WO2020047998A1 - 画素结构及显示面板的制造方法 - Google Patents

画素结构及显示面板的制造方法 Download PDF

Info

Publication number
WO2020047998A1
WO2020047998A1 PCT/CN2018/115222 CN2018115222W WO2020047998A1 WO 2020047998 A1 WO2020047998 A1 WO 2020047998A1 CN 2018115222 W CN2018115222 W CN 2018115222W WO 2020047998 A1 WO2020047998 A1 WO 2020047998A1
Authority
WO
WIPO (PCT)
Prior art keywords
color resist
resist layer
sub
layer
light
Prior art date
Application number
PCT/CN2018/115222
Other languages
English (en)
French (fr)
Inventor
黄北洲
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/313,861 priority Critical patent/US20200081293A1/en
Publication of WO2020047998A1 publication Critical patent/WO2020047998A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • the present application relates to the field of display technology, and in particular, to a pixel structure and a method for manufacturing a display panel.
  • the liquid crystal display panel is generally composed of a color filter substrate (CF), a thin film transistor array substrate (TFT array substrate, TFT array substrate), and a liquid crystal layer (Liquid crystal layer, LC layer) disposed between the two substrates. Its working principle is to control the rotation of the liquid crystal molecules of the liquid crystal layer by applying a driving voltage on two glass substrates, and refracting the light of the backlight module to generate a picture.
  • CF color filter substrate
  • TFT array substrate thin film transistor array substrate
  • TFT array substrate TFT array substrate
  • LC layer liquid crystal layer
  • the liquid crystal display panels on the mainstream market can be divided into the following types: vertical alignment (VA), twisted nematic (TN) or super twisted nematic (Super Twisted Nematic (STN) type, In-Plane Switching (IPS) type and Fringe Field Switching (FFS) type.
  • VA vertical alignment
  • TN twisted nematic
  • STN super twisted nematic
  • IPS In-Plane Switching
  • FFS Fringe Field Switching
  • the vertical alignment (VA) mode liquid crystal display for example, a graphic vertical alignment (PVA) liquid crystal display or a multi-domain vertical alignment (MVA) liquid crystal display device, wherein
  • the PVA type uses a fringe field effect and a compensation plate to achieve a wide viewing angle effect.
  • the MVA type divides a pixel into multiple regions, and uses protrusions or specific pattern structures to cause the liquid crystal molecules located in different regions to fall in different directions to achieve a wide viewing angle and improve the transmittance.
  • the liquid crystal molecules are driven by applying an electric field containing a component substantially parallel to the substrate so that the liquid crystal molecules respond in a direction parallel to the plane of the substrate.
  • the IPS type liquid crystal display panel and the FFS type liquid crystal display panel have the advantages of wide viewing angle.
  • the phase difference (Retardation) required to achieve the same transmittance (Transmittance) is smaller, and the transmittance-voltage of red, green, and blue light (voltage VT) curves are different;
  • the transmittance of red, green, and blue light in the panel's polyimide (PI) film, planarization layer (PFA), and coating layer (OC) is different. This can cause color cast problems.
  • An object of the present application is to provide a pixel structure including, but not limited to, a technical problem of solving color shift.
  • the technical solution adopted in the embodiment of the present application is to provide a pixel structure including a plurality of pixel units, and the pixel unit includes:
  • a light-transmitting area includes a main light-transmitting area and a sub-light-transmitting area arranged adjacently;
  • a color resist structure is disposed in the light-transmitting area, and the color resist structure includes a red color resist layer, a green color resist layer, a blue color resist layer, and a white color resist layer, and a sub-red color resist layer and a sub-green color are arranged oppositely.
  • the red color resist layer, the green color resist layer, and the blue color resist layer are disposed in the main light-transmitting area; the white color resist layer, the sub-red color resist layer, and the sub-green color resist layer.
  • the color-blocking layer and the sub-blue color-blocking layer are disposed in the sub-light-transmitting region; the main light-transmitting region and the sub-light-transmitting region make the main light-transmitting region and the The light-transmitting region is one of a bright region and a dark region, respectively, so that the effect of low color shift can be achieved by combining the bright region with the dark region.
  • the red color resist layer is positioned opposite the sub-red color resist layer in a position
  • the green color resist layer is positioned opposite the sub-green color resist layer in a position
  • the The blue color resist layer is disposed opposite to the sub-blue color resist layer in position.
  • the sub-red color resist layer, the sub-green color resist layer, and the sub-blue color resist layer are disposed adjacently.
  • the magnitudes of the input voltages of the primary transparent region and the secondary transparent region are adjustable, so that the brightness of the primary transparent region is greater than the brightness of the secondary transparent region.
  • the red color resist layer, the green color resist layer, and the blue color resist layer have a rectangular shape.
  • the white color resist layer, the sub-red color resist layer, the sub-green color resist layer, and the sub-blue color resist layer have a rectangular shape.
  • Another object of the present application is to provide a pixel structure including a plurality of pixel units.
  • the pixel unit includes:
  • a light-transmitting area includes a main light-transmitting area and a sub-light-transmitting area arranged adjacently;
  • a color resist structure is disposed in the light-transmitting area, and the color resist structure includes a red color resist layer, a green color resist layer, a blue color resist layer, and a white color resist layer, and a sub-red color resist layer and a sub-green color are arranged oppositely.
  • the red color resist layer, the green color resist layer, and the blue color resist layer are disposed in the main light-transmitting area; the white color resist layer, the sub-red color resist layer, and the sub-green color resist layer.
  • the color-blocking layer and the sub-blue color-blocking layer are disposed in the sub-light-transmitting area; the main light-transmitting area and the sub-light-transmitting area make the main light-transmitting area and the sub-light-transmitting area according to the input voltage.
  • the light-transmitting region is one of a bright region and a dark region, respectively, so that the effect of low color shift can be achieved by combining the bright region with the dark region; the red color resist layer is in position with the sub-red color resist.
  • the green color resist layer is disposed opposite to the sub-green color resist layer in position, and the blue color resist layer is disposed opposite to the sub-blue color resist layer in position;
  • the sub-red color resist Layer, the sub-green color resist layer and the sub-blue color resist layer are arranged adjacent to each other; the area ratio of the main light-transmitting area and the sub-light-transmitting area is between 1.5 and 4.
  • the magnitudes of the input voltages of the primary transparent region and the secondary transparent region are adjustable, so that the brightness of the primary transparent region is greater than the brightness of the secondary transparent region.
  • the red color resist layer, the green color resist layer, and the blue color resist layer have a rectangular shape.
  • the white color resist layer, the sub-red color resist layer, the sub-green color resist layer, and the sub-blue color resist layer have a rectangular shape.
  • Another object of the present application is to provide a method for manufacturing a display panel, including:
  • a color filter layer is formed on the first insulating layer, and the color filter layer includes a red color resist layer, a green color resist layer, a blue color resist layer, a white color resist layer, and a sub-red color resist layer disposed oppositely.
  • a sub-green color resist layer and a sub-blue color resist layer wherein the red color resist layer, the green color resist layer, and the blue color resist layer are disposed in the main light-transmitting area; the white color resist layer , The sub-red color resist layer, the sub-green color resist layer, and the sub-blue color resist layer are disposed in the sub-light-transmitting area;
  • the main light-transmitting area and the second light-transmitting area make the main light-transmitting area and the second light-transmitting area one of a bright area and a dark area, respectively, according to the magnitude of the input voltage, so that the display panel can
  • the light region is matched with the dark region to achieve the effect of low color cast.
  • the step of forming a color filter layer on the first insulating layer includes:
  • the photomask having a transparent region, a non-transparent region, and a semi-transparent region
  • the white color resist layer, the red color resist layer, the green color resist layer, the blue color resist layer, the sub-red color resist layer, the sub-green color resist layer, and the Sub-blue color resist layer wherein the red color resist layer and the sub-red color resist layer are made by the same mask process, and the green color resist layer and the sub-green color resist layer are made by the same mask process Therefore, the blue color resist layer and the sub-blue color resist layer are made by the same mask process, thereby forming the color filter layer.
  • the step of forming a color filter layer on the first insulating layer includes:
