WO2018128306A1 - 상변화물질 캡슐을 적용한 배터리 냉각용 히트 싱크 - Google Patents

상변화물질 캡슐을 적용한 배터리 냉각용 히트 싱크 Download PDF

Info

Publication number
WO2018128306A1
WO2018128306A1 PCT/KR2017/015165 KR2017015165W WO2018128306A1 WO 2018128306 A1 WO2018128306 A1 WO 2018128306A1 KR 2017015165 W KR2017015165 W KR 2017015165W WO 2018128306 A1 WO2018128306 A1 WO 2018128306A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcm
battery module
heat sink
cooling fluid
battery
Prior art date
Application number
PCT/KR2017/015165
Other languages
English (en)
French (fr)
Inventor
손상일
최용석
차훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17889828.4A priority Critical patent/EP3486995A4/en
Priority to JP2019500429A priority patent/JP7027631B2/ja
Priority to US16/318,276 priority patent/US11024897B2/en
Priority to CN201780049704.XA priority patent/CN109923731B/zh
Publication of WO2018128306A1 publication Critical patent/WO2018128306A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat sink for battery cooling using a PCM capsule. More specifically, the present invention relates to a cooling fluid flowing in a battery module by applying a PCM to the problem that the cooling fluid temperature of the battery cooling heat sink is not constant. The present invention relates to a battery cooling heat sink to which a PCM capsule is applied, and to a battery module comprising the same.
  • the secondary batteries having high application characteristics and high electrical density, such as electric products, are not only portable devices but also electric vehicles (EVs), hybrid vehicles (HEVs), and electric power driven by electric driving sources. It is commonly applied to a storage device.
  • the secondary battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of drastically reducing the use of fossil fuels is generated but also no by-products of energy use are generated.
  • the battery pack applied to the electric vehicle or the like has a structure in which a plurality of cell assemblies including a plurality of unit cells are connected in series to obtain a high output.
  • the unit cell may be repeatedly charged and discharged by an electrochemical reaction between components, including a positive electrode and a negative electrode current collector, a separator, an active material, an electrolyte, and the like.
  • components including a positive electrode and a negative electrode current collector, a separator, an active material, an electrolyte, and the like.
  • Secondary batteries applied to the battery module can be manufactured in various forms, the typical shape is a pouch type, cylindrical, square, etc.
  • the shape is relatively free and light weight in recent years slim and light use It is used a lot in.
  • the pouch-type secondary battery unlike a round or square shaped metal film of a thick film, the case has a thin film metal film and an insulating film attached to both sides thereof so that it can be bent freely, and the electrode group is accommodated therein. Possible spaces are formed.
  • the high-output, high-capacity secondary battery to which the pouch-type secondary battery is applied is used by making cells having a thin plate structure as one module, and configuring a package by connecting a plurality of modules in series according to requirements.
  • heat is generated in the cell during charging and discharging, and the charging and discharging power of the battery varies according to the temperature of the cell. Therefore, the temperature of the cell must be maintained in an appropriate range so that the internal temperature of the battery is operated, for example, 25 to 40 degrees.
  • a battery cooling method using a conventional water-cooled method has a battery having at least one coupling groove, a peripheral region near the at least one coupling groove, and a plurality of cooling passages extending in at least one direction of the at least one coupling groove in the peripheral region.
  • a battery pack comprising a housing and a battery cell housed in at least one coupling groove.
  • the existing battery module has been developed to cool the cell surface through a cooling device.
  • the indirect cooling method is mainly adopted to support the heat sink through the liquid fluid.
  • the requirement to design the pack unit cooling so that the temperature gradient between modules is not large.
  • the temperature difference between the modules should be minimized.
  • US Patent Registration No. 9312580 discloses a battery module, a battery cell assembly which is a component of a battery module, and a first flat surface on which heat is generated during operation, and laminated on the first flat surface. And a phase change material (PCM) layer, wherein the PCM layer is a phase change material disposed around a plurality of graphite layers that change in phase according to a predetermined heat absorption to facilitate thermal conduction through a PCM layer having a predetermined thickness.
  • PCM phase change material
  • U.S. Patent Registration No. 8109324 discloses a slurry comprising liquid phase and / or solid state microencapsulated particulate phase change material that can melt in the heat range required for cooling a heat generating component, and has a height-to-width ratio of at least a width.
  • Japanese Patent Laid-Open No. 2011-527740 discloses an array of capsules in a housing, the array of capsules containing at least two opposing thermal energy storage materials (TESMs) and a plurality of capsules having a predetermined volume. Containing plies coupled in contact with each other on a portion of their respective facing surfaces to define a first capsule structure, containing at least one first array portion and at least two opposing TESMs. At least one second array portion, the plies being joined in contact with each other on a portion of their respective facing surfaces for defining a second capsule structure containing a plurality of capsules having a predetermined volume.
  • TSMs thermal energy storage materials
  • the device comprises a plurality of flow paths in which each flow path is generally non-planar.
  • the temperature of the cooling fluid flowing in the battery module is uniformly applied by applying the applied PCM to improve the cooling fluid temperature nonuniformity of the heat sink applied for the cooling of the large area battery module constituting the high power, high capacity battery pack.
  • Battery cooling heatsink using a PCM capsule characterized in that the adjustment and battery module technology including the same has not been proposed.
  • Patent Document 0001 US Patent Registration Publication No. 9312580 (2016.04.12)
  • Patent Document 0002 US Patent Registration Publication No. 8109324 (2012.02.07)
  • Patent Document 0003 Japanese Patent Application Laid-Open No. 2011-527740 (2011.11.04)
  • Non-Patent Document 0001 PHILLIPS LABORATORY, Space and Missiles Technology Directorate, Air Force Materiel Command Kirkland Air Force Base, NM 87117-5776 (1993.11.30)
  • the main object of the present invention for solving the conventional problems as described above is to uniform the temperature of the cooling fluid flowing in the battery module by applying a PCM to the problem that the cooling fluid temperature of the battery heat sink for cooling is not constant.
  • An object of the present invention is to provide a battery cooling heat sink and a battery module including the same.
  • the present invention provides a method for securing additional cooling performance and securing the performance and life of the battery pack to which the battery module is applied without affecting the cooling fluid induction of the existing heat sink formed in the battery module constituting the battery pack. For additional purposes.
  • the present invention has been made to solve the above conventional problems, the battery module consisting of one or more batteries; A module assembly in which the battery module is installed; And the module assembly includes a heat sink for absorbing heat generated by the battery module, and includes a PCM unit formed at a predetermined position of the heat sink for temperature control of the cooling fluid.
  • the heat sink may include one or more openings and flow paths for inflow or outflow of the cooling fluid.
  • the PCM unit may be formed at a position where the temperature of the cooling fluid of the heat sink rises above a predetermined temperature.
  • the position LP at which the PCM unit is formed may be 0 to 0.5 in L in the following formula.
  • the PCM included in the PCM unit may include any one or two or more PCMs among organic PCM, inorganic PCM, and eutectic PCM.
  • the form of the PCM included in the PCM unit may include any one or two or more PCM forms of impregnated, encapsulated and shape stabilized PCM in the material constituting the PCM unit.
  • the battery module may further include one or more PCM layers capable of absorbing heat generated from the cells between one or more cells constituting the battery module.
  • the battery module may further include one or more insulating layers to prevent heat generated in the cells from being transferred to adjacent cells between one or more cells constituting the battery module.
  • the PCM content included in the PCM unit may absorb heat of the cooling fluid to satisfy within ⁇ 2 of the average temperature of the cooling fluid passing through the heat sink.
  • the electronic device may be any one of the battery modules.
  • it may be an electric vehicle to which any one of the battery modules is applied.
  • it may be a hybrid vehicle to which any one of the battery modules is applied.
  • it may be a power storage device to which any one of the battery modules is applied.
  • FIG. 1 is a heat sink thermal flow analysis schematic diagram of an exemplary battery module.
  • Figure 2 is a result showing the temperature gradient according to the cooling fluid of the exemplary battery module.
  • 3 is a result showing a temperature gradient according to the cooling fluid subdivided the cooling flow path of the exemplary battery module.
  • Figure 4 is a schematic diagram reflecting the PCM capsule in the heat sink of the battery module according to an embodiment of the present invention.
  • FIG. 5 is a result showing a temperature gradient of the battery module to which the PCM capsule according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating a change in heat sink outlet temperature of a battery module according to whether or not the PCM capsule is applied according to an embodiment of the present invention.
  • the battery cell stack is a stack of battery cells.
  • the battery cells are preferably plate-shaped battery cells so as to provide a high stacking rate in a limited space, and may be stacked so that one or both surfaces thereof face adjacent battery cells to form a battery cell stack.
  • the battery cell stack may further include a stacking frame for stacking the battery cells.
  • the stacking frame is used to stack battery cells.
  • the stacking frame is configured to hold the battery cells to prevent flow thereof and to be stacked on each other to guide assembly of the battery cells.
  • Such a stacking frame may be replaced with various terms such as a cartridge, and may be configured in the form of a square ring having an empty central portion. In this case, the outer circumference of the battery cell may be located at four sides of the stacking frame.
  • the battery cell includes an electrode assembly including a positive electrode plate, a separator, and a negative electrode plate, and the positive electrode lead and the negative electrode lead may be electrically connected to a plurality of positive electrode tabs and negative electrode tabs protruding from the positive electrode plate and the negative electrode plate of each battery cell, respectively.
  • the battery cell may be a pouch type battery cell.
  • the pouch-type battery cell may have a structure in which the outer circumferential surface of the outer case is heat-sealed and sealed in a state in which the electrode assembly is embedded in the outer case of the laminate sheet including the resin layer and the metal layer.
  • the cooling system applied to the battery module includes a plurality of battery modules, a cooling tube installed in the battery to absorb heat generated from the battery module, a cooling fluid pump transferring a cooling fluid through an inflow passage to the cooling tube, and the cooling It may include a radiator for storing the fluid, the cooling fluid tank connected to the cooling fluid pump and the cooling fluid received through the discharge flow path heated in the cooling tube, and delivers the cooled cooling fluid to the cooling fluid tank.
  • the connected battery module package generates a heat generation phenomenon in the battery cell during charging and discharging, and the temperature rises. Such an increase in temperature degrades the electrical performance of the battery. Therefore, maintaining the proper temperature of the battery is one of the most important matters in battery management.
  • a battery module consisting of one or more batteries; A module assembly in which the battery module is installed; And the module assembly includes a heat sink for absorbing heat generated by the battery module, and includes a PCM unit formed at a predetermined position of the heat sink for temperature control of the cooling fluid.
  • the heat sink may include one or more openings and flow paths for inflow or outflow of the cooling fluid.
  • one or more openings for the inflow or outflow of the cooling fluid are not limited to the number of formation thereof.
  • One or more openings for the inlet or outlet may be formed with one inlet and outlet.
  • One or more openings for the inflow or outflow may be formed with two or more outlets for one inlet, and one outlet for two or more inlets.
  • the number of the inlet and the outlet is not limited as long as the temperature of the cooling fluid can be maintained uniformly according to the degree of absorption of the amount of heat dissipated from the module of the cooling fluid.
  • the PCM unit may be formed at a position where the temperature of the cooling fluid of the heat sink rises above a predetermined temperature.
  • the position LP at which the PCM unit is formed may be 0 to 0.5 in L in the following formula.
  • the temperature of the cooling fluid of the heat sink in which the PCM unit is formed may be 20 to 80. It may be preferably 40 to 60, more preferably 45 to 55.
  • the position L P at which the PCM unit is formed is an inlet port L + of the cooling fluid as a starting point of the channel length, an outlet L out as an end point of the channel length, and a length L PCM in which the PCM unit is formed from the inlet port.
  • L P ((L out -L PCM ) / L out ) may be 0 to 0.5. Preferably it may be 0 to 0.3, more preferably 0 to 0.1.
  • the temperature of the cooling fluid of the heat sink may not be equalized.
  • the position at which the PCM unit is formed may be formed at a weld bead position in the heat sink toward the outlet of the cooling fluid.
  • the position of the PCM unit is obviously not limited.
  • the PCM included in the PCM unit may include any one or two or more PCMs among organic PCM, inorganic PCM, and eutectic PCM.
  • the organic PCM may be any one or two or more of Paraffin C16-C18, Polyglycol E600, Paraffin wax, Paraffin C16-C28, Paraffin C20-C33, Paraffin C13-C24, 1-Dodecanol, 1-Tetradecanol, Paraffin C18, and Vinyl stearate. have.
  • the inorganic PCM is CaCl 2 ⁇ 6H 2 O, Zn (NO 3 ) 2 ⁇ 6H 2 O, KF 4H 2 O, Na 2 S 2 O 3 ⁇ 5H 2 O, Na 2 SO 4 ⁇ 10H 2 O, Mn ( NO 3 ) 2 6H 2 O, LiNO 3 ⁇ 3H 2 O, Na (CH 3 COO) ⁇ 3H 2 O It may be any one or two or more.
  • the eutectic PCM is 47% Ca (NO 3 ) 2 4H 2 O + 33% Mg (NO 3 ) 2 6H 2 O, 37.5% Urea + 63.5% acetamide, 48% CaCl 2 + 4.3% NaCl + 0.4% KCl + 47.3% H 2 O, 66.6% CaCl 2 6H 2 O + 33.3% MgCl 2 6H 2 O, 60% Na (CH 3 COO), 3H 2 O + 40% CO (NH 2 ), 61.5% Mg ( NO 3 ) 2 ⁇ 6H 2 O + 38.5% NH 4 NO 3 , 58.7% Mg (NO 3 ) ⁇ 6H 2 O + 41.3% MgCl 2 ⁇ 6H 2 O, 67.1% Naphthalene + 32.9% benzoic acid or 2 It may be abnormal.
  • the form of the PCM included in the PCM unit may include any one or two or more PCM forms of impregnated, encapsulated and shape stabilized PCM in the material constituting the PCM unit.
  • Impregnation of the material constituting the PCM unit may be accomplished by introducing the PCM into holes or pores in the material constituting the PCM unit.
  • the material of the PCM unit is not limited as long as it forms a hole or has a porosity.
  • it may be a metal or resin body in which fine holes are formed. More preferably, it may be a porous ceramic.
  • Encapsulating the PCM in the PCM unit is encapsulated using a coacervation reaction of gelatin and arabic rubber, encapsulated using coco fatty acid and PCM, and encapsulated using n-hexadecane and poly methyl methacrylate (PMMA).
  • PMMA poly methyl methacrylate
  • Encapsulation of polyethylene glycol (PEG) by acrylic rubber, or encapsulation using polyvinyl acetate and tetratradecane may be used.
  • Shape stabilized PCM can be formed by mixing liquid PCM and supporting materials. Shape stabilization PCM can be called macro encapsulation. 50 parts by weight of octadecane (Octadecane) and 50 parts by weight of high density poly ethylene (HDPE) is mixed, followed by chromic acid treatment (Chromic acid) and the addition of an additive and heat treatment can be formed.
  • Octadecane octadecane
  • HDPE high density poly ethylene
  • the battery module may further include one or more PCM layers capable of absorbing heat generated from the cells between one or more cells constituting the battery module.
  • the battery module may further include one or more insulating layers to prevent heat generated in the cells from being transferred to adjacent cells between one or more cells constituting the battery module.
  • the PCM layer can be less than or equal to about 2 millimeters or the same thickness as the cell.
  • the material constituting the insulation layer may be an inorganic insulation material such as glass, mineral, carbonaceous material or an organic insulation material such as expanded polystyrene, expanded polyurethane, expanded vinyl chloride.
  • the PCM content included in the PCM unit may absorb heat of the cooling fluid to satisfy within ⁇ 2 of the average temperature of the cooling fluid passing through the heat sink.
  • the heat sink temperature change of the battery module according to the PCM application was compared. Both the comparative example and the embodiment are intended for the battery module of the same capacity and size, and only the portion where the PCM is applied to the heat sink of the battery module has a difference.
  • the temperature of the cooling fluid flowing into the inlet of the heat sink was set to 20 ⁇ 5, and the temperature of the heat sink outlet and the overall temperature gradient of the battery module were compared according to PCM application.
  • FIG. 1 is a heat sink thermal flow analysis schematic diagram of an exemplary battery module.
  • a battery pack in which a plurality of battery modules are stacked and a cooling fluid formed for cooling the battery module simulate a heat sink for exchanging heat with a plurality of batteries that form a battery module along a cooling passage.
  • Figure 2 is a result showing the temperature gradient according to the cooling fluid of the exemplary battery module.
  • 3 is a result showing a temperature gradient according to the cooling fluid subdivided the cooling flow path of the exemplary battery module.
  • Figure 4 is a schematic diagram reflecting the PCM capsule in the heat sink of the battery module according to an embodiment of the present invention.
  • PCM capsule with phase change characteristics according to temperature was applied to the heat sink in the cooling channel composed of battery module, TIM and heat sink.
  • the PCM capsule was applied to the outlet battery module to reduce the influence on the outlet temperature of the heat sink.
  • PCM with 30 ⁇ 40 phase change temperature, proper temperature of battery module, is applied.
  • FIG. 5 is a result showing a temperature gradient of the battery module to which the PCM capsule according to an embodiment of the present invention.
  • the temperature difference between the heat sink cooling fluid inlet and the outlet is significantly reduced. It is believed to include a PCM capsule in the outlet heatsink to maintain a constant cooling water temperature. Through this, the temperature of the entire battery pack including the plurality of battery modules may be uniformly cooled.
  • FIG. 6 is a graph illustrating a change in heat sink outlet temperature of a battery module according to whether or not the PCM capsule is applied according to an embodiment of the present invention.
  • the heat sink cooling fluid temperature of the battery module constituting the battery pack was measured.
  • the number of the X-axis is the number of battery modules formed from the heat sink outlet.
  • the blue color represents the temperature change of the battery module including the heat sink to which the PCM module is not applied, and the red color represents the temperature change of the battery module including the heat sink to which the PCM module is applied.
  • the temperature of the battery module increases as the battery module proceeds from 1 to 10, and the temperature of the battery module at the inlet side of the heat sink cooling fluid inlet from the battery module 1 to 5 is not different, but at 5
  • the temperature difference of the battery module on the heat sink cooling fluid outlet side up to 10 is reduced by the temperature difference from 13 to 4 based on 37, which is the proper operating temperature of the battery, depending on whether PCM is applied. I could confirm the loss.
  • a battery cooling heat sink using the PCM capsule and a battery module including the same may minimize the temperature difference between the cooling fluids of the heat sinks formed in the battery module.
  • the present invention has the effect of preventing the temperature of the outlet side from which the cooling fluid is discharged to increase.
  • the present invention has the effect of reducing the battery module design cost and manufacturing cost by minimizing the temperature gradient of the cooling fluid without changing the internal structure of the existing heat sink formed in the battery module.
  • the present invention has the effect of minimizing the temperature variation between the cells during charging and discharging of the battery module to reduce local heat generation to improve the performance and life of the battery.

Abstract

배터리 냉각용 히트싱크의 냉각유체 온도가 일정하지 않은 문제점을 PCM을 적용하여 배터리 모듈내를 유동하는 냉각유체의 온도를 균일하게 조절하는 것을 특징으로 하는 PCM 캡슐을 적용한 배터리 냉각용 히트싱크 및 이를 포함하는 배터리 모듈에 관한 것으로 배터리 모듈에 형성된 히트싱크의 냉각유체의 온도차를 최소화할 수 있는 효과 및 냉각유체가 배출되는 유출구쪽의 온도가 높아지는 것을 방지하는 효과가 있다.

Description

상변화물질 캡슐을 적용한 배터리 냉각용 히트 싱크
본 발명은 PCM 캡슐을 적용한 배터리 냉각용 히트싱크에 관한 것으로 보다 상세하게는, 본 발명은 배터리 냉각용 히트싱크의 냉각유체 온도가 일정하지 않은 문제점을 PCM을 적용하여 배터리 모듈내를 유동하는 냉각유체의 온도를 균일하게 조절하는 것을 특징으로 하는 PCM 캡슐을 적용한 배터리 냉각용 히트싱크 및 이를 포함하는 배터리 모듈에 관한 것이다.
제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기차량(EV, Electric Vehicle) 또는 하이브리드 차량(HEV, Hybrid Electric Vehicle), 전력 저장 장치(Energy Storage System) 등에 보편적으로 응용되고 있다. 이러한 이차전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
상기 전기 차량 등에 적용되는 배터리 팩은 고출력을 얻기 위해 복수의 단위 셀(cell)을 포함하는 다수의 셀 어셈블리를 직렬로 연결한 구조를 가지고 있다. 그리고, 상기 단위 셀은 양극 및 음극 집전체, 세퍼레이터, 활물질, 전해액 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 반복적인 충방전이 가능하다. 한편, 근래 에너지 저장원으로서의 활용을 비롯하여 대용량 구조에 대한 필요성이 높아지면서 다수의 이차전지가 직렬 및/또는 병렬로 연결된 다수의 배터리 모듈을 집합시킨 멀티 모듈 구조의 배터리 팩에 대한 수요가 증가하고 있다.
상기 배터리 모듈에 적용되는 이차 전지는 다양한 형태로 제조가 가능한데, 대표적인 형상으로는 파우치형이나 원통형, 각형을 들 수 있으며, 파우치형의 경우 그 형상이 비교적 자유롭고 무게가 가벼워서 최근 들어 슬림과 경량화되는 용도로 많이 사용되고 있다. 상기 파우치형 이차 전지의 경우 케이스는 후막의 금속재로 성형한 원형이나 각형과는 달리 박막의 금속 필름과 그 양면에 절연성 필름이 부착되어 자유롭게 구부림이 가능한 구조로 되어 있으며, 내부에는 상기 전극군이 수용가능한 공간부가 형성되어 있다.
상기 파우치형 이차 전지가 적용되는 고출력, 대용량의 이차전지는 얇은 판형 구조로 된 셀들을 하나의 모듈로 만들어 사용되고 있고, 요구 사양에 따라 다수의 모듈을 직렬로 연결하여 패키지를 구성한다. 상기 다수의 모듈이 직렬로 연결된 패키지는 충전 및 방전 시 셀에서 열이 발생되고 있고, 상기 셀의 온도에 따라 배터리의 충전 및 방전 전력이 달라진다. 따라서, 배터리의 내부온도가 예를 들어 25~40도로 운전되도록 셀의 온도를 적절한 범위로 유지하여야 한다.
종래의 배터리의 내부온도를 제어하기 위해서는 공기를 활용한 냉각방식과 냉각수 또는 냉매를 활용한 방식이 있었다. 공기를 활용한 공랭식 배터리는 냉각효율이 낮고, 냉각수 또는 냉매를 활용한 수랭식방식은 구조가 복잡한 문제점이 있었다. 종래의 수랭식방식을 이용한 배터리 냉각방식은 적어도 하나의 결합홈, 적어도 하나의 결합홈 근처의 주변영역, 및 주변 영역 내에서 적어도 하나의 결합홈의 적어도 한 방향으로 연장되는 복수의 냉각 유로를 갖는 배터리 하우징과, 적어도 하나의 결합홈에 수용된 배터리 셀로 이루어진 배터리 팩을 개시한다.
이와 같은 수랭식 방식의 냉각 기술이 적용되는 경우, 기존 배터리 모듈은 냉각 장치를 통해 셀 표면을 냉각하는 형태로 기술이 개발되었다. 특히, 액상 유체를 통한 히트 싱크를 부탁하여 간접 냉각하는 방식이 주로 채택되었고 이때 배터리 성능 및 수명을 확보하기 위해 팩 단위 냉각에서는 모듈 간 온도 구배가 크지 않도록 설계되어야 하는 요구조건이 발생한다. 하지만 다수의 모듈이 장착되는 경우, 모듈 간 온도 차이를 최소화 하여야 하는 문제가 발생한다.
미국 특허등록공보 9312580호(2016.04.12)에서는 배터리 모듈, 배터리 모듈의 구성요소인 전지 셀 조립체, 상기 전지 셀 조립체에 있어서, 운전 중 열이 발생하는 제1 평판면, 상기 제1평판면에 적층된 상변화물질(PCM)층을 포함하고, 상기 PCM층은 소정의 열 흡수에 따라 상변화하는 복수의 흑연층 주위에 배치된 상변화물질로 일정 두께의 PCM층을 통한 열전도를 용이하게 하기 위한 복수의 흑연층을 포함하는 시스템 배터리 모듈이 개시되어 있으나, 냉각 유체의 온도제어를 위한 PCM 캡슐을 포함한 구성은 개시되어 있지 않다.
미국 특허등록공보 8109324호(2012.02.07)에서는 열발생 부품의 냉각시 요구되는 열범위에서 녹을 수 있는 액상 및/또는 고상 미세캡슐화된 미립자 상변화물질을 포함하는 슬러리, 높이대 폭의 종획비가 적어도 5:1이며, 비선형 경로로 폭이 약 50 내지 500마이크로인 액상 슬러리의 통로인 복수의 마이크로채널을 포함하며, 상기 열발생 부품에 위치하거나 위치 가능한 열교환기, 상기 열교환기의 마이크로채널내에 슬러리가 위치하며, 상기 마이크로채널 폭의 약 5 퍼센트 내지 약 20 퍼센트인 미세 캡슐화된 미립자 상변화물질의 직경; 및 열교환기를 통하여 일정 유량의 액체 슬러리를 이동하기 위한 펌프 및 상기 적어도 100 W/cm2의 열용량을 갖는 열발생 부품을 위한 미세 채널 열 교환기이 개시되어 있으나, 배터리 모듈에 냉각 유체의 균일한 온도제어를 위한 PCM 캡슐을 포함한 구성은 개시되어 있지 않다.
일본 특허공개공보 2011-527740호(2011.11.04)에서는 하우징 내 캡슐의 어레이, 이 캡슐의 어레이는 적어도 2개의 대향하는, 열에너지 저장 재료(TESM)를 함유하고 예정의 체적을 가지는 복수의 캡슐을 함유하는 제1의 캡슐구조체를 규정하기 위한 이들의 각각의 대면하는 표면의 일부 위에서 서로 접촉 상태에서 결합되어 있는 플라이를 함유한다, 적어도 1개의 제1의 어레이 부분 및 적어도 2개의 대향하는, TESM를 함유하고 예정의 체적을 가지는 복수의 캡슐을 함유하는 제2의 캡슐구조체를 규정하기 위한 이들의 각각의 대면하는 표면의 일부 위에서 서로 접촉 상태에서 결합되어 있는 플라이를 함유한다, 적어도 1개의 제2 어레이 부분을 포함하고 그리고 제1의 어레이 컴퍼넌트와 제2의 어레이 컴퍼넌트 사이의 체적에 의해 규정되는 유로를 포함하여 구성되어, 상기 제1의 어레이 컴퍼넌트와 상기 제2의 어레이 컴퍼넌트가 약 20 mm보다 작은 갭 두께에 의해 분리되어 있고, 상기 디바이스가 각각의 유로가 일반적으로 비평면형인 복수의 유로를 포함하여 구성되는 청구항 1에 기재된 디바이스를 개시하고 있으나, 배터리 모듈에 냉각 유체의 균일한 온도제어를 위한 PCM 캡슐을 포함한 구성은 개시되어 있지 않다.
