WO2018128142A1 - 液晶表示装置およびその駆動方法 - Google Patents

液晶表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2018128142A1
WO2018128142A1 PCT/JP2017/046888 JP2017046888W WO2018128142A1 WO 2018128142 A1 WO2018128142 A1 WO 2018128142A1 JP 2017046888 W JP2017046888 W JP 2017046888W WO 2018128142 A1 WO2018128142 A1 WO 2018128142A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
liquid crystal
crystal display
display device
data line
Prior art date
Application number
PCT/JP2017/046888
Other languages
English (en)
French (fr)
Inventor
冨永 真克
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780058405.2A priority Critical patent/CN110114717A/zh
Priority to US16/334,930 priority patent/US20190287473A1/en
Publication of WO2018128142A1 publication Critical patent/WO2018128142A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours

Definitions

  • the present invention relates to an active matrix type liquid crystal display device and a driving method thereof.
  • Liquid crystal display devices are widely used as thin, lightweight, and low power consumption display devices.
  • the liquid crystal display device has a structure in which a TFT substrate on which a TFT (Thin Film Transistor) is formed and a color filter substrate on which a color filter is provided are bonded, and liquid crystal is sealed between the two substrates. If a voltage having the same polarity is continuously applied to the liquid crystal, the liquid crystal display device deteriorates quickly. For this reason, the liquid crystal display device performs AC driving in which the polarity of the voltage written in the pixel circuit corresponding to the sub-pixel (or pixel) is inverted at a predetermined cycle.
  • TFT Thin Film Transistor
  • column inversion driving is a driving method in which the polarity of the voltage written to the pixel circuit is inverted for each column of the pixel circuit.
  • 1HZ inversion driving is known as a driving method for suppressing the stripe pattern.
  • 2HZ inversion driving is known as a driving method capable of reducing power consumption when displaying a red, green, or blue image while preventing a stripe pattern.
  • FIG. 19 is a diagram showing the polarity of the voltage written in the pixel circuit when AC driving is performed.
  • column inversion driving (FIG. 19A)
  • the pixel circuits in each column are connected to the same side of the data line, and voltages having different polarities are applied to adjacent data lines. For this reason, the polarity of the voltage written in the pixel circuit is inverted for each column of the pixel circuit.
  • the 1H-Z inversion drive FIG. 19B
  • one pixel circuit is alternately connected on both sides of the data line, and voltages having different polarities are applied to adjacent data lines. For this reason, the polarity of the voltage written in the pixel circuit is inverted for each row and column of the pixel circuit.
  • the polarity of the voltage applied to the data line is the same as that in the column inversion drive, but the polarity (polarity pattern) of the voltage written in the pixel circuit is the same as in the dot inversion drive.
  • the 2H-Z inversion driving (FIG. 19C)
  • two pixel circuits are alternately connected on both sides of the data line, and voltages having different polarities are applied to adjacent data lines. For this reason, the polarity of the voltage written in the pixel circuit is inverted every two rows and columns of the pixel circuit. In any driving method, the polarity of the voltage written in the pixel circuit is reversed in the next frame.
  • Patent Document 1 discloses, in the column direction, rows in which pixel circuits of three primary colors are arranged in the order of red, green, and blue and rows in which blue, green, and red are arranged in this order.
  • An alternating matrix type color display device is described.
  • Patent Documents 2 and 3 describe liquid crystal display devices that perform 2HZ inversion driving.
  • the above problem can be solved by, for example, the following liquid crystal display device.
  • the liquid crystal display device is an active matrix type liquid crystal display device, and a plurality of scanning lines extending in a row direction and a plurality of data lines extending in a column direction are respectively at intersections of the scanning lines and the data lines.
  • a plurality of pixel circuits arranged correspondingly and connected to one corresponding data line; a scanning line driving circuit for sequentially selecting the scanning lines; and a data line driving circuit for driving the data lines.
  • the data line driving circuit applies voltages having different polarities to adjacent data lines, and the pixel circuits are alternately connected to both sides of the data line by a predetermined number of one or more.
  • the three primary color pixel circuits are arranged in the order of red, green and blue, the three primary color pixel circuits are arranged in the order of blue, red and green, and the three primary color pixel circuits are green and blue.
  • the rows arranged in the order of red It is arranged so as to line up in the column direction by several.
  • the above problem can also be solved by, for example, the following driving method of the liquid crystal display device.
  • the liquid crystal display device is driven by a plurality of scanning lines extending in the row direction and a plurality of data lines extending in the column direction, each corresponding to the intersection of the scanning lines and the data lines, and A method of driving an active matrix liquid crystal display device having a plurality of pixel circuits connected to a corresponding data line, the step of sequentially selecting the scanning lines, and the step of driving the data lines
  • the step of driving the data line applies voltages of different polarities to adjacent data lines, and the pixel circuits are alternately connected to both sides of the data line by a predetermined number of one or more,
  • the pixel circuit includes a row in which the three primary color pixel circuits are arranged in the order of red, green, and blue, a row in which the three primary color pixel circuits are arranged in the order of blue, red, and green, and the pixel circuit in the three primary colors. Green, blue and A row
  • n is an integer of 1 or more.
  • NH-Z inversion driving can be performed by applying voltages of different polarities to.
  • the larger the value of n the lower the power consumption when displaying a red, green, or blue image.
  • the pixel circuits for the three primary colors are arranged in n rows in three orders, even when a specific pattern that causes a color shift is displayed, the display colors of the pixels in the 3n rows are averaged and the color shift is performed. Can be prevented.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment. It is a circuit diagram of the display area shown in FIG.
  • FIG. 2 is a layout diagram of a display area shown in FIG. 1.
  • FIG. 4 is an enlarged view of a portion X in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along line A-A ′ of FIG. 4.
  • FIG. 5 is a sectional view taken along line B-B ′ of FIG. 4. It is a figure which shows a state when a greenish pattern is displayed in the conventional liquid crystal display device. It is a figure which shows the direction which changes the polarity of the voltage applied to a data line in the case shown in FIG.
  • FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the first embodiment.
  • a liquid crystal display device 1 shown in FIG. 1 is an active matrix type display device having a structure in which a TFT substrate 2 and a color filter substrate 3 are bonded together and liquid crystal is sealed between two substrates.
  • the liquid crystal display device 1 displays a color image using pixel circuits of three primary colors.
  • the liquid crystal display device 1 includes a backlight (not shown).
  • the horizontal direction of the drawing is referred to as the row direction
  • the vertical direction of the drawing is referred to as the column direction.
  • the pixel circuit for displaying red is an R pixel circuit
  • the pixel for displaying green is a G pixel circuit
  • blue is displayed.
  • This pixel circuit is referred to as a B pixel circuit.
  • the sub-pixels corresponding to the three primary color pixel circuits are referred to as an R sub-pixel, a G sub-pixel, and a B sub-pixel.
  • the display area 4 is provided on the TFT substrate 2.
  • a plurality of scanning lines 11, a plurality of data lines 12, and a plurality of pixel circuits 13 are formed.
  • the scanning lines 11 extend in the row direction and are arranged in parallel to each other.
  • the data lines 12 extend in the column direction and are arranged in parallel to each other so as to be orthogonal to the scanning lines 11.
  • the pixel circuit 13 is arranged corresponding to the intersection of the scanning line 11 and the data line 12.
  • the pixel circuit 13 is connected to one corresponding scanning line 11 and one corresponding data line 12.
  • the pixel circuit 13 functions as one of an R pixel circuit, a G pixel circuit, and a B pixel circuit.
  • the scanning line 11 is also called a gate line
  • the data line 12 is also called a source line.
  • Scanning line drive circuits 5a and 5b are formed outside the display area 4.
  • the scanning line driving circuits 5a and 5b are formed monolithically on the TFT substrate 2 together with the pixel circuit 13 and the like.
  • the scanning line driving circuit 5 a is arranged on the left side of the display area 4
  • the scanning line driving circuit 5 b is arranged on the right side of the display area 4.
  • One end of the scanning line 11 is connected to the scanning line driving circuit 5a, and the other end of the scanning line 11 is connected to the scanning line driving circuit 5b.
  • the scanning line 11 is driven from both ends by the scanning line driving circuits 5a and 5b. Note that one scanning line driving circuit may drive the odd-numbered scanning lines 11 and the other scanning line driving circuit may drive the even-numbered scanning lines 11.
  • the scanning line driving circuit may be arranged only on one side of the display area 4.
  • An IC chip including a data line driving circuit 6 is mounted on a portion where the TFT substrate 2 and the color filter substrate 3 do not overlap, and a terminal region 7 for arranging an external connection terminal (not shown) is provided.
  • FIG. 2 is a circuit diagram of the display area 4.
  • the pixel circuit 13 includes a TFT 14 and a pixel capacitor 15.
  • the pixel capacitor 15 has a structure in which a liquid crystal 18 is sandwiched between the pixel electrode 16 and the common electrode 17.
  • the gate electrode of the TFT 14 is connected to the corresponding scanning line 11
  • the source electrode of the TFT 14 is connected to the corresponding data line 12
  • the drain electrode of the TFT 14 is connected to the corresponding pixel electrode 16.
  • the common electrode 17 is formed using a transparent metal material such as ITO (Indium Tin Oxide).
  • a common electrode voltage Vcom common to all the pixel circuits 13 is applied to the common electrode 17.
  • the common electrode voltage Vcom is applied to the common electrode 17 from an external connection terminal using a wiring (not shown) (a wiring in the same wiring layer as the scanning line 11 or the data line 12).
  • the scanning line driving circuits 5a and 5b drive the scanning line 11, and the data line driving circuit 6 drives the data line 12. More specifically, the scanning line driving circuits 5a and 5b sequentially select one scanning line 11 from the plurality of scanning lines 11, and apply a gate-on voltage (voltage at which the TFT 14 is turned on) to the selected scanning line 11. To do. As a result, the TFTs 14 included in the pixel circuits 13 for one row are turned on.
  • the data line driving circuit 6 applies a plurality of voltages corresponding to the video signals to the plurality of data lines 12, respectively. As a result, a voltage corresponding to the video signal is written to each of the pixel electrodes 16 included in the pixel circuits 13 for one row.
  • the voltage of the difference between the voltage of the pixel electrode 16 and the common electrode voltage Vcom is applied to the liquid crystal 18.
  • the transmittance (and luminance) of the sub-pixel (sub-pixel realized by the pixel circuit 13) corresponding to the pixel circuit 13 depends on the voltage applied to the liquid crystal 18 (determined by the voltage written in the pixel circuit 13). Change. Therefore, a desired image can be displayed by writing a voltage corresponding to the video signal to all the pixel circuits 13 included in the display area 4 using the scanning line driving circuits 5a and 5b and the data line driving circuit 6. it can.
  • the liquid crystal display device 1 is a normally black liquid crystal display device.
  • the liquid crystal display device 1 employs an FFS (Fringe Field Switching) system in which lateral electrolysis is applied to the liquid crystal 18 as an alignment system. Therefore, a slit is formed in the pixel electrode 16, and the common electrode 17 is formed in an upper layer of the pixel circuit 13 or the like on the TFT substrate 2.
  • the pixel circuit 13 includes the pixel electrode 16 and the common electrode 17 corresponding to the FFS method.
