向上という2つの効果が得られる。具体的に説明すると、Zn−Al合金にGeを少量含有させると、比重の小さいGeははんだ溶融時に浮いてZnより優先的に酸化される。熱力学の平衡論においてはZnやAlの方が酸化されやすいのであるが、比重の関係からGeははんだの表面部に比較的多く存在するため、Geが酸化される割合が多くなり、よって、主成分のZnの酸化を抑制し、濡れ性が向上するのである。   Further, unlike Patent Document 5, the addition of Ge provides two effects of improving wettability and stress relaxation. More specifically, when a small amount of Ge is contained in a Zn—Al alloy, Ge having a small specific gravity floats during solder melting and is preferentially oxidized over Zn. In the thermodynamic equilibrium theory, Zn and Al are more likely to be oxidized. However, since Ge is present in a relatively large amount on the surface of the solder due to the specific gravity, the rate at which Ge is oxidized increases. Oxidation of the main component Zn is suppressed and wettability is improved.

更に、溶融はんだ中に存在するGeははんだ固化時に最初に析出し、これを核として結晶が成長するためはんだ合金が微結晶化し、加工性や応力緩和性が向上する。以上のようにGeを少量含有することにより、濡れ性と応力緩和性を向上させることが可能となる。   Further, Ge present in the molten solder is first precipitated at the time of solidification of the solder, and a crystal grows using this as a nucleus, so that the solder alloy is microcrystallized, and workability and stress relaxation are improved. By containing a small amount of Ge as described above, wettability and stress relaxation properties can be improved.

Geの含有量は、具体的には0.001質量%以上0.050質量%未満であり、0.003質量%以上0.050質量%未満がより好ましい。この量が0.050質量%以上でもGeの添加効果はあるものの、Geの酸化物層が厚くなってしまったり、結晶粒が大きく成長してしまったりしてGeの添加効果が低下してしまうことが多い。一方、0.001質量%未満では含有量が少なすぎて効果が現れない。   Specifically, the Ge content is 0.001% by mass or more and less than 0.050% by mass, and more preferably 0.003% by mass or more and less than 0.050% by mass. Even if this amount is 0.050% by mass or more, there is an effect of adding Ge, but the effect of adding Ge decreases because the oxide layer of Ge becomes thick or crystal grains grow greatly. There are many cases. On the other hand, if it is less than 0.001% by mass, the content is too small and the effect does not appear.

<P>
Pは本発明のZnを主成分とするPbフリーはんだ合金の諸特性を目的に合わせて調整する際に適宜添加される元素であり、その効果は濡れ性の向上にある。Pが濡れ性を向上させるメカニズムは以下のとおりである。Pは還元性が強く、自ら酸化されることによりはんだ合金表面の酸化を抑制する。特に本発明では酸化されやすいZnが主成分であり、更にZnより酸化されやすいAlが含有されているため、濡れ性が不足する場合においてPの含有による濡れ性向上の役割は大きい。
<P>
P is an element that is added as appropriate when adjusting various characteristics of the Pb-free solder alloy containing Zn as a main component of the present invention in accordance with the purpose, and its effect is in improving wettability. The mechanism by which P improves wettability is as follows. P is highly reducing and suppresses oxidation of the solder alloy surface by being oxidized by itself. In particular, in the present invention, Zn that is easily oxidized is a main component, and Al that is more easily oxidized than Zn is contained. Therefore, when wettability is insufficient, the role of improving wettability by containing P is significant.