PHILLIPS LABORATORY, Space and Missiles Technology Directorate, Air Force Materiel Command Kirkland Air Force Base, NM 87117-5776 (1993.11.30)에서는 전기차에 적용된 니켈-수소 전지의 온도 제어를 위한 PCM 적용 기술이 개시되어 있습니다. 그러나 배터리 모듈의 히트싱크 냉각유체의 온도제어를 위한 PCM 캡슐 구성은 개시되지 않았습니다.
따라서, 고출력, 대용량 배터리 팩을 구성하는 넓은 면적의 배터리 모듈의 냉각을 위해 적용되는 히트싱크의 냉각유체 온도 불균일성을 개선하기 위하여 적용된 PCM을 적용하여 배터리 모듈내를 유동하는 냉각유체의 온도를 균일하게 조절하는 것을 특징으로 하는 PCM 캡슐을 적용한 배터리 냉각용 히트싱크 및 이를 포함하는 배터리 모듈 기술은 제시된 바가 없다.
(특허문헌 0001) 미국 특허등록공보 9312580호(2016.04.12)
(특허문헌 0002) 미국 특허등록공보 8109324호(2012.02.07)
(특허문헌 0003) 일본 특허공개공보 2011-527740호(2011.11.04)
(비특허문헌 0001) PHILLIPS LABORATORY, Space and Missiles Technology Directorate, Air Force Materiel Command Kirkland Air Force Base, NM 87117-5776 (1993.11.30)
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 본 발명의 주된 목적은 배터리 냉각용 히트싱크의 냉각유체 온도가 일정하지 않은 문제점을 PCM을 적용하여 배터리 모듈내를 유동하는 냉각유체의 온도를 균일하게 조절하는 것을 특징으로 하는 PCM 캡슐을 적용한 배터리 냉각용 히트싱크 및 이를 포함하는 배터리 모듈을 제공하는데 목적이 있다.
또한, 배터리 팩을 구성하는 배터리 모듈에 형성된 기존 히트 싱크의 내부구조를 변경하지 않으면서 PCM 캡슐을 장착하여 냉각유체의 온도구베를 최소화 하는 것에 추가적인 목적이 있다.
또한, 배터리 팩을 구성하는 배터리 모듈에 형성된 기존 히트 싱크의 냉각유체 유도에 영향을 미치지 않으면서 추가 냉각 성능을 확보하고 배터리 모듈이 적용된 배터리 팩의 성능 및 수명을 확보할 수 있는 방안을 제공하는 것을 추가적인 목적으로 한다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 하나 이상의 전지로 이루어진 전지 모듈; 상기 전지 모듈이 설치되는 모듈 어셈블리; 및 상기 모듈 어셈블리는 상기 전지 모듈의 발열을 흡수하기 위한 히트 싱크를 포함하고, 상기 히트싱크의 소정 위치에 냉각유체의 온도제어를 위하여 형성된 PCM 유닛을 포함하는 것을 특징으로 하는 배터리 모듈을 제공한다.
또한, 상기 히트싱크는 상기 냉각유체의 유입 또는 유출을 위한 하나 이상의 개구 및 유로를 포함할 수 있다.
또한, 상기 PCM 유닛은 상기 히트싱크의 냉각유체의 온도가 소정 온도 이상 상승하는 위치에 형성될 수 있다.
또한, 상기 PCM 유닛이 형성되는 위치(LP)는 하기 식의 L이 0 내지 0.5일 수 있다.
LP =((Lout-LPCM)/Lout)
(냉각유체의 유입구(Lin)는 유로길이의 시작점, 냉각유체의 유출구(Lout)는 유로길이의 종료점, 유입구부터 상기 PCM유닛이 형성된 길이(LPCM))
또한, 상기 PCM 유닛에 포함된 PCM은 유기PCM, 무기PCM 및 공융PCM 중 어느 하나 또는 2 이상의 PCM을 포함할 수 있다.
또한, 상기 PCM 유닛에 포함된 PCM의 형태는 상기 PCM 유닛을 구성하는 재료에 함침, 캡슐화 및 형상안정화PCM 중 어느 하나 또는 2 이상의 PCM 형태를 포함할 수 있다.
또한, 상기 배터리 모듈을 구성하는 하나 이상의 셀 사이에 상기 셀에서 발생하는 발열을 흡수할 수 있는 하나 이상의 PCM층을 추가로 포함할 수 있다.
또한, 상기 배터리 모듈을 구성하는 하나 이상의 셀 사이에 상기 셀에서 발생하는 발열을 인접한 셀에 전달되는 것을 방지 하는 하나 이상의 단열재층을 추가로 포함할 수 있다.
또한, 상기 PCM 유닛에 포함되는 PCM의 함량은 상기 히트 싱크를 통과하는 냉각유체 평균온도의 ±2내에서 만족시키도록 냉각 유체의 열을 흡수할 수 있다.
또한, 상기 어느 한 배터리 모듈이 적용된 전자기기 일 수 있다.
또한, 상기 어느 한 배터리 모듈이 적용된 전기 자동차 일 수 있다.
또한, 상기 어느 한 배터리 모듈이 적용된 하이브리드 자동차 일 수 있다.
또한, 상기 어느 한 배터리 모듈이 적용된 전력저장장치 일 수 있다.
도 1은 예시적인 배터리 모듈의 히트싱크 열유동 해석 모식도이다.
도 2는 예시적인 배터리 모듈의 냉각유체에 따른 온도구배를 나타낸 결과이다.
도 3은 예시적인 배터리 모듈의 냉각유로를 세분화한 냉각유체에 따른 온도구배를 나타낸 결과이다.
도 4는 본 발명의 일실시예에 따른 PCM 캡슐을 배터리 모듈의 히트싱크에 반영한 모식도이다.
도 5는 본 발명의 일실시예에 따른 PCM 캡슐을 적용한 배터리 모듈의 온도구배를 나타낸 결과이다.
도 6은 본 발명의 일실시예에 따른 PCM 캡슐의 적용 여부에 따른 배터리 모듈의 히트싱크 출구온도 변화 그래프이다.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명을 도면에 따라 상세한 실시예와 같이 설명한다.
배터리 셀 적층체는 배터리 셀이 적층된 것이다. 배터리 셀은 한정된 공간에서 높은 적층률을 제공할 수 있도록 바람직하게는 판상형 배터리 셀이고, 일면 또는 양면이 인접한 배터리 셀에 대면하도록 적층 배열되어 배터리 셀 적층체를 형성하고 있을 수 있다.
배터리 셀 적층체는, 도시하지 않았으나, 배터리 셀의 적층을 위한 적층용 프레임을 더 포함할 수 있다. 적층용 프레임은 배터리 셀을 적층하는데 이용되는 구성으로서, 배터리 셀을 홀딩하여 그 유동을 방지하고, 상호 적층 가능하도록 구성되어 배터리 셀의 조립을 가이드할 수 있다. 이러한 적층용 프레임은, 카트리지 등 다양한 용어로 대체될 수 있으며, 중앙 부분이 비어 있는 사각링 형태로 구성될 수 있다. 이 경우, 배터리 셀의 외주부는 적층용 프레임의 네 변에 위치될 수 있다.
배터리 셀은 양극판, 분리막 및 음극판으로 구성된 전극조립체를 포함하며, 각 배터리 셀의 양극판과 음극판으로부터 돌출된 다수의 양극 탭 및 음극 탭에 각각 양극 리드 및 음극 리드가 전기적으로 접속된 것일 수 있다. 여기서 배터리 셀은 파우치형 배터리 셀일 수 있다. 파우치형 배터리 셀은 수지층과 금속층을 포함하는 라미네이트 시트의 외장케이스에 전극조립체를 내장한 상태에서 외장케이스의 외주면을 열융착하여 밀봉한 구조를 가질 수 있다.
배터리 모듈에 적용된 냉각 시스템은 복수개의 배터리모듈, 상기 배터리모듈에서 발생되는 열을 흡수하기 위해 상기 배터리에 설치되는 냉각튜브, 상기 냉각튜브로 유입유로를 통해 냉각유체를 전달하는 냉각유체펌프, 상기 냉각유체를 저장하고, 상기 냉각유체펌프와 연결되는 냉각유체탱크 및 상기 냉각튜브에서 가열된 토출유로를 통해 전달받아 냉각시키고, 냉각시킨 냉각유체를 상기 냉각유체탱크로 전달하는 라디에이터를 포함할 수 있다.
이렇게 연결된 배터리 모듈 패키지는 충전 및 방전 시 배터리 셀에서 발열 현상이 발생하여 온도가 올라가게 되며, 이러한 온도 상승은 배터리의 전기적인 성능을 저하시키게 된다. 따라서 배터리의 적정한 온도 유지는 배터리의 관리에 있어서 가장 중요한 사항 가운데 하나이다.
특히, 배터리의 열화 방지 및 내구성 향상을 도모하기 위해서는 복수의 배터리를 균일한 온도로 유지할 필요가 있는데, 복수의 배터리의 온도에 차이가 생기게 되면 최대로 열화한 배터리가 전체 성능에 영향을 미치게 된다. 그러나 종래의 배터리 냉각 장치로는 상기 복수의 배터리의 온도를 균일하게 유지하기가 힘들었다. 하나 이상의 전지로 이루어진 전지 모듈; 상기 전지 모듈이 설치되는 모듈 어셈블리; 및 상기 모듈 어셈블리는 상기 전지 모듈의 발열을 흡수하기 위한 히트 싱크를 포함하고, 상기 히트싱크의 소정 위치에 냉각 유체의 온도제어를 위하여 형성된 PCM 유닛을 포함하는 것을 특징으로 하는 배터리 모듈을 제공한다.
또한, 상기 히트싱크는 상기 냉각유체의 유입 또는 유출을 위한 하나 이상의 개구 및 유로를 포함할 수 있다.
상기 냉각유체의 유입 또는 유출을 위한 하나 이상의 개구는 그 형성 개수에 제한되지 않음은 자명하다.
상기 유입 또는 유출을 위한 하나 이상의 개구는 하나의 유입구 및 유출구가 형성될 수 있다.
상기 유입 또는 유출을 위한 하나 이상의 개구는 하나의 유입구에 대하여 2 이상의 유출구가 형성될 수 있으며, 2 이상의 유입구에 대하여 하나의 유출구가 형성될 수 있다.
상기 유입구 및 유출구의 개수는 상기 냉각유체의 모듈에서 방출되는 방열량의 흡수정도에 따라서 냉각유체의 온도를 균일하게 유지할 수 있다면 제한되지 않는다.
또한, 상기 PCM 유닛은 상기 히트싱크의 냉각유체의 온도가 소정 온도 이상 상승하는 위치에 형성될 수 있다.
또한, 상기 PCM 유닛이 형성되는 위치(LP)는 하기 식의 L이 0 내지 0.5일 수 있다.
LP =((Lout-LPCM)/Lout)
(냉각유체의 유입구(Lin)는 유로길이의 시작점, 냉각유체의 유출구(Lout)는 유로길이의 종료점, 유입구부터 상기 PCM유닛이 형성된 길이(LPCM))
상기 PCM유닛이 형성되는 상기 히트싱크의 냉각유체의 온도는 20 내지 80일 수 있다. 바람직하게는 40 내지 60일 수 있으며, 더욱 바람직하게는 45 내지 55일 수 있다.
상기 히트싱크의 냉각유체의 온도가 상기 온도 범위를 벗어나면 배터리 모듈을 과열 및 온도 불균형에 기인하는 배터리의 정상적인 운영에 장애가 발생한다.
상기 PCM 유닛이 형성되는 위치(LP)는 냉각유체의 유입구(L+)를 유로길이의 시작점으로, 유출구(Lout)를 유로길이의 종료점으로, 상기 유입구부터 상기 PCM유닛이 형성된 길이(LPCM)으로 할 때,
LP =((Lout-LPCM)/Lout)는 0 내지 0.5일 수 있다. 바람직하게는 0 내지 0.3 일 수 있으며 더욱 바람직하게는 0 내지 0.1 일 수 있다.
상기 LP 값을 벗어나면 상기 상기 히트싱크의 냉각유체의 온도를 균일화 효과를 얻을 수 없다.
상기 PCM 유닛이 형성되는 위치는 상기 냉각유체의 유출구 쪽 히트싱크 내 용접비드 위치에 형성될 수 있다.
상기 히트싱크의 냉각유체의 온도를 균일화 하여 배터리모듈의 냉각효과를 극대화할 수 있다면 상기 PCM 유닛의 위치는 제한되지 않음은 자명하다.
또한, 상기 PCM 유닛에 포함된 PCM은 유기PCM, 무기PCM 및 공융PCM 중 어느 하나 또는 2 이상의 PCM을 포함할 수 있다.
상기 유기PCM은 Paraffin C16-C18, Polyglycol E600, Paraffin wax, Paraffin C16-C28, Paraffin C20-C33, Paraffin C13-C24, 1-Dodecanol, 1-Tetradecanol, Paraffin C18, Vinyl stearate 중 어느 하나 또는 2이상일 수 있다.
상기 무기PCM은 CaCl2·6H2O, Zn(NO3)2·6H2O, KF·4H2O, Na2S2O3·5H2O, Na2SO4·10H2O, Mn(NO3)26H2O, LiNO3·3H2O, Na(CH3COO)·3H2O 중 어느 하나 또는 2이상일 수 있다.
상기 공융PCM은 47% Ca(NO3)2·4H2O+33% Mg(NO3)2·6H2O, 37.5% Urea+63.5% acetamide, 48%CaCl2+4.3%NaCl+0.4% KCl+47.3% H2O, 66.6% CaCl2·6H2O+33.3% MgCl2·6H2O, 60%Na(CH3COO)·3H2O+40% CO(NH2), 61.5%Mg(NO3)2·6H2O+38.5% NH4NO3, 58.7%Mg(NO3)·6H2O+41.3% MgCl2·6H2O, 67.1% Naphthalene+32.9% benzoic acid 중 어느 하나 또는 2이상일 수 있다.
또한, 상기 PCM 유닛에 포함된 PCM의 형태는 상기 PCM 유닛을 구성하는 재료에 함침, 캡슐화 및 형상안정화PCM 중 어느 하나 또는 2 이상의 PCM 형태를 포함할 수 있다.
상기 PCM 유닛을 구성하는 재료에 함침하는 것은 상기 PCM 유닛을 구성하는 재료에 홀 또는 기공에 상기 PCM을 투입함으로써 달성될 수 있다.
상기 PCM 유닛을 재료는 홀을 형성하거나 다공성을 갖는다면 제한되지 않는다. 바람직하게는 미세 홀이 형성된 금속 또는 수지체일 수 있다. 더욱 바람직하게는 다공성 세라믹일 수 있다.
상기 PCM 유닛에 PCM을 캡슐화하는 것은 젤라틴과 아라빅고무의 코아세르베이션 반응을 이용한 캡슐화, 코코지방산 (Coco fatty acid)과 PCM을 이용한 캡슐화, n-hexadecane과 PMMA(Poly methyl meth acrylate)를 이용한 캡슐화, 아크릴고무(Acrylic polymer)에 의한 PEG(Poly ethylene glycol)의 캡슐화, 폴리비닐아세테이트(Poly vinyl acetate)와 테트라데칸(Tetradecane)을 이용한 캡슐화 중 어느 하나의 방법을 이용한 캡슐화를 적용할 수 있다.
형상안정화PCM(Shape stabilized PCM, SSPCM)은 액상의 PCM과 지지재료의 혼합으로 형성할수 있다. 형상안정화PCM은 마크로 캡슐화라고 할 수 있다. 50중량부의 옥타데칸(Octadecane)과 50중량부의 HDPE(High density poly ethylene)을 섞은 후 크롬산(Chromic acid)처리를 하고 첨가제를 넣은 후 열처리하여 형성할 수 있다.
또한, 상기 배터리 모듈을 구성하는 하나 이상의 셀 사이에 상기 셀에서 발생하는 발열을 흡수할 수 있는 하나 이상의 PCM층을 추가로 포함할 수 있다.
또한, 상기 배터리 모듈을 구성하는 하나 이상의 셀 사이에 상기 셀에서 발생하는 발열을 인접한 셀에 전달되는 것을 방지 하는 하나 이상의 단열재층을 추가로 포함할 수 있다.
PCM 층은 거의 2 밀리미터에 이하이거나 셀과 동일한 동일 두께일 수 있다.
상기 단열재층을 구성하는 재료는 유리, 광물, 탄소질과 같은 무기질 단열재 또는 발포폴리스티렌, 발포폴리우레탄, 발포염화비닐과 같은 유기질 단열재일 수 있다.
또한, 상기 PCM 유닛에 포함되는 PCM의 함량은 상기 히트 싱크를 통과하는 냉각유체 평균온도의 ±2내에서 만족시키도록 냉각 유체의 열을 흡수할 수 있다.
(실시예)
배터리 모듈의 PCM을 적용한 히트싱크의 냉각 효과를 분석하기 위하여, PCM 적용 여부에 따른 배터리 모듈의 히트 싱크 온도 변화를 비교하였다. 비교예와 실시예 모두 동일한 용량 및 사이즈의 배터리 모듈을 대상으로 하였으며, 배터리 모듈의 히트 싱크에 PCM을 적용한 부분만 차이점을 가진다. 히트싱크의 유입구로 유입되는 냉각유체의 온도는 20 ± 5로 설정하였고, PCM 적용 여부에 따른 히트싱크 유출구의 온도 및 배터리 모듈의 전체 온도구배를 비교하였다.
(비교예 1)
도 1은 예시적인 배터리 모듈의 히트싱크 열유동 해석 모식도이다.
복수개의 배터리 모듈이 적층된 배터리 팩 및 배터리 모듈의 냉각을 위해 형성된 냉각유체가 냉각유로를 따라 배터리 모듈을 형성한 복수의 배터리와 열교환하기 위한 히트싱크를 모사하였다.
도 2는 예시적인 배터리 모듈의 냉각유체에 따른 온도구배를 나타낸 결과이다.
PCM이 적용되지 않은 배터리 모듈의 온도구배를 살펴보면, 히트싱크의 출구쪽으로 냉각유체가 이동할수록 배터리 모듈의 발열량을 흡수하여 히트싱크 내에 냉각유체의 온도가 상승하는 것을 확인할 수 있다. 이러한 현상으로 인하여 배터리 모듈 간 온도 불균형이 발생하여 배터리 모듈을 구성하는 배터리 성능과 수명이 저하되는 문제점이 있다.
(비교예 2)
도 3은 예시적인 배터리 모듈의 냉각유로를 세분화한 냉각유체에 따른 온도구배를 나타낸 결과이다.
PCM을 적용하지 않고 히트싱크의 냉각유로를 세분화하여 설계한 비교예이다. 상기 단순 냉각유로로 구성된 히트싱크의 입구 및 출구의 온도차를 줄이기 위하여 배터리 모듈 상의 냉각유로를 세분화하여 실험을 진행하였다. 상기 비교예 1과 비교하면 히트 싱크 입구 및 출구의 온도차가 줄어든 것을 확인할 수 있다. 그러나 냉각유로를 세분화하여 설계할수록 히트 싱크의 냉각유체의 차압을 발생하는 문제점이 확인되었다. 이러한 냉각수 차압과 배터리 온도 차 문제를 극복할 방안이 요구되었다.
(실시예)
도 4는 본 발명의 일실시예에 따른 PCM 캡슐을 배터리 모듈의 히트싱크에 반영한 모식도이다.
배터리모듈, TIM, 히트싱크에 구성된 냉각유로에 온도에 따른 상변화 특성을 가진 PCM 캡슐을 히트싱크상에 적용하였다. 히트싱크의 출구 쪽 온도에 대한 영향을 줄이기 위하여 출구쪽 배터리 모듈에 PCM 캡슐을 적용하였다. 배터리 모듈의 적정온도인 30~40 상변화 온도를 가진 PCM을 적용하였다.
도 5는 본 발명의 일실시예에 따른 PCM 캡슐을 적용한 배터리 모듈의 온도구배를 나타낸 결과이다.
PCM 캡슐을 적용여부에 따른 배터리 모듈의 온도구배를 살펴보면 히트싱크 냉각유체 입구 및 출구의 온도차가 확연히 감소한 것으로 확인할 수 있다. 출구쪽 히트싱크 내 PCM 캡슐을 포함하여 냉각수 온도를 균일하게 유지하는 것으로 판단된다. 이를 통해 복수의 배터리 모듈로 구성된 배터리 팩 전체의 온도를 균일하게 냉각할 수 있을 것이다.
도 6은 본 발명의 일실시예에 따른 PCM 캡슐의 적용 여부에 따른 배터리 모듈의 히트싱크 출구온도 변화 그래프이다.
상기 실시예를 구체적으로 확인하기 위하여 배터리 팩을 구성하는 배터리 모듈의 히트 싱크 냉각유체 온도를 측정하였다. X축의 번호는 히트싱크 출구쪽부터 형성된 배터리 모듈을 번호순으로 부여한 것이다. 청색은 PCM 모듈이 적용되지 않은 히트싱크를 포함하는 배터리 모듈의 온도변화를 나타내며 적색은 PCM 모듈이 적용된 히트싱크를 포함하는 배터리 모듈의 온도변화를 나타낸다. 배터리 모듈 1번에서 10번으로 진행할수록 배터리 모듈의 온도가 증가하는 것을 확인할 수 있으며, 배터리 모듈 1번에서 5번까지의 히트싱크 냉각유체 유입 입구측의 배터리 모듈의 온도는 차이가 없으나 5번에서 10번까지의 히트싱크 냉각유체 유출측의 배터리 모듈의 온도 변화는 PCM의 적용 여부에 따라 배터리의 적정 구동온도인 37를 기준으로 13의 온도에서 4의 온도로 온도차가 줄어들어 배터리 모듈간의 온도차가 균일해지는 것을 확인할 수 있었다.
이상에서 본 발명은 기재된 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 상기에 서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연한 것으로, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.
본 발명에 따른 PCM 캡슐을 적용한 배터리 냉각용 히트싱크 및 이를 포함하는 배터리 모듈에 의하면, 배터리 모듈에 형성된 히트싱크의 냉각유체의 온도차를 최소화할 수 있는 효과가 있다.
또한, 본 발명은 냉각유체가 배출되는 유출구쪽의 온도가 높아지는 것을 방지하는 효과가 있다.
또한, 본 발명은 배터리 모듈에 형성된 기존 히트싱크의 내부구조를 병경하지 않고 냉각유체의 온도구배를 최소화하여 배터리 모듈 설계비용 및 제작비용을 절감할 수 있는 효과가 있다.
또한, 본 발명은 배터리 모듈의 충전 및 방전 중 셀 간의 온도 편차를 최소화하여 국부 발열을 감소시켜 배터리의 성능 및 수명을 향상시킬 수 있는 효과가 있다.

Claims (13)

  1. 하나 이상의 전지로 이루어진 전지 모듈;
    상기 전지 모듈이 설치되는 모듈 어셈블리; 및
    상기 모듈 어셈블리는 상기 전지 모듈의 발열을 흡수하기 위한 히트 싱크를 포함하고,
    상기 히트싱크의 소정 위치에 냉각유체의 온도제어를 위하여 형성된 PCM 유닛을 포함하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 히트싱크는 상기 냉각유체의 유입 또는 유출을 위한 하나 이상의 개구 및 유로를 포함하는 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 PCM 유닛은 상기 히트싱크의 냉각유체의 온도가 소정 온도 이상 상승하는 위치에 형성되는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 PCM 유닛이 형성되는 위치(LP)는 하기 식의 L이 0 내지 0.5인 것을 특징으로 하는 배터리 모듈.
    LP =((Lout-LPCM)/Lout)
    (냉각유체의 유입구(Lin)는 유로길이의 시작점, 냉각유체의 유출구(Lout)는 유로길이의 종료점, 유입구부터 상기 PCM유닛이 형성된 길이(LPCM))
  5. 제1항에 있어서,
    상기 PCM 유닛에 포함된 PCM은 유기PCM, 무기PCM 및 공융PCM 중 어느 하나 또는 2 이상의 PCM을 포함하는 것을 특징으로 하는 배터리 모듈.
  6. 제5항에 있어서,
    상기 PCM 유닛에 포함된 PCM의 형태는 상기 PCM 유닛을 구성하는 재료에 함침, 캡슐화 및 형상안정화PCM 중 어느 하나 또는 2 이상의 PCM 형태를 포함하는 것을 특징으로 하는 배터리 모듈.
  7. 제1항에 있어서,
    상기 배터리 모듈을 구성하는 하나 이상의 셀 사이에 상기 셀에서 발생하는 발열을 흡수할 수 있는 하나 이상의 PCM층을 추가로 포함하는 것을 특징으로 하는 배터리 모듈.
  8. 제1항에 있어서,
    상기 배터리 모듈을 구성하는 하나 이상의 셀 사이에 상기 셀에서 발생하는 발열을 인접한 셀에 전달되는 것을 방지 하는 하나 이상의 단열재층을 추가로 포함하는 것을 특징으로 하는 배터리 모듈.
  9. 제5항에 있어서,
    상기 PCM 유닛에 포함되는 PCM의 함량은 상기 히트 싱크를 통과하는 냉각유체 평균온도의 ±2내에서 만족시키도록 냉각 유체의 열을 흡수할 수 있는 것을 특징으로 하는 배터리 모듈.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 모듈이 적용된 전자기기.
  11. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 모듈이 적용된 전기 자동차.
  12. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 모듈이 적용된 하이브리드 자동차.
  13. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 모듈이 적용된 전력 저장 장치.
PCT/KR2017/015165 2017-01-05 2017-12-21 상변화물질 캡슐을 적용한 배터리 냉각용 히트 싱크 WO2018128306A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17889828.4A EP3486995A4 (en) 2017-01-05 2017-12-21 THERMAL BATTERY COOLING DISSIPATOR USING PHASE CHANGE MATERIAL CAPSULE
JP2019500429A JP7027631B2 (ja) 2017-01-05 2017-12-21 相変化物質(pcm)カプセルを適用したバッテリー冷却用のヒート・シンク
US16/318,276 US11024897B2 (en) 2017-01-05 2017-12-21 Battery-cooling heat sink provided with PCM capsule
CN201780049704.XA CN109923731B (zh) 2017-01-05 2017-12-21 设置有pcm单元的电池冷却热沉

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0002017 2017-01-05
KR1020170002017A KR102208720B1 (ko) 2017-01-05 2017-01-05 상변화물질(pcm) 캡슐을 적용한 배터리 냉각용 히트 싱크

Publications (1)

Publication Number Publication Date
WO2018128306A1 true WO2018128306A1 (ko) 2018-07-12

Family

ID=62791096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015165 WO2018128306A1 (ko) 2017-01-05 2017-12-21 상변화물질 캡슐을 적용한 배터리 냉각용 히트 싱크

Country Status (6)

Country Link
US (1) US11024897B2 (ko)
EP (1) EP3486995A4 (ko)
JP (1) JP7027631B2 (ko)
KR (1) KR102208720B1 (ko)
CN (1) CN109923731B (ko)
WO (1) WO2018128306A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780255A4 (en) * 2018-09-11 2021-06-02 Lg Chem, Ltd. BATTERY MODULE WITH IMPROVED COOLING EFFICIENCY AND BATTERY PACK WITH IT

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10679923B1 (en) * 2019-01-09 2020-06-09 Toyota Motor Engineering & Manufacturing North America, Inc. Encapsulated phase change porous layer
KR102263291B1 (ko) * 2019-03-19 2021-06-10 주식회사 성우하이텍 전기자동차용 배터리 모듈 조립체
US11355796B2 (en) * 2019-04-22 2022-06-07 Shahriyar Hekmat Thermal management system for battery module
KR20200123642A (ko) 2019-04-22 2020-10-30 전북대학교산학협력단 배터리팩 온도 조절장치
KR20210124828A (ko) 2020-04-07 2021-10-15 현대자동차주식회사 상변화물질과 열전모듈을 이용한 배터리팩 냉각 시스템과 냉각 방법
KR102201327B1 (ko) * 2020-06-01 2021-01-11 주식회사 가이아에너지 저 전력 소모 에너지 저장 장치
US11750021B2 (en) * 2020-11-13 2023-09-05 Raytheon Company Modular electrical power subsystem architecture
CN112510292B (zh) * 2020-11-30 2021-12-03 华霆(合肥)动力技术有限公司 高温抑制装置、电池包和电动汽车
KR102274741B1 (ko) * 2021-03-09 2021-07-08 주식회사 가이아에너지 유동 흐름 최적화 에너지 저장 장치
CN113212101B (zh) * 2021-06-02 2022-08-26 合肥工业大学 基于相变胶囊的增程式电动汽车集成式热管理系统及方法
US20230110020A1 (en) * 2021-10-08 2023-04-13 Simmonds Precision Products, Inc. Heatsinks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140034413A (ko) * 2012-09-11 2014-03-20 에스케이이노베이션 주식회사 배터리 모듈
JP2016040770A (ja) * 2014-08-11 2016-03-24 ヴァレオ システム テルミク バッテリーパックの温度管理用熱交換プレート
KR101658517B1 (ko) * 2013-09-30 2016-09-21 주식회사 엘지화학 냉각 부재를 활용한 전지모듈
KR20160112435A (ko) * 2015-03-19 2016-09-28 삼성에스디아이 주식회사 전지 팩
KR20160118061A (ko) * 2015-04-01 2016-10-11 주식회사 엘지화학 전지 모듈

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731568A (en) 1995-10-13 1998-03-24 Arctic Fox, Inc. Battery heating device and method
JP4913333B2 (ja) 2003-06-13 2012-04-11 古河電気工業株式会社 ヒートシンクおよび均一な冷却方法
US8109324B2 (en) 2005-04-14 2012-02-07 Illinois Institute Of Technology Microchannel heat exchanger with micro-encapsulated phase change material for high flux cooling
KR20100116633A (ko) 2008-02-22 2010-11-01 다우 글로벌 테크놀로지스 인크. 열 저장 장치
JP2010192333A (ja) * 2009-02-19 2010-09-02 Toyota Motor Corp 電池パック
KR101058102B1 (ko) 2009-12-18 2011-08-24 에스비리모티브 주식회사 배터리 팩
KR101097226B1 (ko) * 2010-02-01 2011-12-21 에스비리모티브 주식회사 배터리 팩
US8927131B2 (en) * 2011-04-07 2015-01-06 GM Global Technology Operations LLC Battery thermal interfaces with microencapsulated phase change materials for enhanced heat exchange properties
US8623538B2 (en) * 2011-07-01 2014-01-07 GM Global Technology Operations LLC Liquid coolant with microencapsulated phase change materials for automotive batteries
US9774063B2 (en) 2011-08-15 2017-09-26 Advanced Energy Technologies Llc Battery pack assembly having thermal transfer sheets
KR101261925B1 (ko) 2011-09-29 2013-05-08 현대자동차주식회사 상전이 물질을 충진한 배터리 패키지 및 이를 이용한 배터리
FR3003938A1 (fr) * 2013-03-29 2014-10-03 Valeo Systemes Thermiques Plaque d'echange thermique pour gestion thermique de batterie et procede de fabrication associe.
US9312580B2 (en) 2013-07-30 2016-04-12 Johnson Controls Technology Company Battery module with phase change material
JP5942943B2 (ja) 2013-08-20 2016-06-29 トヨタ自動車株式会社 電池温度調節装置
KR101601142B1 (ko) * 2013-10-18 2016-03-08 주식회사 엘지화학 단열재를 포함하여 2이상의 분리된 유로를 가진 히트싱크
US20160006088A1 (en) * 2014-07-01 2016-01-07 Embry-Riddle Aeronautical University, Inc. Battery thermal management for hybrid electric vehicles using a phase-change material cold plate
KR20160059166A (ko) * 2014-11-18 2016-05-26 삼성에스디아이 주식회사 배터리 팩
US10003053B2 (en) * 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
KR102053963B1 (ko) * 2015-07-07 2019-12-09 주식회사 엘지화학 배터리 팩 및 이를 포함하는 자동차
CN205004375U (zh) * 2015-08-13 2016-01-27 上海航天电源技术有限责任公司 一种内部热隔离设计的锂离子电池
KR102259414B1 (ko) * 2015-11-20 2021-06-01 주식회사 엘지에너지솔루션 히트싱크 및 이를 포함하는 배터리 모듈
KR20200021654A (ko) * 2018-08-21 2020-03-02 현대자동차주식회사 차량용 배터리 냉각 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140034413A (ko) * 2012-09-11 2014-03-20 에스케이이노베이션 주식회사 배터리 모듈
KR101658517B1 (ko) * 2013-09-30 2016-09-21 주식회사 엘지화학 냉각 부재를 활용한 전지모듈
JP2016040770A (ja) * 2014-08-11 2016-03-24 ヴァレオ システム テルミク バッテリーパックの温度管理用熱交換プレート
KR20160112435A (ko) * 2015-03-19 2016-09-28 삼성에스디아이 주식회사 전지 팩
KR20160118061A (ko) * 2015-04-01 2016-10-11 주식회사 엘지화학 전지 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486995A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780255A4 (en) * 2018-09-11 2021-06-02 Lg Chem, Ltd. BATTERY MODULE WITH IMPROVED COOLING EFFICIENCY AND BATTERY PACK WITH IT
US11509009B2 (en) 2018-09-11 2022-11-22 Lg Energy Solution, Ltd. Battery module with enhanced cooling efficiency, and battery pack comprising same

Also Published As

Publication number Publication date
CN109923731A (zh) 2019-06-21
JP2019525402A (ja) 2019-09-05
JP7027631B2 (ja) 2022-03-02
EP3486995A1 (en) 2019-05-22
CN109923731B (zh) 2022-02-25
KR20180080905A (ko) 2018-07-13
KR102208720B1 (ko) 2021-01-28
US20190288351A1 (en) 2019-09-19
EP3486995A4 (en) 2019-06-19
US11024897B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2018128306A1 (ko) 상변화물질 캡슐을 적용한 배터리 냉각용 히트 싱크
WO2016171345A1 (ko) 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017104938A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR102051108B1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
WO2010114317A2 (ko) 우수한 방열 특성의 전지모듈 및 중대형 전지팩
WO2015030431A1 (ko) 냉매 및 배기 가스의 혼합을 방지하는 구조를 포함하는 전지모듈
WO2011034325A2 (ko) 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
WO2010114311A2 (ko) 안전성이 향상된 전지모듈
WO2012020941A2 (ko) 신규한 구조의 전지팩
WO2011034324A2 (ko) 온도 센서가 장착된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2013133636A1 (ko) 신규한 공냉식 구조의 전지팩
KR20190018389A (ko) 온도 조절 성능이 개선된 배터리 팩
WO2017150802A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2020022643A1 (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
WO2024021248A1 (zh) 电池单体、电池及用电设备
WO2023078187A1 (zh) 电池组、电池的热管理系统以及用电装置
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
US20230076751A1 (en) Battery, apparatus using battery, and manufacutring method and manufacutring device of battery
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022139148A1 (ko) 배터리팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500429

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017889828

Country of ref document: EP

Effective date: 20190214

NENP Non-entry into the national phase

Ref country code: DE