  • the photomask having a transparent region, a non-transparent region, and a semi-transparent region
  • the white color resist layer, the red color resist layer, the green color resist layer, the blue color resist layer, the sub-red color resist layer, the sub-green color resist layer, and the The sub-blue color resist layer is formed to form the color filter layer.
  • the red color resist layer, the green color resist layer, and the blue color resist layer have a rectangular shape.
  • the white color resist layer, the sub-red color resist layer, the sub-green color resist layer, and the sub-blue color resist layer have a rectangular shape.
  • each pixel unit is set to include a main light transmission area and a second light transmission area which are adjacently arranged.
  • the main light transmission area and the second light transmission area make the main light transmission area and the second light transmission area respectively according to the input voltage.
  • It is one of the bright area and the dark area so there will be a multi-category compensation effect under a large viewing angle, so that the effect of low color deviation can be achieved by combining the bright area with the dark area, and the bright area is adjusted appropriately.
  • the ratio to the area of the dark area can effectively improve the pixel transmittance, and can effectively solve the problem of whitening or color shift of the display panel at a large viewing angle.
  • FIG. 1 a is a transmittance-grayscale value curve corresponding to a color misregistration angle of an exemplary vertical alignment type liquid crystal display device at a viewing angle of 0 °, a viewing angle of 45 °, and a viewing angle of 60 °.
  • FIG. 1b is an exemplary luminance-grayscale curve corresponding to a pixel region in which two types of color shift angles are improved.
  • FIG. 2 is an exemplary mixed low color cast region model.
  • FIG. 3a is a driving schematic diagram of color resist layers in different light-transmitting regions according to an embodiment of the present application.
  • FIG. 3b is a driving equivalent circuit diagram of the color resist layers in different light-transmitting regions according to an embodiment of the present application.
  • FIG. 4a is a schematic diagram of forming a first insulating layer on a first substrate.
  • FIG. 4b is a schematic diagram of a photomask process.
  • FIG. 4c is a schematic diagram of forming a white color resist on the first substrate and the first insulating layer.
  • FIG. 4d is a schematic diagram of forming a red color resist on the first substrate and the first insulating layer.
  • FIG. 4e is a schematic diagram of forming a green color resist on the first substrate and the first insulating layer.
  • FIG. 4f is a schematic diagram of forming a blue color resist on the first substrate and the first insulating layer.
  • FIG. 4g is a schematic diagram of forming a protective layer on the first substrate, the first insulating layer, and the color resist layer.
  • FIG. 4h is a schematic diagram of forming a pixel electrode layer on a protective layer.
  • FIG. 4i is a schematic diagram of providing a second substrate.
  • the display device in the embodiment of the present application may include a backlight module and a display panel.
  • the display panel may include a thin film transistor (TFT) substrate, a color filter (CF) substrate, and a layer formed between the two substrates.
  • TFT thin film transistor
  • CF color filter
  • the display panel of the present application may be a curved display panel, and the device of the present application may also be a curved display device.
  • the thin film transistor (TFT) and the color filter (CF) of the present application can be formed on the same substrate.
  • FIG. 1 a is a transmission-grayscale value curve corresponding to a color shift angle of an exemplary vertical alignment type liquid crystal display device at a viewing angle of 0 °, a viewing angle of 45 °, and a viewing angle of 60 °.
  • the transmittance-grayscale value curve 110 corresponding to the 0 degree color shift angle of view
  • the transmittance-grayscale value curve 120 corresponding to the 45 degree color shift angle of view
  • the 60 degree color shift angle of view Corresponding transmittance-grayscale value curve 130. Therefore, as the angle of view of the color shift is higher, the brightness transmittance is higher in the same grayscale value.
  • FIG. 1b is an exemplary luminance-grayscale curve corresponding to a pixel region in which two types of color shift angles are improved. Please refer to FIG. 1b.
  • the mainstream in the current MVA mode, the mainstream is mostly to distinguish pixels into bright areas and dark areas, so the optical performance can be mixed by two VT characteristics, and the brightness can be adjusted appropriately.
  • the area ratio of the dark area can effectively suppress the problem of medium grayscale whitening at large viewing angles.
  • the pixels 140 in the bright area and the pixels 150 in the dark area are mixed and adjusted into a pixel 160 in the brightness-grayscale scheme.
  • FIG. 2 is an exemplary mixed low color cast region model. Please refer to FIG. 2.
  • the main principle of a common Low Color Shift technology is to divide a conventional 4 area into 8 areas using a partial pressure or an additional driving method. Therefore, there are multi-category compensation effects when viewed at a large viewing angle, such as mixing the second low-color cast region 210 and the main low-color cast region 220 into the low-color cast region 200.
  • Fig. 3a is a schematic diagram of driving a color-blocking layer in different light-transmitting regions according to an embodiment of the present application
  • Fig. 3b is an equivalent circuit diagram of driving a color-blocking layer in different light-transmitting regions according to an embodiment of the present application.
  • a pixel structure 100 is provided, including a plurality of pixel units, and each pixel unit includes:
  • the light-transmitting area 300 includes a main light-transmitting area 310 and a sub-light-transmitting area 320 that are adjacently arranged;
  • the color resist structure 305 is disposed in the light transmitting region 300.
  • the color resist structure 305 includes a red color resist layer 312, a green color resist layer 314, a blue color resist layer 316, a white color resist layer 321, and a sub-red color resist layer disposed oppositely. 322, a sub-green color resist layer 324, and a sub-blue color resist layer 326;
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 are disposed in the main light-transmitting area 310; the white color resist layer 321, the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color
  • the resist layer 326 is disposed in the sub-light-transmitting area 320; the main light-transmitting area 310 and the sub-light-transmitting area 320 make the main light-transmitting area 310 and the sub-light-transmitting area 320 one of the bright area and the dark area according to the input voltage.
  • the main light-transmitting area 310 when the input voltage of the main light-transmitting area 310 is greater than the input voltage of the second light-transmitting area 320, the main light-transmitting area 310 is a bright area, and the second light-transmitting area 320 is a dark area; otherwise, when the input voltage of the main light-transmitting area 310 is When the input voltage is less than the secondary transmission region 320, the primary transmission region 310 is a dark region, and the secondary transmission region 320 is a bright region. The effect of low color shift can be achieved through the cooperation of the bright region and the dark region.
  • the red color resist layer 312 is disposed opposite to the sub-red color resist layer 322 in position
  • the green color resist layer 314 is disposed opposite to the sub-green color resist layer 324 in position, blue color.
  • the resist layer 316 is disposed opposite the sub-blue color resist layer 326 in position.
  • the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color resist layer 326 are disposed adjacently.
  • the brightness of the main transparent region 310 is greater than the brightness of the secondary transparent region 320 by adjusting the input voltages of the primary transparent region 310 and the secondary transparent region 320.
  • the input voltage of the light-transmitting area 310 is greater than the input voltage of the sub-light-transmitting area 320, thereby forming a main light-transmitting area 310 and a sub-light-transmitting area 320 with different brightness.
  • the light area 320 is a dark area; conversely, the brightness of the main light-transmitting area 310 is smaller than that of the sub-light-transmitting area 320 by adjusting the input voltages of the main light-transmitting area 310 and the sub-light-transmitting area 320.
  • the input voltage of 310 is smaller than the input voltage of the sub-transmissive region 320, thereby forming a main transmissive region 310 and a sub-transmissive region 320 that have different brightness and darkness.
  • the main transmissive region 310 is a dark region and the sub-transmissive region 320 Is the bright area.
  • the voltage of the data lines 331, 333, and 335 in the main light-transmitting area 310 and the data lines 332, 334, and 336 in the light-transmitting area 320 are adjusted to make the main light-transmitting
  • the brightness of the light region 310 is larger or smaller than that of the sub-light-transmitting region 320.
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 have a rectangular shape.
  • the white color resist layer 321, the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color resist layer 326 have a rectangular shape.
  • the driving equivalent circuit diagram of the color resist layer in the main transparent region 310 and the secondary transparent region 320 includes:
  • the main liquid crystal capacitor 341, the sub liquid crystal capacitor 351, the main storage capacitor 342, and the sub storage capacitor 352 correspond to the red color resist layer 312 and the sub red color resist layer 322;