また、Pの含有により接合時にボイドの発生を低減させる効果も得られる。即ち、すでに述べているようにPは自らが酸化されやすいため、接合時にはんだ合金の主成分であるZnやAlよりも優先的に酸化が進む。その結果、はんだ母相の酸化を防ぎ、電子部品等の接合面を還元して濡れ性を確保することができる。そしてこの接合の際、はんだや接合面表面の酸化物がなくなるため、酸化膜によって形成される隙間(ボイド)が発生しにくくなり、接合性や信頼性等を向上させるのである。なお、Pははんだ合金や基板を還元して酸化物になると気化し、雰囲気ガスに流され、はんだや基板等に残らない。このため、Pの残渣が信頼性等に悪影響を及ぼす可能性はなく、この点からも優れた元素と言える。   Moreover, the effect of reducing the generation | occurrence | production of a void at the time of joining by containing P is also acquired. That is, as already described, since P is easily oxidized by itself, oxidation proceeds preferentially over Zn and Al, which are the main components of the solder alloy, at the time of joining. As a result, it is possible to prevent the solder mother phase from being oxidized and reduce the joint surface of the electronic component or the like to ensure wettability. At the time of joining, since solder and oxides on the surface of the joining surface disappear, gaps (voids) formed by the oxide film are less likely to be generated, and the joining property and reliability are improved. Note that P is vaporized when the solder alloy or the substrate is reduced to become an oxide, and flows into the atmospheric gas, and does not remain on the solder or the substrate. For this reason, there is no possibility that the residue of P adversely affects reliability and the like, and it can be said that this is an excellent element.

Pを含有する場合は、その含有量が0.500質量%以下であることが好ましい。これは、前述したようにPは非常に還元性が強いため、微量を含有させれば濡れ性向上の効果が得られるからである。0.500質量%を超えて含有しても、濡れ性向上の効果はあまり変わらず、過剰な含有によってPやP酸化物の気体が多量に発生してボイド率を上げてしまったり、Pが脆弱な相を形成して偏析し、はんだ接合部を脆化して信頼性を低下させたりする恐れがある。特にワイヤ状などに加工する場合に、断線の原因になりやすいことが確認されている。Pの含有量が0.300重量%以下であれば、還元効果を発揮するとともに脆いP化合物を生成することもなく、更に好ましい。   When it contains P, it is preferable that the content is 0.500 mass% or less. This is because, as described above, P has a very strong reducibility, and if a trace amount is contained, an effect of improving wettability can be obtained. Even if the content exceeds 0.50% by mass, the effect of improving the wettability does not change much, and excessive inclusion may generate a large amount of P or P oxide gas and increase the void ratio. There is a possibility that a fragile phase is formed and segregates, and the solder joint is embrittled to reduce reliability. In particular, it has been confirmed that wire breakage is likely to be caused when processing into a wire shape or the like. If the content of P is not more than 0.300% by weight, it is more preferable since it exhibits a reducing effect and does not produce a brittle P compound.

<Mg>
Mgは本発明のZnを主成分とするPbフリーはんだ合金の諸特性を目的に合わせて調整する際に適宜添加される元素である。Mgを含有することよって得られる効果は以下のとおりである。MgはZnとの共晶合金を2つの組成で作り、それらの共晶温度は341℃と364℃である。このようにZn−Al合金よりも低い共晶温度を2点有するため、はんだ合金の融点を更に下げたい場合に添加する。
<Mg>
Mg is an element added as appropriate when adjusting the various characteristics of the Pb-free solder alloy containing Zn as a main component of the present invention in accordance with the purpose. The effects obtained by containing Mg are as follows. Mg makes a eutectic alloy with Zn with two compositions, and their eutectic temperatures are 341 ° C. and 364 ° C. Thus, since it has two eutectic temperatures lower than those of the Zn—Al alloy, it is added when it is desired to further lower the melting point of the solder alloy.

更に、MgはZn、Alよりも酸化されやすいため、少量の含有量で濡れ性を向上させる効果も有している。ただし、Mgが多量に含有されるとはんだ表面に強固な酸化膜を形成してしまうため、その含有量には注意を要する。接合条件は様々であるものの以上述べた融点低下効果と濡れ性向上効果を考慮し、その含有量は0.01質量%以上4.0質量%以下が好ましい。この含有量が0.01質量%未満では少なすぎてMgの効果を十分発揮させることができない。一方、4.0質量%を超えると、逆に濡れ性が低下したり液相線温度が高くなりすぎたりするなどの問題を起こしてしまう。   Furthermore, since Mg is more easily oxidized than Zn and Al, it has an effect of improving wettability with a small amount. However, if Mg is contained in a large amount, a strong oxide film is formed on the surface of the solder. Although the bonding conditions are various, the content is preferably 0.01% by mass or more and 4.0% by mass or less in consideration of the melting point lowering effect and the wettability improving effect described above. If the content is less than 0.01% by mass, the content of Mg is too small to sufficiently exhibit the effect of Mg. On the other hand, if it exceeds 4.0% by mass, the wettability is lowered or the liquidus temperature is excessively increased.