  • the liquid crystal display device 1 performs 2H-Z inversion driving. Therefore, two pixel circuits 13 are alternately connected on both sides of the data line 12. Specifically, as shown in FIG. 2, the pixel circuit 13 such as the i-th row and the (i + 1) -th row is connected to the left side of the data line 12, and the (i + 2) -th row ( i + 3) A pixel circuit 13 such as a row is connected.
  • FIG. 3 is a layout diagram of the display area 4.
  • FIG. 4 is an enlarged view of a portion X (portion surrounded by a long broken line) in FIG.
  • FIG. 5 is a cross-sectional view taken along line A-A ′ of FIG. 6 is a cross-sectional view taken along line B-B ′ of FIG.
  • a gate electrode 21 and a source electrode 22 are formed in the vicinity of the intersection of the scanning line 11 and the data line 12.
  • the gate electrode 21 is formed integrally with the scanning line 11 above the scanning line 11 (upper side in the drawing).
  • Two source electrodes 22 are alternately formed on the left side and the right side of the data line 12 integrally with the data line 12.
  • a drain electrode 23 is formed at a position facing the source electrode 22 across the gate electrode 21.
  • a semiconductor layer 24 is formed above the gate electrode 21 and below the source electrode 22 and the drain electrode 23.
  • the gate electrode 21, the source electrode 22, the drain electrode 23, and the semiconductor layer 24 form the TFT 14.
  • a pixel electrode 16 having a slit 25 is formed inside the pixel circuit 13.
  • a contact hole 26 that electrically connects the drain electrode 23 and the pixel electrode 16 is formed. In FIGS. 3 and 4, the short broken line indicates the arrangement position of the color filter (portion where the black matrix does not exist).
  • the TFT substrate 2 is manufactured, for example, by the following process (see FIGS. 5 and 6). First, a gate film is formed on the glass substrate 31 and the gate film is patterned to form the scanning line 11 and the gate electrode 21. Next, a gate insulating film 32 is formed on the entire surface of the substrate. Next, a semiconductor layer 24 is formed at a position where the TFT 14 is to be formed. Next, a data line 12, a source electrode 22, and a drain electrode 23 are formed by forming a source film and patterning the source film. Next, a first passivation film 33 is formed, an organic film 34 is applied, and then both are patterned to form holes that will eventually become contact holes 26.
  • the common electrode film is formed, and the common electrode film is etched to form the common electrode 17.
  • the contact hole 26 penetrating the first passivation film 33, the organic film 34, and the second passivation film 35 is patterned.
  • a pixel electrode film is formed, and the pixel electrode film is etched, whereby the pixel electrode 16 electrically connected to the drain electrode 23 through the contact hole 26 is formed.
  • the color filter substrate 3 is manufactured by providing a color filter 42 and a black matrix 43 on a glass substrate 41 and applying an overcoat 44 thereon.
  • the TFT substrate 2 and the color filter substrate 3 are bonded together, and a liquid crystal 18 is sealed between them.
  • Polarizers 45 and 46 are provided on both surfaces of the two bonded substrates, respectively.
  • a color shift occurs when a specific pattern is displayed in a normally black liquid crystal display device that performs 2HZ inversion driving will be described.
  • pixel circuits of three primary colors are arranged in the order of an R pixel circuit, a G pixel circuit, and a B pixel circuit.
  • a pattern that displays white and black in a checkered pattern in units of 2 rows and 1 column is referred to as a greenish pattern.
  • FIG. 7 is a diagram illustrating a state when a greenish pattern is displayed in a conventional liquid crystal display device.
  • FIG. 7 shows the color of the pixel circuit (color of the color filter) and the polarity of the voltage written to the pixel circuit for each pixel circuit.
  • the pixel circuit painted in black is a pixel circuit whose display color is black.
  • Zero voltage is written in the pixel circuit whose display color is black.
  • the voltage writing to the pixel circuit is performed in ascending order of row numbers.
  • the pixel circuit in the a row and the b column is referred to as Pa , b .
  • FIG. 8 is a diagram showing a direction in which the polarity of the voltage applied to the data line is changed in the case shown in FIG.
  • the polarity of the voltage to be written to the pixel circuit (however, “0” in the case of zero voltage) and the direction in which the polarity of the voltage applied to the data line when writing the voltage is changed.
  • An upward arrow indicates that the polarity of the voltage is changed in the positive direction
  • a downward arrow indicates that the polarity of the voltage is changed in the negative direction
  • a right arrow indicates that the polarity of the voltage is not changed.
  • the pixel lines P i, j , P i + 1, j , P i + 2, j + 1 , P i + 3, j + 1 , ... are connected.
  • the pixel circuit P i, j write a positive voltage
  • the next pixel circuit P i + 1, j writes zero voltage.
  • the pixel circuit P i + 1, j has a downward arrow indicating that the polarity of the voltage applied to the data line Sj is changed in the negative direction.
  • Zero voltage is also written to the next pixel circuit P i + 2, j + 1 .
  • the pixel circuit P i + 2, j + 1 has a right-pointing arrow indicating that the polarity of the voltage applied to the data line Sj is not changed (the zero voltage is continuously applied). A positive voltage is written in the next pixel circuit P i + 3, j + 1 . For this reason, an upward arrow indicating that the polarity of the voltage written to the data line Sj is changed in the positive direction is described in the pixel circuit P i + 3, j + 1 .
  • Cp When writing a voltage to a pixel circuit included in one row of pixels, Cp is the number of times the polarity of the voltage applied to the data line is changed in the positive direction, and the polarity of the voltage applied to the data line is changed in the negative direction. Let Cn be the number of times to be performed. A capacitor (not shown) exists between the data line and the common electrode. For this reason, when Cp> Cn, the common electrode voltage Vcom is increased by pushing up. When Cp ⁇ Cn, the common electrode voltage Vcom is lowered by pushing down.
  • the voltage applied to the liquid crystal is at a level at which the TFT 14 is turned off due to the push-up effect (hereinafter “gate voltage is turned off”).
  • the common electrode voltage Vcom is reduced by the amount that the common electrode voltage Vcom has not returned to the original level by the time the level is reached, and the luminance of the corresponding sub-pixel is lowered in accordance with the push-up.
  • the voltage applied to the liquid crystal is increased by the amount that the common electrode voltage Vcom cannot return to the original level before the gate voltage is turned off due to the push-up effect.
  • the luminance of the corresponding sub-pixel increases with the push-up.
  • the luminance of the G sub-pixel is high and the luminance of the R sub-pixel and the B sub pixel is low.
  • the voltage applied to the liquid crystal is the same as the common electrode voltage Vcom before the gate voltage is turned off due to the effect of the push-down. Therefore, the brightness of the corresponding sub-pixel decreases as the level is lowered.
  • the voltage applied to the liquid crystal is the amount that the common electrode voltage Vcom could not return to the original level before the gate voltage became the off level due to the effect of pushing down.
  • the brightness of the corresponding sub-pixel increases with the push-down.
  • the luminance of the G subpixel is increased and the luminance of the R subpixel and the B subpixel is decreased for the same reason as the pixel of the ith row.
  • the luminance of the G sub-pixel increases and the luminance of the R-sub-pixel and B-sub-pixel decreases for the same reason as the pixel of the (i + 1) -th row.
  • the liquid crystal display device 1 has an arrangement of pixel circuits different from that of the conventional liquid crystal display device.
  • FIG. 9 is a diagram illustrating an arrangement of pixel circuits in the liquid crystal display device 1.
  • the pixel circuit 13 includes a row in which three primary color pixel circuits are arranged in the order of red, green, and blue, a row in which the three primary color pixel circuits are arranged in the order of blue, red, and green, and 3
  • the primary color pixel circuits are arranged so that two rows of green, blue and red are arranged in the column direction. Specifically, as shown in FIG.
  • the three primary color pixel circuits are arranged in the order of the R pixel circuit, the G pixel circuit, and the B pixel circuit.
  • the three primary color pixel circuits are arranged in the order of the B pixel circuit, the R pixel circuit, and the G pixel circuit.
  • the three primary color pixel circuits are arranged in the order of the G pixel circuit, the B pixel circuit, and the R pixel circuit. The same applies to pixels in other rows.
  • FIG. 10 is a diagram showing a state when a greenish pattern is displayed on the liquid crystal display device 1.
  • FIG. 11 is a diagram showing the direction in which the polarity of the voltage applied to the data line 12 is changed in the case shown in FIG.
  • the polarity of the voltage written to the pixel circuit is the same between the pixel circuits at the same position in FIGS. Therefore, the direction in which the polarity of the voltage applied to the data line is changed (the direction of the arrow) is the same between the pixel circuits at the same position in FIGS.
  • the common electrode voltage Vcom is increased by pushing up when writing a voltage to the pixels such as the i-th row and the (i + 2) -th row, as in the conventional liquid crystal display device, and the (i + 1) -th row.
  • the voltage is lowered by pushing down.
  • the liquid crystal display device 1 writes a positive voltage to the pixel circuits P i, j and P i, j + 2 and writes a negative voltage to the pixel circuits P i, j + 1 .
  • the common electrode voltage Vcom is increased by the push-up, the luminance of the sub-pixel corresponding to the pixel circuits P i, j and P i, j + 2 is lowered according to the push-up, and the pixel circuit P i, j + 1
  • the luminance of the corresponding sub-pixel increases with the push-up.
  • the pixel circuits P i, j , P i, j + 1 , P i, j + 2 are an R pixel circuit, a G pixel circuit, and a B pixel circuit, respectively. Therefore, in the pixel in the i-th row, the luminance of the G sub pixel is high, and the luminance of the R sub pixel and the B sub pixel is low.
  • the liquid crystal display device 1 writes a negative voltage to the pixel circuits P i + 1, j + 3 and P i + 1, j + 5, and a positive voltage to the pixel circuits P i + 1, j + 4. Write.
  • the common electrode voltage Vcom is lowered by the push-down, the luminance of the sub-pixels corresponding to the pixel circuits P i + 1, j + 3 and P i + 1, j + 5 is lowered in accordance with the push-down.
  • the luminance of the sub-pixel corresponding to the circuit P i + 1, j + 4 increases with the push-down.
  • the pixel circuits P i + 1, j + 3 , P i + 1, j + 4 , P i + 1, j + 5 are respectively an R pixel circuit, a G pixel circuit, and a B pixel. Circuit. Therefore, in the pixel in the (i + 1) -th row, the luminance of the G sub-pixel is high and the luminance of the R sub-pixel and the B sub-pixel is low as in the pixel in the i row.
  • the liquid crystal display device 1 writes a positive voltage to the pixel circuits P i + 2, j + 3 and P i + 2, j + 5, and a negative voltage to the pixel circuits P i + 2, j + 4. Write.
  • the common electrode voltage Vcom increases as a result of the increase, the luminance of the sub-pixels corresponding to the pixel circuits P i + 2, j + 3 and P i + 2, j + 5 decreases according to the increase, and the pixel circuit P
  • the luminance of the subpixels corresponding to i + 2 and j + 4 increases with the push-up.
  • the pixel circuits P i + 2, j + 3 , P i + 2, j + 4 , P i + 2, j + 5 are respectively a B pixel circuit, an R pixel circuit, and a G pixel. Circuit. Therefore, in the pixel on the (i + 2) th row, the luminance of the R subpixel is high, and the luminance of the G subpixel and the B subpixel is low.
