JP2014024109A - Bi-Sb-BASED Pb-FREE SOLDER ALLOY - Google Patents

Bi-Sb-BASED Pb-FREE SOLDER ALLOY Download PDF

Info

Publication number
JP2014024109A
JP2014024109A JP2012168200A JP2012168200A JP2014024109A JP 2014024109 A JP2014024109 A JP 2014024109A JP 2012168200 A JP2012168200 A JP 2012168200A JP 2012168200 A JP2012168200 A JP 2012168200A JP 2014024109 A JP2014024109 A JP 2014024109A
Authority
JP
Japan
Prior art keywords
mass
solder
alloy
solder alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012168200A
Other languages
Japanese (ja)
Inventor
Takashi Izeki
隆士 井関
Masahito Takamori
雅人 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012168200A priority Critical patent/JP2014024109A/en
Publication of JP2014024109A publication Critical patent/JP2014024109A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a Bi-Sb-based Pb-free solder alloy having a melting point exceeding 265°C, materially withstanding a reflow temperature of about 270°C, and having excellent processability.SOLUTION: A Bi-Sb-based Pb-free solder alloy contains: Bi as a main component; Sb by 0.1-9.0 mass%; and at least one kind among Ag, Al, Zn, Sn, and Cu. When Ag is contained, its content is 0.01-4.00 mass%, and similarly for the rest, an Al content is 0.01-1.50 mass%, a Zn content is 0.1-5.0 mass%, a Sn content is 0.01-3.50 mass%, and a Cu content is 0.01-2.00 mass%.

Description

本発明は、高温用のPbフリーはんだ合金に関し、特に融点が高いBi−Sb系のPbフリーはんだ合金に関する。   The present invention relates to a high-temperature Pb-free solder alloy, and particularly to a Bi—Sb-based Pb-free solder alloy having a high melting point.

近年、環境に有害な化学物質に対する規制が益々厳しくなってきており、この規制は半導体素子等を基板に接合する目的で使用されるはんだ材料に対しても例外ではない。はんだ材料には古くからPbが主成分として使われ続けてきたが、Pbは既にRohs指令等で規制対象物質になっている。このため、Pbを含まないはんだ、いわゆるPbフリーはんだの開発が盛んに行われている。   In recent years, regulations on chemical substances harmful to the environment have become more and more stringent, and this regulation is no exception for solder materials used for the purpose of bonding semiconductor elements and the like to substrates. Pb has been used as a main component for solder materials for a long time, but Pb has already been a regulated substance under the Rohs Directive. For this reason, development of the solder which does not contain Pb, what is called Pb free solder, is performed actively.

半導体素子を基板に接合する際に使用するはんだは、その使用限界温度によって高温用(約260℃〜400℃)と中低温用(約140℃〜230℃)に大別され、そのうち中低温用はんだ材料に関してはSnを主成分とするPbフリーはんだが実用化されている。例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有するPbフリーはんだ合金組成が記載されている。また、特許文献2にはAgを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなる合金組成のPbフリーはんだが記載されている。   Solder used when bonding a semiconductor element to a substrate is roughly classified into high temperature (about 260 ° C. to 400 ° C.) and medium / low temperature (about 140 ° C. to 230 ° C.) depending on the limit temperature of use. Regarding the solder material, Pb-free solder mainly composed of Sn has been put into practical use. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 0.5 mass% or less, and P is 0.2 mass%. Pb-free solder alloy compositions containing up to 10% are described. Patent Document 2 describes a Pb-free solder having an alloy composition containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.

一方、高温用のPbフリーはんだ材料に関しても、さまざまな研究開発が行われており、例えば、特許文献3には、Biを30〜80質量%含み、溶融温度が350〜500℃のBi/Agろう材が提案されている。また、特許文献4には、Znを0.4質量%以上13.5質量%以下含有し、Cuを0.05質量%以上2.0質量%以下含有し、Pは0.500質量%を超えて含有しておらず、残部が不可避不純物を除いてBiからなることを特徴とするPbフリーはんだ合金が記載されている。   On the other hand, various research and development have been conducted on high-temperature Pb-free solder materials. For example, Patent Document 3 includes Bi / Ag containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. Brazing material has been proposed. Patent Document 4 contains Zn in an amount of 0.4% to 13.5% by mass, Cu in an amount of 0.05% to 2.0% by mass, and P contains 0.5% by mass. There is described a Pb-free solder alloy which is not contained in excess and the balance is made of Bi except for inevitable impurities.

更に、特許文献5には、孔を備える構造体と、孔の内壁に形成された内面電極と、孔に挿入されたリード線と、孔に充填されて内面電極とリード線とを固着させた鉛を含有しない半田とからなり、該半田は凝固時において体積収縮しない合金からなることを特徴とすることにより、内面電極と構造体の孔内壁との界面や構造体の内部にクラックが生ぜず、十分な内面電極強度を備え、且つ鉛を含まないため環境に優しい半田付け構造、並びに貫通型セラミックコンデンサについて記載されている。   Further, in Patent Document 5, a structure including a hole, an inner surface electrode formed on the inner wall of the hole, a lead wire inserted into the hole, and the inner electrode and the lead wire filled with the hole are fixed. It is composed of solder that does not contain lead, and the solder is composed of an alloy that does not shrink in volume during solidification, so that cracks do not occur at the interface between the inner surface electrode and the hole inner wall of the structure or inside the structure. An environmentally friendly soldering structure having sufficient inner surface electrode strength and containing no lead, and a feedthrough ceramic capacitor are described.

特開1999−077366号JP 1999-077366 特開平8−215880号JP-A-8-215880 特開2002−160089号JP 2002-160089 特許第4807465号Japanese Patent No. 4807465 特開2007−181880号JP2007-181880

高温用のPbフリーはんだ材料に関しては、上記したように種々の機関で多くの研究開発が行われているものの、改良すべき点は依然残されている。即ち、一般的にプリント基板には熱可塑性樹脂や熱硬化性樹脂などの比較的耐熱温度の低い材料が多用されているため、半導体素子を直接搭載する場合には作業温度を400℃未満、望ましくは370℃以下にする必要がある。しかしながら、例えば特許文献3に記載されたBi/Agろう材は、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合されるプリント基板の耐熱温度を超えてしまうことになる。   As described above, many researches and developments have been made on Pb-free solder materials for high temperatures, but there are still points to be improved. That is, since a material having a relatively low heat-resistant temperature such as a thermoplastic resin or a thermosetting resin is generally used for a printed circuit board, the working temperature is preferably less than 400 ° C. when directly mounting a semiconductor element. Needs to be 370 ° C. or lower. However, for example, the Bi / Ag brazing material described in Patent Document 3 has a liquidus temperature as high as 400 to 700 ° C., so it is estimated that the working temperature at the time of joining is 400 to 700 ° C. or higher. It will exceed the heat resistance temperature of the substrate.

また、Biが主成分のはんだ合金では、はんだ合金との接合性を高めるため半導体素子搭載部にNiめっきが形成されている基板に半導体素子を接合する場合に、BiとNiの反応により接合特性が低下し、またBiの凝固時の膨張に起因する残留応力により接合特性が低下するという、Bi系はんだ合金に特有の問題がある。具体的には、Ni層がはんだ合金に含まれるBiと急激に反応してNiとBiの脆い合金を生成すると共に、Ni層に破壊や剥離が生じてBi中にNiが拡散するため、接合強度が著しく低下してしまう。Ni層上にAgやAuなどの層を設けることもあるが、この場合のAgやAuはNi層の酸化防止やはんだの濡れ性向上を目的としているため薄く、直ちにはんだ合金中に拡散してしまい、Ni拡散を抑制する効果はほとんどない。   Further, in the case of a solder alloy containing Bi as a main component, when bonding a semiconductor element to a substrate on which a Ni plating is formed on the semiconductor element mounting portion in order to enhance the bondability with the solder alloy, the bonding characteristics are caused by the reaction between Bi and Ni. There is a problem peculiar to Bi-based solder alloys in that the bonding characteristics deteriorate due to residual stress resulting from expansion during solidification of Bi. Specifically, the Ni layer reacts rapidly with Bi contained in the solder alloy to form a brittle alloy of Ni and Bi, and the Ni layer breaks or peels off and Ni diffuses into Bi. Strength will fall remarkably. A layer such as Ag or Au may be provided on the Ni layer. In this case, Ag or Au is thin because it aims to prevent oxidation of the Ni layer and improve the wettability of the solder, and immediately diffuses into the solder alloy. Therefore, there is almost no effect of suppressing Ni diffusion.

上記したBi系はんだ合金に特有の問題を解決する手段として、上記特許文献4には、ZnがBiよりも優先的にNi層と反応し合金化することを利用して、BiとNiとの反応やBi中へのNiの拡散を抑えることが記載されている。このBi−Zn系はんだ合金は実用に耐え得るものであるが、改良の余地も残されていると考えられる。例えば、Bi−Zn系はんだ合金では固相線温度が254.5℃であり、耐え得るリフロー温度は理論上では254℃、実質的にはリフロー温度よりもはんだ部の温度が低くなる場合が多いため255℃〜265℃程度と推測される。   As means for solving the problems peculiar to the above-described Bi-based solder alloy, the above-mentioned Patent Document 4 describes the fact that Zn reacts with the Ni layer preferentially over Bi to form an alloy. It is described that reaction and Ni diffusion into Bi are suppressed. This Bi-Zn solder alloy can withstand practical use, but it is considered that there is still room for improvement. For example, in the case of Bi—Zn solder alloy, the solidus temperature is 254.5 ° C., and the reflow temperature that can be endured is theoretically 254 ° C., and the temperature of the solder part is substantially lower than the reflow temperature in many cases. Therefore, it is estimated that the temperature is about 255 ° C to 265 ° C.

しかし、半導体素子の接合条件はさまざまであり、場合によっては270℃程度を超えるリフロー温度に耐えること、即ち、Bi−Zn系はんだ合金が耐え得る温度よりも高いリフロー温度に耐えることが可能なはんだ材料へのニーズがある。また、基板のNi層が薄い若しくは接合時の加熱時間が短いなど比較的NiとBiの反応が進み難い場合や、半導体装置としての使用環境が緩い場合には、ある程度NiとBiの反応が進んでも実用に耐え得る信頼性を得ることができると考えられる。   However, the bonding conditions of the semiconductor element are various, and in some cases, the solder can withstand a reflow temperature exceeding about 270 ° C., that is, a solder capable of withstanding a reflow temperature higher than that which a Bi—Zn based solder alloy can withstand. There is a need for materials. Further, when the reaction between Ni and Bi is relatively difficult to proceed, such as when the Ni layer of the substrate is thin or the heating time at the time of bonding is short, or when the use environment as a semiconductor device is loose, the reaction between Ni and Bi proceeds to some extent. However, it is thought that the reliability which can be put into practical use can be obtained.

このように、融点がBi−Zn系はんだ合金で耐え得る温度よりも高いリフロー温度、例えば265℃を超えるリフロー温度に耐え且つNiとBiの反応を完全に抑制する必要がないようなはんだ材料のニーズがあるが、このような特性を満たす材料としてBi−Sb系はんだ合金が挙げられる。しかしながら、Bi−Sb系はんだ合金は、SbがBiと似たような性質を示すことから、Sbの添加によってBiの特性を著しく改善するには不十分である。   Thus, a solder material that can withstand a reflow temperature higher than the temperature that the Bi—Zn-based solder alloy can withstand, for example, a reflow temperature exceeding 265 ° C., and does not need to completely suppress the reaction between Ni and Bi. Although there is a need, a Bi—Sb solder alloy can be cited as a material satisfying such characteristics. However, Bi—Sb based solder alloys are not sufficient to remarkably improve the characteristics of Bi by the addition of Sb because Sb exhibits properties similar to Bi.

特に問題になるのは、Bi−Sb系はんだ合金の加工性である。SbはBiと同様に非常に脆いため、Bi−Sb合金としても伸び率は1%以下である。このように小さな伸び率では、はんだとして実際に使用される形状、例えばワイヤ形状に量産加工することは困難である。上記特許文献5には、このBi−Sb系はんだ合金も記載され、該合金の特徴として、Biの凝固時の膨張する性質を活かし、BiをSbと合金化することによりBi−Sb合金が凝固時に収縮しないようにして、内面電極と構造体の孔内壁との界面や構造体の内部にクラックが生ぜず、十分な内面電極強度を備えることができる点が述べられている。   Particularly problematic is the workability of Bi—Sb solder alloys. Since Sb is very brittle like Bi, the elongation rate is 1% or less even for a Bi-Sb alloy. With such a small elongation rate, it is difficult to mass-produce into a shape actually used as a solder, for example, a wire shape. Patent Document 5 also describes this Bi—Sb solder alloy. As a feature of the alloy, the Bi—Sb alloy is solidified by alloying Bi with Sb by utilizing the expanding property of Bi during solidification. It is stated that it is possible to provide sufficient strength of the inner surface electrode without cracking at the interface between the inner surface electrode and the inner wall of the hole of the structure or the inside of the structure without contracting.

しかしながら、本発明者らの実験によれば、Bi−Sb系合金の伸び率は、Sb含有量が0.01質量、0.3質量%、1.2質量%、3.1質量%、4.7質量%及び6.5質量%の各Bi−Sb合金において、最大でも2.1%であり、ほとんどの合金は1%以下であった。従って、上記特許文献5に記載されたBi−Sb系はんだ合金では、凝固収縮を改善できても、量産できるような伸び率と優れた加工性は得られず、更には高い信頼性を得ることも難しいと考えられる。   However, according to the experiments by the present inventors, the elongation of the Bi-Sb alloy is 0.01 mass%, 0.3 mass%, 1.2 mass%, 3.1 mass%, and 4%. In each of the Bi-Sb alloys of 0.7 mass% and 6.5 mass%, the maximum was 2.1%, and most alloys were 1% or less. Therefore, with the Bi-Sb solder alloy described in Patent Document 5, even if solidification shrinkage can be improved, an elongation rate and excellent workability that can be mass-produced cannot be obtained, and high reliability is obtained. Is also considered difficult.

以上述べたように、Pbを含まない高温用のBi系はんだ合金を用いて半導体素子と基板を接合する場合に、例えばBi−Zn系はんだ合金よりも固相線温度が1℃でも高く、基板上のNiとはんだ合金のBiとの反応がNi層の厚みなど所定の条件下で許容できる程度であって、ワイヤ形状等に加工することが可能なはんだ材料が求められている。   As described above, when a semiconductor element and a substrate are bonded using a high-temperature Bi-based solder alloy that does not contain Pb, for example, the solidus temperature is 1 ° C. higher than that of a Bi—Zn-based solder alloy. There is a need for a solder material that can be processed into a wire shape or the like that allows the reaction between Ni and Bi of the solder alloy to be acceptable under predetermined conditions such as the thickness of the Ni layer.