<Ag>
AgもMgと同様に本発明のZnを主成分とするPbフリーはんだ合金の諸特性を目的に合わせて調整する際に適宜添加される元素である。Agの含有量は0.1質量%以上4.0質量%以下とするのが好ましい。Agの含有量が0.1質量%未満では、濡れ性や接合性の向上効果が得られない。逆に4.0質量%を超えると、融点が高くなりすぎるため好ましくない。
<Ag>
Ag, like Mg, is an element that is added as appropriate when adjusting various properties of the Pb-free solder alloy of the present invention containing Zn as a main component in accordance with the purpose. The Ag content is preferably 0.1% by mass or more and 4.0% by mass or less. If the Ag content is less than 0.1% by mass, the effect of improving wettability and bondability cannot be obtained. Conversely, if it exceeds 4.0% by mass, the melting point becomes too high, which is not preferable.

つまり、Zn−Ag合金において、Znリッチ側でAgの含有量を増やしていくと液相温度は単調に増加していく。従って、Agは融点から考えれば少ない方がよい。一方、濡れ性向上の面からすればAgは多い方がよい。つまり、Agは基板や電子部品のメタライズの最上層に用いられることからも分かるように濡れ性向上効果が大きく、これはAgが酸化されにくい性質に起因している。   That is, in the Zn—Ag alloy, the liquidus temperature increases monotonously as the Ag content increases on the Zn-rich side. Therefore, it is better that Ag is less in view of the melting point. On the other hand, from the standpoint of improving wettability, it is better that there is more Ag. In other words, as can be seen from the fact that Ag is used in the uppermost layer of the metallization of substrates and electronic parts, the wettability improvement effect is large, which is due to the property that Ag is not easily oxidized.

このように、融点や濡れ性のバランスを考えて適宜Agを含有させることになるが、Agが4.0質量%を超えて多くなるとAlを含有していても液相温度が高くなりすぎ、良好な接合を得ることが困難となる。従ってAgの含有量の上限は4.0質量%とする。なお、融点の高いMgやGeを多く含有させる場合ははんだ合金の融点が高くなるため、Agの含有量を3.0質量%以下とすることが好ましい。また、コスト面から考えても特性のうえで問題がないのであればAg含有量は少なくすることが好ましい。   Thus, although considering the balance of the melting point and wettability, Ag will be appropriately contained, but when Ag exceeds 4.0% by mass, the liquidus temperature becomes too high even if Al is contained, It becomes difficult to obtain good bonding. Therefore, the upper limit of the Ag content is 4.0% by mass. When a large amount of Mg or Ge having a high melting point is contained, the melting point of the solder alloy becomes high. Therefore, the Ag content is preferably 3.0% by mass or less. Further, if there is no problem in terms of characteristics even from the viewpoint of cost, it is preferable to reduce the Ag content.

原料として、それぞれ純度99.9質量%以上のZn、Al、Ge、P、Mg及びAgを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく、均一になるように留意しながら、切断及び粉砕などにより3mm以下の大きさに細かくした。次に、これら原料から所定量を秤量して、高周波溶解炉用のグラファイト製坩堝に入れた。   As raw materials, Zn, Al, Ge, P, Mg and Ag having a purity of 99.9% by mass or more were prepared. Large flakes and bulk-shaped raw materials were reduced to a size of 3 mm or less by cutting and crushing while paying attention to ensure that the alloy after melting did not vary in composition depending on the sampling location. Next, a predetermined amount of these raw materials was weighed and put into a graphite crucible for a high-frequency melting furnace.

上記各原料の入った坩堝を高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切り、速やかに坩堝を取り出し、坩堝内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型は、はんだ母合金の製造の際に一般的に使用している形状と同様のものを使用した。   The crucible containing the raw materials was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 liter / min or more per kg of the raw materials in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold of the solder mother alloy. A mold having the same shape as that generally used in the production of a solder mother alloy was used.

このようにして、上記各原料の混合比率を変えることにより、試料1〜23のZn系はんだ母合金を作製した。得られた試料1〜23の各はんだ母合金の組成をICP発光分光分析器(SHIMAZU S−8100)を用いて分析した。得られたはんだ組成の分析結果を下記表1に示す。   Thus, the Zn type solder mother alloy of samples 1-23 was produced by changing the mixing ratio of each above-mentioned raw material. The composition of each solder mother alloy of the obtained samples 1 to 23 was analyzed using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The analysis results of the obtained solder composition are shown in Table 1 below.

Figure 0005699897
Figure 0005699897

次に、上記試料1〜23の各はんだ母合金について、下記のごとく圧延機でシート状に加工し、Znを主成分とするPbフリーはんだ合金の加工性を評価した。また、シート状に加工した各はんだ合金について、下記の方法により濡れ性(接合性)の評価及びヒートサイクル試験による信頼性の評価を行った。なお、はんだの濡れ性ないし接合性等の評価は、はんだ形状に依存しないためワイヤ、ボール、ペーストなどの形状で評価してもよいが、本実施例においてはシートの形状で評価した。   Next, each solder mother alloy of Samples 1 to 23 was processed into a sheet shape with a rolling mill as described below, and the workability of the Pb-free solder alloy containing Zn as a main component was evaluated. Moreover, about each solder alloy processed into the sheet form, the wettability (joinability) evaluation and the reliability evaluation by the heat cycle test were performed by the following method. The evaluation of solder wettability or bondability does not depend on the shape of the solder, and may be evaluated by the shape of a wire, a ball, a paste, or the like, but in this example, it was evaluated by the shape of a sheet.

<加工性の評価>
表1に示す試料1〜23の各はんだ母合金(厚さ5mmの板状インゴット)を、圧延機を用いて厚さ0.05mmまで圧延した。その際、インゴットの送り速度を調整しながら圧延していき、その後スリッター加工により25mmの幅に裁断した。このようにして各試料について長さ約120mのシート状に加工した後、得られたシート状のZn系はんだ合金を観察し、傷やクラックが全くなかった場合を「◎」、シート長さ50m当たり割れやクラックが1〜2箇所あった場合を「○」、3〜9箇所あった場合を「△」、10箇所以上ある場合を「×」とした。
<Evaluation of workability>
Each solder mother alloy (plate-shaped ingot having a thickness of 5 mm) of Samples 1 to 23 shown in Table 1 was rolled to a thickness of 0.05 mm using a rolling mill. At that time, rolling was performed while adjusting the feed speed of the ingot, and then it was cut into a width of 25 mm by slitting. After processing each sample into a sheet having a length of about 120 m in this way, the obtained sheet-like Zn-based solder alloy was observed, and the case where there were no scratches or cracks was “、”, and the sheet length was 50 m. The case where there were 1 to 2 hit cracks or cracks was indicated as “◯”, the case where 3 to 9 locations were present, “Δ”, and the case where there were 10 or more locations as “X”.

<濡れ性(接合性)の評価>
上記のごとくシート状に加工した各はんだ合金を、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を用いて評価した。即ち、濡れ性試験機のヒーター部に2重のカバーをして、ヒーター部の周囲4箇所から窒素を12リットル/分の流量で流しながら、ヒーター設定温度を各試料の融点より約10℃高い温度に設定して加熱した。設定したヒーター温度が安定した後、Cu基板(板厚:約0.70mm)をヒーター部にセッティングして25秒間加熱した。
<Evaluation of wettability (bondability)>
Each solder alloy processed into a sheet shape as described above was evaluated using a wettability tester (device name: atmosphere control type wettability tester). In other words, a double cover is applied to the heater section of the wettability tester, and the heater set temperature is about 10 ° C. higher than the melting point of each sample while flowing nitrogen from four locations around the heater section at a flow rate of 12 liters / minute. Heated to set temperature. After the set heater temperature was stabilized, a Cu substrate (plate thickness: about 0.70 mm) was set in the heater section and heated for 25 seconds.

次に、各試料のはんだ合金をCu基板の上に載せ、25秒加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げ、その横の窒素雰囲気が保たれている場所に一旦設置して冷却した。十分に冷却した後、大気中に取り出して接合部分を確認した。各試料のはんだ合金とCu基板との接合部分を目視で確認し、接合できなかった場合を「×」、接合できたが濡れ広がりが悪い場合(はんだが広がらず、盛り上がった状態)を「△」、接合でき且つ濡れ広がった場合を「○」、はんだが瞬時に薄く濡れ広がった場合を「◎」と評価した。   Next, the solder alloy of each sample was placed on a Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was taken up from the heater part, and once installed in a place where the nitrogen atmosphere next to it was kept, it was cooled. After sufficiently cooling, it was taken out into the atmosphere and a joint portion was confirmed. The joint between the solder alloy of each sample and the Cu substrate was visually confirmed, and “X” indicates that the joint could not be joined, and “△” indicates that the joint was joined but the wetting spread was poor (the solder did not spread and swelled). ”, The case where bonding was possible and the sample spread and was wet was evaluated as“ ◯ ”, and the case where the solder was thinly spread and wet was evaluated as“ ◎ ”.

<ヒートサイクル試験>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。なお、この試験は、上記した濡れ性の評価においてはんだ合金がCu基板に接合できた試料(濡れ性の評価が「◎」、「○」又は「△」の試料)を各々2個ずつ用いて行った。即ち、各試料のはんだ合金が接合されたCu基板2個のうちの1個に対しては、−40℃の冷却と+150℃の加熱を1サイクルとするヒートサイクル試験を途中確認のため300サイクルまで繰り返し、残る1個に対しては同様のヒートサイクル試験を500サイクルまで繰り返した。
<Heat cycle test>
A heat cycle test was conducted to evaluate the reliability of solder joints. In this test, two samples each having a solder alloy bonded to the Cu substrate in the above-described wettability evaluation (samples having a wettability evaluation of “◎”, “◯”, or “Δ”) were used. went. That is, for one of the two Cu substrates to which the solder alloy of each sample is bonded, 300 cycles are required for confirming the heat cycle test in which one cycle includes cooling at −40 ° C. and heating at + 150 ° C. The same heat cycle test was repeated up to 500 cycles for the remaining one.

その後、300サイクル及び500サイクルのヒートサイクル試験を実施した各試料について、はんだ合金が接合されたCu基板を樹脂に埋め込み、断面研磨を行い、SEM(装置名:HITACHI S−4800)により接合面の観察を行った。この観察の結果、接合面に剥がれが生じるか又ははんだにクラックが入った場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。これらの評価結果を下記の表2に示す。   Then, about each sample which performed the heat cycle test of 300 cycles and 500 cycles, Cu board | substrate with which the solder alloy was joined was embedded in resin, cross-sectional grinding | polishing was performed, and SEM (device name: HITACHI S-4800) performed the joining surface. Observations were made. As a result of this observation, the case where the joint surface peeled or the solder cracked was indicated as “X”, and the case where there was no such defect and the same joint surface as in the initial state was indicated as “◯”. . The evaluation results are shown in Table 2 below.

Figure 0005699897
Figure 0005699897

上記の表1〜2から分るように、本発明の要件を満たす試料1〜16の各はんだ合金は、全ての評価項目において良好な特性を示している。即ち、シート状に加工しても傷やクラックの発生が無く、濡れ性及び信頼性も非常に良好であった。加工性における良好な結果は、Zn−Al合金に少量のGeが添加されているため、はんだ合金の柔軟性が増し、圧延してもクラック等が発生しなかったことによると考えられる。   As can be seen from Tables 1 and 2 above, the solder alloys of Samples 1 to 16 that satisfy the requirements of the present invention exhibit good characteristics in all evaluation items. That is, even when processed into a sheet shape, no scratches or cracks were generated, and wettability and reliability were very good. It is considered that a good result in workability is due to the fact that since a small amount of Ge is added to the Zn—Al alloy, the flexibility of the solder alloy is increased and no cracks or the like are generated even when rolled.

更に、ヒートサイクル試験においても500回まで割れなどが発生せず、良好な接合性と信頼性を示したが、この理由はGeを少量含有することによって濡れ性が向上し、接合強度等が高まったことに起因すると考えられる。当然、Geの微細化効果により応力緩和性が上がったことも信頼性向上に寄与していると考えられる。   Furthermore, even in the heat cycle test, cracks and the like did not occur up to 500 times, and good bondability and reliability were shown. This is because the wettability is improved by containing a small amount of Ge, and the bond strength and the like are increased. This is considered to be caused by this. Naturally, the increased stress relaxation due to the refinement effect of Ge is considered to contribute to the improvement of reliability.

一方、本発明の要件を満たしていない試料17〜23の各はんだ合金は、Al、Ge、P、Mg及びAgのうちのいずれかの含有量が適切でなかったため、試料19を除いて好ましくない評価結果となった。具体的には、加工性の評価において試料19を除く全ての試料で傷やクラックが発生し、濡れ性についても試料19を除く6個の試料中4個の試料が悪い結果となり、特にヒートサイクル試験では試料19を除く全ての試料(接合できなかった試料17、18、21、23を除く)で300回までに不良が発生した。   On the other hand, the solder alloys of Samples 17 to 23 that do not satisfy the requirements of the present invention are not preferable except for Sample 19 because the content of any one of Al, Ge, P, Mg, and Ag is not appropriate. Evaluation results were obtained. Specifically, in the evaluation of workability, scratches and cracks occurred in all samples except the sample 19, and four samples out of the six samples except the sample 19 were bad in terms of wettability. In the test, defects occurred up to 300 times in all samples except sample 19 (excluding samples 17, 18, 21, and 23 that could not be joined).

試料19に関しては、本発明の要件を満たす試料1〜16と比較すればいくぶん劣るものの、全ての評価において「良(○)」の結果が得られた。試料19が試料1〜16よりも劣る評価結果となった理由は、Geの含有量が多いため、はんだ表面にGeの酸化物が多くなったり、Geを微量添加した場合に得られる結晶微細化の効果が小さかったりしたことなどが挙げられる。   Regarding sample 19, although it was somewhat inferior as compared with samples 1 to 16 that satisfy the requirements of the present invention, a result of “good (◯)” was obtained in all evaluations. The reason why the sample 19 was inferior to the samples 1 to 16 is that the Ge content is large, so that the oxide of Ge is increased on the solder surface or the crystal refinement obtained when a small amount of Ge is added. It is mentioned that the effect of was small.

Claims (3)

Alを1.0質量%以上9.0質量%以下含有し、Geを0.001質量%以上0.050質量%未満含有し、Mgを0.01質量%以上4.0質量%以下含有し(但し、0.5質量%以下を除く)、Agは4.0質量%を超えて含有しておらず、Pは0.500質量%を超えて含有しておらず、残部が製造上、不可避的に含まれる元素を除きZnから成ることを特徴とするZnを主成分とするPbフリーはんだ合金。 The Al containing 1.0 wt% to 9.0 wt% or less, a Ge containing less than 0.001 mass% or more 0.050 mass%, the Mg containing less 4.0 wt% 0.01 wt% (However, excluding 0.5% by mass or less) , Ag does not contain more than 4.0% by mass, P does not contain more than 0.50 % by mass, and the balance is manufactured. A Pb-free solder alloy containing Zn as a main component, characterized by being composed of Zn excluding elements inevitably contained. 0.1質量%以上含有していることを特徴とする、請求項1に記載のZnを主成分とするPbフリーはんだ合金。 2. The Pb-free solder alloy containing Zn as a main component according to claim 1, wherein Ag is contained in an amount of 0.1% by mass or more. Alを3.0質量%以上7.0質量%以下含有し、Geを0.003質量%以上含有し、Agは3.0質量%を超えて含有しておらず、Pは0.300質量%を超えて含有していないことを特徴とする、請求項1又は2に記載のZnを主成分とするPbフリーはんだ合金。   Al is contained in an amount of 3.0% by mass or more and 7.0% by mass or less, Ge is contained in an amount of 0.003% by mass or more, Ag is not contained more than 3.0% by mass, and P is 0.30% by mass. The Pb-free solder alloy containing Zn as a main component according to claim 1 or 2, wherein the Pb-free solder alloy is not contained in excess of%.
JP2011225198A 2011-10-12 2011-10-12 Pb-free solder alloy based on Zn Expired - Fee Related JP5699897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225198A JP5699897B2 (en) 2011-10-12 2011-10-12 Pb-free solder alloy based on Zn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225198A JP5699897B2 (en) 2011-10-12 2011-10-12 Pb-free solder alloy based on Zn

Publications (2)

Publication Number Publication Date
JP2013081995A JP2013081995A (en) 2013-05-09
JP5699897B2 true JP5699897B2 (en) 2015-04-15

Family

ID=48527759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225198A Expired - Fee Related JP5699897B2 (en) 2011-10-12 2011-10-12 Pb-free solder alloy based on Zn

Country Status (1)

Country Link
JP (1) JP5699897B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221484A (en) * 2013-05-13 2014-11-27 住友金属鉱山株式会社 Pb-FREE Zn-BASED SOLDER PASTE
JP6015571B2 (en) * 2013-06-18 2016-10-26 住友金属鉱山株式会社 Pb-free Zn-Al alloy fuse
JP2015042409A (en) * 2013-08-26 2015-03-05 住友金属鉱山株式会社 CLAD MATERIAL OF Pb-FREE-Zn-Al ALLOY SOLDER AND METAL BASE MATERIAL, AND MANUFACTURING METHOD THEREOF

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432063A (en) * 1977-08-16 1979-03-09 Asahi Glass Co Ltd Si semiconductor solder
JP3850135B2 (en) * 1998-04-02 2006-11-29 住友金属鉱山株式会社 Zn alloy for high temperature soldering
JP2006255762A (en) * 2005-03-18 2006-09-28 Uchihashi Estec Co Ltd Wire-shaped solder for electronic component
JP2012183558A (en) * 2011-03-07 2012-09-27 Nihon Superior Co Ltd Lead-free solder alloy and solder joint using the same

Also Published As

Publication number Publication date
JP2013081995A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP5861559B2 (en) Pb-free In solder alloy
JP4807465B1 (en) Pb-free solder alloy
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP5699897B2 (en) Pb-free solder alloy based on Zn
JP2016026884A (en) Bi-Sn-Al BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP2013123741A (en) Pb-free solder alloy having excellent plastic deformation property
JP5640915B2 (en) Lead-free solder alloy
JP2013052433A (en) SOLDER ALLOY OF Pb-FREE Zn SYSTEM
JP5699898B2 (en) Pb-free solder alloy based on Zn
CN114227057A (en) Lead-free solder alloy and preparation method and application thereof
JP5861526B2 (en) Ge-Al solder alloy not containing Pb
JP2016059924A (en) Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC COMPONENT
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP2016093831A (en) Pb-FREE Mg-Cu-BASED SOLDER ALLOY
JP2016028829A (en) Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE
JP2016026883A (en) Bi-Sn-Zn BASED SOLDER ALLOY FOR MEDIUM TO LOW TEMPERATURES AND SOLDER PASTE
JP2015139777A (en) Au-Sb TYPE SOLDER ALLOY
JP2016016453A (en) Au-Ge-Sn-based solder alloy
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2011235314A (en) Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT
JP2016097444A (en) Pb-FREE Sb-In-BASED SOLDER ALLOY
JP2017029996A (en) LEAD-FREE Ag-Sb BASED SOLDER ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees