JPS5895673A - Method of bonding ceramic and metal with oxide solder - Google Patents

Method of bonding ceramic and metal with oxide solder

Info

Publication number
JPS5895673A
JPS5895673A JP19208781A JP19208781A JPS5895673A JP S5895673 A JPS5895673 A JP S5895673A JP 19208781 A JP19208781 A JP 19208781A JP 19208781 A JP19208781 A JP 19208781A JP S5895673 A JPS5895673 A JP S5895673A
Authority
JP
Japan
Prior art keywords
metal
oxide
glass
oxide solder
bonding ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19208781A
Other languages
Japanese (ja)
Inventor
章司 横石
弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19208781A priority Critical patent/JPS5895673A/en
Publication of JPS5895673A publication Critical patent/JPS5895673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はセラミックスと金属の接合方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for joining ceramics and metal.

近年、セラミックスはその耐熱性が優れているため各方
面で利用されており、金属との接着による複合体の開発
が進められている。アルミナ磁器とF・−Ni−00合
金(通称1コパール”)との接着を例にとると、モリブ
デンとマンガンの微粉末に有機バインダーを添加混練し
たのち。
In recent years, ceramics have been used in various fields due to their excellent heat resistance, and the development of composites by bonding them with metals is progressing. For example, when adhering alumina porcelain and F.-Ni-00 alloy (commonly known as 1 Copal), an organic binder is added to fine powders of molybdenum and manganese and then kneaded.

アルミナ表面に塗布し、加温水素ガス中、1300ない
し1700’Cでの加熱処理により、モリブデンとマン
ガンを合金化し、次にニッケルメッキを施した後、低融
点の台金によりコパールとのろう付を行っている。
Coated on the alumina surface, alloyed with molybdenum and manganese by heat treatment at 1300 to 1700'C in heated hydrogen gas, then nickel plated, then brazed with copal using a low melting point base metal. It is carried out.

この方法によれば気密性の高い接合が可能であるが、セ
ラミックスと金属の間の熱特性、具体的には熱膨張率お
よび熱伝導率にかなりの差違があるため、高温時の使用
において、また急加熱、急冷峙される条件下の使用にお
いては耐熱衝撃性の点で十分なものとはいえない、また
接合操作も煩雑かつ困難なものである。
Although this method allows for a highly airtight bond, there are considerable differences in thermal properties, specifically thermal expansion coefficient and thermal conductivity, between ceramics and metals, making it difficult to use at high temperatures. Further, when used under conditions of rapid heating and rapid cooling, the thermal shock resistance is not sufficient, and the joining operation is complicated and difficult.

本発明の目的は熱変化に対して優れた耐熱輌撃性を示す
接合物を得るためのセラミックスと金属の接合方法を提
供することにある。
An object of the present invention is to provide a method for joining ceramics and metal to obtain a joined product that exhibits excellent heat shock resistance against thermal changes.

本発明の接合方法は酸化ビスマス8ないし印嵐量−、ア
ルミン酸リチウム5ないし401量憾、および接合され
る金属の酸化物な0ないし101J6亀量−好ましくは
約2%を含むガラス粉末をセラミックスの表面に塗布し
、金属を圧着しつ\#接合材V溶融せしめた後冷却し、
400ないし120σG、好ましくは700ないし95
0℃の間で結晶を含むガラス相を接合層中に生成せしむ
ることを特徴とする。
The bonding method of the present invention uses glass powder containing preferably about 2% of bismuth oxide, 5 to 40% of lithium aluminate, and 0 to 101 of the metal oxide to be bonded, preferably about 2%. Apply it to the surface of the metal, pressure bond it, melt it, and then cool it.
400 to 120σG, preferably 700 to 95
It is characterized in that a glass phase containing crystals is generated in the bonding layer at a temperature of 0°C.

すなわちセラミックスと金属の中間的な熱特性を有する
ガラス層を形成し、セラミックス相と金属相との熱特性
の相違の緩和をはかった点に特徴を有する。
That is, it is characterized in that a glass layer having thermal properties intermediate between those of ceramics and metals is formed to alleviate the difference in thermal properties between the ceramic phase and the metal phase.

本発明の方法で使用するガラス粉末は、通常のフリント
ガラスの酸化珪素が40ないし60嘩を占めるに対し3
〇−以下(ニし、酸化ビスマスと酸化リチウムの比率を
高くしたものである。
The glass powder used in the method of the present invention has a silicon oxide content of 3% compared to 40 to 60% in ordinary flint glass.
〇- or below (d), which has a high ratio of bismuth oxide and lithium oxide.

ビスマス、リチウムはガラス相に結晶領域を発3J′8
せる効果があり、特にビスマスは繊維状微結晶を析出せ
しめて、ガラス相の熱膨張係数を低くし耐熱衝撃性を高
めている。金属咳化物は接合される金属とのなじみを増
す点で効果があるが1096程度を越えるとビスマス、
リチウムの特性を損うことになる。
Bismuth and lithium generate crystalline regions in the glass phase 3J'8
In particular, bismuth precipitates fibrous microcrystals, lowering the coefficient of thermal expansion of the glass phase and increasing thermal shock resistance. Metallic compounds are effective in increasing compatibility with the metals being joined, but if they exceed about 1096, bismuth,
This will damage the properties of lithium.

一般にガラスの軟化点は400ないし1600°0の間
にあり1本発明の方法に於ては一旦ガラス粉末を溶融せ
しめた後、冷却の過程で一定の温度範囲で一定時間保つ
ことにより、結晶の生長を促す必要が、ある。その範囲
は組成により異なるが400ないし1200℃の間にあ
り、特に700ないし950℃が上記の繊維状微結晶の
成長にとって好ましい。
Generally, the softening point of glass is between 400° and 1600°0, and in the method of the present invention, after melting the glass powder, it is kept in a certain temperature range for a certain period of time during the cooling process to form crystals. There is a need to encourage growth. Although the range varies depending on the composition, it is between 400 and 1200°C, and particularly 700 to 950°C is preferable for the growth of the above-mentioned fibrous microcrystals.

このようにして得られるセラミックスと金属の接合層の
断面を模式的に示したのか第1図である。第1−におい
てlはアルミナ磁器、2はペタライト(リチウムアルミ
ニウムシリケート、LtAJsiO40,。)の結晶を
含み、アルミーナに富むガラス中間m%3ははゾ完全に
結晶化したガラス相で繊維状の81□B、O,の結晶を
含んでいる。4はコバルト及びニッケルに富むガラス中
間層。
FIG. 1 schematically shows a cross section of the ceramic-metal bonding layer obtained in this manner. In the 1st, l is alumina porcelain, 2 contains crystals of petalite (lithium aluminum silicate, LtAJsiO40,.), and the alumina-rich glass intermediate m%3 is a fully crystallized glass phase with a fibrous 81□ Contains B, O, crystals. 4 is a glass interlayer rich in cobalt and nickel.

5はコパールである。すなわち結晶化がラス相と被接合
材料との間に薄い中間層を有していることが熱特性の不
整合を緩和し、更に中心部のガラス相における繊維状微
結晶の存在が耐熱衝撃性の強化に役立っているとみられ
る。
5 is copal. In other words, the crystallization has a thin intermediate layer between the lath phase and the material to be joined, which alleviates the mismatch in thermal properties, and the presence of fibrous microcrystals in the glass phase in the center improves thermal shock resistance. This seems to be helping to strengthen the

実施例 酸化ビスマス48重量%、アルミン酸リチウム27i1
![量チ酸化珪素21重量%、酸化コバルト2,2東量
−及び酸g真量−の組成を有するガラスな細粉化したも
の100部に対し酢酸カルビノール20部を加え、混練
してペーストとした。次に高純度アルミナ焼結体(50
mx5ogmX6m、lfi粗度0.1μ)の表面に約
70μの厚さで上記のペーストを塗布し、コバール板(
50m X 5(m+×−)を圧着した後、 12(m
、  20分間の熱処理で酢酸カルピトールを揮散せし
めた。引続き窒素1簡気中1300,10分間でガラス
粉末を溶融せしめて十分、アルミナ磁器とコパール(=
なじませた後、 20鶴僅の冷却速度で900℃に冷却
後そのまま40分間保ち次に室温まで冷却した。
Example Bismuth oxide 48% by weight, lithium aluminate 27i1
! [Amount] 20 parts of carbinol acetate was added to 100 parts of a finely powdered glass having a composition of 21% by weight of silicon thioxide, 2,2% of cobalt oxide, and 2% of acid, and the mixture was kneaded to make a paste. And so. Next, high purity alumina sintered body (50
Apply the above paste to a thickness of about 70μ on the surface of a Kovar plate (mx5ogmx6m, lfi roughness 0.1μ).
After crimping 50m x 5(m+x-), 12(m
Carpitol acetate was volatilized by heat treatment for 20 minutes. Subsequently, the glass powder was sufficiently melted at 1300℃ for 10 minutes in a nitrogen atmosphere, and the alumina porcelain and copal (=
After being blended, the mixture was cooled to 900° C. at a cooling rate of 20°C, maintained for 40 minutes, and then cooled to room temperature.

比較例 モリブデンとマンガンの高純度粉末を、それぞれ40重
量係、60重量−の比で混合し、この混合物100部に
対し酢酸カルピトール30部を添加し、十分に攪拌混合
して得たペーストな実施例と同様に高純度アルミナ焼結
体に塗布した。120℃にて乾燥後296の水分を含む
水素雰囲気中、15000で2時間の熱処理を行ない、
M。
Comparative Example High-purity molybdenum and manganese powders were mixed in a ratio of 40 and 60 parts by weight, respectively, and 30 parts of carpitol acetate was added to 100 parts of this mixture, and the paste was obtained by thoroughly stirring and mixing. It was applied to a high purity alumina sintered body in the same manner as in the example. After drying at 120°C, heat treatment was performed at 15000°C for 2 hours in a hydrogen atmosphere containing 296°C moisture,
M.

−Mn合金の皮膜を形成した。次にこの皮膜上に電解ニ
ッケルメッキを施した後、通常のろう材でコパールにろ
う付した。
-A film of Mn alloy was formed. Next, electrolytic nickel plating was applied to this film, and then it was brazed to copal using an ordinary brazing filler metal.

上記の実施例、比較例によって得た接合物について接着
強度試験を行なった結果を第2図。
FIG. 2 shows the results of an adhesive strength test performed on the bonded products obtained in the above Examples and Comparative Examples.

第3図に示す、(白点:実施例、黒点:比較例)第2図
は八ツセルマン試験による加熱後空冷の温度差と接着強
度との関係を示し、第3図は300℃から空冷への急冷
試験繰返し回数と接着強度との関係を示す。第2図、第
3図を通じ温度差や試験回数がふえるほど実施例と比較
例との優劣の差が拡がることが明らかである。
Figure 3 shows the relationship between the temperature difference and adhesive strength after heating and air cooling according to the Yatsuselman test (white dots: Example, black dots: Comparative example). The relationship between the number of repeated rapid cooling tests and adhesive strength is shown. It is clear from FIGS. 2 and 3 that the difference in superiority between the example and the comparative example widens as the temperature difference and the number of tests increase.

【図面の簡単な説明】[Brief explanation of drawings]

jllGillは本発明により得られた接合部の模式W
k面図、第2図は八ツセルマン試験による接着強度を示
すグラフ、第3図は急冷繰返し試験による接着強度す表
わすグラフである。 図中。 l・・・アルミナ磁器 2・−アルミナに富むガラス中間層 3・−結晶化ガラス層 4−−co、miに富むガラス中間層 5・・・コバール 特許出願人  トヨタ自動車工業株式会社矛1図
jllGill is a schematic W of the joint obtained by the present invention.
FIG. 2 is a graph showing the adhesive strength according to the Yatsuselman test, and FIG. 3 is a graph showing the adhesive strength according to the repeated rapid cooling test. In the figure. l... Alumina porcelain 2 - Alumina-rich glass intermediate layer 3 - Crystallized glass layer 4 - Co, Mi-rich glass intermediate layer 5... Kovar patent applicant Toyota Motor Corporation Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 酸化ビスマス8ないし60重量%、アルミン酸リチウム
5ないし40重量%および接合される金属の酸化物な0
ないし10I[量チを含むガラス楡末をセラミックスの
表面に塗布し、金属を圧着しつ〜皺襞合材を溶融せしめ
た後冷却し、400ないし120向の間で結晶を含むガ
ラス相を接合層中に生成せしむることを特徴とする酸化
物ソルダーによるセラミックスと金属の接合方法。
8 to 60% by weight of bismuth oxide, 5 to 40% by weight of lithium aluminate and 0% of the oxide of the metal to be joined.
Apply glass powder containing 1 to 10 I to the surface of the ceramic, press the metal, melt the crease bonding material, cool it, and form the glass phase containing crystals in the bonding layer between 400 and 120 directions. A method for joining ceramics and metal using an oxide solder, which is characterized by the formation of an oxide solder.
JP19208781A 1981-11-30 1981-11-30 Method of bonding ceramic and metal with oxide solder Pending JPS5895673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19208781A JPS5895673A (en) 1981-11-30 1981-11-30 Method of bonding ceramic and metal with oxide solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19208781A JPS5895673A (en) 1981-11-30 1981-11-30 Method of bonding ceramic and metal with oxide solder

Publications (1)

Publication Number Publication Date
JPS5895673A true JPS5895673A (en) 1983-06-07

Family

ID=16285426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19208781A Pending JPS5895673A (en) 1981-11-30 1981-11-30 Method of bonding ceramic and metal with oxide solder

Country Status (1)

Country Link
JP (1) JPS5895673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171277A (en) * 1984-02-17 1985-09-04 株式会社東芝 Metal-ceramic bonded body
WO1993020017A1 (en) * 1992-03-31 1993-10-14 Nippon Steel Corporation Jointed body of heat-resistant alloy and method of jointing
JP2002180014A (en) * 2000-12-12 2002-06-26 Ngk Insulators Ltd Method for producing bonded body, bonded body and adhesive
JP2022107513A (en) * 2021-01-08 2022-07-21 キストラー ホールディング アクチエンゲゼルシャフト Joint, electrical feedthrough, and sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171277A (en) * 1984-02-17 1985-09-04 株式会社東芝 Metal-ceramic bonded body
JPH0362671B2 (en) * 1984-02-17 1991-09-26 Tokyo Shibaura Electric Co
WO1993020017A1 (en) * 1992-03-31 1993-10-14 Nippon Steel Corporation Jointed body of heat-resistant alloy and method of jointing
US5679464A (en) * 1992-03-31 1997-10-21 Nippon Steel Corporation Joined product of heat-resisting alloys and method for joining heat-resisting alloys
JP2002180014A (en) * 2000-12-12 2002-06-26 Ngk Insulators Ltd Method for producing bonded body, bonded body and adhesive
JP4698018B2 (en) * 2000-12-12 2011-06-08 日本碍子株式会社 Adhesive manufacturing method and adhesive
JP2022107513A (en) * 2021-01-08 2022-07-21 キストラー ホールディング アクチエンゲゼルシャフト Joint, electrical feedthrough, and sensor
US11783971B2 (en) 2021-01-08 2023-10-10 Kistler Holding Ag Joint, electrical feedthrough, and sensor

Similar Documents

Publication Publication Date Title
US4663649A (en) SiC sintered body having metallized layer and production method thereof
US3317298A (en) Process for joining surfaces of refractory material with a mno-sio2-al2o3 system
WO1992000924A1 (en) Tellurite glass compositions
JPS5830759B2 (en) Screen printing paste and thick film conductive circuits
JPH0512320B2 (en)
JPS5895673A (en) Method of bonding ceramic and metal with oxide solder
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JPS61132580A (en) Metallization of nitride ceramic body
JP2020073418A (en) Bonding material and bonded body
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPS62197372A (en) Manufacture of aluminum nitride sintered body with electroconductive metallized layer
JPS6350382A (en) Formation of metal coating for ceramic
KR102303001B1 (en) Electrode marerial for transient liquid phase sintering
CN107408514A (en) The manufacture method of conjugant
JP3103208B2 (en) Solder preform substrate
JPS6317267A (en) Solder material for joining ceramics each other or ceramic and metal
JPS6369787A (en) Aluminum nitride sintered body with metallized surface and manufacture
JP3302807B2 (en) Joining method of ceramics and silicon
WO2018131190A1 (en) Low melting point sealing material and electronic component
JPH05254949A (en) Brazing filler metal for joining metal to ceramics and joining method
JP2019137572A (en) Low melting point composition, encapsulating material, and electronic component
WO2018181110A1 (en) Low melting point sealing material and electronic part
WO2017098928A1 (en) Low melting point composition, sealing material and sealing method
JPH0337906A (en) Conductive paste for aluminium nitride sintered body
JPS60131873A (en) Cerqmic-metal direct bonded body and manufacture