  • the secondary storage capacitor 354 corresponds to the green color resist layer 314 and the secondary green color resist layer 324;
  • the primary liquid crystal capacitor 345, the secondary liquid crystal capacitor 355, the primary storage capacitor 346, and the secondary storage capacitor 356 correspond to the blue color resist layer 316 and the sub blue color resist layer 326 .
  • a pixel structure 100 including a plurality of pixel units, and each pixel unit includes:
  • the light-transmitting area 300 includes a main light-transmitting area 310 and a sub-light-transmitting area 320 that are adjacently arranged;
  • the color resist structure 305 is disposed in the light transmitting region 300.
  • the color resist structure 305 includes a red color resist layer 312, a green color resist layer 314, a blue color resist layer 316, a white color resist layer 321, and a sub-red color resist layer disposed oppositely. 322, a sub-green color resist layer 324, and a sub-blue color resist layer 326;
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 are disposed in the main light-transmitting area 310; the white color resist layer 321, the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color
  • the resist layer 326 is disposed in the sub-light-transmitting area 320; the main light-transmitting area 310 and the sub-light-transmitting area 320 make the main light-transmitting area 310 and the sub-light-transmitting area 320 one of the bright area and the dark area according to the input voltage
  • the main light-transmitting area 310 is a bright area
  • the second light-transmitting area 320 is a dark area; otherwise, when the input voltage of the main light-transmitting area 310 is When the input voltage is less than the secondary transmission area 320,
  • the brightness of the main transparent region 310 is greater than the brightness of the secondary transparent region 320 by adjusting the input voltages of the primary transparent region 310 and the secondary transparent region 320.
  • the input voltage of the light-transmitting area 310 is greater than the input voltage of the sub-light-transmitting area 320, thereby forming a main light-transmitting area 310 and a sub-light-transmitting area 320 with different brightness.
  • the light area 320 is a dark area; conversely, the brightness of the main light-transmitting area 310 is smaller than that of the sub-light-transmitting area 320 by adjusting the input voltages of the main light-transmitting area 310 and the sub-light-transmitting area 320.
  • the input voltage of 310 is smaller than the input voltage of the sub-transmissive region 320, thereby forming a main transmissive region 310 and a sub-transmissive region 320 that have different brightness and darkness.
  • the main transmissive region 310 is a dark region and the sub-transmissive region 320 Is the bright area.
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 have a rectangular shape.
  • the white color resist layer 321, the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color resist layer 326 have a rectangular shape.
  • a display panel including: a first substrate 400 having a plurality of pixel regions; the first substrate 400 includes: a first substrate 410; and a first An insulating layer 420 is formed on the first substrate 410; a second substrate 700 is disposed opposite to the first substrate 400; and a liquid crystal layer (not shown) is disposed between the first substrate 400 and the second substrate 700; further including pixels
  • the structure 100 is disposed between the first substrate 400 and the second substrate 700.
  • a display device including a backlight module and a display panel.
  • the display panel includes: a first substrate 400 having a plurality of pixel regions; the first substrate 400 includes: a first substrate 410; And a first insulating layer 420 is formed on the first substrate 410; a second substrate 700 is disposed opposite the first substrate 400; and a liquid crystal layer (not shown) is disposed between the first substrate 400 and the second substrate 700;
  • the pixel structure 100 is further provided between the first substrate 400 and the second substrate 700.
  • a method for manufacturing a display panel including:
  • a color filter layer 430 is formed on the first insulating layer 420.
  • the color filter layer 430 includes color filter layers 431, 432, 434, and 436.
  • the color filter layer 431 is composed of a white color resist layer 321 and the color filter layer 432.
  • red color resist layer 312 and sub-red color resist layer 322 color filter layer 434 consists of green color resist layer 314 and sub-green color resist layer 324
  • color filter layer 436 consists of blue color resist layer 316 and sub-blue color
  • the resist layer 326 is formed, that is, the color filter layer 430 includes a red color resist layer 312, a green color resist layer 314, a blue color resist layer 316, a white color resist layer 321, and a sub-red color resist layer 322 and a sub-green color that are relatively arranged.
  • the sub-green color resist layer 324 and the sub-blue color resist layer 326 are disposed in the sub-light-transmitting area 320.
  • the main light-transmitting area 310 and the second light-transmitting area 320 depend on the magnitude of the input voltage, so that the main light-transmitting area 310 and the second light-transmitting area 320 are one of the light and dark areas, respectively. For example, when the input voltage of the main light-transmitting area 310 When the input voltage is greater than the secondary transmission region 320, the primary transmission region 310 is a bright region, and the secondary transmission region 320 is a dark region.
  • the main light-transmitting area 310 is a dark area
  • the sub-light-transmitting area 320 is a light area
  • a spacer is provided between the first substrate 400 and the second substrate 700 to define a liquid crystal space, and liquid crystal is filled in the space to form a liquid crystal layer.
  • the step of forming a color filter layer 430 on the first insulating layer 420 includes: forming a color resist material layer on the entire surface of the first insulating layer 420. 433.
  • a photoresist layer 500 is formed on the color resist material layer 433 to cover the color resist material layer 433.
  • a photomask 600 is provided on the photoresist layer 500, and the photomask 600 has a light-transmitting area, a non-light-transmitting area, and a translucent And performing an exposure process and a development process on the photoresist layer 500, patterning the photoresist layer 500, using the patterned photoresist layer 500 as a barrier layer, and etching the color resist material layer 433 to form a color corresponding to the color
  • a resist layer is formed by using the above-mentioned method to form a white color resist layer 321, a red color resist layer 312, a green color resist layer 314, a blue color resist layer 316, a sub-red color resist layer 322, a sub-green color resist layer 324, and a sub-blue color resist layer.
  • a red color resist layer 312, a green color resist layer 314, and a blue color resist layer 316 are sequentially arranged in the main light transmitting area 310, and a sub-red color resist is simultaneously set in the second light transmitting area 320 through the same mask Layer 322, sub-green color resist layer 324, sub-blue color resist layer 326, that is, red
  • the color resist layer 312 and the sub-red color resist layer 322 are formed through the same mask
  • the green color resist layer 314 and the sub-green color resist layer 324 are formed through the same mask
  • the blue color resist layer 316 and the sub-blue color resist layer 326 pass through the same light.
  • Hood formation in which a red color resist layer 312, a green color resist layer 314, and a blue color resist layer 316 are sequentially arranged in the main light transmitting area 310, and a sub-red color resist is simultaneously set in the second light transmitting area 320 through the same mask Layer 322, sub-green color resist layer 324, sub-blue color resist layer
  • the step of forming a color filter layer 430 on the first insulating layer 420 includes: forming a color resist material on the entire surface of the first insulating layer 420.
  • the color resist layer uses the above method to form a white color resist layer 321, a red color resist layer 312, a green color resist layer 314, a blue color resist layer 316, a sub-red color resist layer 322, a sub-green color resist layer 324, and a sub-blue color, respectively.
  • the resist layer 326 forms a color filter layer 430, in which a red color resist layer 312, a green color resist layer 314, and a blue color resist layer 316 are sequentially arranged in the main light-transmitting area 310, and then disposed in the sub-light-transmitting area 320 at the same time.
  • the red color resist layer 312, the green color resist layer 314, and the blue color resist layer 316 have a rectangular shape.
  • the white color resist layer 321, the sub-red color resist layer 322, the sub-green color resist layer 324, and the sub-blue color resist layer 326 have a rectangular shape.
  • each pixel unit is set to include a main light transmission area 310 and a sub light transmission area 320 adjacent to each other.
  • the main light transmission area 310 and the sub light transmission area 320 make the main light transmission area 310 and
  • the sub-transmissive area 320 is one of the bright area and the dark area, so there will be a multi-category compensation effect under a large viewing angle, so that the effect of low color cast can be achieved through the combination of the bright area and the dark area.
  • it is adjusted appropriately.
  • the ratio of the area of the bright area to the dark area can effectively improve the pixel penetration rate, and can effectively solve the problem of whitening or color shift of the display panel at a large viewing angle.

Abstract

一种画素结构(100),包括多个画素单元,每一画素单元包括主透光区域(310)和次透光区域(320),主透光区域(310)和次透光区域(320)依输入电压的大小,使主透光区域(310)和次透光区域(320)分别为亮区与暗区中的一个。

Description

画素结构及显示面板的制造方法 技术领域
本申请涉及显示技术领域,特别是涉及一种画素结构及显示面板的制造方法。
背景技术
液晶显示面板通常是由彩膜基板(Color Filter,CF)、薄膜晶体管数组基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及配置于两基板间的液晶层(Liquid Crystal Layer,LC Layer)所构成,其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模块的光线折射出来产生画面。按照液晶的取向方式不同,目前主流市场上的液晶显示面板可以分为以下几种类型:垂直配向(Vertical Alignment,VA)型、扭曲向列(Twisted Nematic,TN)型或超扭曲向列(Super Twisted Nematic,STN)型、平面转换(In-Plane Switching,IPS)型及边缘场开关(Fringe Field Switching,FFS)型。
所述垂直配向型(Vertical Alignment,VA)模式的液晶显示,例如图形垂直配向型(Patterned Vertical Alignment,PVA)液晶显示器或多区域垂直配向型(Multi-domain Vertical Alignment,MVA)液晶显示设备,其中PVA型利用边缘场效应与补偿板达到广视角的效果。MVA型将一个画素分成多个区域,并使用突起物(Protrusion)或特定图案结构,使位于不同区域的液晶分子朝向不同方向倾倒,以达到广视角且提升穿透率的作用。
在IPS模式或FFS模式中,通过施加含有基本平行于基板的分量的电场,使液晶分子在平行于基板平面的方向响应而驱动液晶分子。IPS型液晶显示面板和FFS型液晶显示面板,二者具有广视角的优点。但由于蓝光的波长较短,与红光和绿光相比,达到相同穿透率(Transmittance)所需的相位差 (Retardation)较小,红光、绿光和蓝光的穿透率-电压(VT)曲线不同;而且,红光、绿光和蓝光在面板中的聚酰亚胺(PI)膜、平坦化层(PFA)、涂覆层(OC)等膜面的穿透率不同,也会导致出现色偏问题。
申请内容
本申请一目的在于提供一种画素结构,包括但不限于解决色偏的技术问题。
为了解决上述技术问题,本申请实施例采用的技术方案是:提供一种画素结构,包括多个画素单元,所述画素单元包括:
透光区域,所述透光区域包括相邻配置的主透光区域和次透光区域;
色阻结构,设置于所述透光区域,所述色阻结构包括红色色阻层、绿色色阻层、蓝色色阻层、白色色阻层,以及相对配置的次红色色阻层、次绿色色阻层以及次蓝色色阻层;
其中,所述红色色阻层、所述绿色色阻层与所述蓝色色阻层设置于所述主透光区域;所述白色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层设置于所述次透光区域;所述主透光区域和所述次透光区域依输入电压的大小,使所述主透光区域和所述次透光区域分别为亮区与暗区中的一个,从而能通过所述亮区与所述暗区配合达到低色偏的效果。
在本申请一实施例中,所述红色色阻层在位置上与所述次红色色阻层相对配置,所述绿色色阻层在位置上与所述次绿色色阻层相对配置,所述蓝色色阻层在位置上与所述次蓝色色阻层相对配置。
在本申请一实施例中,所述次红色色阻层、所述次绿色色阻层及所述次蓝色色阻层相邻配置。
在本申请一实施例中,所述主透光区域和所述次透光区域输入电压的大小可调,使所述主透光区域的亮度大于所述次透光区域的亮度。
在本申请一实施例中,所述红色色阻层、所述绿色色阻层以及所述蓝色色阻层为矩形形状。
在本申请一实施例中,所述白色色阻层、所述次红色色阻层、所述次绿色 色阻层以及所述次蓝色色阻层为矩形形状。
本申请的另一目的在于提供一种画素结构,包括多个画素单元,所述画素单元包括:
透光区域,所述透光区域包括相邻配置的主透光区域和次透光区域;
色阻结构,设置于所述透光区域,所述色阻结构包括红色色阻层、绿色色阻层、蓝色色阻层、白色色阻层,以及相对配置的次红色色阻层、次绿色色阻层次蓝色色阻层;
其中,所述红色色阻层、所述绿色色阻层与所述蓝色色阻层设置于所述主透光区域;所述白色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层设置于所述次透光区域;所述主透光区域和所述次透光区域依输入电压的大小,使所述主透光区域和所述次透光区域分别为亮区与暗区中的一个,从而能通过所述亮区与所述暗区配合达到低色偏的效果;所述红色色阻层在位置上与所述次红色色阻层相对配置,所述绿色色阻层在位置上与所述次绿色色阻层相对配置,所述蓝色色阻层在位置上与所述次蓝色色阻层相对配置;所述次红色色阻层、所述次绿色色阻层及所述次蓝色色阻层相邻配置;所述主透光区域与所述次透光区域的面积比例介于1.5~4之间。
在本申请一实施例中,所述主透光区域和所述次透光区域输入电压的大小可调,使所述主透光区域的亮度大于所述次透光区域的亮度。
在本申请一实施例中,所述红色色阻层、所述绿色色阻层以及所述蓝色色阻层为矩形形状。
在本申请一实施例中,所述白色色阻层、所述次红色色阻层、所述次绿色色阻层以及所述次蓝色色阻层为矩形形状。
本申请的再一目的在于提供一种显示面板的制造方法,包括:
提供第一基底,包括多个画素单元,所述画素单元包括透光区域,所述透光区域相邻配置的主透光区域和次透光区域;
于所述第一基底上形成第一绝缘层;
于所述第一绝缘层上形成彩色滤光层,所述彩色滤光层包括红色色阻层、绿色色阻层、蓝色色阻层、白色色阻层,以及相对配置的次红色色阻层、次绿色色阻层以及次蓝色色阻层;其中,所述红色色阻层、所述绿色色阻层与所述蓝色色阻层设置于所述主透光区域;所述白色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层设置于所述次透光区域;
于所述彩色滤光层上形成保护层;
于所述保护层上形成第一电极层,以完成第一基板;以及
提供第二基板,与所述第一基板对向设置,得到所述显示面板;
所述主透光区域和所述次透光区域依输入电压的大小,使所述主透光区域和所述次透光区域分别为亮区与暗区中的一个,从而所述显示面板能通过所述亮区与所述暗区配合达到低色偏的效果。
在本申请一实施例中,所述于所述第一绝缘层上形成彩色滤光层的步骤包括:
在所述第一绝缘层上整面形成色阻材料层;
在所述色阻材料层上形成光阻层,以覆盖所述色阻材料层;
在所述光阻层上设置光罩,所述光罩具有透光区、非透光区以及半透光区;以及
对所述光阻层进行曝光制程与显影制程,以图案化所述光阻层;
以所述光阻层为阻挡层,对所述色阻材料层进行蚀刻得到对应颜色的色阻层;
采用上述方式制作所述白色色阻层、所述红色色阻层、所述绿色色阻层、所述蓝色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层,其中,所述红色色阻层与所述次红色色阻层采用同一光罩制程制成,所述绿色色阻层与所述次绿色色阻层采用同一光罩制程制成,所述蓝色色阻层与所述次蓝色色阻层采用同一光罩制程制成,从而形成所述彩色滤光层。
在本申请一实施例中,所述于所述第一绝缘层上形成彩色滤光层的步骤包 括:
在所述第一绝缘层上整面形成色阻材料层;
在所述色阻材料层上形成光阻层,以覆盖所述色阻材料层;
在所述光阻层上设置光罩,所述光罩具有透光区、非透光区以及半透光区;以及
对所述光阻层进行曝光制程与显影制程,以图案化所述光阻层;
以所述光阻层为阻挡层,对所述色阻材料层进行蚀刻得到对应颜色的色阻层;
采用上述方式分别制作所述白色色阻层、所述红色色阻层、所述绿色色阻层、所述蓝色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层,从而形成所述彩色滤光层。
在本申请一实施例中,所述红色色阻层、所述绿色色阻层、所述蓝色色阻层为矩形形状。
在本申请一实施例中,所述白色色阻层、所述次红色色阻层、所述次绿色色阻层、所述次蓝色色阻层为矩形形状。
本申请通过将每一画素单元设置为包括相邻配置的主透光区域和次透光区域,主透光区域和次透光区域依输入电压大小,使主透光区域和次透光区域分别为亮区与暗区中的一个,因此在大视角观看下会有多范畴补偿的效果,从而能通过所述亮区与所述暗区配合达到低色偏的效果,另外在适当调整亮区与暗区面积比例,可以有效提升画素穿透率,且可有效解决显示面板大视角泛白或色偏问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1a是范例性的垂直配向型液晶显示设备在0度视角、45度视角及60度视角的情形下,色偏角度所对应的穿透率-灰阶值曲线。
图1b是范例性的混合两种改善色偏角度的画素区所对应的亮度-灰阶曲线。
图2是范例性的混合低色偏区域模型。
图3a是本申请一实施例的不同透光区色阻层的驱动示意图。
图3b是本申请一实施例的不同透光区色阻层的驱动等效电路图。
图4a是在第一基底形成第一绝缘层的示意图。
图4b是光罩制程的示意图。
图4c是在第一基底与第一绝缘层上形成白色色阻的示意图。
图4d是在第一基底与第一绝缘层上形成红色色阻的示意图。
图4e是在第一基底与第一绝缘层上形成绿色色阻的示意图。
图4f是在第一基底与第一绝缘层上形成蓝色色阻的示意图。
图4g是在第一基底、第一绝缘层与色阻层上形成保护层的示意图。
图4h是在保护层上形成画素电极层的示意图。
图4i是提供第二基板的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制。术语“第一”、“第二” 仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
本申请实施例的显示设备可包括背光模块及显示面板。显示面板可包括薄膜晶体管(Thin Film Transistor,TFT)基板、彩色滤光片(Color Filter,CF)基板与形成于两基板之间的层。
在一实施例中,本申请的显示面板可为曲面型显示面板,且本申请的设备亦可为曲面型显示设备。
在一实施例中,本申请的薄膜晶体管(TFT)及彩色滤光片(CF)可形成于同一基板上。
图1a为范例性的垂直配向型液晶显示设备在0度视角、45度视角及60度视角的情形下,色偏角度所对应的穿透率-灰阶值曲线。请参照图1a,在0度色偏视角所对应的穿透率-灰阶值曲线110、在45度色偏视角所对应的穿透率-灰阶值曲线120及在60度色偏视角所对应的穿透率-灰阶值曲线130。因此随着色偏视角角度越高,在同一个灰阶值中,亮度穿透率就越高。
图1b为范例性的混合两种改善色偏角度的画素区所对应的亮度-灰阶曲线。请参照图1b,在本申请的一实施例中,在MVA模式目前主流是多是采用将画素区分为亮区与暗区,因此光学表现上可以由两种V-T特性混合,另外在适当调整亮暗区面积比例,所以在大视角时可有效压制中灰阶泛白的问题。而在亮区画素140与暗区画素150,彼此在亮度-灰阶图式中混合调整成画素160。
图2为范例性的混合低色偏区域模型。请参照图2,在本申请的一实施例中,常见的低色偏(Low Color Shift)技术主要原理是将传统4区域利用分压或额外驱动方式再切割为8区域。因此在大视角观看下会有多范畴补偿的效果,如次低色偏区域210及主低色偏区域220相混合成低色偏区域200。
图3a为本申请一实施例的不同透光区色阻层的驱动示意图及图3b为本申 请一实施例的不同透光区色阻层的驱动等效电路图。请参照图3a及图3b,在本申请的一实施例中,提供一种画素结构100,包括多个画素单元,每一画素单元包括:
透光区域300,透光区域300包括相邻配置的主透光区域310和次透光区域320;
色阻结构305,设置于透光区域300,色阻结构305包括红色色阻层312、绿色色阻层314、蓝色色阻层316、白色色阻层321,以及相对配置的次红色色阻层322、次绿色色阻层324以及次蓝色色阻层326;
其中,红色色阻层312、绿色色阻层314与蓝色色阻层316设置于主透光区域310;白色色阻层321、次红色色阻层322、次绿色色阻层324与次蓝色色阻层326设置于次透光区域320;主透光区域310和次透光区域320依输入电压的大小,使主透光区域310和次透光区域320分别为亮区与暗区中的一个,例如,当主透光区域310的输入电压大于次透光区域320的输入电压时,主透光区域310为亮区,次透光区域320为暗区,反之,当主透光区域310的输入电压小于次透光区域320的输入电压时,主透光区域310为暗区,次透光区域320为亮区;透过亮区与暗区的配合可以达成低色偏的效果。
在本申请一实施例的画素结构100中,红色色阻层312在位置上与次红色色阻层322相对配置,绿色色阻层314在位置上与次绿色色阻层324相对配置,蓝色色阻层316在位置上与次蓝色色阻层326相对配置。
在本申请一实施例的画素结构100中,次红色色阻层322、次绿色色阻层324及次蓝色色阻层326相邻配置。
在本申请一实施例的画素结构100中,通过调整主透光区域310和次透光区域320的输入电压的大小,使主透光区域310的亮度大于次透光区域320的亮度,其中主透光区域310的输入电压大于次透光区域320的输入电压,以此形成亮暗不同的主透光区域310和次透光区域320,此时,主透光区域310为亮区,次透光区域320为暗区;反之,通过调整主透光区域310和次透光区域 320的输入电压的大小,使主透光区域310的亮度小于次透光区域320的亮度,其中主透光区域310的输入电压小于次透光区域320的输入电压,以此形成亮暗不同的主透光区域310和次透光区域320,此时,主透光区域310为暗区,次透光区域320为亮区。
在本申请一实施例的画素结构100中,通过调整主透光区域310中的数据线331、333、335和次透光区域320中数据线332、334、336的电压的大小,使主透光区域310的亮度大于或小于次透光区域320的亮度。
在本申请一实施例的画素结构100中,红色色阻层312、绿色色阻层314以及蓝色色阻层316为矩形形状。
在本申请一实施例的画素结构100中,白色色阻层321、次红色色阻层322以及次绿色色阻层324、次蓝色色阻层326为矩形形状。
在本申请一实施例的画素结构100中,如图3b,主透光区域310、次透光区域320色阻层的驱动等效电路图,包括:
多个主液晶电容341、343、345;
多个主储存电容342、344、346;
多个次液晶电容351、353、355;
多个次储存电容352、354、356;
多条扫描线330及多条数据线331、332、333、334、335、336。其中,主液晶电容341、次液晶电容351、主储存电容342、次储存电容352对应红色色阻层312和次红色色阻层322;主液晶电容343、次液晶电容353、主储存电容344、次储存电容354对应绿色色阻层314和次绿色色阻层324;主液晶电容345、次液晶电容355、主储存电容346、次储存电容356对应蓝色色阻层316和次蓝色色阻层326。
请参照图3a及图3b,在本申请的另一实施例中,提供一种画素结构100,包括多个画素单元,每一画素单元包括:
透光区域300,透光区域300包括相邻配置的主透光区域310和次透光区 域320;
色阻结构305,设置于透光区域300,色阻结构305包括红色色阻层312、绿色色阻层314、蓝色色阻层316、白色色阻层321,以及相对配置的次红色色阻层322、次绿色色阻层324、次蓝色色阻层326;
其中,红色色阻层312、绿色色阻层314与蓝色色阻层316设置于主透光区域310;白色色阻层321、次红色色阻层322、次绿色色阻层324与次蓝色色阻层326设置于次透光区域320;主透光区域310和次透光区域320依输入电压的大小,使主透光区域310和次透光区域320分别为亮区与暗区中的一个,例如,当主透光区域310的输入电压大于次透光区域320的输入电压时,主透光区域310为亮区,次透光区域320为暗区,反之,当主透光区域310的输入电压小于次透光区域320的输入电压时,主透光区域310为暗区,次透光区域320为亮区;透过亮区与暗区配合可以达成低色偏的效果;红色色阻层312、绿色色阻层314及蓝色色阻层316在位置上与次红色色阻层322、次绿色色阻层324及次蓝色色阻层326相对配置;次红色色阻层322、次绿色色阻层324及次蓝色色阻层326相邻配置;主透光区域310与次透光区域320的面积比例介于1.5~4之间。
在本申请一实施例的画素结构100中,通过调整主透光区域310和次透光区域320的输入电压的大小,使主透光区域310的亮度大于次透光区域320的亮度,其中主透光区域310的输入电压大于次透光区域320的输入电压,以此形成亮暗不同的主透光区域310和次透光区域320,此时,主透光区域310为亮区,次透光区域320为暗区;反之,通过调整主透光区域310和次透光区域320的输入电压的大小,使主透光区域310的亮度小于次透光区域320的亮度,其中主透光区域310的输入电压小于次透光区域320的输入电压,以此形成亮暗不同的主透光区域310和次透光区域320,此时,主透光区域310为暗区,次透光区域320为亮区。
在本申请一实施例的画素结构100中,红色色阻层312、绿色色阻层314、 蓝色色阻层316为矩形形状。
在本申请一实施例的画素结构100中,白色色阻层321、次红色色阻层322、次绿色色阻层324、次蓝色色阻层326为矩形形状。
请参照图4a至图4i,在本申请的一实施例中,提供一种显示面板,包括:第一基板400,具有多个画素区;第一基板400包括:第一基底410;以及第一绝缘层420形成于第一基底410上;第二基板700,与第一基板400相对设置;以及液晶层(图未示),设置于第一基板400与第二基板700之间;还包括画素结构100,设置于第一基板400与第二基板700之间。
在本申请的一实施例中,提供一种显示设备,包括背光模块,还包括显示面板,显示面板包括:第一基板400,具有多个画素区;第一基板400包括:第一基底410;以及第一绝缘层420形成于第一基底410上;第二基板700,与第一基板400相对设置;以及液晶层(图未示),设置于第一基板400与第二基板700之间;还包括画素结构100,设置于第一基板400与第二基板700之间。
请继续参照图4a至图4i与图3a,在本申请的又一实施例中,提供一种显示面板的制造方法,包括:
提供第一基底410,包括多个画素单元,画素单元包括透光区域300,透光区域300包括相邻配置的主透光区域310和次透光区域320;
于第一基底410上形成第一绝缘层420;
于第一绝缘层420上形成彩色滤光层430,彩色滤光层430包括彩色滤光层431、432、434以及436,彩色滤光层431由白色色阻层321组成,彩色滤光层432由红色色阻层312与次红色色阻层322组成,彩色滤光层434由绿色色阻层314与次绿色色阻层324组成,彩色滤光层436由蓝色色阻层316与次蓝色色阻层326组成,也即彩色滤光层430包括红色色阻层312、绿色色阻层314、蓝色色阻层316、白色色阻层321,以及相对配置的次红色色阻层322、次绿色色阻层324、次蓝色色阻层326;其中,红色色阻层312、绿色色阻层314与蓝色色阻层316设置于主透光区域310;白色色阻层321、次红色色阻层322、 次绿色色阻层324与次蓝色色阻层326设置于次透光区域320;
于彩色滤光层430上形成保护层440;
于保护层440上形成第一电极层450,以完成第一基板400;以及
提供第二基板700,与第一基板400对向设置,得到显示面板;
主透光区域310和次透光区域320依输入电压的大小,使主透光区域310和次透光区域320分别为亮区与暗区中的一个,例如,当主透光区域310的输入电压大于次透光区域320的输入电压时,主透光区域310为亮区,次透光区域320为暗区,反之,当主透光区域310的输入电压小于次透光区域320的输入电压时,主透光区域310为暗区,次透光区域320为亮区,从而可以通过亮区与暗区配合可以起到低色偏的效果。
在本申请一实施例的显示面板的制造方法中,于第一基板400以及第二基板700之间设置间隔物,用以定义液晶间隔空间,并在间隔空间中填充液晶形成液晶层。
在本申请一实施例的显示面板的制造方法中,请参照图4b,于第一绝缘层420上形成彩色滤光层430的步骤包括:在第一绝缘层420上整面形成色阻材料层433,在色阻材料层433上形成光阻层500,以覆盖色阻材料层433;在光阻层500上设置光罩600,光罩600具有透光区、非透光区以及半透光区;以及对光阻层500进行曝光制程与显影制程,以图案化光阻层500,以被图案化的光阻层500为阻挡层,对色阻材料层433进行蚀刻而形成对应颜色的色阻层,采用上述方式形成白色色阻层321、红色色阻层312、绿色色阻层314、蓝色色阻层316、次红色色阻层322、次绿色色阻层324与次蓝色色阻层326,其中,在主透光区域310依序设置红色色阻层312、绿色色阻层314、蓝色色阻层316的同时,通过同一道光罩,在次透光区域320同时设置次红色色阻层322、次绿色色阻层324、次蓝色色阻层326,即红色色阻层312与次红色色阻层322通过同一道光罩形成,绿色色阻层314与次绿色色阻层324通过同一道光罩形成,蓝色色阻层316与次蓝色色阻层326通过同一道光罩形成。
在本申请另一实施例的显示面板的制造方法中,请参照图4b,于第一绝缘层420上形成彩色滤光层430的步骤包括:在第一绝缘层420上整面形成色阻材料层433,在色阻材料层433上形成光阻层500,以覆盖色阻材料层433;在光阻层500上设置光罩600,光罩600具有透光区、非透光区以及半透光区;以及对光阻层500进行曝光制程与显影制程,以图案化光阻层500,以被图案化的光阻层500为阻挡层,对色阻材料层433进行蚀刻而形成对应颜色的色阻层,采用上述方式分别形成白色色阻层321、红色色阻层312、绿色色阻层314、蓝色色阻层316、次红色色阻层322、次绿色色阻层324与次蓝色色阻层326,从而形成彩色滤光层430,其中,在主透光区域310依序设置红色色阻层312,绿色色阻层314,蓝色色阻层316之后,在次透光区域320同时设置次红色色阻层322、次绿色色阻层324、次蓝色色阻层326。
在本申请一实施例的显示面板的制造方法中,红色色阻层312、绿色色阻层314、蓝色色阻层316为矩形形状。
在本申请一实施例的显示面板的制造方法中,白色色阻层321、次红色色阻层322、次绿色色阻层324、次蓝色色阻层326为矩形形状。
本申请通过将每一画素单元设置为包括相邻配置的主透光区域310和次透光区域320,主透光区域310和次透光区域320依输入电压大小,使主透光区域310和次透光区域320分别为亮区与暗区中的一个,因此在大视角观看下会有多范畴补偿的效果,从而能通过亮区与暗区配合达到低色偏的效果,另外在适当调整亮区与暗区面积比例,可以有效提升画素穿透率,且可有效解决显示面板大视角泛白或色偏问题。
以上所述仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种画素结构,包括多个画素单元,所述画素单元包括:
    透光区域,所述透光区域包括相邻配置的主透光区域和次透光区域;
    色阻结构,设置于所述透光区域,所述色阻结构包括红色色阻层、绿色色阻层、蓝色色阻层、白色色阻层,以及相对配置的次红色色阻层、次绿色色阻层、次蓝色色阻层;
    其中,所述红色色阻层、所述绿色色阻层与所述蓝色色阻层设置于所述主透光区域;所述白色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层设置于所述次透光区域;所述主透光区域和所述次透光区域依输入电压的大小,使所述主透光区域和所述次透光区域分别为亮区与暗区中的一个,从而能通过所述亮区与所述暗区配合达到低色偏的效果。
  2. 如权利要求1所述的画素结构,所述红色色阻层在位置上与所述次红色色阻层相对配置,所述绿色色阻层在位置上与所述次绿色色阻层相对配置,所述蓝色色阻层在位置上与所述次蓝色色阻层相对配置。
  3. 如权利要求1所述的画素结构,所述次红色色阻层、所述次绿色色阻层及所述次蓝色色阻层相邻配置。
  4. 如权利要求1所述的画素结构,所述主透光区域和所述次透光区域输入电压的大小可调,使所述主透光区域的亮度大于所述次透光区域的亮度。
  5. 如权利要求1所述的画素结构,所述红色色阻层、所述绿色色阻层以及所述蓝色色阻层为矩形形状。
  6. 如权利要求1所述的画素结构,所述白色色阻层、所述次红色色阻层、所述次绿色色阻层以及所述次蓝色色阻层为矩形形状。
  7. 一种画素结构,包括多个画素单元,所述画素单元包括:
    透光区域,所述透光区域包括相邻配置的主透光区域和次透光区域;
    色阻结构,设置于所述透光区域,所述色阻结构包括红色色阻层、绿色色 阻层、蓝色色阻层、白色色阻层,以及相对配置的次红色色阻层、次绿色色阻层以及次蓝色色阻层;
    其中,所述红色色阻层、所述绿色色阻层与所述蓝色色阻层设置于所述主透光区域;所述白色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层设置于所述次透光区域;所述主透光区域和所述次透光区域依输入电压的大小,使所述主透光区域和所述次透光区域分别为亮区与暗区中的一个,从而能通过所述亮区与所述暗区配合达到低色偏的效果;所述红色色阻层在位置上与所述次红色色阻层相对配置,所述绿色色阻层在位置上与所述次绿色色阻层相对配置,所述蓝色色阻层在位置上与所述次蓝色色阻层相对配置;所述次红色色阻层、所述次绿色色阻层及所述次蓝色色阻层相邻配置;所述主透光区域与所述次透光区域的面积比例介于1.5~4之间。
  8. 如权利要求7所述的画素结构,所述主透光区域和所述次透光区域输入电压的大小可调,使所述主透光区域的亮度大于所述次透光区域的亮度。
  9. 如权利要求7所述的画素结构,所述红色色阻层、所述绿色色阻层以及所述蓝色色阻层为矩形形状。
  10. 如权利要求7所述的画素结构,所述白色色阻层、所述次红色色阻层、所述次绿色色阻层以及所述次蓝色色阻层为矩形形状。
  11. 一种显示面板的制造方法,包括:
    提供第一基底,包括多个画素单元,所述画素单元包括透光区域,所述透光区域相邻配置的主透光区域和次透光区域;
    于所述第一基底上形成第一绝缘层;
    于所述第一绝缘层上形成彩色滤光层,所述彩色滤光层包括红色色阻层、绿色色阻层、蓝色色阻层、白色色阻层,以及相对配置的次红色色阻层、次绿色色阻层以及次蓝色色阻层;其中,所述红色色阻层、所述绿色色阻层与所述蓝色色阻层设置于所述主透光区域;所述白色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层设置于所述次透光区域;
    于所述彩色滤光层上形成保护层;
    于所述保护层上形成第一电极层,以完成第一基板;以及
    提供第二基板,与所述第一基板对向设置,得到所述显示面板;
    所述主透光区域和所述次透光区域依输入电压的大小,使所述主透光区域和所述次透光区域分别为亮区与暗区中的一个,从而所述显示面板能通过所述亮区与所述暗区配合达到低色偏的效果。
  12. 如权利要求11所述的显示面板的制造方法,所述于所述第一绝缘层上形成彩色滤光层的步骤包括:
    在所述第一绝缘层上整面形成色阻材料层;
    在所述色阻材料层上形成光阻层,以覆盖所述色阻材料层;
    在所述光阻层上设置光罩,所述光罩具有透光区、非透光区以及半透光区;以及
    对所述光阻层进行曝光制程与显影制程,以图案化所述光阻层;
    以所述光阻层为阻挡层,对所述色阻材料层进行蚀刻得到对应颜色的色阻层;
    采用上述方式制作所述白色色阻层、所述红色色阻层、所述绿色色阻层、所述蓝色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层,其中,所述红色色阻层与所述次红色色阻层采用同一光罩制程制成,所述绿色色阻层与所述次绿色色阻层采用同一光罩制程制成,所述蓝色色阻层与所述次蓝色色阻层采用同一光罩制程制成,从而形成所述彩色滤光层。
  13. 如权利要求11所述的显示面板的制造方法,所述于所述第一绝缘层上形成彩色滤光层的步骤包括:
    在所述第一绝缘层上整面形成色阻材料层;
    在所述色阻材料层上形成光阻层,以覆盖所述色阻材料层;
    在所述光阻层上设置光罩,所述光罩具有透光区、非透光区以及半透光区;以及
    对所述光阻层进行曝光制程与显影制程,以图案化所述光阻层;
    以所述光阻层为阻挡层,对所述色阻材料层进行蚀刻得到对应颜色的色阻层;
    采用上述方式分别制作所述白色色阻层、所述红色色阻层、所述绿色色阻层、所述蓝色色阻层、所述次红色色阻层、所述次绿色色阻层与所述次蓝色色阻层,从而形成所述彩色滤光层。
  14. 如权利要求11所述的显示面板的制造方法,所述红色色阻层、所述绿色色阻层、所述蓝色色阻层为矩形形状。
  15. 如权利要求11所述的显示面板的制造方法,所述白色色阻层、所述次红色色阻层、所述次绿色色阻层、所述次蓝色色阻层为矩形形状。
PCT/CN2018/115222 2018-09-07 2018-11-13 画素结构及显示面板的制造方法 WO2020047998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/313,861 US20200081293A1 (en) 2018-09-07 2018-11-13 Pixel arrangement and method for manufacturing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811042605.1A CN109212816A (zh) 2018-09-07 2018-09-07 画素结构及其应用于显示面板的制造方法
CN201811042605.1 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020047998A1 true WO2020047998A1 (zh) 2020-03-12

Family

ID=64986544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115222 WO2020047998A1 (zh) 2018-09-07 2018-11-13 画素结构及显示面板的制造方法

Country Status (2)

Country Link
CN (1) CN109212816A (zh)
WO (1) WO2020047998A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038436B (zh) * 2021-11-23 2023-06-27 深圳市华星光电半导体显示技术有限公司 液晶显示面板及显示终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800955A (zh) * 2005-01-06 2006-07-12 友达光电股份有限公司 低色偏液晶显示面板的像素结构及其驱动与制造方法
CN101211078A (zh) * 2006-12-28 2008-07-02 中华映管股份有限公司 像素结构与液晶显示面板
CN101308297A (zh) * 2007-05-14 2008-11-19 奇美电子股份有限公司 液晶显示面板及应用其的液晶显示装置
CN104536225A (zh) * 2014-12-31 2015-04-22 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置
WO2018128142A1 (ja) * 2017-01-05 2018-07-12 シャープ株式会社 液晶表示装置およびその駆動方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021832A (ja) * 2001-07-09 2003-01-24 Seiko Epson Corp 液晶装置及び電子機器
CN101424821B (zh) * 2008-12-09 2012-10-31 友达光电股份有限公司 像素结构
CN202041673U (zh) * 2011-05-09 2011-11-16 京东方科技集团股份有限公司 彩色滤光片及液晶显示器
TWI457675B (zh) * 2011-08-29 2014-10-21 Au Optronics Corp 畫素結構、液晶顯示面板與透明液晶顯示器
CN103645584A (zh) * 2013-12-09 2014-03-19 合肥京东方光电科技有限公司 彩膜基板及显示装置
CN106292106B (zh) * 2016-08-31 2019-11-26 深圳市华星光电技术有限公司 一种阵列基板的电路结构
CN107505760B (zh) * 2017-09-18 2020-06-12 惠科股份有限公司 阵列基板的像素结构以及液晶显示面板
CN107561790A (zh) * 2017-09-19 2018-01-09 惠科股份有限公司 阵列基板及其显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800955A (zh) * 2005-01-06 2006-07-12 友达光电股份有限公司 低色偏液晶显示面板的像素结构及其驱动与制造方法
CN101211078A (zh) * 2006-12-28 2008-07-02 中华映管股份有限公司 像素结构与液晶显示面板
CN101308297A (zh) * 2007-05-14 2008-11-19 奇美电子股份有限公司 液晶显示面板及应用其的液晶显示装置
CN104536225A (zh) * 2014-12-31 2015-04-22 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置
WO2018128142A1 (ja) * 2017-01-05 2018-07-12 シャープ株式会社 液晶表示装置およびその駆動方法

Also Published As

Publication number Publication date
CN109212816A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
US9134580B2 (en) Lateral electric field liquid crystal display device and manufacturing method thereof
WO2017041346A1 (zh) 改善色偏的液晶显示面板
TWI484272B (zh) 透明液晶顯示面板之畫素結構
TWI678583B (zh) 顯示裝置
KR20070069427A (ko) 액정표시소자 및 그 제조방법
US7106407B2 (en) Liquid crystal display device and electronic apparatus
WO2018176629A1 (zh) 显示面板及其制造方法
US20190011784A1 (en) Pixel structure and display panel applying the same
CN107807483B (zh) 像素结构
WO2020087583A1 (zh) Coa型液晶显示器
KR100835112B1 (ko) 프린지 필드 스위칭 액정 표시 소자
JP2007212872A (ja) 液晶表示装置
JP2007163722A (ja) 液晶装置とその製造方法、位相差板、及び電子機器
JP2014215348A (ja) 液晶パネル
US10444568B2 (en) Pixel structure of liquid crystal display panel and display device using same
WO2019085288A1 (zh) 显示面板及其制造方法
US9904115B2 (en) Liquid crystal panels
KR100724957B1 (ko) 프린즈필드스위칭 액정표시소자
WO2020047998A1 (zh) 画素结构及显示面板的制造方法
US11281043B2 (en) Display panel and display apparatus
WO2019085291A1 (zh) 主动开关阵列基板及其制造方法与显示装置
WO2020047899A1 (zh) 像素结构及其应用的显示面板与制造方法
KR101429903B1 (ko) 횡전계방식 액정표시장치 및 그 제조 방법
JPH09292611A (ja) 液晶表示装置
KR20110038827A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18932909

Country of ref document: EP

Kind code of ref document: A1