  • the liquid crystal display device 1 writes a negative voltage to the pixel circuits P i + 3, j and P i + 3, j + 2 and writes a positive voltage to the pixel circuits P i + 3, j + 1. .
  • the common electrode voltage Vcom is lowered by pushing down, the luminance of the sub-pixels corresponding to the pixel circuits P i + 3, j and P i + 3, j + 2 is lowered in accordance with the pushing down, and the pixel circuit P
  • the luminance of the sub-pixel corresponding to i + 3, j + 1 increases with the push-down.
  • the pixel circuits P i + 3, j , P i + 3, j + 1 , P i + 3, j + 2 are respectively a B pixel circuit, an R pixel circuit, and a G pixel circuit. is there. Therefore, in the pixel in the (i + 3) row, the luminance of the R sub pixel is high and the luminance of the G sub pixel and the B sub pixel is low, as in the pixel in the (i + 2) row.
  • the liquid crystal display device 1 writes a positive voltage to the pixel circuits P i + 4, j and P i + 4, j + 2 and writes a negative voltage to the pixel circuits P i + 4, j + 1. .
  • the common electrode voltage Vcom increases as a result of the increase, the luminance of the sub-pixels corresponding to the pixel circuits P i + 4, j and P i + 4, j + 2 decreases as the increase increases, and the pixel circuit P i + The luminance of the sub-pixel corresponding to 4, j + 1 increases with the push-up.
  • the pixel circuits P i + 4, j , P i + 4, j + 1 , P i + 4, j + 2 are respectively a G pixel circuit, a B pixel circuit, and an R pixel circuit. is there. Therefore, in the pixel in the (i + 4) th row, the luminance of the B sub pixel is high, and the luminance of the R sub pixel and the G sub pixel is low.
  • the liquid crystal display device 1 writes a negative voltage to the pixel circuits P i + 5, j + 3 and P i + 5, j + 5, and a positive voltage to the pixel circuits P i + 5, j + 4. Write.
  • the common electrode voltage Vcom is lowered by the push-down, the luminance of the sub-pixels corresponding to the pixel circuits P i + 5, j + 3 and P i + 5, j + 5 is lowered in accordance with the push-down.
  • the luminance of the sub-pixel corresponding to the circuit P i + 5, j + 4 increases with the push-down.
  • the pixel circuits P i + 5, j + 3 , P i + 5, j + 4 , P i + 5, j + 5 are respectively a G pixel circuit, a B pixel circuit, and an R pixel. Circuit. Accordingly, in the pixel in the (i + 5) row, the luminance of the B sub pixel is high and the luminance of the R sub pixel and the G sub pixel is low, as in the pixel in the (i + 4) row.
  • the luminance of the G sub-pixel is high and the luminance of the R sub-pixel and the B sub-pixel is low. For this reason, if only the pixels in the i-th row and the (i + 1) -th row are viewed, they appear greenish gray.
  • the luminance of the R sub pixel is high, and the luminance of the G sub pixel and the B sub pixel are low. For this reason, if only the pixels in the (i + 2) and (i + 3) th rows are viewed, they appear reddish gray.
  • the display colors of the pixels in the six rows are averaged, so that the color of the display screen appears gray (correct color). Therefore, according to the liquid crystal display device 1 according to the present embodiment, 2HZ inversion driving can be performed to prevent a color shift when a greenish pattern is displayed.
  • FIG. 12 is a diagram showing a state when the stripe pattern for alternately displaying white and black is displayed in the liquid crystal display device 1 in units of pixel columns.
  • the stripe pattern is displayed, a color shift that is smaller than that when the greenish pattern is displayed occurs.
  • the occurrence frequency of the stripe pattern is higher than the occurrence frequency of the greenish pattern. According to the liquid crystal display device 1, even when a stripe pattern is displayed, color shift can be prevented for the same reason as when a greenish pattern is displayed.
  • the liquid crystal display device 1 includes a plurality of scanning lines 11 extending in the row direction, a plurality of data lines 12 extending in the column direction, and the scanning lines 11 and the data lines 12 respectively.
  • a plurality of pixel circuits 13 arranged corresponding to the intersections of the pixels and connected to the corresponding one data line 12, a scanning line driving circuit 5 for sequentially selecting the scanning lines 11, and a data line 12 are driven.
  • the data line driving circuit 6 applies voltages having different polarities to the adjacent data lines 12. Two pixel circuits 13 are alternately connected to both sides of the data line 12.
  • the pixel circuit 13 includes three primary color pixel circuits 13 arranged in the order of red, green, and blue, three primary color pixel circuits 13 arranged in the order of blue, red, and green, and three primary color pixel circuits. Two rows 13 are arranged in the column direction in the order of green, blue, and red.
  • liquid crystal display device 1 According to the liquid crystal display device 1 according to the present embodiment, voltages having different polarities are applied to the adjacent data lines 12 in a situation where two pixel circuits 13 are alternately arranged on both sides of the data line 12. As a result, 2HZ inversion driving can be performed. As a result, it is possible to reduce power consumption when displaying a red, green, or blue image, compared to when performing 1HZ inversion driving. In addition, since the three primary color pixel circuits 13 are arranged in two rows in three orders, even when a specific pattern (greenish pattern) that causes a color shift is displayed, the display colors of the pixels in the six rows are displayed. Averaging can prevent color shift.
  • the pixel circuit 13 includes a pixel electrode 16 and a common electrode 17 corresponding to the FFS method. Therefore, in the liquid crystal display device 1 employing the FFS method, 2HZ inversion driving can be performed to prevent a color shift when a specific pattern is displayed.
  • the pixel circuit 13 may be arranged as shown in any one of FIGS.
  • the pixel circuit 13 includes rows in which the pixel circuits 13 of the three primary colors are arranged in the order of red, green, and blue.
  • a row in which the three primary color pixel circuits 13 are arranged in the order of blue, red, and green and a row in which the three primary color pixel circuits 13 are arranged in the order of green, blue, and red are arranged in the column direction.
  • the three primary color pixel circuits 13 are arranged in the order of red, green, and blue from the right, and the three primary color pixel circuits 13 are blue, red, and green from the right.
  • the three primary color pixel circuits 13 are arranged so that two rows arranged in the order of green, blue, and red from the right are arranged in the column direction in order from the bottom.
  • the liquid crystal display device according to the second embodiment has the same overall configuration (FIG. 1) as the liquid crystal display device 1 according to the first embodiment, and has the same pixel circuit connection form as the liquid crystal display device 1 (FIG. 2). 2HZ inversion driving is performed in the same manner as the liquid crystal display device 1.
  • the liquid crystal display device according to the present embodiment has the same pixel circuit arrangement (FIG. 9) as the liquid crystal display device 1.
  • the liquid crystal display device according to the present embodiment and the liquid crystal display device 1 have different display area 4 layouts.
  • FIG. 14 is a layout diagram of the display area 4 of the liquid crystal display device according to the present embodiment.
  • the scanning lines 11 extend in the row direction
  • the data lines 12 extend in the column direction while being refracted in a zigzag shape.
  • the pixel circuit 13 (portion indicated by a broken line) is formed corresponding to the intersection of the scanning line 11 and the data line 12 and includes a TFT 14 and a pixel capacitor (not shown).
  • the pixel capacitor has a pixel electrode 16 having a slit and a common electrode (not shown).
  • the scanning line 11 is arranged corresponding to the refraction point of the data line 12.
  • the size of the pixel circuit 13 and the pixel electrode 16 in the column direction is substantially equal to the interval between the refraction points of the data line 12.
  • the pixel circuit 13 and the pixel electrode 16 in the pixel circuit 13 have a shape inclined from the column direction according to the direction in which the data line 12 is refracted.
  • the pixel circuits 13 such as the i-th row and the (i + 2) -th row and the pixel electrodes 16 inside thereof have a shape in which the upper part is inclined to the left from the column direction.
  • the pixel circuits 13 such as the (i + 1) -th row and the (i + 3) -th row and the pixel electrodes 16 therein have a shape in which the upper portion is inclined to the right from the column direction.
  • the pixel circuits 13 adjacent in the column direction include pixel electrodes 16 having different shapes.
  • Two pixel circuits 13 are alternately connected to both sides of the data line 12. Specifically, as shown in FIG. 14, a pixel circuit 13 such as the i-th row and the (i + 1) -th row is connected to the left side of the data line 12, and the (i + 2) -th row ( i + 3) A pixel circuit 13 such as a row is connected.
  • the arrangement of the pixel circuit shown in FIG. 14 is called a pseudo dual domain.
  • the liquid crystal display device having a pseudo dual domain configuration it is possible to reduce coloring when the display screen is viewed from an oblique direction while narrowing the pixel pitch and keeping the transmittance high.
  • viewing angle characteristics are mutually complemented between two pixel circuits adjacent in the column direction. Therefore, in order to improve the flicker rate and the flicker shift, it is preferable to write voltages having the same polarity to two pixel circuits adjacent in the column direction. Therefore, the liquid crystal display device having a pseudo dual domain configuration performs 2HZ inversion driving.
  • the liquid crystal display device has the arrangement of the pixel circuits shown in FIG. 9 as with the liquid crystal display device 1 according to the first embodiment. Therefore, according to the liquid crystal display device according to the present embodiment, similarly to the liquid crystal display device 1 according to the first embodiment, 2H-Z inversion driving is performed to prevent a color shift when a greenish pattern is displayed. be able to.
  • the data lines 12 extend in the column direction while being refracted in a zigzag shape, and the scanning lines 11 are arranged corresponding to the refraction points of the data lines 12, and in the column direction.
  • Adjacent pixel circuits 13 include pixel electrodes 16 having different shapes. Therefore, according to the liquid crystal display device according to this embodiment, since the pixel electrodes 16 of the pixel circuits 13 adjacent in the column direction have different shapes, it is possible to reduce coloring when the display screen is viewed from an oblique direction. it can. Further, by performing 2HZ inversion driving, the flicker rate and the flicker shift can be improved.
  • the liquid crystal display device according to the third embodiment has the same overall configuration (FIG. 1) as the liquid crystal display device 1 according to the first embodiment.
  • the liquid crystal display device according to this embodiment has a pixel circuit connection form different from that of the liquid crystal display device 1, and performs 3HZ inversion driving instead of 2HZ inversion driving.
  • 3HZ inversion driving instead of 2HZ inversion driving.
  • FIG. 15 is a circuit diagram of the display area 4 of the liquid crystal display device according to this embodiment.
  • three pixel circuits 13 are alternately connected to both sides of the data line 12. Specifically, as shown in FIG. 15, the pixel circuits 13 in the i-th to (i + 2) th rows are connected to the left side of the data line 12, and the (i + 3) -th to (i + 5) th rows are connected to the right side of the data line 12. ) The pixel circuit 13 in the row is connected.
  • pixel circuits 13 such as the (i + 6) th to (i + 8) th rows are connected to the left side of the data line 12, and pixels such as the (i + 9) th to (i + 11) th rows are connected to the right side of the data line 12.
  • a circuit 13 is connected (not shown).
  • FIG. 16 is a diagram showing an arrangement of pixel circuits in the liquid crystal display device according to the present embodiment.
  • the pixel circuit 13 includes a row in which the three primary color pixel circuits are arranged in the order of red, green, and blue, and the three primary color pixel circuits in the order of blue, red, and green. Rows and three primary color pixel circuits are arranged so that three rows are arranged in order of green, blue, and red in the column direction.
  • the three primary color pixel circuits are arranged in the order of the R pixel circuit, the G pixel circuit, and the B pixel circuit.
  • the three primary color pixel circuits are arranged in the order of the B pixel circuit, the R pixel circuit, and the G pixel circuit.
  • the three primary color pixel circuits are arranged in the order of the G pixel circuit, the B pixel circuit, and the R pixel circuit. The same applies to pixels in other rows.
  • a pattern in which white and black are alternately displayed in pixel units in a certain row and the next row, and white and black are alternately displayed in reverse order in pixel units in the next row is referred to as a greenish pattern.
  • a normally black liquid crystal display device that performs 3H-Z inversion driving when a greenish pattern is displayed, the color of the display screen appears greenish gray.
  • FIG. 17 is a diagram showing a state when a greenish pattern is displayed in the liquid crystal display device according to the present embodiment.
  • FIG. 18 is a diagram showing a direction in which the polarity of the voltage applied to the data line 12 is changed in the case shown in FIG.
  • the luminance of the G sub-pixel is high, and the luminance of the R sub-pixel and the B sub-pixel is low. For this reason, if only the pixels in the i-th row to the (i + 2) -th row are viewed, it looks greenish gray.
  • the display colors of the nine rows of pixels are averaged, so that the color of the display screen appears gray (correct color). Therefore, according to the liquid crystal display device according to the present embodiment, even when 3H-Z inversion driving is performed and a greenish pattern is displayed, the display colors of the nine rows of pixels can be averaged to prevent color shift. .
  • the following modifications can be configured for the liquid crystal display device according to the above embodiment.
  • two pixel circuits 13 are alternately connected to both sides of the data line 12, and the three primary color pixel circuits are arranged in two rows in three different orders.
  • three pixel circuits 13 are alternately connected to both sides of the data line 12 and three primary color pixel circuits are arranged in three rows in three orders.
  • the pixel circuits 13 are alternately connected to both sides of the data line 12 by a predetermined number of one or more, and the three primary color pixel circuits are arranged in the three orders in the above order. Also good.
  • the FFS method is adopted as the alignment method.
  • liquid crystal display device In the liquid crystal display device according to the modification, a TN (Twisted Nematic) method or an ASV (Advanced Super View) method may be adopted as the alignment method. Also in the liquid crystal display devices according to these modified examples, the same effects as the liquid crystal display devices according to the first to third embodiments can be obtained.
  • TN Transmission Nematic
  • ASV Advanced Super View
  • the liquid crystal display device is an active matrix liquid crystal display device, and includes a plurality of scanning lines extending in a row direction, a plurality of data lines extending in a column direction, and each of the scanning lines.
  • a plurality of pixel circuits arranged corresponding to the intersections of the data lines and connected to one corresponding data line, a scanning line driving circuit for sequentially selecting the scanning lines, and driving the data lines
  • a data line driving circuit wherein the data line driving circuit applies voltages of different polarities to adjacent data lines, and one or more predetermined number of pixel circuits are alternately connected to both sides of the data line.
  • the pixel circuits of the three primary colors are arranged in the order of red, green, and blue, the pixel circuits of the three primary colors are arranged in the order of blue, red, and green; Pixel circuit is green, blue, and red And a line arranged in this order may be arranged so as to be aligned in the column direction by the number (first aspect).
  • the number may be two (second aspect).
  • the data lines extend in the column direction while being refracted in a zigzag shape, the scanning lines are arranged corresponding to the refraction points of the data lines, and pixel circuits adjacent in the column direction have different shapes.
  • the pixel electrode may be included (third aspect). Alternatively, the number may be 3 (fourth aspect).
  • the pixel circuit may include a pixel electrode and a common electrode corresponding to an FFS (Fringe Field Switching) system (fifth aspect).
  • FFS Ringe Field Switching
  • the driving method of the liquid crystal display device includes a plurality of scanning lines extending in the row direction and a plurality of data lines extending in the column direction, each corresponding to the intersection of the scanning lines and the data lines, And a method of driving an active matrix liquid crystal display device having a plurality of pixel circuits connected to a corresponding data line, the step of sequentially selecting the scanning lines, and the driving of the data lines A step of driving the data lines, wherein voltages having different polarities are applied to adjacent data lines, and the pixel circuits are alternately connected to each side of the data lines by a predetermined number of one or more.
  • the pixel circuit includes a row in which the three primary color pixel circuits are arranged in the order of red, green, and blue, a row in which the three primary color pixel circuits are arranged in the order of blue, red, and green, and the pixels in the three primary colors.
  • the circuit is green, blue, And, optionally arranged such that the row arranged in order of red arranged in the column direction by the number (sixth aspect).
  • n pixel circuits (n is an integer of 1 or more) are alternately arranged on both sides of the data line.
  • nHZ inversion driving can be performed.
  • the larger the value of n the lower the power consumption when displaying a red, green, or blue image.
  • the pixel circuits for the three primary colors are arranged in n rows in three orders, even when a specific pattern that causes a color shift is displayed, the display colors of the pixels in the 3n rows are averaged and the color shift is performed. Can be prevented.
  • 2HZ inversion driving can be performed. Even when a specific pattern is displayed, the display colors of the pixels in the six rows can be averaged to prevent a color shift.
  • the third aspect since the pixel electrodes of the pixel circuits adjacent in the column direction have different shapes, coloring when the display screen is viewed from an oblique direction can be reduced. Further, by performing 2HZ inversion driving, the flicker rate and the flicker shift can be improved.
  • 3HZ inversion driving can be performed. Further, even when a specific pattern is displayed, the display colors of the nine rows of pixels can be averaged to prevent color shift.
  • nHZ inversion driving can be performed to prevent a color shift when a specific pattern is displayed.
  • SYMBOLS 1 Liquid crystal display device 2 ... TFT substrate 3 ... Color filter substrate 4 ... Display area 5 ; Scanning line drive circuit 6 ... Data line drive circuit 7 ... Terminal area 11 ... Scanning line 12 ... Data line 13 ... Pixel circuit 14 ... TFT DESCRIPTION OF SYMBOLS 15 ... Pixel capacity 16 ... Pixel electrode 17 ... Common electrode 18 ... Liquid crystal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

液晶表示装置では、データ線の両側に画素回路がn個(nは1以上の整数)ずつ交互に接続されており、データ線駆動回路は隣接するデータ線に異なる極性の電圧を印加する。画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、青、赤、および、緑の順に並ぶ行と、緑、青、および、赤の順に並ぶ行とがn個ずつ列方向に並ぶように配置される。グリーニッシュパターンを表示したときに、3n行の画素の表示色を平均化し、表示画面の色が緑色を帯びた灰色になることを防止する。これにより、Z反転駆動を行い、特定のパターンを表示したときの色シフトを防止できる液晶表示装置を提供する。

Description

液晶表示装置およびその駆動方法
 本発明は、アクティブマトリクス型の液晶表示装置、および、その駆動方法に関する。
 液晶表示装置は、薄型、軽量、低消費電力の表示装置として広く利用されている。液晶表示装置は、TFT(Thin Film Transistor:薄膜トランジスタ)を形成したTFT基板とカラーフィルタを設けたカラーフィルタ基板とを貼り合わせ、2枚の基板の間に液晶を封入した構造を有する。液晶に同じ極性の電圧を印加し続けると、液晶表示装置は早く劣化する。このため液晶表示装置は、サブ画素(あるいは画素)に対応する画素回路に書き込む電圧の極性を所定の周期で反転させる交流駆動を行う。
 交流駆動には、フレーム反転駆動、ライン反転駆動、カラム反転駆動、ドット反転駆動などの種類がある。このうちカラム反転駆動は、画素回路に書き込む電圧の極性を画素回路の列ごとに反転させる駆動方法である。カラム反転駆動を行う液晶表示装置では、表示画面内にデータ線と同じ方向に延伸する縞模様が発生することがある。そこで、縞模様を抑制する駆動方法として、1H-Z反転駆動が知られている。また、縞模様を防止しながら、赤、緑、または、青の画像を表示したときの消費電力を削減できる駆動方法として、2H-Z反転駆動が知られている。
 図19は、交流駆動を行うときに画素回路に書き込む電圧の極性を示す図である。カラム反転駆動(図19(a))では、各列の画素回路はデータ線の同じ側に接続され、隣接するデータ線には異なる極性の電圧が印加される。このため、画素回路に書き込まれる電圧の極性は、画素回路の列ごとに反転する。1H-Z反転駆動(図19(b))では、データ線の両側に画素回路が1個ずつ交互に接続され、隣接するデータ線には異なる極性の電圧が印加される。このため、画素回路に書き込まれる電圧の極性は、画素回路の行および列ごとに反転する。1H-Z反転駆動では、データ線に印加される電圧の極性はカラム反転駆動と同じであるが、画素回路に書き込まれる電圧の極性(極性のパターン)はドット反転駆動と同じになる。2H-Z反転駆動(図19(c))では、データ線の両側に画素回路が2個ずつ交互に接続され、隣接するデータ線には異なる極性の電圧が印加される。このため、画素回路に書き込まれる電圧の極性は、画素回路の2行および列ごとに反転する。なお、いずれの駆動方法でも、次のフレームでは、画素回路に書き込まれる電圧の極性は反転する。
 本願発明に関連して、特許文献1には、3原色の画素回路を赤、緑、および、青の順に配置した行と、青、緑、および、赤の順に配置した行とを列方向に交互に配置したマトリクス型カラー表示装置が記載されている。特許文献2および3には、2H-Z反転駆動を行う液晶表示装置が記載されている。
日本国特開2001-343636号公報 国際公開第2014/185122号 日本国特開2003-233362号公報
 近年、2H-Z反転駆動を行う液晶表示装置が増加している。しかしながら、2H-Z反転駆動を行う液晶表示装置では、特定のパターンを表示したときに、表示画面の色が正しい色(期待される色)ではなく、別の色を帯びた色に見えるという現象(以下、色シフトという)が発生する。例えば、後述する図7に示すように2行1列の画素を単位として市松模様状に白と黒を表示したときには、表示画面の色は灰色ではなく、緑色を帯びた灰色に見える。
 それ故に、Z反転駆動を行い、特定のパターンを表示したときの色シフトを防止できる液晶表示装置を提供することが課題として挙げられる。
 上記の課題は、例えば、以下の液晶表示装置によって解決することができる。液晶表示装置は、アクティブマトリクス型の液晶表示装置であって、行方向に延伸する複数の走査線と、列方向に延伸する複数のデータ線と、それぞれが前記走査線と前記データ線の交点に対応して配置され、かつ、対応する1本のデータ線に接続された複数の画素回路と、前記走査線を順に選択する走査線駆動回路と、前記データ線を駆動するデータ線駆動回路とを備え、前記データ線駆動回路は、隣接するデータ線に異なる極性の電圧を印加し、前記データ線の両側には前記画素回路が1以上の所定個数ずつ交互に接続されており、前記画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、前記3原色の画素回路が青、赤、および、緑の順に並ぶ行と、前記3原色の画素回路が緑、青、および、赤の順に並ぶ行とが前記個数ずつ列方向に並ぶように配置されている。
 上記の課題は、例えば、以下の液晶表示装置の駆動方法によっても解決することができる。液晶表示装置の駆動方法は、行方向に延伸する複数の走査線と、列方向に延伸する複数のデータ線と、それぞれが前記走査線と前記データ線の交点に対応して配置され、かつ、対応する1本のデータ線に接続された複数の画素回路とを有するアクティブマトリクス型の液晶表示装置の駆動方法であって、前記走査線を順に選択するステップと、前記データ線を駆動するステップとを備え、前記データ線を駆動するステップは、隣接するデータ線に異なる極性の電圧を印加し、前記データ線の両側には前記画素回路が1以上の所定個数ずつ交互に接続されており、前記画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、前記3原色の画素回路が青、赤、および、緑の順に並ぶ行と、前記3原色の画素回路が緑、青、および、赤の順に並ぶ行とが前記個数ずつ列方向に並ぶように配置されている。
 このような液晶表示装置および液晶表示装置の駆動方法によれば、データ線の両側に画素回路がn個(nは1以上の整数)ずつ交互に配置されている状況下で、隣接するデータ線に異なる極性の電圧を印加することにより、nH-Z反転駆動を行うことができる。これにより、nの値が大きいときほど、赤、緑、または、青の画像を表示したときの消費電力を削減することができる。また、3原色の画素回路が3とおりの順序でn行ずつ配置されているので、色シフトを発生させる特定のパターンを表示したときでも、3n行の画素の表示色を平均化し、色シフトを防止することができる。
第1の実施形態に係る液晶表示装置の構成を示すブロック図である。 図1に示す表示領域の回路図である。 図1に示す表示領域のレイアウト図である。 図3のX部の拡大図である。 図4のA-A’線断面図である。 図4のB-B’線断面図である。 従来の液晶表示装置においてグリーニッシュパターンを表示したときの状態を示す図である。 図7に示す場合にデータ線に印加する電圧の極性を変化させる方向を示す図である。 図1に示す液晶表示装置における画素回路の配置を示す図である。 図1に示す液晶表示装置においてグリーニッシュパターンを表示したときの状態を示す図である。 図10に示す場合にデータ線に印加する電圧の極性を変化させる方向を示す図である。 図1に示す液晶表示装置において他のパターンを表示したときの状態を示す図である。 第1の実施形態の変形例に係る液晶表示装置における画素回路の配置を示す図である。 第2の実施形態に係る液晶表示装置の表示領域のレイアウト図である。 第3の実施形態に係る液晶表示装置の表示領域の回路図である。 第3の実施形態に係る液晶表示装置における画素回路の配置を示す図である。 第3の実施形態に係る液晶表示装置においてグリーニッシュパターンを表示したときの状態を示す図である。 図17に示す場合にデータ線に印加する電圧の極性を変化させる方向を示す図である。 交流駆動を行うときに画素回路に書き込む電圧の極性を示す図である。
 (第1の実施形態)
 図1は、第1の実施形態に係る液晶表示装置の構成を示すブロック図である。図1に示す液晶表示装置1は、TFT基板2とカラーフィルタ基板3を貼り合わせて、2枚の基板の間に液晶を封入した構造を有するアクティブマトリクス型の表示装置である。液晶表示装置1は、3原色の画素回路を用いてカラー画像を表示する。液晶表示装置1は、図示しないバックライトを備えている。以下、図面の水平方向を行方向、図面の垂直方向を列方向といい、赤を表示するための画素回路をR画素回路、緑を表示するための画素をG画素回路、青を表示するための画素回路をB画素回路という。また、3原色の画素回路に対応するサブ画素をRサブ画素、Gサブ画素、および、Bサブ画素という。
 TFT基板2には、表示領域4が設けられる。表示領域4の内部には、複数の走査線11、複数のデータ線12、および、複数の画素回路13が形成される。走査線11は、行方向に延伸し、互いに平行に配置される。データ線12は、列方向に延伸し、走査線11と直交するように互いに平行に配置される。画素回路13は、走査線11とデータ線12の交点に対応して配置される。画素回路13は、対応する1本の走査線11と対応する1本のデータ線12とに接続される。画素回路13は、R画素回路、G画素回路、および、B画素回路のいずれかとして機能する。なお、走査線11はゲート線、データ線12はソース線とも呼ばれる。
 表示領域4の外部には、走査線駆動回路5a、5bが形成される。走査線駆動回路5a、5bは、画素回路13などと共に、TFT基板2上にモノリシックに形成される。図1では、走査線駆動回路5aは表示領域4の左側に配置され、走査線駆動回路5bは表示領域4の右側に配置されている。走査線11の一端は走査線駆動回路5aに接続され、走査線11の他端は走査線駆動回路5bに接続される。走査線11は、走査線駆動回路5a、5bによって両端から駆動される。なお、一方の走査線駆動回路が奇数番目の走査線11を駆動し、他方の走査線駆動回路が偶数番目の走査線11を駆動してもよい。あるいは、走査線駆動回路を表示領域4の片側にだけ配置してもよい。TFT基板2とカラーフィルタ基板3が重ならない部分には、データ線駆動回路6を含むICチップが実装され、外部接続端子(図示せず)を配置するための端子領域7が設けられる。