本発明は、このような事情に鑑みてなされたものであり、PbフリーのBi系はんだ合金において、265℃を超える液相線温度を持ち、実質的に270℃程度のリフロー温度に耐えることができ、NiとBiの反応やBi中へのNiの拡散を許容できる程度に抑えることができ、且つ優れた加工性を有するBi−Sb系Pbフリーはんだ合金を提供することを目的としている。   The present invention has been made in view of such circumstances, and in a Pb-free Bi-based solder alloy, it has a liquidus temperature exceeding 265 ° C. and can withstand a reflow temperature of about 270 ° C. An object of the present invention is to provide a Bi—Sb-based Pb-free solder alloy capable of suppressing the reaction between Ni and Bi and the diffusion of Ni into Bi to an acceptable level and having excellent workability.

上記目的を達成するため、本発明が提供するBi−Sb系Pbフリーはんだ合金は、Biを主成分とし、Sbを0.1質量%以上9.0質量%以下含有すると共に、Ag、Al、Zn、Sn、Cuの少なくとも1種を含有するBi−Sb系Pbフリーはんだ合金であって、Agを含有する場合その含有量が0.01質量%以上4.00質量%以下、Alを含有する場合その含有量が0.01質量%以上1.50質量%以下、Znを含有する場合その含有量が0.1質量%以上5.0質量%以下、Snを含有する場合その含有量が0.01質量%以上3.50質量%以下、Cuを含有する場合その含有量が0.01%以上2.00質量%以下であることを特徴とする。   In order to achieve the above object, the Bi—Sb-based Pb-free solder alloy provided by the present invention contains Bi as a main component, and contains Sb in an amount of 0.1% by mass to 9.0% by mass, and Ag, Al, A Bi—Sb-based Pb-free solder alloy containing at least one of Zn, Sn, and Cu, and when containing Ag, the content is 0.01 mass% or more and 4.00 mass% or less, and Al is contained. In the case where the content is 0.01 mass% or more and 1.50 mass% or less, in the case where Zn is contained, the content is 0.1 mass% or more and 5.0 mass% or less, and in the case where Sn is contained, the content is 0 0.01 mass% or more and 3.50 mass% or less, and when it contains Cu, the content is 0.01% or more and 2.00 mass% or less.

また、上記本発明によるBi−Sb系Pbフリーはんだ合金は、主成分のBi及び必須成分のSb、並びにAg、Al、Zn、Sn、Cuの少なくとも1種に加え、任意の成分としてPを0.500質量%以下含有することができる。   In addition, the Bi—Sb-based Pb-free solder alloy according to the present invention described above contains 0 as an optional component in addition to at least one of Bi as a main component and Sb as an essential component, and Ag, Al, Zn, Sn, and Cu. It can be contained up to .500% by mass.

本発明によれば、高温用のBi系はんだ合金として、265℃を超える液相線温度を持ち、実質的に270℃程度のリフロー温度に耐え、実用的に問題のない信頼性を有すると共に、加工性に優れたBi−Sb系Pbフリーはんだ合金を提供することができる。また、本発明のBi−Sb系Pbフリーはんだ合金は、基板表面に形成されたNi層とはんだ合金中のBiとの反応やBi中へのNi拡散を抑制し、その反応や拡散がある程度進行したとしも、実用上問題が生じない接合性を確保することができる。   According to the present invention, as a high-temperature Bi-based solder alloy, it has a liquidus temperature exceeding 265 ° C., withstands a reflow temperature of about 270 ° C., and has practically no problem reliability. A Bi—Sb-based Pb-free solder alloy excellent in workability can be provided. In addition, the Bi—Sb-based Pb-free solder alloy of the present invention suppresses the reaction between the Ni layer formed on the substrate surface and Bi in the solder alloy and the diffusion of Ni into Bi, and the reaction and diffusion progress to some extent. Even so, it is possible to secure the bondability that does not cause a practical problem.

Ni層を有するCu基板上に接合されたはんだ合金について、Niの拡散状態をEPNAライン分析により測定する方法の説明図である。It is explanatory drawing of the method of measuring the diffusion state of Ni by EPNA line analysis about the solder alloy joined on the Cu board | substrate which has Ni layer.

本発明のBi−Sb系Pbフリーはんだ合金は、Biを主成分とし、Sbを必須成分として含有すると共に、Ag、Al、Zn、Sn、Cuの少なくとも1種を含有し、これらの元素の含有量はAgが0.01質量%以上4.00質量%以下、Alが0.01質量%以上1.50質量%以下、Znが0.1質量%以上5.0質量%以下、Snが0.01質量%以上3.50質量%以下、及びCuが0.01%以上2.00質量%以下である。また、本発明のBi−Sb系Pbフリーはんだ合金は、必要に応じて、更にPを0.500質量%まで含有することができる。   The Bi—Sb-based Pb-free solder alloy of the present invention contains Bi as a main component and Sb as an essential component, and contains at least one of Ag, Al, Zn, Sn, and Cu. The amount of Ag is 0.01% to 4.0% by weight, Al is 0.01% to 1.50% by weight, Zn is 0.1% to 5.0% by weight, and Sn is 0%. 0.01 mass% or more and 3.50 mass% or less, and Cu is 0.01% or more and 2.00 mass% or less. In addition, the Bi—Sb-based Pb-free solder alloy of the present invention can further contain P up to 0.500% by mass as necessary.

上記のように本発明のBi−Sb系Pbフリーはんだ合金は、Biを主成分とし、Sbを必須成分として含有することにより、液相線温度と固相線温度を270℃以上に高めることができる。そして、Ag、Al、Zn、Sn、Cuの中から1種以上を選択して含有させることによって、加工性や応力緩和性など各種の特性を調整することできる。以下に、本発明のBi−Sb系Pbフリーはんだ合金に関係する各元素について詳しく説明する。   As described above, the Bi—Sb-based Pb-free solder alloy of the present invention contains Bi as a main component and Sb as an essential component, thereby increasing the liquidus temperature and the solidus temperature to 270 ° C. or higher. it can. And various characteristics, such as workability and stress relaxation property, can be adjusted by selecting and containing 1 or more types from Ag, Al, Zn, Sn, and Cu. Below, each element related to the Bi-Sb system Pb free solder alloy of this invention is demonstrated in detail.

<Bi>
Biは本発明による高温用Pbフリーはんだ合金の主成分、即ち第1の元素をなしている。Biは5B族元素(N、P、As、Sb、Bi)に属し、その結晶構造は対称性の低い三方晶(菱面体晶)で非常に脆い金属であって、引張試験などを行うとその破面は脆性破面であることが容易に見て取れる。即ち、純Biは延性的な性質に乏しく、実験結果ではBiの伸び率は1.0%未満であった。
<Bi>
Bi is the main component of the high-temperature Pb-free solder alloy according to the present invention, that is, the first element. Bi belongs to the group 5B elements (N, P, As, Sb, Bi), and its crystal structure is a trigonal crystal (rhombohedral crystal) with a low symmetry and is a very brittle metal. It can be easily seen that the fracture surface is a brittle fracture surface. That is, pure Bi was poor in ductile properties, and the experimental results showed that the elongation rate of Bi was less than 1.0%.

また、Biは凝固時に膨張する特殊な金属であり、この凝固時の収縮率(−が膨張、+が収縮を意味する)は−3.2%〜−3.4%である。この膨張により、はんだに残留応力が発生し、接合強度や信頼性を低下させる。また、BiはNiと容易に反応して脆い合金を生成し、接合性等を低下させるという問題を有している。   Bi is a special metal that expands during solidification, and the shrinkage rate during solidification (-means expansion and + means contraction) is -3.2% to -3.4%. Due to this expansion, residual stress is generated in the solder, which decreases the bonding strength and reliability. In addition, Bi has a problem that it easily reacts with Ni to form a brittle alloy and deteriorates the bondability and the like.

反面、Biは融点が271℃であり、高温用はんだの使用条件である約260℃のリフロー温度を超えている。この利点を活かすために、次に述べるSbを含有させることによって、本発明によるBi−Sb系Pbフリーはんだ合金における基本の合金系となる。   On the other hand, Bi has a melting point of 271 ° C., which exceeds the reflow temperature of about 260 ° C., which is the use condition of the high-temperature solder. In order to take advantage of this advantage, by incorporating Sb described below, a basic alloy system in the Bi-Sb Pb-free solder alloy according to the present invention is obtained.

<Sb>
Sbは本発明による高温用Pbフリーはんだ合金の必須成分である第2の元素であり、Biの271℃という融点を更に上げる目的で含有させる。SbはBiと同じ5B族元素に属し、その結晶構造はBiと同じ三方晶である。このようにBiとSbは似通った元素であるため全率固溶する。そして、Sbの融点は631℃であり、Biより高いことから、BiにSbを含有させていくと単調増加で液相線温度と固相線温度が上がっていく。従って、Bi系はんだ合金の融点をBiの融点より高い領域で調整するために、Sbは最も適した金属である。更に、SbはNiの拡散を抑制する効果も有し、基板表面に形成されたNi層がはんだ接合時に極端に薄くなることを妨げる。
<Sb>
Sb is a second element that is an essential component of the high-temperature Pb-free solder alloy according to the present invention, and is contained for the purpose of further increasing the melting point of Bi at 271 ° C. Sb belongs to the same group 5B element as Bi, and its crystal structure is the same trigonal crystal as Bi. Since Bi and Sb are similar elements in this way, they are completely dissolved. Since the melting point of Sb is 631 ° C. and higher than Bi, when Sb is contained in Bi, the liquidus temperature and the solidus temperature rise monotonously. Therefore, Sb is the most suitable metal for adjusting the melting point of the Bi-based solder alloy in a region higher than the melting point of Bi. Furthermore, Sb also has an effect of suppressing the diffusion of Ni, and prevents the Ni layer formed on the substrate surface from becoming extremely thin during solder bonding.

本発明のはんだ合金におけるSbの含有量は、0.1質量%以上9.0質量%以下である。Sbの含有量が0.1質量%未満では、含有量が少なすぎるため、Biの融点を上げる効果を実質的に得ることができない。一方、Sbの含有量が9.0質量%を超えると、液相線温度と固相線温度の差が50℃以上となってしまい、はんだの溶け分かれ現象が発生する。はんだの溶け分かれ現象を極力抑え、更に良好な接合を実現するためには、Sb含有量を5.0質量%以下とすることが特に好ましい。   The Sb content in the solder alloy of the present invention is 0.1% by mass or more and 9.0% by mass or less. If the Sb content is less than 0.1% by mass, the content is too small, so that the effect of increasing the melting point of Bi cannot be substantially obtained. On the other hand, if the Sb content exceeds 9.0% by mass, the difference between the liquidus temperature and the solidus temperature becomes 50 ° C. or more, and a solder melting phenomenon occurs. In order to suppress the solder melting phenomenon as much as possible and to realize a better bonding, it is particularly preferable that the Sb content is 5.0% by mass or less.

このように、Sbを添加含有させる効果は大きいのであるが、SbはBiと性質が似ているため、SbにBiの脆さを改善する効果を期待することはできない。そこで本発明の高温用Pbフリーはんだ合金には、以下に述べる第3元素群(Ag、Al、Zn、Sn、Cu)の中から選ばれた少なくとも1種の元素を含有させることが必須となるのである。   Thus, although the effect of adding and containing Sb is large, since Sb is similar in nature to Bi, the effect of improving the brittleness of Bi cannot be expected. Therefore, it is essential that the high-temperature Pb-free solder alloy of the present invention contains at least one element selected from the following third element group (Ag, Al, Zn, Sn, Cu). It is.

<Ag>
Agは上記第3元素群の元素の1つであり、Biと共晶合金を作るため、加工性や応力緩和性の向上させる目的で含有させる金属として非常に好ましい。ただし、AgはSbと金属間化合物を作るため、SbとAgの含有量が多すぎると、Bi−Sb系はんだ合金の脆さを改善する効果を得ることはできない。更に、Bi−Agの共晶温度が262.5℃であるため、融点と加工性等とのバランスを取りながらAgの含有量を調整する必要がある。
<Ag>
Ag is one of the elements of the third element group, and is very preferable as a metal to be contained for the purpose of improving workability and stress relaxation properties because it forms a eutectic alloy with Bi. However, since Ag forms an intermetallic compound with Sb, if the content of Sb and Ag is too large, the effect of improving the brittleness of the Bi—Sb solder alloy cannot be obtained. Furthermore, since the eutectic temperature of Bi—Ag is 262.5 ° C., it is necessary to adjust the Ag content while balancing the melting point and workability.

本発明のはんだ合金におけるAgの含有量は、0.01質量%以上4.00質量%以下である。Agの含有量が0.01質量%未満では、含有量が少なすぎるため、上記したAgを添加含有させる効果が実質的に現われない。一方、Agの含有量が4.00質量%を超えると、脆いSb−Ag金属間化合物が多量に生成し、良好な接合性や信頼性が得られなかったり、融点が低めになったりするため好ましくない。   The content of Ag in the solder alloy of the present invention is 0.01% by mass or more and 4.00% by mass or less. If the content of Ag is less than 0.01% by mass, the content is too small, so that the effect of adding and containing Ag is not substantially exhibited. On the other hand, if the Ag content exceeds 4.00% by mass, a large amount of brittle Sb-Ag intermetallic compounds are formed, and good bonding properties and reliability cannot be obtained, and the melting point becomes low. It is not preferable.

<Al>
Alは上記第3元素群の元素の1つであり、柔らかい金属であって、Biにほとんど固溶せず、しかもBi−Al合金を形成して僅かな含有量で融点を急激に上昇させる。これらの効果を総合して判断すると、Alは少量含有させることが好ましい元素である。即ち、Alを少量含有させることにより、加工性が向上し、更に融点を上昇させることができる。加えて、後に述べるZnが添加含有されると、Zn−Alの共晶合金を生成して更に加工性を向上させることができる。
<Al>
Al is one of the elements of the third element group, is a soft metal, hardly dissolves in Bi, and forms a Bi—Al alloy to rapidly increase the melting point with a small content. Considering these effects in total, Al is an element that is preferably contained in a small amount. That is, by containing a small amount of Al, workability can be improved and the melting point can be further increased. In addition, when Zn, which will be described later, is added and contained, a Zn—Al eutectic alloy can be formed to further improve the workability.

本発明のはんだ合金におけるAlの含有量は、0.01質量%以上1.50質量%以下である。この範囲であれば、望まれる融点、加工性や応力緩和性等が得られる。Al含有量が0.01質量%未満では、上記したAlを添加含有させる効果が実質的に現われない。一方、Alの含有量が1.50質量%を超えると、Alリッチ相の粒径が粗大化して脆化したり、液相線温度が高くなり過ぎたりするため好ましくない。   The Al content in the solder alloy of the present invention is 0.01% by mass or more and 1.50% by mass or less. If it is this range, desired melting | fusing point, workability, stress relaxation property, etc. will be obtained. When the Al content is less than 0.01% by mass, the above-described effect of adding and containing Al does not substantially appear. On the other hand, if the Al content exceeds 1.50 mass%, the particle size of the Al-rich phase becomes coarse and embrittles, or the liquidus temperature becomes too high, which is not preferable.

<Zn>
Znは上記第3元素群の元素の1つであり、Agと同じようにBiと共晶合金を作るため、加工性や応力緩和性を向上させる目的でBi−Sb合金に含有させる金属として好ましい。ただし、ZnはSbと融点の高い金属間化合物(ZnSb)を生成するため、その含有量には配慮する必要がある。ZnSbは融点が高いために、半導体素子と基板を接合する際に接合界面に生成し易い。つまり、温度が低い又は冷却時に一番早く冷える接合界面に、ZnSbは生成し易いのである。そして、このZnSbは一般的な金属間化合物と同様に脆く、応力緩和性に乏しいため、接合界面にクラックが入り易くなってしまう。
<Zn>
Zn is one of the elements of the third element group described above, and is preferable as a metal to be contained in the Bi—Sb alloy for the purpose of improving workability and stress relaxation properties in order to form a eutectic alloy with Bi as with Ag. . However, since Zn forms an intermetallic compound (Zn 3 Sb 2 ) having a high melting point with Sb, the content thereof needs to be taken into consideration. Since Zn 3 Sb 2 has a high melting point, it is easily generated at the bonding interface when the semiconductor element and the substrate are bonded. That is, Zn 3 Sb 2 is likely to be formed at the bonding interface where the temperature is low or cools the earliest during cooling. Then, the Zn 3 Sb 2, like the common intermetallic compounds brittle, because poor stress relaxation properties, becomes liable to be cracked in the bonding interface.

本発明のはんだ合金におけるZnの含有量は、0.01質量%以上5.00質量%以下である。Zn含有量を上記範囲内とする理由は、5.00質量%を超えると、Sb含有量にもよるが、上記した脆い金属間化合物ZnSbが接合界面に多量に生成してしまうからである。また、Zn含有量が0.01質量%未満では、含有量が少な過ぎるため添加含有される効果が現われない。 The Zn content in the solder alloy of the present invention is 0.01 mass% or more and 5.00 mass% or less. The reason why the Zn content is within the above range is that if it exceeds 5.00 mass%, the above-described brittle intermetallic compound Zn 3 Sb 2 is generated in a large amount at the bonding interface, although it depends on the Sb content. It is. Moreover, if Zn content is less than 0.01 mass%, since the content is too small, the effect of addition inclusion does not appear.

<Sn>
Snは上記第3元素群の元素の1つであり、Biと共晶合金を作るため、加工性や応力緩和性を向上させる目的で含有させることが好ましいが、低融点相を生成させてしまうため多量に含有させることができない。ただし、他の添加元素との組み合わせによっては、3質量%以上含有させることができる。例えば、Bi−Sn合金では固相線温度が139℃であるが、Ag−Sn合金では固相線温度は700℃を超える。このような元素の組み合わせと含有量、そして実際の接合条件や使用環境によっては、Snを3質量%以上含有させることができる。
<Sn>
Sn is one of the elements of the third element group and is preferably contained for the purpose of improving workability and stress relaxation properties in order to form a eutectic alloy with Bi, but it generates a low melting point phase. Therefore, it cannot be contained in large quantities. However, depending on the combination with other additive elements, 3% by mass or more can be contained. For example, the solidus temperature of a Bi—Sn alloy is 139 ° C., whereas the solidus temperature of an Ag—Sn alloy exceeds 700 ° C. Depending on the combination and content of such elements, and actual bonding conditions and use environment, Sn can be contained in an amount of 3% by mass or more.

本発明のはんだ合金におけるSnの含有量は、0.01質量%以上3.50質量%以下である。Snの含有量が0.01質量%未満では、含有量が少な過ぎるため添加含有される効果が現われない。逆に、含有量が3.50質量%を超えると、他の元素が含有されたとしても、高温といわれるリフロー温度に耐えることは実質的に困難である。   The Sn content in the solder alloy of the present invention is 0.01 mass% or more and 3.50 mass% or less. If the Sn content is less than 0.01% by mass, the content of the Sn content is too small, so that the effect of addition and inclusion does not appear. On the other hand, if the content exceeds 3.50% by mass, it is substantially difficult to withstand the reflow temperature, which is called high temperature, even if other elements are contained.

<Cu>
Cuは上記第3元素群の元素の1つであり、Alと似通った効果を発揮する。即ち、Cuは柔らかい金属であり、Biにほとんど固溶せず、加えてBi−Cu合金においてAlの僅かな含有で融点を急激に上昇させる。これらの性質を有することから、少量のCuを添加含有させることで、加工性や応力緩和性の向上並びに融点上昇という効果を期待することができる。
<Cu>
Cu is one of the elements of the third element group and exhibits an effect similar to Al. That is, Cu is a soft metal and hardly dissolves in Bi. In addition, the Bi-Cu alloy rapidly raises the melting point with a slight Al content. Because of these properties, the effect of improving workability and stress relaxation properties and increasing the melting point can be expected by adding a small amount of Cu.

本発明のはんだ合金におけるCuの含有量は、0.01質量%以上2.00質量%以下である。この範囲の含有量であれば、CuやCu化合物の偏析もなく、所望の加工性や応力緩和性等を得ることができる。   The content of Cu in the solder alloy of the present invention is 0.01% by mass or more and 2.00% by mass or less. If it is content of this range, there is no segregation of Cu or Cu compound, and desired workability, stress relaxation property, etc. can be obtained.

<P>
Pは必要に応じて含有してよい元素であり、Pの含有によって本発明のはんだ合金の濡れ性及び接合性を更に向上させることができる。Pの添加により濡れ性向上の効果が大きくなる理由は、Pは非常に還元性が強く、自ら酸化することによってはんだ合金表面の酸化を抑制することによる。
<P>
P is an element that may be contained as necessary, and the inclusion of P can further improve the wettability and bondability of the solder alloy of the present invention. The reason why the effect of improving wettability is increased by the addition of P is that P is very reducible and suppresses oxidation of the surface of the solder alloy by oxidizing itself.

更にPの添加は、接合時にボイドの発生を低減させる効果がある。即ち、上述したようにPは自らが酸化しやすいため、接合時にはんだの主成分であるBiよりも優先的に酸化が進む。その結果、はんだ母相の酸化を防ぎ、濡れ性を確保することができるため、良好な接合が可能となり、ボイドが生成し難くなる。   Furthermore, the addition of P has the effect of reducing the generation of voids during bonding. That is, as described above, since P easily oxidizes itself, oxidation proceeds preferentially over Bi, which is the main component of solder, at the time of bonding. As a result, oxidation of the solder mother phase can be prevented and wettability can be ensured, so that good bonding is possible and voids are hardly generated.

Pは非常に還元性が強いため微量の添加でも濡れ性向上の効果を発揮するが、ある量以上添加しても濡れ性向上の効果は飽和して変わらず、逆に過剰な添加ではPの酸化物がはんだ表面に生成されたり、Pが脆弱な相を作って脆化したりする恐れがある。従って、Pの添加は微量の添加であることが好ましい。   P is very reducible, so even if it is added in a small amount, it exhibits the effect of improving wettability. However, even if it is added in a certain amount or more, the effect of improving wettability is saturated and does not change. There is a possibility that an oxide is generated on the solder surface, or P forms a brittle phase and becomes brittle. Therefore, the addition of P is preferably a trace amount.

具体的には、本発明のはんだ合金におけるPの含有量は0.500質量%を上限とする。Pが上限値の0.500質量%を超えると、Pの酸化物がはんだ表面を覆い、逆に濡れ性を落とことになる。更に、PはBiへの固溶量が非常に少ないため、含有量が多いと脆いP酸化物が偏析するなどして信頼性を低下させる。特にワイヤ形状に加工する場合には、断線の原因になりやすい。   Specifically, the upper limit of the P content in the solder alloy of the present invention is 0.500% by mass. If P exceeds the upper limit of 0.500% by mass, the oxide of P covers the solder surface and conversely reduces wettability. Furthermore, since P has a very small amount of solid solution in Bi, if the content is large, brittle P oxide is segregated, and reliability is lowered. In particular, when processing into a wire shape, it tends to cause disconnection.

本発明による高温用のBi−Sb系Pbフリーはんだ合金は、半導体素子と基板の接合に使用することによって、ヒートサイクルが繰り返される環境などの条件下で使用される場合であっても、実用上問題のない耐久性や信頼性を有する半導体素子接合体を提供することができる。しかも、基板の接合面にNi層がない場合は勿論、Ni層が薄い場合やNi層上にAg層を有する場合など、所定の条件下ではNiとBiの反応やBi中へのNiの拡散を許容できる程度に抑えることができる。よって、この半導体素子接合体は、例えば、サイリスタやインバータなどのパワー半導体装置、自動車などに搭載される各種制御装置、太陽電池などで使用される装置等に搭載することができる。   The Bi-Sb-based Pb-free solder alloy for high temperature according to the present invention is practically used even when used under conditions such as an environment in which a heat cycle is repeated by being used for joining a semiconductor element and a substrate. It is possible to provide a semiconductor element assembly having no problem with durability and reliability. Moreover, when there is no Ni layer on the bonding surface of the substrate, the reaction between Ni and Bi and the diffusion of Ni into Bi under certain conditions, such as when the Ni layer is thin or when the Ag layer is formed on the Ni layer, etc. Can be suppressed to an acceptable level. Therefore, this semiconductor element assembly can be mounted on, for example, power semiconductor devices such as thyristors and inverters, various control devices mounted on automobiles, devices used in solar cells, and the like.

原料として、それぞれ純度99.9質量%以上のBi、Sb、Ag、Al、Zn、Sn、Cu、及び純度99.95質量%以上のPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のバラツキがなく均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさに細かくした。次に、これら原料から所定量を秤量して、高周波溶解炉用グラファイト製るつぼに投入した。   As raw materials, Bi, Sb, Ag, Al, Zn, Sn, Cu having a purity of 99.9% by mass or more and P having a purity of 99.95% by mass or more were prepared. Large flakes and bulk-shaped raw materials were cut and pulverized, etc. so as to be uniform with no variation in composition depending on the sampling location in the alloy after melting, and were reduced to a size of 3 mm or less. Next, a predetermined amount of these raw materials was weighed and put into a graphite crucible for a high-frequency melting furnace.

原料の入ったるつぼを高周波溶解炉に入れ、酸化を抑制するために窒素ガスを原料1kg当たり0.7リットル/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。特にPを添加した場合はPが酸化し易いため、窒素ガスの流量を原料1kg当たり1.2リットル/分以上とした。原料の金属が溶融しはじめたら混合棒でよく撹拌し、局所的な組成のばらつきが起きないように均一に混合した。十分溶融したことを確認した後、高周波電源を切り、速やかにるつぼを取り出して、るつぼ内の溶湯をはんだ母合金の鋳型に流し込んだ。鋳型には、はんだ合金の製造の際に一般的に使用している形状と同様のものを使用した。   The crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen gas was flowed at a flow rate of 0.7 liter / min or more per kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. In particular, when P is added, since P is easily oxidized, the flow rate of nitrogen gas is set to 1.2 liter / min or more per kg of the raw material. When the starting metal began to melt, it was thoroughly stirred with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off, the crucible was quickly removed, and the molten metal in the crucible was poured into the solder mother alloy mold. A mold having the same shape as that generally used in the manufacture of solder alloys was used.

このようにして、各原料の混合比率を変えることにより試料1〜22の各はんだ母合金を作製した。これら試料1〜22の各はんだ母合金について、組成をICP発光分光分析器(SHIMAZU、S−8100)を用いて分析すると共に、液相線温度を示差走査熱量測定装置(DSC)を用いて測定した。得られた分析結果並びに測定結果を下記表1に示す。   Thus, each solder mother alloy of samples 1-22 was produced by changing the mixing ratio of each raw material. About each solder mother alloy of these samples 1-22, while analyzing a composition using an ICP emission spectroscopic analyzer (SHIMAZU, S-8100), liquidus temperature is measured using a differential scanning calorimeter (DSC). did. The obtained analysis results and measurement results are shown in Table 1 below.

Figure 2014024109
Figure 2014024109

次に、上記表1に示す試料1〜22の各はんだ母合金に対して、下記に示すワイヤ加工性の評価、濡れ性(接合性)の評価、EPMAライン分析(Ni拡散防止効果の評価)、及びヒートサイクル試験(信頼性の評価)を行った。尚、はんだの濡れ性等の評価は、はんだ形状に依存しないため、ワイヤ、ボール、ペーストなどの形状で評価してもよいが、本実施例においてはワイヤに成形して評価した。   Next, for each of the solder mother alloys of Samples 1 to 22 shown in Table 1 above, evaluation of wire processability, evaluation of wettability (bondability), and EPMA line analysis (evaluation of Ni diffusion prevention effect) shown below. And a heat cycle test (evaluation of reliability). The evaluation of solder wettability and the like does not depend on the solder shape, and may be evaluated by the shape of a wire, a ball, a paste, or the like.

<ワイヤ加工性の評価>
上記表1に示す試料1〜22の各はんだ母合金を各々押出機にセットし、外径0.75mmのワイヤに加工した。具体的には、予め押出機をはんだ組成に適した温度に加熱しておき、各はんだ母合金をセットした。押出機出口から押し出されるワイヤ状のはんだは、まだ熱く酸化が進行し易いため、押出機出口は密閉構造とし、その内部に不活性ガスを流した。
<Evaluation of wire workability>
Each solder mother alloy of Samples 1 to 22 shown in Table 1 above was set in an extruder and processed into a wire having an outer diameter of 0.75 mm. Specifically, the extruder was heated in advance to a temperature suitable for the solder composition, and each solder mother alloy was set. Since the wire-like solder extruded from the extruder outlet is still hot and easily oxidizes, the outlet of the extruder has a sealed structure, and an inert gas is allowed to flow therethrough.

押出機は油圧で圧力を上げていき、はんだ母合金をワイヤ形状に押し出していった。ワイヤの押出速度はワイヤが切れたり変形したりしないように予め調整した速度とし、同時に自動巻取機を用いて同じ速度で巻き取るようにした。   The extruder increased the pressure with hydraulic pressure and pushed out the solder mother alloy into a wire shape. The wire extrusion speed was adjusted in advance so that the wire was not cut or deformed, and at the same time, the wire was wound at the same speed using an automatic winder.

このようにして試料1〜22の各はんだ母合金をワイヤ状に加工すると共に、得られたワイヤ形状のはんだを自動巻取機で50mを巻き取ったとき、1度も断線しなかった場合を「○」、1〜3回断線した場合を「△」、4回以上断線した場合を「×」として評価した。得られた結果を下記表2に示す。   In this way, each of the solder mother alloys of Samples 1 to 22 was processed into a wire shape, and when the obtained wire-shaped solder was wound up by 50 m with an automatic winder, the case where the wire was not disconnected once The case where “◯” was broken 1-3 times was evaluated as “Δ”, and the case where it was broken four times or more was evaluated as “x”. The obtained results are shown in Table 2 below.

<濡れ性(接合性)の評価>
濡れ性(接合性)評価は、上記ワイヤ加工性の評価によって得られた試料1〜22のワイヤ状の各はんだ合金を用いて行った。まず、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を起動し、加熱するヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素ガスを12リットル/分の流量で流した。その後、ヒーター設定温度を310℃にして加熱した。
<Evaluation of wettability (bondability)>
The wettability (joinability) evaluation was performed using each wire-shaped solder alloy of Samples 1 to 22 obtained by the above-described evaluation of wire workability. First, the wettability tester (device name: atmosphere control type wettability tester) is started, a double cover is applied to the heater part to be heated, and nitrogen gas is supplied from four locations around the heater part at a flow rate of 12 liters / minute. Washed away. Thereafter, the heater was set to 310 ° C. and heated.

ヒーター温度が310℃で安定した後、基板表面上にNiメッキ層(層厚:4.0μm)及びその上にAg蒸着層(層厚:0.15μm)が形成されたCu基板(板厚:約0.70mm)をヒーター部にセッティングし、10間秒加熱した。次に、はんだ合金を上記Cu基板の上に載せ、10秒間加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げて、その横の窒素雰囲気が保たれている場所に一旦移して冷却した。十分に冷却した後、大気中に取り出してCu基板とはんだの接合部分を確認した。   After the heater temperature was stabilized at 310 ° C., a Cu substrate (plate thickness: 0.15 μm) on which a Ni plating layer (layer thickness: 4.0 μm) and an Ag vapor deposition layer (layer thickness: 0.15 μm) were formed on the substrate surface. About 0.70 mm) was set in the heater section and heated for 10 seconds. Next, the solder alloy was placed on the Cu substrate and heated for 10 seconds. After the heating was completed, the Cu substrate was picked up from the heater part, temporarily moved to a place where the nitrogen atmosphere next to the Cu substrate was maintained, and cooled. After sufficiently cooling, it was taken out into the atmosphere and a joint portion between the Cu substrate and the solder was confirmed.

上記濡れ性(接合性)の評価については、Cu基板とはんだの接合部分を確認し、Cu基板とはんだが接合できなかった場合を「×」、接合できたが濡れ広がりが悪かった場合(はんだがCu基板上に盛り上がった状態)を「△」、接合でき良好に濡れ広がった場合(はんだがCu基板に薄く広がった場合)を「○」と評価した。得られた結果を下記表2に示す。   Regarding the evaluation of the wettability (bondability), the joint portion between the Cu substrate and the solder was confirmed. When the Cu substrate and the solder could not be joined, “x”, when the joint could be joined but the wetting spread was poor (solder) Was evaluated as “◯”, and the case where the bonding was successful and wet spread (when the solder spread thinly on the Cu substrate) was evaluated as “◯”. The obtained results are shown in Table 2 below.

<EPMAライン分析(Ni拡散防止効果の評価)>
Cu基板上に設けたNi層がはんだ合金中のBiと反応して薄くなったり、NiがBi中に拡散したりする問題が生じているか否かを確認するために、EMPAによるライン分析を行った。尚、この分析は、上記濡れ性の評価で得られたCu基板のうち、はんだ合金が接合されたCu基板(即ち、濡れ性の評価が○及び△の試料)を用いて行った。
<EPMA line analysis (evaluation of Ni diffusion prevention effect)>
In order to confirm whether the Ni layer provided on the Cu substrate is thinned by reacting with Bi in the solder alloy or Ni diffuses into Bi, line analysis by EMPA is performed. It was. This analysis was performed using a Cu substrate to which a solder alloy was bonded (that is, a sample having a wettability evaluation of ◯ and Δ) among the Cu substrates obtained by the wettability evaluation.

まず、上記濡れ性評価ではんだ合金が接合されたCu基板を樹脂に埋め込み、研磨機を用いて粗い研磨紙から順に細かいものを用いて研磨し、最後にバフ研磨を行った。その後、EPMA(装置名:SHIMADZU EPMA−1600)を用いてライン分析を行い、Niの拡散状態等を調べた。測定方法は、はんだ合金が接合されたCu基板の断面を横から見たとき、Cu基板とNi層との接合面を原点0として、はんだ合金側をX軸のプラス方向とした(図1参照)。測定においては、任意に5箇所を測定して最も平均的なものを採用した。   First, a Cu substrate to which a solder alloy was bonded in the wettability evaluation was embedded in a resin, and was polished using a polishing machine in order from coarse abrasive paper, and finally buffed. Thereafter, line analysis was performed using EPMA (device name: SHIMADZU EPMA-1600) to examine the diffusion state of Ni and the like. When the cross section of the Cu substrate to which the solder alloy is bonded is viewed from the side, the measuring method is that the bonding surface between the Cu substrate and the Ni layer is the origin 0, and the solder alloy side is the positive direction of the X axis (see FIG. 1). ). In the measurement, five points were arbitrarily measured and the average one was adopted.

上記EPMAライン分析によるNi拡散防止効果の評価については、NiがBiと反応してNi層厚が30%以上減少しているか、若しくはNiが層状ではんだ中に拡散している場合を「×」、Ni層の厚みが初期状態とほとんど変わらず、Niがはんだ中に拡散していない場合を「○」と評価した。得られた結果を下記表2に示す。   Regarding the evaluation of the Ni diffusion prevention effect by the above EPMA line analysis, the case where Ni reacts with Bi and the Ni layer thickness is reduced by 30% or more, or the Ni is layered and diffused in the solder is “×”. The case where the thickness of the Ni layer was hardly changed from the initial state and Ni was not diffused in the solder was evaluated as “◯”. The obtained results are shown in Table 2 below.

<ヒートサイクル試験(信頼性の評価)>
はんだ接合の信頼性を評価するために、ヒートサイクル試験を行った。尚、この試験は、上記濡れ性評価と同様にして得られたCu基板のうち、はんだ合金が接合されたCu基板(即ち、濡れ性の評価が○及び△の試料)を用いて行った。
<Heat cycle test (reliability evaluation)>
In order to evaluate the reliability of solder joints, a heat cycle test was conducted. This test was performed using a Cu substrate to which a solder alloy was joined (that is, a sample having a wettability evaluation of ◯ and Δ) among Cu substrates obtained in the same manner as the wettability evaluation.

まず、はんだ合金が接合されたCu基板に対して、−40℃の冷却と+125℃の加熱を1サイクルとし、これを所定のサイクル数(300回及び500回)だけ繰り返した。その後、はんだ合金が接合されたCu基板を樹脂に埋め込み、断面研磨を行い、SEM(装置名:HITACHI S−4800)により接合面の観察を行った。   First, with respect to the Cu board | substrate with which the solder alloy was joined, -40 degreeC cooling and +125 degreeC heating were made into 1 cycle, and this was repeated by predetermined cycle number (300 times and 500 times). Thereafter, the Cu substrate to which the solder alloy was bonded was embedded in the resin, the cross-section was polished, and the bonded surface was observed by SEM (device name: HITACHI S-4800).

上記ヒートサイクル試験による信頼性の評価は、接合面に剥がれが生じるか又ははんだにクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」と評価した。得られた結果を下記表2に示す。   The reliability evaluation by the heat cycle test indicated that the case where the joint surface was peeled off or the solder was cracked was “x”, and there was no such defect, and the same joint surface as in the initial state was maintained. The case was evaluated as “◯”. The obtained results are shown in Table 2 below.

Figure 2014024109
Figure 2014024109

上記表2から分かるように、本発明の実施例である試料1〜14の各はんだ合金は、各評価項目において良好な特性を示している。即ち、ワイヤに加工しても切れることなく自動巻取ができ、良好な加工性を示した。また、濡れ性は非常に良好であり、特にPを添加した試料14は非常に濡れ広がり方が早く、はんだ合金がCu基板に接した瞬間に薄く濡れ広がった。しかも、はんだ合金中のBiと基板表面に形成されたNi層の反応や、Bi中へのNi拡散についてもほぼ防止することができ、実用上問題が生じない接合性を確保することができた。更に、信頼性に関するヒートサイクル試験及び大気中耐熱試験においても良好な結果が得られており、ヒートサイクル試験では500サイクル経過後も不良は現われなかった。   As can be seen from Table 2 above, each solder alloy of Samples 1 to 14 which is an example of the present invention shows good characteristics in each evaluation item. That is, even if it was processed into a wire, it could be automatically wound without being cut and showed good workability. Further, the wettability was very good, and in particular, the sample 14 to which P was added spreads very quickly, and thinly spread when the solder alloy contacted the Cu substrate. In addition, the reaction between Bi in the solder alloy and the Ni layer formed on the surface of the substrate and the diffusion of Ni into Bi can be almost prevented, and it is possible to secure the bondability that causes no practical problems. . Furthermore, good results were also obtained in the heat cycle test and the heat resistance test in the air for reliability, and no defects appeared after 500 cycles in the heat cycle test.

一方、本発明の要件を満たしていない比較例の試料15〜22の各はんだ合金は、少なくとも上記いずれかの特性において好ましくない結果となった。即ち、母合金をワイヤに加工した際に少なくとも1回以上は断線し、濡れ性も試料19を除いて悪いものが多く、ヒートサイクル試験では300回までに比較例の全ての試料で不良が発生した。   On the other hand, each of the solder alloys of Comparative Examples 15 to 22 that did not satisfy the requirements of the present invention resulted in an unfavorable result in at least one of the above characteristics. That is, when the mother alloy was processed into a wire, it was disconnected at least once, and the wettability was often poor except for the sample 19, and in the heat cycle test, all samples of the comparative example were defective up to 300 times. did.

Claims (2)

Biを主成分とし、Sbを0.1質量%以上9.0質量%以下含有すると共に、Ag、Al、Zn、Sn、Cuの少なくとも1種を含有するBi−Sb系Pbフリーはんだ合金であって、Agを含有する場合その含有量が0.01質量%以上4.00質量%以下、Alを含有する場合その含有量が0.01質量%以上1.50質量%以下、Znを含有する場合その含有量が0.1質量%以上5.0質量%以下、Snを含有する場合その含有量が0.01質量%以上3.50質量%以下、Cuを含有する場合その含有量が0.01%以上2.00質量%以下であることを特徴とするBi−Sb系Pbフリーはんだ合金。   A Bi—Sb Pb-free solder alloy containing Bi as a main component and containing Sb in an amount of 0.1% by mass to 9.0% by mass and containing at least one of Ag, Al, Zn, Sn, and Cu. When Ag is contained, the content is 0.01% by mass to 4.00% by mass, and when Al is contained, the content is 0.01% by mass to 1.50% by mass, and Zn is contained. When the content is 0.1 mass% or more and 5.0 mass% or less, when Sn is contained, the content is 0.01 mass% or more and 3.50 mass% or less, and when Cu is contained, the content is 0. A Bi—Sb-based Pb-free solder alloy characterized by being from 0.01% to 2.00% by mass. Pを0.500質量%以下含有することを特徴とする、請求項1に記載のBi−Sb系Pbフリーはんだ合金。   The Bi-Sb-based Pb-free solder alloy according to claim 1, wherein P is contained in an amount of 0.500% by mass or less.
JP2012168200A 2012-07-30 2012-07-30 Bi-Sb-BASED Pb-FREE SOLDER ALLOY Pending JP2014024109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168200A JP2014024109A (en) 2012-07-30 2012-07-30 Bi-Sb-BASED Pb-FREE SOLDER ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168200A JP2014024109A (en) 2012-07-30 2012-07-30 Bi-Sb-BASED Pb-FREE SOLDER ALLOY

Publications (1)

Publication Number Publication Date
JP2014024109A true JP2014024109A (en) 2014-02-06

Family

ID=50198277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168200A Pending JP2014024109A (en) 2012-07-30 2012-07-30 Bi-Sb-BASED Pb-FREE SOLDER ALLOY

Country Status (1)

Country Link
JP (1) JP2014024109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115699A1 (en) * 2013-01-28 2014-07-31 ニホンハンダ株式会社 Solder alloy for die bonding
CN114905183A (en) * 2022-05-11 2022-08-16 湘潭大学 Bi-Ag-Zn lead-free solder and preparation method and application thereof
CN114905183B (en) * 2022-05-11 2024-04-09 湘潭大学 Bi-Ag-Zn lead-free solder and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353590A (en) * 2000-06-12 2001-12-25 Murata Mfg Co Ltd Composition of solder and soldered article
JPWO2012002173A1 (en) * 2010-06-30 2013-08-22 千住金属工業株式会社 Bi-Sn high temperature solder alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353590A (en) * 2000-06-12 2001-12-25 Murata Mfg Co Ltd Composition of solder and soldered article
JPWO2012002173A1 (en) * 2010-06-30 2013-08-22 千住金属工業株式会社 Bi-Sn high temperature solder alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115699A1 (en) * 2013-01-28 2014-07-31 ニホンハンダ株式会社 Solder alloy for die bonding
US10189119B2 (en) 2013-01-28 2019-01-29 Nihon Handa Co., Ltd. Solder alloy for die bonding
CN114905183A (en) * 2022-05-11 2022-08-16 湘潭大学 Bi-Ag-Zn lead-free solder and preparation method and application thereof
CN114905183B (en) * 2022-05-11 2024-04-09 湘潭大学 Bi-Ag-Zn lead-free solder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5585746B2 (en) High temperature lead-free solder alloy
JP5206779B2 (en) Pb-free solder alloy based on Zn
JP5861559B2 (en) Pb-free In solder alloy
JP6281916B2 (en) Solder material and joint structure
JP4807465B1 (en) Pb-free solder alloy
JP5716332B2 (en) Pb-free solder alloy
JP5212573B2 (en) Bi-Al-Zn Pb-free solder alloy
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP5861465B2 (en) Pb-free Bi solder alloy containing Mg
US20160234945A1 (en) Bi-BASED SOLDER ALLOY, METHOD OF BONDING ELECTRONIC COMPONENT USING THE SAME, AND ELECTRONIC COMPONENT-MOUNTED BOARD
JP5640915B2 (en) Lead-free solder alloy
JP5093260B2 (en) Pb-free solder alloy
JP5589642B2 (en) Pb-free solder alloy with excellent stress relaxation
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP5655641B2 (en) Pb-free solder paste
JP5589590B2 (en) Pb-free solder alloy with excellent stress relaxation
JP5655714B2 (en) Semiconductor device using Bi solder
JP2014233737A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY
JP5464113B2 (en) Pb-free solder alloy containing Ge
JP5471985B2 (en) Pb-free solder alloy based on Zn
JP5652001B2 (en) Pb-free solder alloy based on Zn
JP2014136236A (en) Pb-FREE In-BASED SOLDER ALLOY
JP2011240372A (en) Pb-FREE SOLDER ALLOY COMPOSED PRINCIPALLY OF Zn
JP2018149554A (en) Pb-FREE Bi SOLDER ALLOY, ELECTRONIC COMPONENT PREPARED WITH THE SAME, AND ELECTRONIC COMPONENT-MOUNTING SUBSTRATE
JP2017070960A (en) Au-Sb-Sn SOLDER ALLOY CONTAINING FOURTH OR MORE ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308