 図2は、表示領域4の回路図である。図2に示すように、画素回路13は、TFT14と画素容量15を含んでいる。画素容量15は、画素電極16と共通電極17の間に液晶18を挟んだ構造を有する。TFT14のゲート電極は対応する走査線11に接続され、TFT14のソース電極は対応するデータ線12に接続され、TFT14のドレイン電極は対応する画素電極16に接続される。共通電極17は、例えば、ITO(Indium Tin Oxide:酸化インジウムスズ)などの透明な金属材料を用いて形成される。共通電極17には、すべての画素回路13に共通する共通電極電圧Vcomが印加される。共通電極電圧Vcomは、外部接続端子から図示しない配線(走査線11またはデータ線12と同じ配線層の配線)を用いて共通電極17に印加される。
 走査線駆動回路5a、5bは走査線11を駆動し、データ線駆動回路6はデータ線12を駆動する。より詳細には、走査線駆動回路5a、5bは、複数の走査線11の中から1本の走査線11を順に選択し、選択した走査線11にゲートオン電圧(TFT14がオンする電圧)を印加する。これにより、1行分の画素回路13に含まれるTFT14がオンする。データ線駆動回路6は、複数のデータ線12に対して、映像信号に応じた複数の電圧をそれぞれ印加する。これにより、1行分の画素回路13に含まれる画素電極16に映像信号に応じた電圧がそれぞれ書き込まれる。
 液晶18には、画素電極16の電圧と共通電極電圧Vcomの差の電圧が印加される。画素回路13に対応するサブ画素(画素回路13によって実現されるサブ画素)の透過率(および輝度)は、液晶18に印加される電圧(画素回路13に書き込まれた電圧によって決まる)に応じて変化する。したがって、走査線駆動回路5a、5bとデータ線駆動回路6を用いて、表示領域4に含まれるすべての画素回路13に映像信号に応じた電圧を書き込むことにより、所望の画像を表示することができる。
 液晶表示装置1は、ノーマリーブラック型の液晶表示装置である。液晶表示装置1では、配向方式として、液晶18に横電解を印加するFFS(Fringe Field Switching)方式が採用されている。このため、画素電極16にはスリットが形成され、共通電極17はTFT基板2において画素回路13などの上層に形成される。このように画素回路13は、FFS方式に対応した画素電極16と共通電極17を含む。
 また、液晶表示装置1は、2H-Z反転駆動を行う。このため、画素回路13は、データ線12の両側に2個ずつ交互に接続される。具体的には図2に示すように、データ線12の左側にはi行目、(i+1)行目などの画素回路13が接続され、データ線12の右側には(i+2)行目、(i+3)行目などの画素回路13が接続される。
 図3は、表示領域4のレイアウト図である。図4は、図3のX部(長破線で囲んだ部分)の拡大図である。図5は、図4のA-A’線断面図である。図6は、図4のB-B’線断面図である。図3~図6に示すように、走査線11とデータ線12の交点の近傍に、ゲート電極21とソース電極22が形成される。ゲート電極21は、走査線11と一体に、走査線11の上側(図面内での上側)に形成される。ソース電極22は、データ線12と一体に、データ線12の左側と右側に2個ずつ交互に形成される。ゲート電極21を挟んでソース電極22と対向する位置に、ドレイン電極23が形成される。ゲート電極21の上層でソース電極22とドレイン電極23の下層には、半導体層24が形成される。ゲート電極21、ソース電極22、ドレイン電極23、および、半導体層24は、TFT14を形成する。画素回路13の内部には、スリット25を有する画素電極16が形成される。ドレイン電極23と画素電極16の間には、両者を電気的に接続するコンタクトホール26が形成される。なお、図3および図4において、短破線はカラーフィルタの配置位置(ブラックマトリクスが存在しない部分)を示す。
 TFT基板2は、例えば、以下の工程によって製造される(図5および図6を参照)。まずガラス基板31上にゲート膜を成膜し、ゲート膜をパターニングすることにより、走査線11とゲート電極21を形成する。次に、基板の全面にゲート絶縁膜32を成膜する。次に、TFT14を形成すべき位置に半導体層24を形成する。次に、ソース膜を成膜し、ソース膜をパターニングすることにより、データ線12、ソース電極22、および、ドレイン電極23を形成する。次に、第1パシベーション膜33を成膜し、有機膜34を塗布した後、両者をパターニングすることにより、最終的にコンタクトホール26となる穴を形成する。次に、共通電極膜を成膜し、共通電極膜をエッチングすることにより、共通電極17を形成する。次に、第2パシベーション膜35を成膜した後、第1パシベーション膜33、有機膜34、および、第2パシベーション膜35を貫くコンタクトホール26をパターニングする。次に、画素電極膜を成膜し、画素電極膜をエッチングすることにより、コンタクトホール26を介してドレイン電極23と電気的に接続された画素電極16を形成する。
 カラーフィルタ基板3は、ガラス基板41上にカラーフィルタ42とブラックマトリクス43を設け、その上にオーバーコート44を塗布することにより製造される。TFT基板2とカラーフィルタ基板3は貼り合わされ、両者の間には液晶18が封入される。貼り合わせた2枚の基板の両面には、偏光板45、46がそれぞれ設けられる。
 ここで、2H-Z反転駆動を行うノーマリーブラック型の従来の液晶表示装置では、特定のパターンを表示したときに色シフトが発生する理由を説明する。従来の液晶表示装置では、いずれの画素でも、3原色の画素回路が、R画素回路、G画素回路、および、B画素回路の順に配置されている。以下、2行1列の画素を単位として市松模様状に白と黒を表示するパターンをグリーニッシュパターンという。
 図7は、従来の液晶表示装置においてグリーニッシュパターンを表示したときの状態を示す図である。図7には、各画素回路について、画素回路の色(カラーフィルタの色)と画素回路に書き込む電圧の極性とが記載されている。黒く塗られた画素回路は、表示色が黒の画素回路である。表示色が黒の画素回路には、ゼロ電圧が書き込まれる。画素回路に対する電圧の書き込みは、行番号の昇順に行われる。以下、a行b列目の画素回路をPa,b という。
 図8は、図7に示す場合にデータ線に印加する電圧の極性を変化させる方向を示す図である。図8には、各画素回路について、画素回路に書き込む電圧の極性(ただし、ゼロ電圧の場合には「0」)と、その電圧を書き込むときにデータ線に印加する電圧の極性を変化させる方向を示す矢印とが記載されている。上向き矢印は電圧の極性を正の方向に変化させることを示し、下向き矢印は電圧の極性を負の方向に変化させることを示し、右向き矢印は電圧の極性を変化させないことを示す。
 図8に示すように、データ線Sjには行番号の昇順に、画素回路Pi,j 、Pi+1,j 、Pi+2,j+1 、Pi+3,j+1 、…が接続されている。画素回路Pi,j には正極性の電圧を書き込み、次の画素回路Pi+1,j にはゼロ電圧を書き込む。このため、画素回路Pi+1,j には、データ線Sjに印加する電圧の極性を負の方向に変化させることを示す下向き矢印が記載されている。次の画素回路Pi+2,j+1 にも、ゼロ電圧を書き込む。このため、画素回路Pi+2,j+1 には、データ線Sjに印加する電圧の極性を変化させない(ゼロ電圧を印加し続ける)ことを示す右向き矢印が記載されている。次の画素回路Pi+3,j+1 には、正極性の電圧を書き込む。このため、画素回路Pi+3,j+1 には、データ線Sjに書き込む電圧の極性を正の方向に変化させることを示す上向き矢印が記載されている。
 1行分の画素に含まれる画素回路に電圧を書き込むときに、データ線に印加する電圧の極性を正の方向に変化させる回数をCp、データ線に印加する電圧の極性を負の方向に変化させる回数をCnとする。データ線と共通電極の間には、図示しない容量が存在する。このため、Cp>Cnのときには、共通電極電圧Vcomは突き上げによって高くなる。Cp<Cnのときには、共通電極電圧Vcomは突き下げによって低くなる。
 図8に示す部分に注目したとき、i行目では、Cp=2、Cn=0である(上向き矢印は2個、下向き矢印は0個)。i行目の他の部分でも、これと同様である。したがって、i行目の画素に電圧を書き込むときには、Cp>Cnが成立し、共通電極電圧Vcomは突き上げによって高くなる。また、画素回路Pi,j 、Pi,j+2 には正極性の電圧を書き込み、画素回路Pi,j+1 には負極性の電圧を書き込む。したがって、画素回路Pi,j 、Pi,j+2 では、液晶に印加される電圧は、突き上げの影響により走査線11の電圧がTFT14がオフするレベルになる(以下、「ゲート電圧がオフレベルになる」という)までに共通電極電圧Vcomが元のレベルに戻ることができなかった分だけ小さくなり、対応するサブ画素の輝度は突き上げに応じて低くなる。画素回路Pi,j+1 では、液晶に印加される電圧は突き上げの影響によりゲート電圧がオフレベルになるまでに共通電極電圧Vcomが元のレベルに戻ることができなかった分だけ大きくなり、対応するサブ画素の輝度は突き上げに応じて高くなる。i行目の他の部分でも、これと同様である。このようにi行目の画素では、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。
 図8に示す部分に注目したとき、(i+1)行目では、Cp=2、Cn=4である(上向き矢印は2個、下向き矢印は4個)。(i+1)行目の他の部分でも、これと同様である。したがって、(i+1)行目の画素に電圧を書き込むときには、Cp<Cnが成立し、共通電極電圧Vcomは突き下げによって低くなる。また、画素回路Pi+1,j+3 、Pi+1,j+5 には負極性の電圧を書き込み、画素回路Pi+1,j+4 には正極性の電圧を書き込む。したがって、画素回路Pi+1,j+3 、Pi+1,j+5 では、液晶に印加される電圧は突き下げの影響によりゲート電圧がオフレベルになるまでに共通電極電圧Vcomが元のレベルに戻ることができなかった分だけ小さくなり、対応するサブ画素の輝度は突き下げに応じて低くなる。画素回路Pi+1,j+4 では、液晶に印加される電圧は突き下げの影響によりゲート電圧がオフレベルになるまでに共通電極電圧Vcomが元のレベルに戻ることができなかった分だけ大きくなり、対応するサブ画素の輝度は突き下げに応じて高くなる。(i+1)行目の他の部分でも、これと同様である。このように(i+1)行目の画素では、i行目の画素と同様に、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。
 (i+2)行目、(i+4)行目などの画素では、i行目の画素と同様の理由により、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。(i+3)行目、(i+5)行目などの画素では、(i+1)行目の画素と同様の理由により、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。このようにグリーニッシュパターンを表示したときには、いずれの行でもGサブ画素(図8において太線で囲んだ画素回路に対応するサブ画素)の輝度は高くなり、Rサブ画素とBサブ画素(図8において太線で囲んだ画素回路の両隣の画素回路に対応するサブ画素)の輝度は低くなる。したがって、表示画面の色は、緑色を帯びた灰色に見える。2H-Z反転駆動を行う従来の液晶表示装置では、以上に述べた理由により、グリーニッシュパターンを表示したときに色シフトが発生する。
 色シフトを防止するために、本実施形態に係る液晶表示装置1は、従来の液晶表示装置とは異なる画素回路の配置を有する。図9は、液晶表示装置1における画素回路の配置を示す図である。液晶表示装置1では、画素回路13は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、3原色の画素回路が青、赤、および、緑の順に並ぶ行と、3原色の画素回路が緑、青、および、赤の順に並ぶ行とが2個ずつ列方向に並ぶように配置される。具体的には図9に示すように、i行目と(i+1)行目の画素では、3原色の画素回路は、R画素回路、G画素回路、および、B画素回路の順に配置される。(i+2)行目と(i+3)行目の画素では、3原色の画素回路は、B画素回路、R画素回路、および、G画素回路の順に配置される。(i+4)行目と(i+5)行目の画素では、3原色の画素回路は、G画素回路、B画素回路、および、R画素回路の順に配置される。他の行の画素でも、これと同様である。
 図10は、液晶表示装置1においてグリーニッシュパターンを表示したときの状態を示す図である。図11は、図10に示す場合にデータ線12に印加する電圧の極性を変化させる方向を示す図である。図7と図10において同じ位置にある画素回路の間では、画素回路に書き込む電圧の極性は同じである。このため、図8と図11において同じ位置にある画素回路の間では、データ線に印加する電圧の極性を変化させる方向(矢印の方向)は同じである。このため、液晶表示装置1では、従来の液晶表示装置と同様に、共通電極電圧Vcomは、i行目、(i+2)行目などの画素に電圧を書き込むときには突き上げよって高くなり、(i+1)行目、(i+3)行目などの画素に電圧を書き込むときには突き下げによって低くなる。
 液晶表示装置1は、画素回路Pi,j 、Pi,j+2 には正極性の電圧を書き込み、画素回路Pi,j+1 には負極性の電圧を書き込む。このとき共通電極電圧Vcomは突き上げによって高くなるので、画素回路Pi,j 、Pi,j+2 に対応したサブ画素の輝度は突き上げに応じて低くなり、画素回路Pi,j+1 に対応したサブ画素の輝度は突き上げに応じて高くなる。液晶表示装置1では、画素回路Pi,j 、Pi,j+1 、Pi,j+2 は、それぞれ、R画素回路、G画素回路、および、B画素回路である。したがって、i行目の画素では、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。
 液晶表示装置1は、画素回路Pi+1,j+3 、Pi+1,j+5 には負極性の電圧を書き込み、画素回路Pi+1,j+4 には正極性の電圧を書き込む。このとき共通電極電圧Vcomは突き下げによって低くなるので、画素回路Pi+1,j+3 、Pi+1,j+5 に対応したサブ画素の輝度は突き下げに応じて低くなり、画素回路Pi+1,j+4 に対応したサブ画素の輝度は突き下げに応じて高くなる。液晶表示装置1では、画素回路Pi+1,j+3 、Pi+1,j+4 、Pi+1,j+5 は、それぞれ、R画素回路、G画素回路、および、B画素回路である。したがって、(i+1)行目の画素では、i行目の画素と同様に、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。
 液晶表示装置1は、画素回路Pi+2,j+3 、Pi+2,j+5 には正極性の電圧を書き込み、画素回路Pi+2,j+4 には負極性の電圧を書き込む。このとき共通電極電圧Vcomは突き上げよって高くなるので、画素回路Pi+2,j+3 、Pi+2,j+5 に対応したサブ画素の輝度は突き上げに応じて低くなり、画素回路Pi+2,j+4 に対応したサブ画素の輝度は突き上げに応じて高くなる。液晶表示装置1では、画素回路Pi+2,j+3 、Pi+2,j+4 、Pi+2,j+5 は、それぞれ、B画素回路、R画素回路、および、G画素回路である。したがって、(i+2)行目の画素では、Rサブ画素の輝度は高くなり、Gサブ画素とBサブ画素の輝度は低くなる。
 液晶表示装置1は、画素回路Pi+3,j 、Pi+3,j+2 には負極性の電圧を書き込み、画素回路Pi+3,j+1 には正極性の電圧を書き込む。このとき共通電極電圧Vcomは突き下げによって低くなるので、画素回路Pi+3,j 、Pi+3,j+2 に対応したサブ画素の輝度は突き下げに応じて低くなり、画素回路Pi+3,j+1 に対応したサブ画素の輝度は突き下げに応じて高くなる。液晶表示装置1では、画素回路Pi+3,j 、Pi+3,j+1 、Pi+3,j+2 は、それぞれ、B画素回路、R画素回路、および、G画素回路である。したがって、(i+3)行目の画素では、(i+2)行目の画素と同様に、Rサブ画素の輝度は高くなり、Gサブ画素とBサブ画素の輝度は低くなる。
 液晶表示装置1は、画素回路Pi+4,j 、Pi+4,j+2 には正極性の電圧を書き込み、画素回路Pi+4,j+1 には負極性の電圧を書き込む。このとき共通電極電圧Vcomは突き上げよって高くなるので、画素回路Pi+4,j 、Pi+4,j+2 に対応したサブ画素の輝度は突き上げに応じて低くなり、画素回路Pi+4,j+1 に対応したサブ画素の輝度は突き上げに応じて高くなる。液晶表示装置1では、画素回路Pi+4,j 、Pi+4,j+1 、Pi+4,j+2 は、それぞれ、G画素回路、B画素回路、および、R画素回路である。したがって、(i+4)行目の画素では、Bサブ画素の輝度は高くなり、Rサブ画素とGサブ画素の輝度は低くなる。
 液晶表示装置1は、画素回路Pi+5,j+3 、Pi+5,j+5 には負極性の電圧を書き込み、画素回路Pi+5,j+4 には正極性の電圧を書き込む。このとき共通電極電圧Vcomは突き下げによって低くなるので、画素回路Pi+5,j+3 、Pi+5,j+5 に対応したサブ画素の輝度は突き下げに応じて低くなり、画素回路Pi+5,j+4 に対応したサブ画素の輝度は突き下げに応じて高くなる。液晶表示装置1では、画素回路Pi+5,j+3 、Pi+5,j+4 、Pi+5,j+5 は、それぞれ、G画素回路、B画素回路、および、R画素回路である。したがって、(i+5)行目の画素では、(i+4)行目の画素と同様に、Bサブ画素の輝度は高くなり、Rサブ画素とGサブ画素の輝度は低くなる。
 このようにi行目と(i+1)行目の画素では、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。このため、i行目と(i+1)行目の画素だけを見れば、緑色を帯びた灰色に見える。(i+2)行目と(i+3)行目では、Rサブ画素の輝度は高くなり、Gサブ画素とBサブ画素の輝度は低くなる。このため、(i+2)行目と(i+3)行目の画素だけを見れば、赤色を帯びた灰色に見える。(i+4)行目と(i+5)行目では、Bサブ画素の輝度は高くなり、Rサブ画素とGサブ画素の輝度は低くなる。このため、(i+4)行目と(i+5)行目の画素だけを見れば、青色を帯びた灰色に見える。他の行の画素でも、これと同様である。
 液晶表示装置1の表示画面をある程度離れた位置から見たときには、上記6行の画素の表示色が平均化されるので、表示画面の色は灰色(正しい色)に見える。したがって、本実施形態に係る液晶表示装置1によれば、2H-Z反転駆動を行い、グリーニッシュパターンを表示したときの色シフトを防止することができる。
 図12は、液晶表示装置1において、画素の列を単位として白と黒を交互に表示するストライプパターンを表示したときの状態を示す図である。ストライプパターンを表示したときには、グリーニッシュパターンを表示したときよりも小さい程度の色シフトが発生する。ただし、ストライプパターンの発生頻度は、グリーニッシュパターンの発生頻度よりも多い。液晶表示装置1によれば、ストライプパターンを表示したときでも、グリーニッシュパターンを表示したときと同様の理由により色シフトを防止することができる。
 以上に示すように、本実施形態に係る液晶表示装置1は、行方向に延伸する複数の走査線11と、列方向に延伸する複数のデータ線12と、それぞれが走査線11とデータ線12の交点に対応して配置され、かつ、対応する1本のデータ線12に接続された複数の画素回路13と、走査線11を順に選択する走査線駆動回路5と、データ線12を駆動するデータ線駆動回路6とを備えている。データ線駆動回路6は、隣接するデータ線12に異なる極性の電圧を印加する。データ線12の両側には画素回路13が2個ずつ交互に接続されている。画素回路13は、3原色の画素回路13が赤、緑、および、青の順に並ぶ行と、3原色の画素回路13が青、赤、および、緑の順に並ぶ行と、3原色の画素回路13が緑、青、および、赤の順に並ぶ行とが2個ずつ列方向に並ぶように配置されている。
 したがって、本実施形態に係る液晶表示装置1によれば、データ線12の両側に画素回路13が2個ずつ交互に配置されている状況下で、隣接するデータ線12に異なる極性の電圧を印加することにより、2H-Z反転駆動を行うことができる。これにより、1H-Z反転駆動を行うときよりも、赤、緑、または、青の画像を表示したときの消費電力を削減することができる。また、3原色の画素回路13が3とおりの順序で2行ずつ配置されているので、色シフトを発生させる特定のパターン(グリーニッシュパターン)を表示したときでも、6行の画素の表示色を平均化し、色シフトを防止することができる。
 また、画素回路13は、FFS方式に対応した画素電極16と共通電極17を含む。したがって、FFS方式を採用した液晶表示装置1において、2H-Z反転駆動を行い、特定のパターンを表示したときの色シフトを防止することができる。
 なお、液晶表示装置1では、画素回路13を図13(a)~(c)のいずれかに示すように配置してもよい。図13(a)~(c)に示すいずれの配置においても、図9に示す配置と同様に、画素回路13は、3原色の画素回路13が赤、緑、および、青の順に並ぶ行と、3原色の画素回路13が青、赤、および、緑の順に並ぶ行と、3原色の画素回路13が緑、青、および、赤の順に並ぶ行とが2個ずつ列方向に並ぶように配置されている。例えば、図13(b)に示す配置では、3原色の画素回路13が右から赤、緑、および、青の順に並ぶ行と、3原色の画素回路13が右から青、赤、および、緑の順に並ぶ行と、3原色の画素回路13が右から緑、青、および、赤の順に並ぶ行とが2個ずつ下から順に列方向に並ぶように配置されている。
 (第2の実施形態)
 第2の実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置1と同じ構成全体(図1)を有し、液晶表示装置1と同じ画素回路の接続形態(図2)を有し、液晶表示装置1と同様に2H-Z反転駆動を行う。また、本実施形態に係る液晶表示装置は、液晶表示装置1と同じ画素回路の配置(図9)を有する。本実施形態に係る液晶表示装置と液晶表示装置1とでは、表示領域4のレイアウトが異なる。
 図14は、本実施形態に係る液晶表示装置の表示領域4のレイアウト図である。図14に示すように、走査線11は行方向に延伸し、データ線12はジグザグ状に屈折しながら列方向に延伸する。画素回路13(破線で示す部分)は、走査線11とデータ線12の交点に対応して形成され、TFT14と画素容量(図示せず)を含んでいる。画素容量は、スリットが形成された画素電極16と、共通電極(図示せず)とを有する。
 走査線11は、データ線12の屈折点に対応して配置される。画素回路13と画素電極16の列方向のサイズは、データ線12の屈折点の間隔にほぼ等しい。画素回路13とその内部の画素電極16は、データ線12が屈折する方向に応じて、列方向から傾いた形状を有する。具体的には、i行目、(i+2)行目などの画素回路13とその内部の画素電極16とは、上側部分が列方向から左に傾いた形状を有する。(i+1)行目、(i+3)行目などの画素回路13とその内部の画素電極16とは、上側部分が列方向から右に傾いた形状を有する。このように列方向に隣接する画素回路13は、互いに異なる形状を有する画素電極16を含む。画素回路13は、データ線12の両側に2個ずつ交互に接続される。具体的には図14に示すように、データ線12の左側にはi行目、(i+1)行目などの画素回路13が接続され、データ線12の右側には(i+2)行目、(i+3)行目などの画素回路13が接続される。図14に示す画素回路の配置は、疑似デュアルドメインと呼ばれる。
 疑似デュアルドメイン構成の液晶表示装置によれば、画素ピッチを狭くし、透過率を高く保ちながら、表示画面を斜め方向から見たときの色付きを低減することができる。疑似デュアルドメイン構成の液晶表示装置では、列方向に隣接する2個の画素回路の間で視角特性が相互に補完される。したがって、フリッカー率やフリッカーずれを改善するためには、列方向に隣接する2個の画素回路に同じ極性の電圧を書き込むことが好ましい。そこで、疑似デュアルドメイン構成の液晶表示装置は、2H-Z反転駆動を行う。
 本実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置1と同様に、図9に示す画素回路の配置を有する。したがって、本実施形態に係る液晶表示装置によれば、第1の実施形態に係る液晶表示装置1と同様に、2H-Z反転駆動を行い、グリーニッシュパターンを表示したときの色シフトを防止することができる。
 また、本実施形態に係る液晶表示装置では、データ線12はジグザグ状に屈折しながら列方向に延伸し、走査線11はデータ線12の屈折点に対応して配置されており、列方向に隣接する画素回路13は互いに異なる形状の画素電極16を含む。したがって、本実施形態に係る液晶表示装置によれば、列方向に隣接する画素回路13の画素電極16が互いに異なる形状を有するので、表示画面を斜め方向から見たときの色付きを低減することができる。また、2H-Z反転駆動を行うことにより、フリッカー率やフリッカーずれを改善することができる。
 (第3の実施形態)
 第3の実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置1と同じ全体構成(図1)を有する。本実施形態に係る液晶表示装置は、液晶表示装置1とは異なる画素回路の接続形態を有し、2H-Z反転駆動に代えて3H-Z反転駆動を行う。以下、第1の実施形態に係る液晶表示装置1との相違点を説明する。
 図15は、本実施形態に係る液晶表示装置の表示領域4の回路図である。本実施形態に係る液晶表示装置では、画素回路13は、データ線12の両側に3個ずつ交互に接続される。具体的には図15に示すように、データ線12の左側にはi行目~(i+2)行目の画素回路13が接続され、データ線12の右側には(i+3)行目~(i+5)行目の画素回路13が接続される。また、データ線12の左側には(i+6)行目~(i+8)行目などの画素回路13が接続され、データ線12の右側には(i+9)行目~(i+11)行目などの画素回路13が接続される(図示せず)。
 図16は、本実施形態に係る液晶表示装置における画素回路の配置を示す図である。本実施形態に係る液晶表示装置では、画素回路13は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、3原色の画素回路が青、赤、および、緑の順に並ぶ行と、3原色の画素回路が緑、青、および、赤の順に並ぶ行とが3個ずつ列方向に並ぶように配置される。具体的には図16に示すように、i行目~(i+2)行目の画素では、3原色の画素回路は、R画素回路、G画素回路、および、B画素回路の順に配置される。(i+3)行目~(i+5)行目の画素では、3原色の画素回路は、B画素回路、R画素回路、および、G画素回路の順に配置される。(i+6)行目~(i+8)行目の画素では、3原色の画素回路は、G画素回路、B画素回路、および、R画素回路の順に配置される。他の行の画素でも、これと同様である。
 本実施形態では、ある行と次の行では画素単位で白と黒を交互に表示し、その次の行では画素単位で白と黒を逆の順序で交互に表示するパターンをグリーニッシュパターンという。3H-Z反転駆動を行うノーマリーブラック型の従来の液晶表示装置では、グリーニッシュパターンを表示したときに表示画面の色が緑色を帯びた灰色に見える。
 図17は、本実施形態に係る液晶表示装置においてグリーニッシュパターンを表示したときの状態を示す図である。図18は、図17に示す場合にデータ線12に印加する電圧の極性を変化させる方向を示す図である。本実施形態に係る液晶表示装置では、i行目~(i+2)行目の画素では、Gサブ画素の輝度は高くなり、Rサブ画素とBサブ画素の輝度は低くなる。このため、i行目~(i+2)行目の画素だけを見れば、緑色を帯びた灰色に見える。(i+3)行目~(i+5)行目では、Rサブ画素の輝度は高くなり、Gサブ画素とBサブ画素の輝度は低くなる。このため、(i+3)行目~(i+5)行目の画素だけを見れば、赤色を帯びた灰色に見える。(i+6)行目~(i+8)行目では、Bサブ画素の輝度は高くなり、Rサブ画素とGサブ画素の輝度は低くなる。このため、(i+6)行目~(i+8)行目の画素だけを見れば、青色を帯びた灰色に見える。他の行の画素でも、これと同様である。
 本実施形態に係る液晶表示装置の表示画面をある程度離れた位置から見たときには、上記9行の画素の表示色が平均化されるので、表示画面の色は灰色(正しい色)に見える。したがって、本実施形態に係る液晶表示装置によれば、3H-Z反転駆動を行い、グリーニッシュパターンを表示したときでも、9行の画素の表示色を平均化し、色シフトを防止することができる。
 上記実施形態に係る液晶表示装置については、以下の変形例を構成することができる。第1および第2の実施形態では、データ線12の両側に画素回路13が2個ずつ交互に接続され、3原色の画素回路が3とおりの順序で2行ずつ配置されており、第3の実施形態では、データ線12の両側に画素回路13が3個ずつ交互に接続され、3原色の画素回路が3とおりの順序で3行ずつ配置されていることとした。変形例に係る液晶表示装置では、データ線12の両側に画素回路13が1以上の所定個数ずつ交互に接続され、3原色の画素回路が3とおりの順序で上記個数ずつ配置されていることとしてもよい。また、第1および第2の実施形態では、配向方式としてFFS方式を採用することとした。変形例に係る液晶表示装置では、配向方式として、TN(Twisted Nematic )方式やASV(Advanced Super View )方式を採用してもよい。これら変形例に係る液晶表示装置でも、第1~第3の実施形態に係る液晶表示装置と同様の効果が得られる。
 以上に示すように、液晶表示装置は、アクティブマトリクス型の液晶表示装置であって、行方向に延伸する複数の走査線と、列方向に延伸する複数のデータ線と、それぞれが前記走査線と前記データ線の交点に対応して配置され、かつ、対応する1本のデータ線に接続された複数の画素回路と、前記走査線を順に選択する走査線駆動回路と、前記データ線を駆動するデータ線駆動回路とを備え、前記データ線駆動回路は、隣接するデータ線に異なる極性の電圧を印加し、前記データ線の両側には前記画素回路が1以上の所定個数ずつ交互に接続されており、前記画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、前記3原色の画素回路が青、赤、および、緑の順に並ぶ行と、前記3原色の画素回路が緑、青、および、赤の順に並ぶ行とが前記個数ずつ列方向に並ぶように配置されていてもよい(第1の局面)。
 前記個数が2であってもよい(第2の局面)。前記データ線は、ジグザグ状に屈折しながら列方向に延伸し、前記走査線は、前記データ線の屈折点に対応して配置されており、列方向に隣接する画素回路は、互いに異なる形状を有する画素電極を含んでいてもよい(第3の局面)。あるいは、前記個数が3であってもよい(第4の局面)。前記画素回路は、FFS(Fringe Field Switching)方式に対応した画素電極と共通電極を含んでいてもよい(第5の局面)。
 また、液晶表示装置の駆動方法は、行方向に延伸する複数の走査線と、列方向に延伸する複数のデータ線と、それぞれが前記走査線と前記データ線の交点に対応して配置され、かつ、対応する1本のデータ線に接続された複数の画素回路とを有するアクティブマトリクス型の液晶表示装置の駆動方法であって、前記走査線を順に選択するステップと、前記データ線を駆動するステップとを備え、前記データ線を駆動するステップは、隣接するデータ線に異なる極性の電圧を印加し、前記データ線の両側には前記画素回路が1以上の所定個数ずつ交互に接続されており、前記画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、前記3原色の画素回路が青、赤、および、緑の順に並ぶ行と、前記3原色の画素回路が緑、青、および、赤の順に並ぶ行とが前記個数ずつ列方向に並ぶように配置されていてもよい(第6の局面)。
 第1または第6の局面によれば、データ線の両側に画素回路がn個(nは1以上の整数)ずつ交互に配置されている状況下で、隣接するデータ線に異なる極性の電圧を印加することにより、nH-Z反転駆動を行うことができる。これにより、nの値が大きいときほど、赤、緑、または、青の画像を表示したときの消費電力を削減することができる。また、3原色の画素回路が3とおりの順序でn行ずつ配置されているので、色シフトを発生させる特定のパターンを表示したときでも、3n行の画素の表示色を平均化し、色シフトを防止することができる。
 第2の局面によれば、2H-Z反転駆動を行うことができる。また、特定のパターンを表示したときでも、6行の画素の表示色を平均化し、色シフトを防止することができる。第3の局面によれば、列方向に隣接する画素回路の画素電極が互いに異なる形状を有するので、表示画面を斜め方向から見たときの色付きを低減することができる。また、2H-Z反転駆動を行うことにより、フリッカー率やフリッカーずれを改善することができる。第4の局面によれば、3H-Z反転駆動を行うことができる。また、特定のパターンを表示したときでも、9行の画素の表示色を平均化し、色シフトを防止することができる。第5の局面によれば、FFS方式を採用した液晶表示装置において、nH-Z反転駆動を行い、特定のパターンを表示したときの色シフトを防止することができる。
 本願は、2017年1月5日に出願された「液晶表示装置およびその駆動方法」という名称の日本国特願2017-468号に基づく優先権を主張する出願であり、この出願の内容は引用することによって本願の中に含まれる。
 1…液晶表示装置
 2…TFT基板
 3…カラーフィルタ基板
 4…表示領域
 5…走査線駆動回路
 6…データ線駆動回路
 7…端子領域
 11…走査線
 12…データ線
 13…画素回路
 14…TFT
 15…画素容量
 16…画素電極
 17…共通電極
 18…液晶

Claims (6)

  1.  アクティブマトリクス型の液晶表示装置であって、
     行方向に延伸する複数の走査線と、
     列方向に延伸する複数のデータ線と、
     それぞれが前記走査線と前記データ線の交点に対応して配置され、かつ、対応する1本のデータ線に接続された複数の画素回路と、
     前記走査線を順に選択する走査線駆動回路と、
     前記データ線を駆動するデータ線駆動回路とを備え、
     前記データ線駆動回路は、隣接するデータ線に異なる極性の電圧を印加し、
     前記データ線の両側には前記画素回路が1以上の所定個数ずつ交互に接続されており、
     前記画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、前記3原色の画素回路が青、赤、および、緑の順に並ぶ行と、前記3原色の画素回路が緑、青、および、赤の順に並ぶ行とが前記個数ずつ列方向に並ぶように配置されていることを特徴とする、液晶表示装置。
  2.  前記個数が2であることを特徴とする、請求項1に記載の液晶表示装置。
  3.  前記データ線は、ジグザグ状に屈折しながら列方向に延伸し、
     前記走査線は、前記データ線の屈折点に対応して配置されており、
     列方向に隣接する画素回路は、互いに異なる形状を有する画素電極を含むことを特徴とする、請求項2に記載の液晶表示装置。
  4.  前記個数が3であることを特徴とする、請求項1に記載の液晶表示装置。
  5.  前記画素回路は、FFS(Fringe Field Switching)方式に対応した画素電極と共通電極を含むことを特徴とする、請求項1に記載の液晶表示装置。
  6.  行方向に延伸する複数の走査線と、列方向に延伸する複数のデータ線と、それぞれが前記走査線と前記データ線の交点に対応して配置され、かつ、対応する1本のデータ線に接続された複数の画素回路とを有するアクティブマトリクス型の液晶表示装置の駆動方法であって、
     前記走査線を順に選択するステップと、
     前記データ線を駆動するステップとを備え、
     前記データ線を駆動するステップは、隣接するデータ線に異なる極性の電圧を印加し、
     前記データ線の両側には前記画素回路が1以上の所定個数ずつ交互に接続されており、
     前記画素回路は、3原色の画素回路が赤、緑、および、青の順に並ぶ行と、前記3原色の画素回路が青、赤、および、緑の順に並ぶ行と、前記3原色の画素回路が緑、青、および、赤の順に並ぶ行とが前記個数ずつ列方向に並ぶように配置されていることを特徴とする、液晶表示装置の駆動方法。
PCT/JP2017/046888 2017-01-05 2017-12-27 液晶表示装置およびその駆動方法 WO2018128142A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780058405.2A CN110114717A (zh) 2017-01-05 2017-12-27 液晶显示装置及其驱动方法
US16/334,930 US20190287473A1 (en) 2017-01-05 2017-12-27 Liquid crystal display device and drive method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-000468 2017-01-05
JP2017000468 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018128142A1 true WO2018128142A1 (ja) 2018-07-12

Family

ID=62789374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046888 WO2018128142A1 (ja) 2017-01-05 2017-12-27 液晶表示装置およびその駆動方法

Country Status (3)

Country Link
US (1) US20190287473A1 (ja)
CN (1) CN110114717A (ja)
WO (1) WO2018128142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047998A1 (zh) * 2018-09-07 2020-03-12 惠科股份有限公司 画素结构及显示面板的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456586B (zh) * 2019-08-22 2021-08-06 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159992A (ja) * 1995-12-12 1997-06-20 Furontetsuku:Kk カラー液晶表示装置
JP2011107679A (ja) * 2009-10-23 2011-06-02 Optrex Corp 液晶表示装置、液晶表示パネルの駆動装置および液晶表示パネル
US20120206512A1 (en) * 2011-02-14 2012-08-16 Younghoon Kim Liquid crystal display device and driving method thereof
WO2012157536A1 (ja) * 2011-05-18 2012-11-22 シャープ株式会社 表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454728B1 (ko) * 2014-12-06 2022-10-14 엘지디스플레이 주식회사 유기 발광 표시 장치
CN105549268A (zh) * 2015-12-15 2016-05-04 武汉华星光电技术有限公司 液晶面板及其像素结构
KR102648617B1 (ko) * 2016-06-30 2024-03-15 엘지디스플레이 주식회사 표시장치 및 그의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159992A (ja) * 1995-12-12 1997-06-20 Furontetsuku:Kk カラー液晶表示装置
JP2011107679A (ja) * 2009-10-23 2011-06-02 Optrex Corp 液晶表示装置、液晶表示パネルの駆動装置および液晶表示パネル
US20120206512A1 (en) * 2011-02-14 2012-08-16 Younghoon Kim Liquid crystal display device and driving method thereof
WO2012157536A1 (ja) * 2011-05-18 2012-11-22 シャープ株式会社 表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020047998A1 (zh) * 2018-09-07 2020-03-12 惠科股份有限公司 画素结构及显示面板的制造方法

Also Published As

Publication number Publication date
US20190287473A1 (en) 2019-09-19
CN110114717A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
KR100546258B1 (ko) 수평 전계 인가형 액정 표시 패널
JP5314155B2 (ja) 液晶表示装置
JP4302172B2 (ja) 表示装置
US7710388B2 (en) Display device having pixels including a plurality of sub-pixels
JP4663622B2 (ja) 液晶表示装置
KR100704817B1 (ko) 액정 패널 및 액정 표시 장치
JP5179673B2 (ja) 液晶表示装置
JP4804466B2 (ja) 表示装置
CN108646480B (zh) 一种垂直取向型液晶显示器
WO2011049106A1 (ja) 液晶表示装置
JPH11133887A (ja) カラー表示装置
KR20080022920A (ko) 액정표시장치
US10877342B2 (en) Display device
WO2011078168A1 (ja) 液晶表示装置
KR100417667B1 (ko) 액정 디스플레이 및 이를 사용한 화상표시장치
WO2018128142A1 (ja) 液晶表示装置およびその駆動方法
JP5589018B2 (ja) 液晶表示装置
KR101205766B1 (ko) 액정표시장치
KR101019046B1 (ko) 액정표시장치 구동 방법
US11054704B2 (en) Light source device for display device and liquid crystal display device
WO2011081160A1 (ja) 液晶表示装置
JP4501979B2 (ja) 液晶表示装置
US20230314880A1 (en) Liquid crystal display device
KR101110056B1 (ko) 액정표시장치 및 디스플레이장치
JP2005195641A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP