WO2018126988A1 - 信道状态信息的反馈、确定方法及装置 - Google Patents

信道状态信息的反馈、确定方法及装置 Download PDF

Info

Publication number
WO2018126988A1
WO2018126988A1 PCT/CN2017/119582 CN2017119582W WO2018126988A1 WO 2018126988 A1 WO2018126988 A1 WO 2018126988A1 CN 2017119582 W CN2017119582 W CN 2017119582W WO 2018126988 A1 WO2018126988 A1 WO 2018126988A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
channel state
state information
indication information
equal
Prior art date
Application number
PCT/CN2017/119582
Other languages
English (en)
French (fr)
Inventor
吴昊
李儒岳
陈艺戬
鲁照华
张楠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17890769.7A priority Critical patent/EP3567742A4/en
Priority to US16/476,828 priority patent/US11652515B2/en
Publication of WO2018126988A1 publication Critical patent/WO2018126988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present disclosure relates to the field of communications, for example, to a feedback, determination method and apparatus for channel state information.
  • a transmitting end and a receiving end can transmit and receive using multiple antennas to obtain a higher transmission rate.
  • MIMO multiple-input-multiple-output
  • One principle of multiple-input-multiple-output (MIMO) technology is to use some characteristics of the channel to form a multi-layer transmission of matching channel characteristics, thereby improving system performance without increasing bandwidth and power. Can get performance improvements.
  • Multiple input and output is a promising technology that is widely used in wireless communication system systems. For example, in Long Term Evolution (LTE) and Long Term Evolution-Advanced (LTE-A) systems, there are multiple modes of multi-antenna transmission, such as transmission mode 2 to transmission mode 10.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • Channel State Information has two feedback modes, namely, periodic feedback and aperiodic feedback.
  • periodicity is performed by using the Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink shared channel
  • a feedback, determination method and device for channel state information are provided, which can solve the problem that the correlation between the antennas of the multi-panel can not be well reported in the related art, and the multi-layer linear combination codebook cannot guarantee the orthogonality between the layers. The problem.
  • a method for feeding back channel state information includes:
  • the structure of the channel state information includes a subset of M channel state information
  • the mth channel state information subset of the M channel state information subsets includes k m channel information components
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes L n channel information components, where the L n Channel information components are determined by a set of vectors;
  • the M is a positive integer
  • the N is a positive integer
  • the N is less than or equal to the M
  • the m and n are both positive integers
  • the k m is an integer greater than or equal to 0, the L n An integer greater than or equal to 0 and less than or equal to the k m .
  • the k m channel information components comprise at least one of the following:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient magnitude indication information wherein the A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beams indicate information, wherein the R m is an integer greater than or equal to zero.
  • the channel state information subset, the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein the A m and the P m are integers greater than or equal to zero.
  • the manner of dividing the subset of channel state information includes at least one of the following:
  • the manner of dividing the subset of channel state information is determined by at least one of the following:
  • the method of determining according to physical layer signaling The method of determining according to physical layer signaling.
  • the information B m precoding indication information included in b m precoding indication information indicating at least one determined by the following ways:
  • b m and b n are both positive integers, and the b m is less than or equal to the B m .
  • the angular rotation is determined by the information indicated by the angular rotation matrix acting on the precoding indication information, wherein the angular rotation matrix comprises at least one of the following:
  • the diagonal elements form a first diagonal matrix of discrete Fourier transform DFT vectors
  • the diagonal elements constitute a second diagonal matrix of the Krone's product of the S discrete Fourier transform DFT vectors, wherein the sth DFT vector of the S DFT vectors corresponds to the sth angular rotation information, S is a positive integer greater than 1, and the s is a positive integer greater than or equal to 1 and less than or equal to S.
  • the channel state information subset includes information indicating that the precoding indication information of the two channel state information subsets has the same information of at least one of the following:
  • the value of the b m is determined by at least one of the following:
  • the first agreed manner includes the b m being equal to the B m .
  • the frequency domain feedback granularity of the angular rotation, the frequency domain feedback granularity of the amplitude extension, the frequency domain feedback granularity of the phase transformation, the minimum variation unit of the angular rotation, and the minimum amplitude expansion is determined by at least one of the following:
  • the frequency domain feedback granularity includes at least one of subband feedback and bandwidth feedback.
  • the second agreed manner includes at least one of the following:
  • At least one of the angular rotation, the amplitude expansion, and the feedback period of the phase transformation is determined by at least one of:
  • the third agreed mode includes at least one of the following information, wherein the feedback period of at least one of the following information and the b n precoding indications in the subset of the nth channel state information
  • the feedback period of the information is consistent:
  • the method further includes:
  • At least one of angular rotation, amplitude expansion, and frequency domain feedback granularity of phase transformation At least one of angular rotation, amplitude expansion, and frequency domain feedback granularity of phase transformation
  • At least one of an angular rotation, an amplitude expansion, and a feedback period of phase transformation is provided.
  • the channel state information includes at least one of precoding indication information and beam indication information, and precoding of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group. At least one of the information indicated by the indication information and the information indicated by the beam indication information is determined by at least one of the following methods:
  • the set of basis vectors comprises one of the following:
  • the channel state information includes precoding indication information or beam indication information, and precoding indication information of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group.
  • the indicated information or the information indicated by the beam indication information includes at least one of the following features:
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of each layer or each pilot resource group or each pilot port group is independently determined by the base vector;
  • the information indicated by the precoding indication information of the same layer, different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is determined by the same base vector;
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of different layers, the same pilot resource group or the same pilot port group is independently obtained by using the base vector;
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of different layers, the same pilot resource group or the same pilot port group is determined by the same base vector;
  • the information indicated by the precoding indication information of the same layer, different pilot resource groups, or different pilot port groups or the information indicated by the beam indication information is independently determined by the base vector;
  • the channel state information of the same layer is selected by the partial resource or the port to feed back the precoding indication information or the beam indication information;
  • the resource or port selected by the channel state information of different layers is different, and the precoding indication information or the beam indication information of the channel state information of different layers is independently determined by a set of base vectors.
  • At least one of the information indicated by the weighting coefficient amplitude indication information and the information indicated by the weighting coefficient phase indication information is subjected to at least one of angular rotation and phase transformation by a set of base vectors.
  • the set of basis vectors is determined by at least one of the following:
  • the fourth agreed manner includes one of the following:
  • the q column includes at least one of the following: a front q 1 column and a rear q 1 Column;
  • At least one of the angular rotation and the phase transformation comprises:
  • a transformation matrix to one or more vectors in a set of basis vectors, wherein the transformation matrix comprises at least one of: t phase transformation matrices, t is greater than or equal to 1; and, a product of r angular rotation matrices , r is greater than or equal to 1.
  • the phase transformation matrix is a diagonal matrix, and the elements on the diagonal of the diagonal matrix include at least one of the following:
  • the channel state information includes at least one of the following:
  • Each of the channel state information CSIs corresponds to at least one of the phase transformation matrices, wherein the phase transformation matrix corresponding to the CSI of the hth layer includes at least f(h) elements on the diagonal as 1, f (h) is a positive integer function for 1 and f(h) is less than or equal to 1;
  • Each layer of the channel state information CSI corresponds to at least one angular rotation matrix, wherein the angular rotation matrix corresponding to the CSI of the hth layer is determined by element transformation of at least one of the following in the identity matrix: the gth (h)th row Element, element of column n, element of row n, element of row g(h), element of row g(h), element of column g(h), element of row n, nth An element of a column, wherein the g(h) and the n are both greater than or equal to 1, and n is not equal to the g(h), the g(h) being a positive integer function with respect to h; A trigonometric function that is transformed into a real number.
  • the number of channel state information CSI corresponding to each of the angular rotation matrices decreases as the number of the angular rotation matrix layers increases.
  • a frequency domain feedback granularity of information in the phase transformation matrix a frequency domain feedback granularity of information in the angular rotation matrix, a feedback period of information in the phase transformation matrix, and information in the angular rotation matrix
  • the feedback period, at least one of a minimum unit of change of information in the phase transformation matrix, and a minimum unit of change of information in the angular rotation matrix are determined by one of the following means:
  • the fifth agreed mode includes at least one of the following:
  • the angle rotation matrix includes an information feedback period that is C times the information feedback period included in the phase transformation matrix, and the C is a positive integer;
  • the information contained in the angular rotation matrix and the precoding indication information in the corresponding channel information subset have at least one of the same feedback period and a feedback frequency domain granularity.
  • the method further includes:
  • the channel state information CSI of the same layer has at least one of the same phase transformation information and angle rotation information.
  • At least one of the channel state information CSI of the different port groups at least one of the phase change information and the angle rotation information is fed back by:
  • Different port groups respectively feedback at least one of phase transformation information and angle rotation information
  • the different port groups jointly feedback at least one of phase transformation information and angular rotation information.
  • a method for determining channel state information includes:
  • the specific structure of the channel state information includes a subset of M channel state information
  • the mth channel state information subset of the M channel state information subsets includes k m channel information components
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes Ln channel information components, where the Ln channels are The information component is determined by a set of vectors undergoing transformation;
  • the M is a positive integer
  • the N is a positive integer
  • the N is less than or equal to the M
  • the m and n are both positive integers
  • the k m is an integer greater than or equal to 0, the L n An integer greater than or equal to 0 and less than or equal to the k m .
  • the k m channel information components comprise at least one of the following:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient magnitude indication information wherein the A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beams indicate information, wherein the R m is an integer greater than or equal to zero.
  • the channel state information subset, the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein the A m and the P m are integers greater than or equal to zero.
  • the manner of dividing the subset of channel state information includes at least one of the following:
  • the manner of dividing the subset of channel state information is determined by at least one of the following manners:
  • the information B m precoding indication information included in b m precoding indication information indicating at least one determined by the following ways:
  • b m and b n are both positive integers, and the b m is less than or equal to the B m .
  • the angular rotation is determined by the information indicated by the angular rotation matrix acting on the precoding indication information, wherein the angular rotation matrix comprises at least one of the following:
  • the diagonal elements form a first diagonal matrix of discrete Fourier transform DFT vectors
  • the diagonal elements constitute a second diagonal matrix of the Krone's product of the S discrete Fourier transform DFT vectors, wherein the sth DFT vector of the S DFT vectors corresponds to the sth angular rotation information, S is a positive integer greater than 1, and the s is a positive integer greater than or equal to 1 and less than or equal to S.
  • the information indicated by the precoding indication information including at least two subsets of channel state information in the subset of channel state information has the same information of at least one of the following:
  • the value of the b m is determined by at least one of the following:
  • the first agreed manner includes the b m being equal to the B m .
  • the frequency domain feedback granularity of the angular rotation, the frequency domain feedback granularity of the amplitude extension, the frequency domain feedback granularity of the phase transformation, the minimum variation unit of the angular rotation, and the minimum amplitude expansion is determined by at least one of the following:
  • the frequency domain feedback granularity includes at least one of subband feedback and bandwidth feedback.
  • the second agreed manner includes at least one of the following:
  • At least one of the angular rotation, the amplitude expansion, and the feedback period of the phase transformation is determined by at least one of:
  • the third agreed mode includes at least one of the following information, wherein the feedback period of at least one of the following information and the b n precoding indications in the subset of the nth channel state information
  • the feedback period of the information is consistent:
  • the method further comprises: receiving at least one of the following information:
  • At least one of angular rotation, amplitude expansion, and frequency domain feedback granularity of phase transformation At least one of angular rotation, amplitude expansion, and frequency domain feedback granularity of phase transformation
  • At least one of an angular rotation, an amplitude expansion, and a feedback period of phase transformation is provided.
  • the channel state information includes at least one of precoding indication information and beam indication information, and precoding of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group. At least one of the information indicated by the indication information and the information indicated by the beam indication information is determined by at least one of the following methods:
  • the set of basis vectors comprises one of the following:
  • the channel state information includes precoding indication information or beam indication information, and precoding indication information of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group.
  • the indicated information or the information indicated by the beam indication information includes at least one of the following features:
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of each layer or each pilot resource group or each pilot port group is independently determined by the base vector;
  • the information indicated by the precoding indication information of the same layer, different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is determined by the same base vector;
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of different layers, the same pilot resource group or the same pilot port group is independently obtained by using the base vector;
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of different layers, the same pilot resource group or the same pilot port group is determined by the same base vector;
  • the information indicated by the precoding indication information of the same layer, different pilot resource groups, or different pilot port groups or the information indicated by the beam indication information is independently determined by the base vector;
  • the channel state information of the same layer is selected by the partial resource or the port to feed back the precoding indication information or the beam indication information;
  • the resource or port selected by the channel state information of different layers is different, and the precoding indication information or the beam indication information of the channel state information of different layers is independently determined by a set of base vectors.
  • At least one of the information indicated by the weighting coefficient amplitude indication information and the information indicated by the weighting coefficient phase indication information is subjected to at least one of angular rotation and phase transformation by a set of base vectors. Determined, wherein h is an integer greater than or equal to 1.
  • the set of basis vectors is determined by at least one of the following:
  • the fourth agreed manner includes one of the following:
  • the q column includes at least one of the following: the first q 1 column and the last q 1 Column
  • At least one of the angular rotation and the phase transformation comprises:
  • a transformation matrix to one or more vectors in a set of basis vectors, wherein the transformation matrix comprises at least one of: t phase transformation matrices, t is greater than or equal to 1; and a product of r angular rotation matrices, r is greater than or equal to 1.
  • the phase transformation matrix is a diagonal matrix, and the elements on the diagonal of the diagonal matrix include at least one of the following:
  • the channel state information satisfies at least one of the following:
  • Each of the channel state information CSIs corresponds to at least one of the phase transformation matrices, wherein the phase transformation matrix corresponding to the CSI of the hth layer includes at least f(h) elements on the diagonal as 1, f (h) is a positive integer function for 1 and f(h) is less than or equal to 1;
  • Each layer of the channel state information CSI corresponds to at least one angular rotation matrix, wherein the angular rotation matrix corresponding to the CSI of the hth layer is determined by element transformation of at least one of the following in the identity matrix: the gth (h)th row Element, element of column n, element of row n, element of row g(h), element of row g(h), element of column g(h), element of row n, nth An element of a column, wherein the g(h) and the n are both greater than or equal to 1, and n is not equal to the g(h), the g(h) being a positive integer function with respect to 1; A trigonometric function that is transformed into a real number.
  • the number of the channel state information CSI corresponding to the angular rotation matrix decreases as the number of the angular rotation matrix layers increases.
  • a frequency domain feedback granularity of information in the phase transformation matrix a frequency domain feedback granularity of information in the angular rotation matrix, a feedback period of information in the phase transformation matrix, and a feedback period of the angular rotation matrix
  • determining at least one of a minimum change unit of the phase transformation matrix and a minimum change unit of information in the angular rotation matrix is determined by one of the following manners:
  • the fifth agreed mode includes at least one of the following:
  • the angle rotation matrix includes an information feedback period that is C times the information feedback period included in the phase transformation matrix, and the C is a positive integer;
  • the information contained in the angular rotation matrix and the precoding indication information in the corresponding channel information subset have at least one of the same feedback period and a feedback frequency domain granularity.
  • the method further includes:
  • the channel state information CSI of the same layer has at least one of the same phase transformation information and angle rotation information.
  • phase change information and angle rotation information fed back by the terminal is received by at least one of:
  • Different port groups respectively feedback at least one of phase transformation information and angular rotation information
  • the different port groups jointly feedback at least one of phase change information, and angular rotation information.
  • a feedback device for channel state information comprising:
  • a feedback module configured to feed back the channel state information according to the determined structure of the channel state information
  • the structure of the channel state information includes a subset of M channel state information; the mth channel state information subset of the M channel state information subsets includes k m channel information components;
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes L n channel information components, where the L n Channel information components are determined by a set of vectors;
  • the M is a positive integer
  • the N is a positive integer
  • the N is less than or equal to the M
  • the m and n are both positive integers
  • the k m is an integer greater than or equal to 0, the L n An integer greater than or equal to 0 and less than or equal to the k m .
  • the k m channel information components comprise at least one of the following:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient magnitude indication information wherein the A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beams indicate information, wherein the R m is an integer greater than or equal to zero.
  • the channel state information subset, the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein the A m and the P m are integers greater than or equal to zero.
  • the manner of dividing the subset of channel state information includes at least one of the following:
  • the manner of dividing the subset of channel state information is determined by at least one of the following manners:
  • the method of determining according to physical layer signaling The method of determining according to physical layer signaling.
  • the information B m precoding indication information included in b m precoding indication information indicating at least one determined by the following ways:
  • b m and b n are all positive integers, and the b m is less than or equal to the B m .
  • a device for determining channel state information includes:
  • a determining module configured to determine, according to a structure of the channel state information, the channel state information fed back by the terminal;
  • the specific structure of the channel state information includes a subset of M channel state information
  • the mth channel state information subset of the M channel state information subsets includes k m channel information components
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes Ln channel information components, where the Ln channels are The information component is determined by a set of vectors undergoing transformation;
  • the M is a positive integer
  • the N is a positive integer
  • the N is less than or equal to the M
  • the m and n are both positive integers
  • the k m is an integer greater than or equal to 0, the L n An integer greater than or equal to 0 and less than or equal to the k m .
  • the k m channel information components comprise at least one of the following:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient magnitude indication information wherein the A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beams indicate information, wherein the R m is an integer greater than or equal to zero.
  • the channel state information subset, the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein the A m and the P m are integers greater than or equal to zero.
  • the manner of dividing the subset of channel state information includes at least one of the following:
  • the manner of dividing the subset of channel state information is determined by at least one of the following manners:
  • the information B m precoding indication information included in b m precoding indication information indicating at least one determined by the following ways:
  • b m and b n are all positive integers, and the b m is less than or equal to the B m .
  • a feedback device for channel state information comprising:
  • a first memory configured to store first processor executable instructions
  • the first processor is configured to:
  • the structure of the channel state information includes a subset of M channel state information
  • the mth channel state information subset of the M channel state information subsets includes k m channel information components
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes L n channel information components, where the L n Channel information components are determined by a set of vectors;
  • the M is a positive integer
  • the N is a positive integer
  • the N is less than or equal to the M
  • the m and n are both positive integers
  • the k m is an integer greater than or equal to 0, the L n An integer greater than or equal to 0 and less than or equal to the k m .
  • the k m channel information components comprise at least one of the following:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient magnitude indication information wherein the A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beams indicate information, wherein the R m is an integer greater than or equal to zero.
  • the channel state information subset, the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein the A m and the P m are integers greater than or equal to zero.
  • the manner of dividing the subset of channel state information includes at least one of the following:
  • the manner of dividing the subset of channel state information is determined by at least one of the following manners:
  • the method of determining according to physical layer signaling The method of determining according to physical layer signaling.
  • the information B m precoding indication information included in b m precoding indication information indicating at least one determined by the following ways:
  • b m and b n are all positive integers, and the b m is less than or equal to the B m .
  • a device for determining channel state information includes:
  • a second memory configured to store second processor executable instructions
  • the second processor is configured to:
  • the specific structure of the channel state information includes a subset of M channel state information
  • the mth channel state information subset of the M channel state information subsets includes k m channel information components
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes Ln channel information components, where the Ln channels are The information component is determined by a set of vectors undergoing transformation;
  • the M is a positive integer
  • the N is a positive integer
  • the N is less than or equal to the M
  • the m and n are both positive integers
  • the k m is an integer greater than or equal to 0, the L n An integer greater than or equal to 0 and less than or equal to the k m .
  • the k m channel information components comprise at least one of the following:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient magnitude indication information wherein the A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beams indicate information, wherein the R m is an integer greater than or equal to zero.
  • the channel state information subset, the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein the A m and the P m are integers greater than or equal to zero.
  • the manner of dividing the subset of channel state information includes at least one of the following:
  • the manner of dividing the subset of channel state information is determined by at least one of the following manners:
  • the information B m precoding indication information included in b m precoding indication information indicating at least one determined by the following ways:
  • b m and b n are all positive integers, and the b m is less than or equal to the B m .
  • a computer readable storage medium storing computer executable instructions, the computer executable instructions being set to any one of the methods.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal according to an embodiment
  • FIG. 2 is a flow chart of a method for feeding back channel information according to an embodiment
  • FIG. 3 is a flow chart of a method of determining channel information according to an embodiment
  • FIG. 4 is a schematic diagram of a multi-panel large-scale antenna array in accordance with an embodiment
  • FIG. 5 is a structural block diagram of a feedback apparatus for channel state information according to an embodiment.
  • FIG. 6 is a structural block diagram of apparatus for determining channel state information according to an embodiment.
  • the feedback of the terminal CSI includes two modes: the base station can configure the terminal to measure and quantize the channel information, and use the PUCCH to quantize the channel state information (including a Rank Indicator (RI) or a precoding matrix indicator (Precoding Matrix).
  • the indicator (PMI) or the channel quality indication (CQI) performs periodic feedback.
  • the base station can also report the CSI (including RI, PMI, or CQI) by aperiodically triggering the terminal when the CSI needs to be acquired.
  • the real-time performance of the PUSCH to overcome the periodic feedback is not high enough, and the CSI quantization accuracy is limited by the problem of the control channel overhead.
  • the eigenvector space of the channel matrix is quantized to form the codebook space
  • the transmitting end and the receiving end jointly save or generate the above codebook in real time (that is, the receiving end and the transmitting end have the same codebook).
  • the receiving end is based on the obtained channel matrix H and certain criteria. Select a codeword that best matches the channel
  • the codeword number i (ie PMI) is fed back to the transmitting end.
  • the transmitting end finds the corresponding precoding codeword according to the serial number i Thereby obtaining channel information, Indicates the feature vector information of the channel.
  • the construction principle of the codeword in the LTE system is as follows.
  • the LTE codebook is also evolving with the evolution of the standard version.
  • W 2 represents a short-term feedback codebooks, called second codebook
  • W 2 is the role of M 1 th select alternate beam in a code word in the W 1
  • Selecting the polarization phase (Co-phasing) for the beam selected for each polarization direction of the same data layer, each codeword in W 2 is quantized and fed back with PMI 2 , the value of which is i 2 1,... , M 1 , M 1 is the number of W 2
  • related content can refer to the LTE Release 10 protocol.
  • the codewords before Release 12 are for 1D (Dimension) antenna arrays, which belong to 1D codewords.
  • the codebook dimensions It has become bigger.
  • the topology of the antenna is generally also a planar array, that is, a 2D codeword is designed for an antenna having two dimensions.
  • each beam in the first codebook W 1 has a 2-dimensional form
  • v m and u n are Discrete Fourier Transform (DFT) of the first dimension and the second dimension, respectively.
  • DFT Discrete Fourier Transform
  • Dimension number of the first port (port includes an antenna port (Port), a transmission unit time around, or the like array element may transmit a signal) of the N 1
  • N 2 is the second dimension th port
  • a first port corresponding to the DFT dimension were oversampling O 1
  • a second dimension corresponding to the ports were DFT O 2 times oversampling
  • B 2 N 2 *O 2
  • O 1 is the first dimension oversampling factor
  • O 2 is the second dimension oversampling factor.
  • the codebook of the second dimension of the first codebook is represented by PMI 12
  • the word becomes a 2D code word. If it is a 1D codeword and the single codeword structure is represented by PMI or i, if it is a 1D codeword and is represented by PMI 1 and PMI 2 in a double codeword structure, the index is represented by i 1 or i 2 together, if 2D codeword with PMI 11, PMI 12, PMI 2 together represent three yards or codebook index 12, i 2 collectively denoted by the index i 11, i.
  • the PMI feedback method described above is based on the strongest path information in the channel to feed back the precoding matrix or configure the beam, and ignoring the information of other paths of the channel may cause the feedback information or the configured information to not match the channel well. Thereby affecting the performance of the system. Therefore, in the discussion of LTE Rel-14, a linear combination codebook is introduced to enhance the accuracy of CSI feedback.
  • the precoding codeword is obtained by linear weighted combination of a set of one-dimensional or two-dimensional DFT vectors, and a set of beams is determined by the above PMI feedback, and the weighted coefficient amplitude and phase correlation of each beam are fed back through feedback. The information is finally precoded.
  • the beam selection is orthogonal, and the weighted amplitude and phase cannot guarantee that the final multi-layer precoding is orthogonal to each other, which may be for the performance of single-user MIMO with a large number of layers. Bring losses.
  • the antenna array will be extended from one panel to multiple panels. The beam selection of different panels may be different, and there may be some correlation. Therefore, how to optimize the beam selection of different panels needs to be solved. problem.
  • FIG. 1 is a block diagram showing the hardware structure of the mobile terminal according to the embodiment.
  • mobile terminal 10 may include one or more (only one shown in FIG. 1) processor 102 (processor 102 may include a micro computer unit (MCU) or a programmable logic device (Field).
  • processor 102 may include a micro computer unit (MCU) or a programmable logic device (Field).
  • a processing device such as a Programmable Gate Array (FPGA), a memory 104 provided to store data, and a transfer device 106 having a communication function.
  • FPGA Programmable Gate Array
  • FIG. 1 The structure shown in FIG. 1 is merely illustrative, and for example, the mobile terminal 10 may further include more or less components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 may be configured as a software program and a module for storing application software, such as program instructions or modules corresponding to a feedback method of channel information in the following embodiments, and the processor 102 executes by executing a software program and a module stored in the memory 104.
  • application software such as program instructions or modules corresponding to a feedback method of channel information in the following embodiments
  • the processor 102 executes by executing a software program and a module stored in the memory 104.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 can include memory remotely located relative to processor 102, which can be connected to mobile terminal 10 over a network. Examples of such networks include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is arranged to receive or transmit data via a network.
  • the network described above may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a radio frequency (RF) module, and the RF module can communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • FIG. 2 is a flowchart of a method for feeding back channel information according to the embodiment. As shown in FIG. 2, the flow includes the following steps.
  • the channel state information is fed back according to the determined structure of the channel state information; wherein the structure of the channel state information includes M channel state information subsets; the mth channel state of the M channel state information subsets
  • the information subset includes k m channel information components; the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes L n channels
  • An information component wherein the L n channel information components are determined by a set of vector bases; the M is a positive integer, the N is a positive integer, and the N is less than or equal to the M, and the m and n are positive integers,
  • the above k m is an integer greater than or equal to 0, and the above L n is an integer greater than or equal to 0 and less than or equal to the above k m .
  • the terminal feeds back the channel state information according to the determined structure of the channel state information; and the structure of the channel state information includes the subset of the channel state information, the L n channel information components in the subset of the channel state information are represented by a set of vectors
  • the base is determined by transformation. Therefore, it is possible to solve the problem that the antenna correlation of the multi-panel cannot be well fed back in the related art, and the multi-layer linear combination codebook cannot guarantee the problem of orthogonality between layers, and feedback the antenna correlation of the multi-panel. And it can ensure that the multi-layer linear combination codebooks are orthogonal between layers.
  • the execution body of the above steps may be a terminal (may be a data card, a mobile phone, a notebook computer, a personal computer, a tablet computer, a personal digital assistant, a Bluetooth, etc., or may be a relay, a remote device, a wireless access point, etc. A variety of wireless communication devices).
  • the above-described k m channel information component comprising at least one of:
  • B m precoding indication information wherein the B m is an integer greater than or equal to 0;
  • a m weighting coefficient amplitude indication information wherein the above A m is an integer greater than or equal to 0;
  • P m weighting coefficient phase indication information wherein the P m is an integer greater than or equal to 0;
  • R m beam indication information wherein the above R m is an integer greater than or equal to 0.
  • the values of B m , A m , P m , and R m may be the same or different.
  • the above beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam ID may be replaced with a resource ID because the beam may be combined with some time frequency code resources. Binding on the transport.
  • the beam may also be in a transmission (transmit or receive) manner; the above transmission methods may include space division multiplexing and frequency domain diversity (or time domain diversity).
  • the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein both A m and P m are integers greater than or equal to zero.
  • the manner of dividing the subset of the channel state information includes at least one of: dividing according to measurement pilot resource packets; dividing according to measurement pilot port packets; dividing according to demodulation pilot resource packets; Pilot port grouping; and partitioning by layer.
  • the layer in the foregoing may be a high layer (for example, a link layer) or a physical layer.
  • the manner of dividing the subset of the channel state information is determined by at least one of: a manner of determining according to high layer signaling; and a manner of determining according to physical layer signaling.
  • the information indicated by the b m precoding indication information included in the foregoing B m precoding indication information is determined by at least one of the following manners:
  • phase transformation Determining, by the phase transformation, that the information indicated by the b n precoding indication information in the nth channel state information subset is subjected to phase transformation; wherein the b m and b n are positive integers, and the b m is less than or equal to the B m .
  • the angular rotation is determined by the information indicated by the angular rotation matrix acting on the precoding indication information, wherein the angular rotation matrix comprises at least one of the following: an identity matrix; the diagonal elements form a discrete Fu a first diagonal matrix of the transformed DFT vector; and a diagonal element forming a second diagonal matrix of the Krone's product of the S discrete Fourier transform DFT vectors, wherein the sth of the S DFT vectors
  • the DFT vector corresponds to the sth angular rotation information, the S is a positive integer greater than 1, and the s is a positive integer greater than or equal to 1 and less than or equal to S.
  • the information indicated by the precoding indication information including at least two subsets of channel state information in the subset of channel state information has the same information of at least one of: angular rotation, amplitude expansion, and phase transformation.
  • the foregoing channel state information subset may further be information that includes at least one of angular rotation, amplitude expansion, and phase transformation of the precoding indication information including the plurality of channel state information subsets.
  • the value of b m is determined by at least one of the following manner: by means of higher layer signaling or physical layer signaling; and by a first convention. In an embodiment, the value of b m may be determined by at least one of higher layer signaling or physical layer signaling.
  • the manner of the first convention described above includes the above b m being equal to the above B m .
  • the first agreed mode may be an agreement between the terminal and the base station.
  • At least one of the minimum change units of the phase change is determined by at least one of the following manners: by means of higher layer signaling or physical layer signaling; by a second agreed mode; wherein the frequency domain feedback granularity includes subbands At least one of feedback and bandwidth feedback.
  • the manner of the foregoing second agreement may be an agreement between the terminal and the base station.
  • the second agreed mode includes at least one of: angular rotation wideband feedback; amplitude extended wideband feedback; and phase transform subband feedback.
  • At least one of the above-mentioned angular rotation, the amplitude expansion, and the feedback period of the phase transformation is determined by at least one of: a method of high layer signaling or physical layer signaling; and a third The way of appointment.
  • the third agreed mode may be an agreement between the terminal and the base station.
  • the third agreed mode includes at least one of the following information, wherein the feedback period of at least one of the following information and the feedback of the b n precoding indication information in the subset of the nth channel state information
  • the cycle is consistent: angular rotation; amplitude expansion and phase transformation.
  • the method further includes: determining and reporting at least one of the following information:
  • At least one of angular rotation, amplitude expansion, and frequency domain feedback granularity of phase transformation At least one of angular rotation, amplitude expansion, and frequency domain feedback granularity of phase transformation
  • At least one of an angular rotation, an amplitude expansion, and a feedback period of phase transformation is provided.
  • the foregoing channel state information includes at least one of precoding indication information and beam indication information, and indication of precoding indication information of the hth layer, the kth pilot resource group, and the kth pilot port group. At least one of the information and the information indicated by the beam indication information is determined by at least one of a set of basis vectors obtained by angle rotation, amplitude expansion, and phase transformation. In an embodiment, the above K may be a positive integer.
  • the set of base vectors includes one of: one vector in the identity matrix; and a plurality of column vectors in the identity matrix.
  • the channel state information includes precoding indication information or beam indication information, and a precoding indication of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group.
  • the information indicated by the information or the information indicated by the beam indication information includes at least one of the following features:
  • the information indicated by the foregoing precoding indication information or the information indicated by the beam indication information of each layer or each pilot resource group or each pilot port group is independently determined by the base vector;
  • the information indicated by the foregoing precoding indication information of the same layer, different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is determined by the same base vector;
  • the information indicated by the foregoing precoding indication information of different layers, the same pilot resource group or the same pilot port group or the information indicated by the beam indication information is independently obtained by a base vector;
  • the information indicated by the foregoing precoding indication information of different layers, the same pilot resource group or the same pilot port group or the information indicated by the beam indication information is determined by the same base vector;
  • the information indicated by the foregoing precoding indication information of the same layer, the different pilot resource groups, or the different pilot port groups or the information indicated by the beam indication information is independently determined by using the base vector;
  • the foregoing channel state information of the same layer is used to select the precoding indication information corresponding to the partial resource or port feedback or the beam indication information;
  • the resources or ports selected by the channel state information of different layers are different, and the precoding indication information or the beam indication information of the channel state information of different layers is independently determined by a set of base vectors.
  • At least one of the information indicated by the weighting coefficient amplitude indication information and the information indicated by the weighting coefficient phase indication information is subjected to at least one of angular rotation and phase transformation by a set of base vectors.
  • the set of base vectors is determined by at least one of: a method of determining according to high layer signaling; a method of determining according to physical layer signaling; and a manner of adopting a fourth convention.
  • the fourth agreed mode may be an agreement between the terminal and the base station.
  • the fourth convention manner includes one of: selecting at least one of an angular rotation and a phase transformation in a q-th column in the unit matrix in the Q-th layer of the channel state information, where the q-th column includes At least one of: a front q 1 column and a rear q 1 column; at least one of an angular rotation and a phase transformation of the different port groups of the Xth layer of the channel state information according to the x column in the identity matrix, wherein the x
  • the column includes at least one of the following: the first x 1 column and the last x 1 column.
  • the first q 1 and the x 1 may be the same, and the Q layer of the channel state information and the X layer of the channel state information may be the same layer.
  • the angular rotation and phase transformation comprises: applying a transformation matrix to one or more vectors in a set of basis vectors, wherein the transformation matrix comprises at least one of: t phase transformation matrices, t is greater than Or equal to 1; and the product of r angular rotation matrices, r is greater than or equal to 1.
  • the phase transformation matrix is a diagonal matrix, and the elements on the diagonal of the diagonal matrix include at least one of the following: a positive real number; a complex natural exponential function.
  • At least one of the following is included:
  • the channel state information CSI of each layer corresponds to at least one phase transformation matrix, wherein the phase transformation matrix corresponding to the CSI of the hth layer includes at least f(h) elements on the diagonal, and f(h) is a positive integer function of 1 and f(h) is less than or equal to 1;
  • Each of the above-mentioned channel state information CSI corresponds to at least one angular rotation matrix, wherein the angular rotation matrix corresponding to the CSI of the hth layer is determined by an element transformation of at least one of the following in the identity matrix: an element of the gth (h)th row, Element of the nth column, element of the nth row, element of the gth (h)th column, element of the gth (h)th row, element of the gth (h)th column, element of the nth row, element of the nth column
  • g(h) and n above are greater than or equal to 1, and n is not equal to g(h), and g(h) is a positive integer function with respect to h; and the element is transformed into a trigonometric function of a real number.
  • the above f(h) may be the same as or different from the above g(h).
  • the number of channel state information CSI corresponding to each of the angular rotation matrices decreases as the number of the angular rotation matrix layers increases.
  • the frequency domain feedback granularity of the information in the phase transformation matrix, the frequency domain feedback granularity of the information in the angular rotation matrix, the feedback period of the information in the phase transformation matrix, the feedback period of the information in the angular rotation matrix, At least one of the minimum change unit of information in the phase transformation matrix and the minimum change unit of information in the angular rotation matrix is determined by one of the following manners: a method of determining according to high layer signaling; and performing physical layer signaling The way to determine; through the fifth convention.
  • the fifth agreed mode may be an agreement between the terminal and the base station.
  • the fifth predetermined manner includes at least one of the following: the information wideband feedback included in the angular rotation matrix; the information subband feedback included in the phase transformation matrix; and the information feedback period included in the angular rotation matrix It is C times the information feedback period included in the phase transformation matrix, and C is a positive integer; and the information included in the angular rotation matrix and the precoding indication information in the corresponding channel information subset have the same feedback period and frequency domain granularity of feedback. At least one of them.
  • the method further includes: determining and reporting at least one of: frequency domain feedback granularity of information in the phase transformation matrix; frequency domain feedback granularity of information in the angular rotation matrix; information in the phase transformation matrix a feedback period; a feedback period of information in the angular rotation matrix; a minimum unit of change of information in the phase transformation matrix; and a minimum unit of change of information in the angular rotation matrix.
  • At least one of the channel state information CSI of the same layer has at least one of the same phase transformation information and angular rotation information.
  • At least one of the phase transformation information and the angle rotation information is fed back by: at least one of the different port groups respectively feeding back phase transformation information and angle rotation information.
  • One; different port groups jointly feedback at least one of phase transformation information and angular rotation information.
  • FIG. 3 is a flowchart of a method for determining channel information according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps.
  • the channel state information fed back by the terminal is determined according to the structure of the channel state information; wherein the specific structure of the channel state information includes M channel state information subsets; the mth channel of the M channel state information subsets
  • the subset of state information includes k m channel information components;
  • the subset of M channel state information includes a subset of N channel state information, and the subset of the n channel state information subsets of the N channel state information includes L n a channel information component, wherein the L n channel information components are determined by a set of base vectors;
  • the M is a positive integer, the N is a positive integer, and the N is less than or equal to the M, and the m and n are positive integers.
  • the above k m is an integer greater than or equal to 0, and the L n is an integer greater than or equal to 0 and less than or equal to the above k m .
  • the base station feeds back the channel state information according to the determined structure of the channel state information; and the structure of the channel state information includes the subset of the channel state information, the L n channel information components in the subset of the channel state information are in a linear space
  • At least one set of bases is determined by at least one of the following: angular rotation, phase transformation, amplitude expansion. Therefore, it is possible to solve the problem that the antenna correlation of the multi-panel cannot be well fed back in the related art, and the multi-layer linear combination codebook cannot guarantee the problem of orthogonality between layers, and feedback the antenna correlation of the multi-panel. And it can ensure that the multi-layer linear combination codebooks are orthogonal between layers.
  • the execution body of the foregoing steps may be a base station (which may be a plurality of wireless communication devices such as a macro base station, a micro base station, or a wireless access point).
  • a base station which may be a plurality of wireless communication devices such as a macro base station, a micro base station, or a wireless access point.
  • the above-described k m channel information component comprising at least one of the following: B m precoding indication information, wherein the B m is greater than or equal to a positive integer; A m weighting coefficients amplitude indication information, wherein The above A m is an integer greater than or equal to 0; P m weighting coefficient phase indication information, wherein the P m is an integer greater than or equal to 0; and R m beam indication information, wherein the R m is greater than or An integer equal to 0.
  • the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein both A m and P m are integers greater than or equal to zero.
  • the manner of dividing the subset of the channel state information includes at least one of: dividing according to measurement pilot resource packets; dividing according to measurement pilot port packets; dividing according to demodulation pilot resource packets; Pilot port grouping; and partitioning by layer.
  • the manner of dividing the subset of the channel state information is determined by at least one of the following manners: a manner of notifying the terminal according to the high layer signaling, and a manner of notifying the terminal according to the physical layer signaling.
  • the information indicated by the b m precoding indication information included in the foregoing B m precoding indication information is determined by at least one of: b n by using the nth channel state information subset
  • the information indicated by the precoding indication information is determined by angular rotation; the information indicated by the b n precoding indication information in the nth channel state information subset is determined by amplitude expansion; and the nth channel state information is passed through
  • the information indicated by the concentrated b n precoding indication information is determined by phase transformation; wherein b m and b n are both positive integers, and the b m is less than or equal to the above B m .
  • the angular rotation is determined by the information indicated by the angular rotation matrix acting on the precoding indication information, wherein the angular rotation matrix comprises at least one of the following: an identity matrix; the diagonal elements form a discrete Fu a first diagonal matrix of the transformed DFT vector; and a diagonal element forming a second diagonal matrix of the Krone's product of the S discrete Fourier transform DFT vectors, wherein the sth of the S DFT vectors
  • the DFT vector corresponds to the sth angular rotation information, the S is a positive integer greater than 1, and the s is a positive integer greater than or equal to 1 and less than or equal to S.
  • the information indicated by the precoding indication information including at least two subsets of channel state information in the subset of channel state information has the same information of at least one of: angular rotation, amplitude expansion, and phase transformation.
  • the value of the b m is determined by at least one of the following manners: a manner of notifying the terminal to perform determination by high-level signaling; a manner of notifying the terminal by the physical layer signaling; and adopting the first agreed mode .
  • the manner of the first convention described above includes the above b m being equal to the above B m .
  • the frequency domain feedback granularity of the angular rotation, the frequency domain feedback granularity of the amplitude expansion, the frequency domain feedback granularity of the phase transformation, the minimum variation unit of the angular rotation, the minimum variation unit of the amplitude expansion, and the foregoing At least one of the minimum change units of the phase change is determined by at least one of the following manners: a manner of notifying the terminal to determine by high layer signaling or physical layer signaling; and adopting a second agreed mode; wherein the frequency domain feedback granularity includes At least one of subband feedback and bandwidth feedback.
  • the second agreed mode includes at least one of: angular rotation wideband feedback; amplitude extended wideband feedback; and phase transform subband feedback.
  • At least one of the above-mentioned angular rotation, the amplitude expansion, and the feedback period of the phase transformation is determined by at least one of the following manners: a manner of notifying the terminal to determine by high layer signaling or physical layer signaling; And through the third way of agreement.
  • the third agreed mode includes at least one of the following information, wherein the feedback period of at least one of the following information and the feedback of the b n precoding indication information in the subset of the nth channel state information
  • the cycle is consistent: angular rotation; amplitude expansion; phase transformation.
  • the method further includes: receiving at least one of: at least one of angular rotation, amplitude expansion, and minimum change unit of phase transformation; angular rotation, amplitude expansion, and phase-shifted frequency domain feedback granularity At least one of; and at least one of an angular rotation, an amplitude expansion, and a feedback phase of the phase transformation.
  • the foregoing channel state information includes at least one of precoding indication information and beam indication information, and indication of precoding indication information of the hth layer, the kth pilot resource group, and the kth pilot port group. At least one of the information and the information indicated by the beam indication information is determined by at least one of a set of base vectors obtained by angle rotation, amplitude expansion, and phase transformation.
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam ID may be replaced by a resource ID, because the beam may be Binding to some time-frequency code resources for transmission.
  • the beam may also be in a transmission (transmit or receive) manner; the foregoing transmission methods may include space division multiplexing and frequency domain diversity (or time domain diversity).
  • the set of base vectors includes one of: one vector in the identity matrix; and a plurality of column vectors in the identity matrix.
  • the channel state information includes precoding indication information or beam indication information, and a precoding indication of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group.
  • the information indicated by the information or the information indicated by the beam indication information includes at least one of the following features:
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of each layer or each pilot resource group or each pilot port group is independently determined by the base vector;
  • the information indicated by the precoding indication information of the same layer, different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is determined by the same base vector;
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of different layers, the same pilot resource group or the same pilot port group is independently obtained by using the base vector;
  • the information indicated by the precoding indication information or the information indicated by the beam indication information of different layers, the same pilot resource group or the same pilot port group is determined by the same base vector;
  • the information indicated by the precoding indication information of the same layer, different pilot resource groups, or different pilot port groups or the information indicated by the beam indication information is independently determined by the base vector;
  • the channel state information of the same layer is selected by the partial resource or the port to feed back the precoding indication information or the beam indication information;
  • the resource or port selected by the channel state information of different layers is different, and the precoding indication information or the beam indication information of the channel state information of different layers is independently determined by a set of base vectors.
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam ID may be replaced by a resource ID, because the beam may be Binding to some time-frequency code resources for transmission.
  • the beam may also be in a transmission (transmit or receive) manner; the foregoing transmission manner may include space division multiplexing and frequency domain diversity (or time domain diversity).
  • At least one of the information indicated by the weighting coefficient amplitude indication information and the information indicated by the weighting coefficient phase indication information is subjected to at least one of angular rotation and phase transformation by a set of base vectors.
  • the foregoing set of base vectors is determined by at least one of: a manner of notifying the terminal according to the high layer signaling, a manner of notifying the terminal according to the physical layer signaling, and a method of adopting the fourth agreement. .
  • the fourth convention manner includes one of: selecting at least one of an angular rotation and a phase transformation in a q-th column in the unit matrix in the Q-th layer of the channel state information, where the q-th column includes At least one of: a front q 1 column and a rear q 1 column; at least one of an angular rotation and a phase transformation of the different port groups of the Xth layer of the channel state information according to the x column in the identity matrix, wherein the x The column includes at least one of the following: the first x 1 column and the last x 1 column.
  • At least one of the angular rotation and the phase transformation comprises: applying a transformation matrix to one or more vectors of a set of basis vectors, wherein the transformation matrix comprises at least one of: t phase transformations a matrix, t is greater than or equal to 1; and a product of r angular rotation matrices, r being greater than or equal to one.
  • the phase transformation matrix is a diagonal matrix, and the elements on the diagonal of the phase transformation matrix include at least one of: a positive real number; and a complex natural exponential function.
  • At least one of the following is included:
  • the channel state information CSI of each layer corresponds to at least one phase transformation matrix, wherein the phase transformation matrix corresponding to the CSI of the hth layer includes at least f(h) elements on the diagonal, and f(h) is a positive integer function of 1 and f(h) is less than or equal to 1;
  • Each of the above-mentioned channel state information CSI corresponds to at least one angular rotation matrix, wherein the angular rotation matrix corresponding to the CSI of the hth layer is determined by an element transformation of at least one of the following in the identity matrix: an element of the gth (h)th row, Element of the nth column, element of the nth row, element of the gth (h)th column, element of the gth (h)th row, element of the gth (h)th column, element of the nth row, element of the nth column
  • g(h) and n above are greater than or equal to 1
  • n is not equal to g(h)
  • g(h) is a positive integer function with respect to 1, and the element is transformed into a trigonometric function of a real number.
  • the number of channel state information CSI corresponding to each of the angular rotation matrices decreases as the number of the angular rotation matrix layers increases.
  • the frequency domain feedback granularity of the information in the phase transformation matrix, the frequency domain feedback granularity of the information in the angular rotation matrix, the feedback period of the information in the phase transformation matrix, the feedback period of the angular rotation matrix, and the phase is determined by one of the following manners: a method of notifying the terminal according to the high layer signaling; and notifying the terminal according to the physical layer signaling The way to determine; and through the fifth convention.
  • the fifth predetermined manner includes at least one of the following: the information wideband feedback included in the angular rotation matrix; the information subband feedback included in the phase transformation matrix; and the information feedback period included in the angular rotation matrix It is C times the information feedback period included in the phase transformation matrix, and C is a positive integer; and the information included in the angular rotation matrix and the precoding indication information in the corresponding channel information subset have the same feedback period and frequency domain granularity of feedback. At least one of them.
  • the method further includes: receiving at least one of the following: frequency domain feedback granularity of information in the phase transformation matrix; frequency domain feedback granularity of information in the angular rotation matrix; and feedback of information in the phase transformation matrix a period; a feedback period of information in the angular rotation matrix; a minimum unit of change of information in the phase transformation matrix; and a minimum unit of change of information in the angular rotation matrix.
  • the channel state information CSI of the same layer has at least two port groups having at least one of the same phase transformation information and angular rotation information.
  • phase change information and angle rotation information fed back by the terminal is received by at least one of: different port groups respectively feeding back phase transformation information and angle rotation information At least one of the different port groups jointly fed back at least one of phase transformation information and angular rotation information.
  • FIG. 4 is a schematic diagram of a multi-panel large-scale antenna array in this embodiment.
  • a method of configuring a multi-panel large-scale antenna array at the base station end has been extensively studied.
  • the entire planar antenna array contains MG N g panels, each panel containing MN ports.
  • the antenna port spacing is evenly distributed, and the distance between adjacent antenna panels is evenly distributed, and the distance between adjacent ports of adjacent antenna panels is not necessarily equal to the antenna spacing in the panel. Therefore, the correlation between the antennas of the panels is not necessarily equivalent to the correlation between the antennas in the panel.
  • one-dimensional or two-dimensional discrete Fourier transform (DFT) vector quantization is used to quantize the correlation between all ports.
  • Sexual codebook design is no longer suitable for multi-panel antenna arrays.
  • An embodiment provides a codebook design case for a multi-panel antenna array based on a linear combined codebook framework.
  • the antenna spatial correlation between the panels can be quantized by the DFT vector.
  • the linear combination codebook can be used to accurately feed back channel state information. For example, a linear combination precoding with rank 1 is taken as an example, assuming that there are K panels and a dual-polarized antenna array, and N beams are selected for each polarization direction.
  • the precoding matrix of the polarization directions is among them, Indicates N orthogonal beams selected in the polarization direction i of the kth panel, A weighting coefficient representing the nth beam of the kth panel in the polarization direction i, including amplitude and phase.
  • a relatively low complexity method is to calculate the beam matrix W 1 and calculate the optimal weighting coefficient set W 2 by W 1 .
  • W 1 the optimal weighting coefficient set W 2 by W 1 .
  • each panel is independent beam, the correlation between the panels cannot be reflected in the beam selection, which may bring performance loss.
  • the beams selected by multiple panels are orthogonal to each other, and the correlation between different panels cannot be reflected by adjusting the weighting coefficients. Therefore, a way to control the correlation between different panels without causing large feedback overhead and processing complexity is to impose certain restrictions on the base sequence between different panels, that is, beam selection for different panels. Bring certain restrictions.
  • a first panel selected N beams after the k-th beam selection panel has the following model
  • Q k represents a matrix that angularly rotates N beams, for example, a diagonal matrix having the following form:
  • the diagonal element of Q k is the Kroneck product of two DFT vectors, wherein each DFT vector corresponds to an angle of the first dimension or the second dimension. information. It can be seen from the above equation that the diagonal elements of the angular rotation matrix form a DFT vector.
  • the beam selection of the first panel is regarded as a group of bases in the channel matrix space, then the beam selection of other panels is the group.
  • the result of the angle rotation after the base is the group.
  • the correlation between different panels can be controlled by the calculation of m k and weighting coefficients, that is, the joint processing of multiple panels starts from beam selection and does not bring high calculations. Complexity, feedback overhead and performance are also guaranteed.
  • a simpler processing method is to treat the beam selection of different polarization directions on the same panel as the same. Can reduce complexity and overhead, ie,
  • the two port groups with different polarization directions for the same panel have the same angular rotation with respect to the reference beam selection.
  • the beam selection of each panel is associated with each other.
  • partial beam selection of a plurality of panels is associated with each other, and partial beam selection is performed independently.
  • N k of the N beams of each panel are obtained by angular rotation of the beam selection of the first panel, that is, the beam selection of the kth panel is:
  • the correlation of different panels can still be optimized by beam selection.
  • the value of the Nk may be configured by the base station by using high layer signaling or physical layer signaling.
  • the angular rotation between different panels using Qk feedback can be equivalent to the differential precoding indication information feedback referenced by the reference panel. .
  • the feedback of the plurality of panels regarding the beam selection includes the angle rotation indication information Q k in addition to the precoding indication information feedback, and the network can configure the time-frequency domain feedback granularity of the angular rotation information by signaling, that is, the broadband , subband feedback, and feedback cycles.
  • the terminal can also determine the time-frequency domain feedback granularity in a manner agreed with the base station. Since Qk can determine the beam selection, it can be agreed that Qk and the precoding indication information have the same time-frequency domain feedback granularity.
  • the change in Q k is related to the long-term characteristics of the channel, and the change in Q k can be defaulted to broadband feedback. Since the terminal itself can obtain the change characteristics of different channel information parameters by measurement, the terminal can determine the time-frequency domain granularity of the feedback and report it to the base station.
  • An embodiment provides a way to quantize channel state information under multiple panels.
  • the beams of different panels are obtained by angularly rotating the beams, and in addition to the angular rotation, the beam changes can be performed by phase transformation and amplitude expansion.
  • the precoding of the kth panel in the polarization direction i can be expressed as:
  • the matrix P k,i is a diagonal matrix, indicating phase transformation and amplitude expansion on the beam on the panel k, and the form is as follows:
  • precoding satisfies the following structure:
  • the spatial correlation in the CSI reported by different panels can be optimized, and the feedback overhead and performance can be optimized by the setting of the W 1 , W 2 and W 3 feedback granularity.
  • W 2 of the frequency-domain feedback particle size may be configured by the base station through signaling, or may be W 3 and W binding relationship. 1, for example, particle size and time-frequency domain. 1 as W, or the time-frequency domain particle size of 3 W positive Integer multiple.
  • the phase change is faster due to the slower amplitude change, and the amplitude wideband feedback and phase subband feedback can be used by default. Since the terminal itself can obtain the change characteristics of different channel information parameters by measurement, the terminal can determine the time-frequency domain granularity of the feedback and report it to the base station.
  • An embodiment provides an embodiment of channel information quantization under multiple panels.
  • LTE Rel-13 two feedback modes are introduced, Class A feedback based on NP CSI-RS and Class B feedback based on BF CSI-RS.
  • Class A uses port merge precoding
  • Class B uses port selection precoding.
  • the above two embodiments can be regarded as pre-coding information acquisition using Class A feedback.
  • This embodiment provides a method for CSI acquisition using port selection precoding of Class B under multiple panels. For each panel, the base station converts the antenna port into B virtualized CSI-RS ports through BF CSI-RS, and each port corresponds to one beam. When the terminal feeds back, the beam selection information and inter-panel correlation information are fed through the feedback panel. To feedback CSI.
  • the new Class B codebook of Rel-13 can achieve this function to some extent.
  • the port group code for the Class B codebook in Rel-13 is the antenna array with the same panel and different polarization directions.
  • the Class B codebook design in Rel-13 limits different layers or ports.
  • the group uses the same beam selection indication.
  • the codebook with the rank of 2 and the two port groups is taken as an example, and the Class B codebook is in the following form:
  • W i,j represents a port selection codeword on the i-th port group of the j-th layer, and may be a column of the unit matrix, which is used to select one port from multiple virtualized ports to report the beam selected by the terminal.
  • ⁇ j represents information on the jth layer for feeding back the correlation between the two port groups, and includes at least amplitude and phase information, respectively representing amplitude expansion and phase transformation of the precoding selected by W i,j Information.
  • the above formula gives the most general structure of the multi-port group Class B codebook, that is, each layer and each port group independently perform beam selection. Under some conditions, the above structure may be simplified or limited to reduce feedback overhead.
  • the port group is divided into different polarization directions, it can be considered that the beam directions seen by different port groups are the same, that is, the beams seen by different port groups are the same, and different layers may be different. For some panels with relatively close distances, it can be considered that the beam selection of different port groups is consistent, but for panels that are far apart from each other, the beam selection of different panels can be considered to be independent, and the beam selection of different layers can be restricted. The same is to reduce overhead.
  • An embodiment provides an embodiment of linear combined codebook feedback.
  • the linear combined codebook feedback constructs high-precision channel information feedback by linearly weighting the beams based on multiple paths. Therefore, the overhead of linear combined feedback includes beam-related precoding codeword information, weighting coefficient amplitude information, and weighting. Coefficient phase information.
  • the linear combination codebook selects orthogonal beams, but since the selection of the weighting coefficients is not optimized and limited, when the number of layers is greater than 1, the orthogonality between the layers cannot be guaranteed. In single-user MIMO, the orthogonality between multiple layers can better guarantee the performance of space division, so that a better precoding gain can be obtained. In this embodiment, by setting a limit on the weighting coefficient selection, the orthogonality between the layers can be better ensured, and after the weighting coefficient is limited, the overhead of the weighting coefficient feedback can be reduced.
  • v 1 , . . . , v N represent the selected orthogonal beams of each layer, the beams selected by the two polarization directions are the same, a a, i, l represents the nth beam in the ith polarization direction And the weighting coefficient of the first layer, including weighting coefficient phase information and weighting coefficient amplitude information.
  • the condition that the orthogonality between the precoding layers is satisfied is that the vectors formed by the multi-layer weighting coefficients are orthogonal to each other, that is, the column vectors of L lengths 2N in the matrix A are as follows: Orthogonal:
  • I(:,1:L) represents the front L column of the 2N-dimensional identity matrix
  • P m represents the phase transformation matrix, which is a diagonal matrix as follows:
  • U n,m represents an angular rotation matrix, which is the nth row, the nth column, the mth row, the mth column, the nth row, the mth column, the nth column, the mth row of the 2N dimensional unit matrix I
  • the elements are changed to the following submatrix:
  • L(4N-L-1)/2 phase transformation information ⁇ n,m ⁇ [0,2 ⁇ ], is related to the phase of the weighting coefficient, subband feedback, L(4N-L-1
  • the /2 angular rotation information ⁇ n,m ⁇ [0, ⁇ /2] is related to the magnitude of the weighting coefficient, and can be broadband feedback.
  • the feedback period of the angular rotation may be an integer multiple of the feedback period of the phase transformation to reduce the overhead of the feedback overhead and signaling configuration.
  • the minimum quantization unit determines the accuracy of the feedback and the required number of bits, and the terminal can determine the minimum quantization unit according to the configuration of the base station, or can be agreed by the base station and the terminal.
  • Quadrature Phase Shift Keying (QPSK) or 8PSK determines the smallest unit of quantization.
  • the terminal since the terminal is more aware of the channel characteristics through the channel measurement, the terminal can also determine the quantization range, the feedback time-frequency domain granularity, and the like, and report the related information together with the CSI to the base station.
  • An embodiment provides an implementation manner of linear combined codebook feedback.
  • This embodiment provides an optimized design method for linear combined codebook feedback with a large number of layers, and limits the construction of weighting coefficients to Reduce feedback overhead. Since the amplitudes of the plurality of paths seen by different polarization directions can be approximately equal, the magnitudes of the weighting coefficients of the two polarization directions can be set equal. In order to ensure the orthogonality between the layers in such a case, the polarization coefficients can be parameterized separately for the two polarization directions, ie for each polarization direction i, the following formula is satisfied:
  • the above still guarantees the orthogonality of precoding between layers.
  • the weighting coefficient matrix Ai for each polarization direction satisfies:
  • I N (:, 1: L) represents the first L column of the N-dimensional unit matrix
  • An angle rotation matrix is formed by changing elements of the nth row, the nth column, the mth row, the mth column, the nth row, the mth column, and the nth column and the mth row of the N-dimensional unit matrix into the following sub-matrix owned:
  • the precoding structure described above can be implemented by separately feeding back the angular rotation and phase transformation of the port groups in the two polarization directions.
  • the same feedback can be given for both polarization directions. This ensures that the two polarization directions have the same weighting coefficient amplitude. In this way, in the case that the performance loss is not large, the feedback overhead of the weighting coefficient can be reduced.
  • the same phase transformation can be used by different polarization directions to reduce the overhead, that is, in the above expression, different polarization directions i and j have At this time, there are at least two different port groups, and the same phase change information is fed back.
  • An embodiment provides an embodiment of dividing a subset of channel information.
  • Channel subset partitioning can be performed in a variety of ways. One way is to perform channel subset partitioning through layers.
  • the channel measurement can be used to obtain and feed back the rank of the channel, and the channel rank can represent the maximum number of transmission layers that the wireless channel can support.
  • different layers can correspond to different channel information, and joint processing or independent feedback between multiple layers will bring different performance, and orthogonality between multiple layers will also be MIMO gain, for example, brings a large difference to single-user MIMO gain. Therefore, channel sub-division by layer and joint or independent optimization of multi-layer CSI can bring greater performance gain.
  • the division of the channel subset is performed by the port group.
  • This division is applicable to antenna array configurations of multiple panels, transmission nodes, or polarization directions. Port groups corresponding to different polarization directions, transmission sites, or panels can be jointly or independently optimized to increase the performance of MIMO transmission. .
  • the antenna port can behave as a measurement pilot port or a demodulation pilot port. Therefore, a port group division manner is performed by measuring a pilot port group, and CSI is optimized for different panel, transmission station, or measurement pilot port group corresponding to the polarization direction during channel measurement feedback. Another method of port group division is to divide the pilot port group by demodulation.
  • the channel change band can be better reflected when data is transmitted.
  • the configuration of the base station may determine whether the channel subset is divided by the measurement pilot or the demodulation pilot port group, and the subsequent CSI calculation, feedback, and the like.
  • the method of the foregoing embodiment may be implemented by means of software plus a general hardware platform, or may be implemented by hardware.
  • the above technical solution can be embodied in the form of a software product stored in a storage medium (such as read-only memory (ROM), random access memory (RAM), magnetic
  • ROM read-only memory
  • RAM random access memory
  • the disc or disc includes one or more instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in the various embodiments above.
  • An embodiment provides a feedback device for channel information that can be used to implement the above embodiments.
  • the term “module” can implement at least one of software and hardware for a predetermined function.
  • FIG. 5 is a structural block diagram of a feedback apparatus for channel state information according to an embodiment. As shown in FIG. 5, the apparatus includes a feedback module 52.
  • the feedback module 52 is configured to feed back the channel state information according to the determined structure of the channel state information, where the structure of the channel state information includes a subset of M channel state information; the mth channel of the M channel state information subset
  • the subset of state information includes k m channel information components;
  • the subset of M channel state information includes a subset of N channel state information, and the subset of the n channel state information subsets of the N channel state information includes L n a channel information component, wherein the L n channel information components are determined by a set of base vectors;
  • the M is a positive integer, the N is a positive integer, and the N is less than or equal to the M, and the m and n are positive integers.
  • the above k m is an integer greater than or equal to 0, and the L n is an integer greater than or equal to 0 and less than or equal to the above k m .
  • the above-described k m channel information component comprising at least one of the following: B m precoding indication information, wherein the B m is greater than or equal to a positive integer; A m weighting coefficients amplitude indication information, wherein And the above A m is an integer greater than or equal to 0; P m weighting coefficient phase indication information, wherein the P m is an integer greater than or equal to 0; R m beam indication information, wherein the R m is greater than or equal to An integer of 0.
  • the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein both A m and P m are integers greater than or equal to zero.
  • the manner of dividing the subset of the channel state information includes at least one of: dividing according to measurement pilot resource packets; dividing according to measurement pilot port packets; dividing according to demodulation pilot resource packets; Pilot port grouping; divided according to layers.
  • the manner of dividing the subset of the channel state information is determined by at least one of the following manners: a method for determining according to high layer signaling; and a method for determining according to physical layer signaling.
  • the information indicated by the b m precoding indication information included in the foregoing B m precoding indication information may be determined by at least one of: b n passing through the foregoing nth channel state information subset
  • the information indicated by the precoding indication information is determined by angular rotation; the information indicated by the b n precoding indication information in the nth channel state information subset is determined by amplitude expansion; and the nth channel state information is passed through
  • the information indicated by the concentrated b n precoding indication information is determined by phase transformation; wherein b m and b n are both positive integers, and the b m is less than or equal to the above B m .
  • the angular rotation is determined by the information indicated by the angular rotation matrix acting on the precoding indication information, wherein the angular rotation matrix may include at least one of the following: an identity matrix; the diagonal elements form a discrete a first diagonal matrix of a Fourier transform DFT vector; a diagonal element constitutes a second diagonal matrix of Krone's products of S discrete Fourier transform DFT vectors, wherein the sth of the S DFT vectors
  • the DFT vector corresponds to the sth angular rotation information, the S is a positive integer greater than 1, and the s is a positive integer greater than or equal to 1 and less than or equal to S.
  • the information indicated by the precoding indication information including at least two subsets of channel state information in the subset of channel state information has the same information of at least one of: angular rotation, amplitude expansion, and phase transformation.
  • the value of b m may be determined by at least one of the following manner: by means of high layer signaling or physical layer signaling; and by a first convention.
  • the manner of the first agreement may include the above b m being equal to the above B m .
  • the frequency domain feedback granularity of the angular rotation, the frequency domain feedback granularity of the amplitude expansion, the frequency domain feedback granularity of the phase transformation, the minimum variation unit of the angular rotation, the minimum variation unit of the amplitude expansion, and the foregoing At least one of the minimum change units of the phase change is determined by at least one of: a method of high layer signaling or physical layer signaling; and a second mode of agreement; wherein the frequency domain feedback granularity includes subband feedback and At least one of the bandwidth feedback.
  • the second agreed manner may include at least one of: angular rotation wideband feedback; amplitude extended wideband feedback; and phase transform subband feedback.
  • At least one of the above-mentioned angular rotation, the amplitude expansion, and the feedback period of the phase transformation is determined by at least one of: a method of high layer signaling or physical layer signaling; and a third The way of appointment.
  • the third convention manner may include at least one of the following information, where the feedback period of at least one of the following information and the feedback of the bn precoding indication information in the subset of the nth channel state information
  • the cycle is consistent: angular rotation; amplitude expansion; and phase transformation.
  • the apparatus determines and reports at least one of: at least one of angular rotation, amplitude expansion, and a minimum change unit of phase transformation; angle rotation, amplitude extension, and phase-shifted frequency domain feedback granularity At least one of: an angular rotation, an amplitude expansion, and at least one of a feedback phase of the phase transformation.
  • the foregoing channel state information includes at least one of a h-th layer, a k-th pilot resource group, and a k-th pilot port group of at least one of precoding indication information and beam indication information.
  • At least one of the information indicated by the coding indication information and the information indicated by the beam indication information is determined by at least one of the following methods: an angular rotation, an amplitude expansion, and a phase transformation.
  • the set of base vectors may include one of: a vector in an identity matrix; and a plurality of column vectors in an identity matrix.
  • the channel state information includes precoding indication information or beam indication information, and a precoding indication of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group.
  • the information indicated by the information or the information indicated by the beam indication information includes at least one of the following features: information indicated by the foregoing precoding indication information of each layer or each pilot resource group or each pilot port group or the beam indication information indication The information is independently determined by the base vector; the information indicated by the foregoing precoding indication information of the same layer, different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is determined by the same base vector; different layers, same The information indicated by the foregoing precoding indication information of the pilot resource group or the same pilot port group or the information indicated by the beam indication information is independently obtained by using a base vector; the foregoing layer of different layers, the same pilot resource group or the same pilot port group The information indicated by the coding indication information or the information indicated by the beam indication information described above is the same base vector The information indicated by the
  • At least one of the information indicated by the weighting coefficient amplitude indication information and the information indicated by the weighting coefficient phase indication information is subjected to at least one of angular rotation and phase transformation by a set of base vectors.
  • h is an integer greater than or equal to 1.
  • the foregoing set of base vectors may be determined by at least one of: a manner of determining according to high layer signaling; a manner of determining according to physical layer signaling; and a manner of adopting a fourth convention.
  • the fourth convention manner may include one of: selecting at least one of an angular rotation and a phase transformation in a q-th column in the unit matrix in the Q-th layer of the channel state information, where the q-th column At least one of the following: a first q 1 column and a second q 1 column; at least one of an angular rotation and a phase transformation of the different port groups of the Xth layer of the channel state information according to the x column in the identity matrix, wherein
  • the x column includes at least one of the following: the first x 1 column and the last x 1 column.
  • At least one of the angular rotation and the phase transformation comprises: applying a transformation matrix to one or more vectors of a set of basis vectors, wherein the transformation matrix comprises at least one of: t phase transformations
  • the matrix, t is greater than or equal to 1; the product of r angular rotation matrices, r is greater than or equal to 1.
  • the phase transformation matrix is a diagonal matrix, and the elements on the diagonal of the diagonal matrix include at least one of: a positive real number; and a complex natural exponential function. In an embodiment, the elements on the diagonal of the diagonal matrix are 1 or a complex natural exponential function.
  • the apparatus may include at least one of the following: each layer of the channel state information CSI corresponding to at least one of the phase transformation matrices, wherein the phase transition matrix corresponding to the CSI of the hth layer is at least diagonally Included that f(h) elements are 1, f(h) is a positive integer function with respect to 1, and f(h) is less than or equal to 1; each layer of the above channel state information CSI corresponds to at least one angular rotation matrix, wherein, h
  • the above-described angular rotation matrix corresponding to the CSI of the layer is determined by element transformation of at least one of the following in the unit matrix: an element of the gth (h)th row, an element of the nth column, an element of the nth row, a g(h)th column Element, element of g(h)th row, element of g(h)th column, element of nth row, element of nth column, wherein g(h) and n above are greater
  • the number of channel state information CSI corresponding to each of the angular rotation matrices decreases as the number of the angular rotation matrix layers increases.
  • the frequency domain feedback granularity of the information in the phase transformation matrix, the frequency domain feedback granularity of the information in the angular rotation matrix, the feedback period of the information in the phase transformation matrix, the feedback period of the information in the angular rotation matrix, At least one of the minimum change unit of information in the phase transformation matrix and the minimum change unit of information in the angular rotation matrix is determined by one of the following manners: a method of determining according to high layer signaling; and performing physical layer signaling The way to determine; through the fifth convention.
  • the fifth predetermined manner includes at least one of the following: the information wideband feedback included in the angular rotation matrix; the information subband feedback included in the phase transformation matrix; and the information feedback period included in the angular rotation matrix It is C times the information feedback period included in the phase transformation matrix, and C is a positive integer; the information included in the angular rotation matrix and the precoding indication information in the corresponding channel information subset have the same feedback period and feedback in the frequency domain granularity. At least one.
  • the apparatus further determines and reports at least one of the following: a frequency domain feedback granularity of the information in the phase transformation matrix; a frequency domain feedback granularity of the information in the angular rotation matrix; and information feedback in the phase transformation matrix a period; a feedback period of information in the angular rotation matrix; a minimum unit of change of information in the phase transformation matrix; and a minimum unit of change of information in the angle rotation matrix.
  • the above channel state information CSI of the same layer has at least one of the port group having at least one of the same phase transformation information and the same angular rotation information.
  • phase change information and angle rotation information may be fed back by at least one of: different port groups respectively feeding back at least phase change information and angle rotation information One; different port groups jointly feedback at least one of phase transformation information and angular rotation information.
  • FIG. 6 is a structural block diagram of determining apparatus for channel state information according to an embodiment. As shown in FIG. 6, the apparatus includes: a determining module 62.
  • the determining module 62 is configured to determine, according to the structure of the channel state information, the channel state information that is fed back by the terminal; wherein the specific structure of the channel state information includes a subset of M channel state information; and the mth of the M channel state information subsets
  • the subset of channel state information includes k m channel information components;
  • the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes L n channel information components, wherein the L n channel information components are determined by a set of vectors;
  • the above M is a positive integer
  • the N is a positive integer and the N is less than or equal to the above M
  • the m and n are positive An integer
  • the above k m is an integer greater than or equal to 0
  • the L n is an integer greater than or equal to 0 and less than or equal to the above k m .
  • the above-described k m channel information component may include at least one of the following: B m precoding indication information, wherein the B m is greater than or equal to a positive integer; A m weighting coefficients amplitude indication information, Wherein, the above A m is an integer greater than or equal to 0; P m weighting coefficient phase indication information, wherein the P m is an integer greater than or equal to 0; R m beam indication information, wherein the R m is greater than or An integer equal to 0.
  • the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein both A m and P m are integers greater than or equal to zero.
  • the manner of dividing the subset of the channel state information may include at least one of: dividing according to measurement pilot resource packets; dividing according to measurement pilot port packets; dividing according to demodulation pilot resource grouping; The pilot port grouping is divided; it is divided according to layers.
  • the manner of dividing the subset of the channel state information may be determined by at least one of the following manners: a manner of notifying the terminal according to the high layer signaling, and a manner of notifying the terminal according to the physical layer signaling.
  • the information indicated by the b m precoding indication information included in the foregoing B m precoding indication information is determined by at least one of: b n by using the nth channel state information subset
  • the information indicated by the precoding indication information is determined by angular rotation; the information indicated by the b n precoding indication information in the nth channel state information subset is determined by amplitude expansion; and the nth channel state information subset is passed through
  • the information indicated by the b n precoding indication information is determined by phase transformation; wherein b m and b n are both positive integers, and the b m is less than or equal to the above B m .
  • the angular rotation is determined by the information indicated by the angular rotation matrix acting on the precoding indication information, wherein the angular rotation matrix comprises at least one of the following: an identity matrix; the diagonal elements form a discrete Fu The first diagonal matrix of the transformed DFT vector; the diagonal elements form a second diagonal matrix of the Kronek products of the S discrete Fourier transform DFT vectors, wherein the sth DFT of the above S DFT vectors
  • the vector corresponds to the sth angular rotation information, the S is a positive integer greater than 1, and the s is a positive integer greater than or equal to 1 and less than or equal to S.
  • the information indicated by the precoding indication information including at least two subsets of channel state information in the subset of channel state information has the same information of at least one of: angular rotation, amplitude expansion, and phase transformation.
  • the value of the b m may be determined by at least one of the following manners: a manner of notifying the terminal by the high-level signaling, and a manner of notifying the terminal by the physical layer signaling; .
  • the manner of the first agreement may include the above b m being equal to the above B m .
  • the frequency domain feedback granularity of the angular rotation, the frequency domain feedback granularity of the amplitude expansion, the frequency domain feedback granularity of the phase transformation, the minimum variation unit of the angular rotation, the minimum variation unit of the amplitude expansion, and the foregoing At least one of the minimum change units of the phase change is determined by at least one of the following manners: a manner of notifying the terminal to determine by high layer signaling or physical layer signaling; and a second agreed mode; wherein the frequency domain feedback granularity is At least one of subband feedback and bandwidth feedback is included.
  • the second agreed manner may include at least one of: angular rotation wideband feedback; amplitude extended wideband feedback; and phase transform subband feedback.
  • At least one of the above-mentioned angular rotation, the amplitude expansion, and the feedback period of the phase transformation is determined by at least one of the following manners: a manner in which the terminal is notified by higher layer signaling or physical layer signaling; Pass the third convention.
  • the third convention manner may include at least one of the following information, where the feedback period of at least one of the following information and the foregoing b n precoding indication information in the subset of the nth channel state information
  • the feedback period is consistent: angular rotation; amplitude expansion; phase transformation.
  • the apparatus receives at least one of: at least one of an angular rotation, an amplitude expansion, and a minimum variation unit of the phase transformation; at least one of an angular rotation, an amplitude expansion, and a frequency domain feedback granularity of the phase transformation.
  • the foregoing channel state information includes at least one of precoding indication information and beam indication information, and precoding of at least one of the hth layer, the kth pilot resource group, and the kth pilot port group. At least one of the information indicated by the indication information and the information indicated by the beam indication information is determined by at least one of a set of basis vectors in an angle rotation, an amplitude expansion, and a phase transformation.
  • the set of base vectors includes one of: a vector in the identity matrix; and a plurality of column vectors in the identity matrix.
  • the information indicated by the precoding indication information of the at least one of the h th layer, the k th pilot resource group, and the kth pilot port group of the channel state information or the beam indication information indicates The information includes at least one of the following: the information indicated by the precoding indication information of each layer or each pilot resource group or each pilot port group or the information indicated by the beam indication information independently passes the base vector Determining; the information indicated by the precoding indication information of the same layer, different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is determined by the same base vector; different layers, same pilot The information indicated by the precoding indication information of the resource group or the same pilot port group or the information indicated by the beam indication information is obtained by the base vector independently; different layers, the same pilot resource group or the same pilot port group The information indicated by the precoding indication information or the information indicated by the beam indication information is determined by the same base vector; the same layer, The information indicated by the precoding indication information of different pilot resource groups or different pilot port groups or the information indicated by the beam indication information is
  • At least one of the information indicated by the weighting coefficient amplitude indication information and the information indicated by the weighting coefficient phase indication information is subjected to at least one of angular rotation and phase transformation by a set of base vectors.
  • the set of base vectors is determined by at least one of the following manners: a manner of notifying the terminal according to the high layer signaling, and a manner of notifying the terminal according to the physical layer signaling; and adopting a fourth agreed manner.
  • the fourth convention manner may include one of: selecting at least one of an angular rotation and a phase transformation in a q-th column in the unit matrix in the Q-th layer of the channel state information, where the q-th column At least one of the following: a first q 1 column and a second q 1 column; at least one of an angular rotation and a phase transformation of the different port groups of the Xth layer of the channel state information according to the x column in the identity matrix, wherein
  • the x column includes at least one of the following: the first x 1 column and the last x 1 column.
  • At least one of the angular rotation and the phase transformation comprises: applying a transformation matrix to one or more vectors of a set of basis vectors, wherein the transformation matrix comprises at least one of the following: t phase transformation matrices, t is greater than or equal to 1; and the product of r angular rotation matrices, r is greater than or equal to one.
  • the phase transformation matrix described above may include at least one of: a diagonal matrix in which elements on the diagonal are 1; and a complex natural exponential function.
  • the apparatus may include at least one of the following: each layer of the channel state information CSI corresponding to at least one of the phase transformation matrices, wherein the phase transition matrix corresponding to the CSI of the hth layer is at least diagonally Included that f(h) elements are 1, f(h) is a positive integer function with respect to 1, and f(h) is less than or equal to 1; each layer of the above channel state information CSI corresponds to at least one angular rotation matrix, wherein, h
  • the above-described angular rotation matrix corresponding to the CSI of the layer is determined by element transformation of at least one of the following in the unit matrix: an element of the gth (h)th row, an element of the nth column, an element of the nth row, a g(h)th column Element, element of g(h)th row, element of g(h)th column, element of nth row, element of nth column, wherein g(h) and n above are greater
  • the number of channel state information CSI corresponding to each of the angular rotation matrices decreases as the number of the angular rotation matrix layers increases.
  • the frequency domain feedback granularity of the information in the phase transformation matrix, the frequency domain feedback granularity of the information in the angular rotation matrix, the feedback period of the information in the phase transformation matrix, the feedback period of the angular rotation matrix, and the phase is determined by one of the following manners: a method of notifying the terminal according to the high layer signaling; and notifying the terminal according to the physical layer signaling The way to determine; and through the fifth convention.
  • the fifth predetermined manner includes at least one of the following: the information wideband feedback included in the angular rotation matrix; the information subband feedback included in the phase transformation matrix; and the information feedback period included in the angular rotation matrix It is C times the information feedback period included in the phase transformation matrix, and C is a positive integer; and the information included in the angular rotation matrix and the precoding indication information in the corresponding channel information subset have the same feedback period and frequency domain granularity of feedback. At least one of them.
  • the apparatus may further receive at least one of the following: a frequency domain feedback granularity of information in the phase transformation matrix; a frequency domain feedback granularity of information in the angular rotation matrix; and a feedback period of information in the phase transformation matrix a feedback period of information in the angular rotation matrix; a minimum unit of change of information in the phase transformation matrix; and a minimum unit of change of information in the angular rotation matrix.
  • the above channel state information CSI of the same layer has at least one of the port group having at least one of the same phase transformation information and the same angular rotation information.
  • phase change information and angle rotation information fed back by the terminal is received by at least one of: different port groups respectively feeding back phase transformation information and angle rotation information At least one of the different port groups jointly fed back at least one of phase transformation information and angular rotation information.
  • An embodiment provides a feedback device for channel state information, the device comprising: a first processor; a first memory configured to store first processor executable instructions; wherein the first processor is configured to: determine channel state structure of feedback information from the channel state information; wherein the channel state configuration information described above includes m channel state information subset; m-th channel state information of a subset of the m channel state information subset includes K m th Channel information component; the M channel state information subset includes N channel state information subsets, and the nth channel state information subset of the N channel state information subsets includes L n channel information components, where the L The n channel information components are determined by a set of vector bases; the above M is a positive integer, the N is a positive integer and the N is less than or equal to the above M, the m and n are positive integers, and the k m is greater than or equal to An integer of 0, wherein L n is an integer greater than or equal to 0 and less than or equal to the above k m .
  • the above-described k m channel information component may include at least one of the following: B m precoding indication information, wherein the B m is greater than or equal to a positive integer; A m weighting coefficients amplitude indication information, Wherein, the above A m is an integer greater than or equal to 0; P m weighting coefficient phase indication information, wherein the P m is an integer greater than or equal to 0; R m beam indication information, wherein the R m is greater than or An integer equal to 0.
  • the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein both A m and P m are integers greater than or equal to zero.
  • the manner of dividing the subset of the channel state information may include at least one of: dividing according to measurement pilot resource packets; dividing according to measurement pilot port packets; dividing according to demodulation pilot resource grouping; The pilot port grouping is divided; it is divided according to layers.
  • the manner of dividing the subset of the channel state information may be determined by at least one of the following manners: determining according to high layer signaling; and determining according to physical layer signaling.
  • the information indicated by the b m precoding indication information included in the foregoing B m precoding indication information may be determined by at least one of: b n passing through the foregoing nth channel state information subset
  • the information indicated by the precoding indication information is determined by angular rotation; the information indicated by the b n precoding indication information in the nth channel state information subset is determined by amplitude expansion; and the nth channel state information is passed through
  • the information indicated by the concentrated b n precoding indication information is determined by phase transformation; wherein b m and b n are both positive integers, and the b m is less than or equal to the above B m .
  • An embodiment provides a device for determining channel state information, the device comprising: a second processor; and a second memory configured to store second processor executable instructions.
  • the second processor is configured to: determine the channel state information fed back by the terminal according to the structure of the channel state information; wherein the specific structure of the channel state information includes a subset of M channel state information; and the M channel state information the m-th channel state information subset set comprises K m channel information components; the m channel state information subset includes N channel state information subset, the n-th channel state of the N channel state information subset
  • the information subset includes L n channel information components, wherein the L n channel information components are determined by a set of vectors; the M is a positive integer, the N is a positive integer, and the N is less than or equal to the above M, the m And n are both positive integers, the above k m is an integer greater than or equal to 0, and the above L n is an integer greater than or equal to 0 and less than or equal to
  • the above-described k m channel information component may include at least one of the following: B m precoding indication information, wherein the B m is greater than or equal to a positive integer; A m weighting coefficients amplitude indication information, Wherein, the above A m is an integer greater than or equal to 0; P m weighting coefficient phase indication information, wherein the P m is an integer greater than or equal to 0; R m beam indication information, wherein the R m is greater than or An integer equal to 0.
  • the information indicated by the A m weighting coefficient amplitude indication information and the information indicated by the P m weighting coefficient phase indication information constitute a weighting coefficient vector, and at least one set of channel state information subsets exists.
  • the weighting coefficient vectors are orthogonal to each other, wherein both A m and P m are integers greater than or equal to zero.
  • the manner of dividing the subset of the channel state information may include at least one of: dividing according to measurement pilot resource packets; dividing according to measurement pilot port packets; dividing according to demodulation pilot resource grouping; The pilot port grouping is divided; it is divided according to layers.
  • the manner of dividing the subset of the channel state information may be determined by at least one of the following manners: a manner of notifying the terminal according to the high layer signaling, and a manner of notifying the terminal according to the physical layer signaling.
  • the information indicated by the b m precoding indication information included in the foregoing B m precoding indication information may be determined by at least one of: b n passing through the foregoing nth channel state information subset
  • the information indicated by the precoding indication information is determined by angular rotation; the information indicated by the b n precoding indication information in the nth channel state information subset is determined by amplitude expansion; and the nth channel state information is passed through
  • the information indicated by the concentrated b n precoding indication information is determined by phase transformation; wherein b m and b n are both positive integers, and the b m is less than or equal to the above B m .
  • the plurality of modules may be implemented by software or hardware.
  • the modules are all located in the same processor; or the plurality of modules are respectively located in different processors in any combination.
  • An embodiment provides a storage medium.
  • the storage medium described above may be arranged to store program code for performing the above plurality of steps.
  • the foregoing storage medium may include: a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store a program code.
  • the processor performs the above steps in accordance with stored program code in the storage medium.
  • the plurality of modules or steps described above may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices, optionally using computing devices
  • Executable program code is implemented, such that they can be stored in a storage device for execution by a computing device, and in some cases, the steps shown or described may be performed in an order different than that herein, or They are fabricated as a plurality of integrated circuit modules, respectively, or by making a plurality of modules or steps of them into a single integrated circuit module.
  • the feedback and determination method and device of the channel state information can solve the problem that the antenna correlation of the multi-panel cannot be well reported in the related art, and the multi-layer linear combination codebook cannot guarantee the problem of orthogonality between layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道状态信息的反馈、确定方法及装置,该反馈方法包括:根据确定的信道状态信息的结构反馈信道状态信息;其中,信道状态信息的结构包括M个信道状态信息子集;M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;M个信道状态信息子集包括N个信道状态信息子集,N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,L n个信道信息分量由一组基矢量经过变换确定。

Description

信道状态信息的反馈、确定方法及装置 技术领域
本公开涉及通信领域,例如,涉及一种信道状态信息的反馈、确定方法及装置。
背景技术
在无线通信系统中,发送端和接收端可以采用多根天线发送和接收来获取更高的传输速率。多输入多输出(multiple-input-multiple-output,MIMO)技术的一个原理是利用信道的一些特征来形成匹配信道特征的多层传输,从而能够提升系统性能,在不增加带宽和功率的基础上能够获得性能提升。多输入输出是一个有前景的技术,广泛应用在无线通信系统系统中。比如在长期演进(Long Term Evolution,LTE)和LTE增强(Long Term Evolution-Advanced,LTE-A)系统中有多种多天线技术传输的模式,如传输模式2至传输模式10。多天线技术中涉及的概念和技术都比较多,一些概念介绍如下。
信道状态信息(Channel State Information,CSI)有两种反馈方式,即周期性反馈和非周期性反馈,例如在LTE或者LTE-A系统,利用上行控制信道(Physical Uplink Control Channel,PUCCH)进行周期性反馈,利用物理上行共享信道(Physical uplink shared channel,PUSCH)进行非周期性反馈。
发明内容
提供了一种信道状态信息的反馈、确定方法及装置,能够解决相关技术中存在的无法对多面板的天线相关性进行很好的反馈,以及多层的线性组合码本无法保证层间正交的问题。
一种信道状态信息的反馈方法,包括:
根据确定的信道状态信息的结构反馈所述信道状态信息;
其中,所述信道状态信息的结构包括M个信道状态信息子集;
所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,所述L n个信道信息分量由一组矢量经过变换确定;
所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
一实施例中,所述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
一实施例中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
一实施例中,所述信道状态信息的子集的划分方式包括以下至少之一:
根据测量导频资源分组划分;
根据测量导频端口分组划分;
根据解调导频资源分组划分;
根据解调导频端口分组划分;以及
根据层划分。
一实施例中,所述信道状态信息的子集的划分方式通过以下至少之一确定:
根据高层信令进行确定的方式;以及
根据物理层信令进行确定的方式。
一实施例中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经 过幅度扩展进行确定;以及
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
一实施例中,所述角度旋转为通过角度旋转矩阵作用于所述预编码指示信息指示的信息进行确定的,其中,所述角度旋转矩阵包括以下至少之一:
单位矩阵;
对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;以及
对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,所述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,所述S为大于1的正整数,所述s为大于或者等于1且小于或者等于S的正整数。
一实施例中,所述信道状态信息子集包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:
角度旋转,幅度扩展以及相位变换。
一实施例中,所述b m的取值通过以下方式至少之一确定:
通过高层信令或物理层信令的方式;以及
通过第一约定方式。
一实施例中,所述第一约定的方式包括所述b m等于所述B m
一实施例中,所述角度旋转的频域反馈粒度、所述幅度扩展的频域反馈粒度、所述相位变换的频域反馈粒度、所述角度旋转的最小变化单位、所述幅度扩展的最小变化单位、所述相位变换的最小变化单位中的至少之一通过以下方式至少之一确定:
通过高层信令或物理层信令的方式;以及
通过第二约定方式;
其中,所述频域反馈粒度包括子带反馈和带宽反馈中的至少之一。
一实施例中,所述第二约定方式包括以下至少之一:
角度旋转宽带反馈;
幅度扩展宽带反馈;以及
相位变换子带反馈。
一实施例中,所述角度旋转、所述幅度扩展、所述相位变换的反馈周期中 的至少之一通过以下方式至少之一确定:
通过高层信令或物理层信令的方式;以及
通过第三约定方式。
一实施例中,所述第三约定方式包括以下信息至少之一,其中,所述以下信息至少之一的反馈周期和所述第n个信道状态信息子集中的所述b n个预编码指示信息的反馈周期一致:
角度旋转;
幅度扩展;以及
相位变换。
一实施例中,所述的方法,还包括:
确定并上报以下信息至少之一:
角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;
角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;以及
角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
一实施例中,所述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息和波束指示信息指示的信息中的至少之一由一组基矢量经过以下方式至少之一进行确定:
角度旋转,幅度扩展,以及相位变换得到。
一实施例中,所述一组基矢量包括以下之一:
单位矩阵中的一个矢量;以及
单位矩阵中的多个列矢量。
一实施例中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:
每一层或每个导频资源组或每个导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示 的信息或者所述波束指示信息指示的信息独立通过所述基矢量得到;
不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
同一层的所述信道状态信息选取部分资源或者端口反馈对应的所述预编码指示信息或者所述波束指示信息;以及
不同层的所述信道状态信息选取的资源或者端口不同,不同层的所述信道状态信息的所述预编码指示信息或者所述波束指示信息独立通过一组基矢量确定。
一实施例中,第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中的至少之一确定,其中,所述h为大于或者等于1的整数。
一实施例中,所述一组基矢量通过以下方式至少之一进行确定:
根据高层信令进行确定的方式;
根据物理层信令进行确定的方式;以及
通过第四约定的方式。
一实施例中,所述第四约定方式包括以下之一:
在所述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转和相位变换中的至少之一,其中,所述q列包括以下至少之一:前q 1列和后q 1列;以及
将所述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中的至少之一,其中,所述x列包括以下至少之一:前x 1列和后x 1列。
一实施例中,所述角度旋转和相位变换中的至少之一包括:
将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,所述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;以及,r个角度旋转矩阵的乘积,r大于或者等于1。
一实施例中,相位变换矩阵是对角矩阵,所述对角矩阵对角线上的元素包括以下至少之一:
正实数;以及
复数的自然指数函数。
一实施例中,所述信道状态信息包括以下至少之一:
每层所述信道状态信息CSI对应至少一个所述相位变换矩阵,其中,第h层所述CSI对应的所述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;以及
每层所述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层所述CSI对应的所述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,所述g(h)与所述n均大于或者等于1,且n不等于所述g(h),所述g(h)是关于h的正整数函数;所述元素变换后为实数的三角函数。
一实施例中,每层信道状态信息CSI对应所述角度旋转矩阵的个数随着所述角度旋转矩阵层数的增加而递减。
一实施例中,所述相位变换矩阵中信息的频域反馈粒度、所述角度旋转矩阵中信息的频域反馈粒度、所述相位变换矩阵中信息的反馈周期、所述角度旋转矩阵中信息的反馈周期、所述相位变换矩阵中信息的最小变化单位、所述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:
根据高层信令进行确定的方式;
根据物理层信令进行确定的方式;以及
通过第五约定方式。
一实施例中,所述第五约定方式至少包括以下至少之一:
所述角度旋转矩阵中包含的信息宽带反馈;
所述相位变换矩阵中包含的信息子带反馈;
所述角度旋转矩阵包含的信息反馈周期是所述相位变换矩阵包含的信息反馈周期的C倍,所述C是正整数;以及
所述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
一实施例中,所述的方法,还包括:
确定并上报以下信息中的至少之一:
所述相位变换矩阵中信息的频域反馈粒度;
所述角度旋转矩阵中信息的频域反馈粒度;
所述相位变换矩阵中信息的反馈周期;
所述角度旋转矩阵中信息的反馈周期;
所述相位变换矩阵中信息的最小变化单位;以及
所述角度旋转矩阵中信息的最小变化单位。
一实施例中,相同层的所述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和角度旋转信息中的至少之一。
一实施例中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一反馈相位变换信息和角度旋转信息中的至少之一:
不同端口组分别反馈相位变换信息和角度旋转信息中的至少之一;以及
不同端口组联合反馈相位变换信息和角度旋转信息中的至少之一。
一种信道状态信息的确定方法,包括:
根据信道状态信息的结构确定终端反馈的所述信道状态信息;
其中,所述信道状态信息的特定结构包括M个信道状态信息子集;
所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括Ln个信道信息分量,其中,所述Ln个信道信息分量由一组矢量经过变换确定;
所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
一实施例中,所述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
一实施例中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
一实施例中,所述信道状态信息的子集的划分方式包括以下至少之一:
根据测量导频资源分组划分;
根据测量导频端口分组划分;
根据解调导频资源分组划分;
根据解调导频端口分组划分;以及
根据层划分。
一实施例中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
根据高层信令通知终端进行确定的方式;以及
根据物理层信令通知终端进行确定的方式。
一实施例中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
一实施例中,所述角度旋转为通过角度旋转矩阵作用于所述预编码指示信息指示的信息进行确定的,其中,所述角度旋转矩阵包括以下至少之一:
单位矩阵;
对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;以及
对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,所述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,所述S为大于1的正整数,所述s为大于或者等于1且小于或者等于S的正整数。
一实施例中,所述信道状态信息子集中至少包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:
角度旋转,幅度扩展,以及相位变换。
一实施例中,所述b m的取值通过以下方式至少之一进行确定:
通过高层信令通知终端进行确定的方式;
通过物理层信令通知终端进行确定的方式;以及
通过第一约定方式。
一实施例中,所述第一约定的方式包括所述b m等于所述B m
一实施例中,所述角度旋转的频域反馈粒度、所述幅度扩展的频域反馈粒度、所述相位变换的频域反馈粒度、所述角度旋转的最小变化单位、所述幅度扩展的最小变化单位、所述相位变换的最小变化单位中的至少之一通过以下方式至少之一进行确定:
通过高层信令或物理层信令通知终端进行确定的方式;以及
通过第二约定方式;
其中,所述频域反馈粒度包括子带反馈和带宽反馈中至少之一。
一实施例中,所述第二约定方式包括以下至少之一:
角度旋转宽带反馈;
幅度扩展宽带反馈;以及
相位变换子带反馈。
一实施例中,所述角度旋转、所述幅度扩展、所述相位变换的反馈周期中的至少之一通过以下方式至少之一进行确定:
通过高层信令或物理层信令通知终端进行确定的方式;以及
通过第三约定方式。
一实施例中,所述第三约定方式包括以下信息至少之一,其中,所述以下信息至少之一的反馈周期和所述第n个信道状态信息子集中的所述b n个预编码指示信息的反馈周期一致:
角度旋转;
幅度扩展;以及
相位变换。
一实施例中,所述方法还包括:接收以下信息至少之一:
角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;
角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;以及
角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
一实施例中,所述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息和波束指示信息指示的信息中至少之一由一组基矢量经过以下方式至少之一进行确定:
角度旋转,幅度扩展,以及相位变换得到。
一实施例中,所述一组基矢量包括以下之一:
单位矩阵中的一个矢量;以及
单位矩阵中的多个列矢量。
一实施例中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:
每一层或每个导频资源组或每个导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量得到;
不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
同一层的所述信道状态信息选取部分资源或者端口反馈对应的所述预编码指示信息或者所述波束指示信息;以及
不同层的所述信道状态信息选取的资源或者端口不同,不同层的所述信道状态信息的所述预编码指示信息或者所述波束指示信息独立通过一组基矢量确定。
一实施例中,第h层的信道状态信息中,加权系数幅度指示信息指示的信 息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中至少之一确定,其中,所述h为大于或者等于1的整数。
一实施例中,所述一组基矢量通过以下方式至少之一进行确定:
根据高层信令通知终端进行确定的方式;
根据物理层信令通知终端进行确定的方式;以及
通过第四约定的方式。
一实施例中,所述第四约定方式包括以下之一:
在所述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转,和相位变换中至少之一,其中,所述q列包括以下至少之一:前q 1列和后q 1列;
将所述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中至少之一,其中,所述x列包括以下至少之一:前x 1列和后x 1列。
一实施例中,所述角度旋转和相位变换中至少之一包括:
将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,所述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;以及r个角度旋转矩阵的乘积,r大于或者等于1。
一实施例中,所述相位变换矩阵是对角矩阵,所述对角矩阵对角线上的元素包括以下至少之一:
正实数;以及
复数的自然指数函数。
一实施例中,信道状态信息满足以下至少之一:
每层所述信道状态信息CSI对应至少一个所述相位变换矩阵,其中,第h层所述CSI对应的所述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;以及
每层所述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层所述CSI对应的所述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,所述g(h)与所述n均大于或者等于1,且n不等于所述g(h),所述g(h)是关于1的正整数函数;所述元素变换后为实数的三角函数。
一实施例中,所述每层信道状态信息CSI对应所述角度旋转矩阵的个数随着所述角度旋转矩阵层数的增加而递减。
一实施例中,所述相位变换矩阵中信息的频域反馈粒度、所述角度旋转矩阵中信息的频域反馈粒度、所述相位变换矩阵中信息的反馈周期、所述角度旋转矩阵的反馈周期、所述相位变换矩阵的最小变化单位、所述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:
根据高层信令通知终端进行确定的方式;
根据物理层信令通知终端进行确定的方式;以及
通过第五约定方式。
一实施例中,所述第五约定方式至少包括以下至少之一:
所述角度旋转矩阵中包含的信息宽带反馈;
所述相位变换矩阵中包含的信息子带反馈;
所述角度旋转矩阵包含的信息反馈周期是所述相位变换矩阵包含的信息反馈周期的C倍,所述C是正整数;以及
所述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
一实施例中,所述的方法,还包括:
接收以下信息至少之一:
所述相位变换矩阵中信息的频域反馈粒度;
所述角度旋转矩阵中信息的频域反馈粒度;
所述相位变换矩阵中信息的反馈周期;
所述角度旋转矩阵中信息的反馈周期;
所述相位变换矩阵中信息的最小变化单位;以及
所述角度旋转矩阵中信息的最小变化单位。
一实施例中,相同层的所述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和角度旋转信息中的至少之一。
一实施例中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一接收终端反馈的相位变换信息和角度旋转信息中的至少之一:
不同端口组分别反馈相位变换信息,和,角度旋转信息中的至少之一;以及
不同端口组联合反馈相位变换信息,和,角度旋转信息中的至少之一。
一种信道状态信息的反馈装置,包括:
反馈模块,设置为根据确定的信道状态信息的结构反馈所述信道状态信息;
其中,所述信道状态信息的结构包括M个信道状态信息子集;所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,所述L n个信道信息分量由一组矢量经过变换确定;
所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
一实施例中,所述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
一实施例中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
一实施例中,所述信道状态信息的子集的划分方式包括以下至少之一:
根据测量导频资源分组划分;
根据测量导频端口分组划分;
根据解调导频资源分组划分;
根据解调导频端口分组划分;以及
根据层划分。
一实施例中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
根据高层信令进行确定的方式;以及
根据物理层信令进行确定的方式。
一实施例中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
一种信道状态信息的确定装置,包括:
确定模块,设置为根据信道状态信息的结构确定终端反馈的所述信道状态信息;
其中,所述信道状态信息的特定结构包括M个信道状态信息子集;
所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括Ln个信道信息分量,其中,所述Ln个信道信息分量由一组矢量经过变换确定;
所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
一实施例中,所述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
一实施例中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在 一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
一实施例中,所述信道状态信息的子集的划分方式包括以下至少之一:
根据测量导频资源分组划分;
根据测量导频端口分组划分;
根据解调导频资源分组划分;
根据解调导频端口分组划分;以及
根据层划分。
一实施例中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
根据高层信令通知终端进行确定的方式;以及
根据物理层信令通知终端进行确定的方式。
一实施例中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
一种信道状态信息的反馈装置,包括:
第一处理器;
设置为存储第一处理器可执行指令的第一存储器;
其中,所述第一处理器被配置为:
根据确定的信道状态信息的结构反馈所述信道状态信息;
其中,所述信道状态信息的结构包括M个信道状态信息子集;
所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状 态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,所述L n个信道信息分量由一组矢量经过变换确定;
所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
一实施例中,所述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
一实施例中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
一实施例中,所述信道状态信息的子集的划分方式包括以下至少之一:
根据测量导频资源分组划分;
根据测量导频端口分组划分;
根据解调导频资源分组划分;
根据解调导频端口分组划分;以及
根据层划分。
一实施例中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
根据高层信令进行确定的方式;以及
根据物理层信令进行确定的方式。
一实施例中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经 过幅度扩展进行确定;以及
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
一种信道状态信息的确定装置,包括:
第二处理器;
设置为存储第二处理器可执行指令的第二存储器;
其中,所述第二处理器被配置为:
根据信道状态信息的结构确定终端反馈的所述信道状态信息;
其中,所述信道状态信息的特定结构包括M个信道状态信息子集;
所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括Ln个信道信息分量,其中,所述Ln个信道信息分量由一组矢量经过变换确定;
所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
一实施例中,所述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
一实施例中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
一实施例中,所述信道状态信息的子集的划分方式包括以下至少之一:
根据测量导频资源分组划分;
根据测量导频端口分组划分;
根据解调导频资源分组划分;
根据解调导频端口分组划分;以及
根据层划分。
一实施例中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
根据高层信令通知终端进行确定的方式;以及
根据物理层信令通知终端进行确定的方式。
一实施例中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执中任一项的方法。
附图说明
图1是根据一实施例的移动终端的硬件结构框图;
图2是根据一实施例信道信息的反馈方法的流程图;
图3是根据一实施例信道信息的确定方法的流程图;
图4是根据一实施例中的多面板大规模天线阵列的示意图;
图5是根据一实施例的信道状态信息的反馈装置的结构框图;以及
图6是根据一实施例的信道状态信息的确定装置的结构框图。
具体实施方式
说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
终端CSI的反馈包括两种方式:基站可以配置终端对信道信息进行测量和量化,并通过PUCCH对量化的信道状态信息(包括秩指示符(Rank Indicator,RI)或者预编码矩阵指示符(Precoding Matrix Indicator,PMI)或者信道质量指示信息(Channel quality indication,CQI)进行周期性的反馈。基站还可以在需要获取CSI时,非周期性的突然触发终端上报CSI(包括RI、PMI或CQI),在PUSCH中以克服周期反馈实时性不够高,CSI量化精度受限于控制信道开销的问题。
基于码本的信道信息量化反馈的原理如下。
假设有限反馈信道容量为B bps/Hz,那么可用的码字的个数为N=2 B个。信道矩阵的特征矢量空间经过量化构成码本空间
Figure PCTCN2017119582-appb-000001
发射端与接收端共同保存或实时产生上述码本(即,接收端与发射端具有相同的码本)。接收端根据获得的信道矩阵H以及一定的准则从
Figure PCTCN2017119582-appb-000002
中选择一个与信道最匹配的码字
Figure PCTCN2017119582-appb-000003
并将码字序号i(即PMI)反馈回发射端。发射端根据此序号i找到相应的预编码码字
Figure PCTCN2017119582-appb-000004
从而获得信道信息,
Figure PCTCN2017119582-appb-000005
表示信道的特征矢量信息。
LTE系统中码字的构造原理如下。LTE的码本随着标准版本的演进,也在不断的演进。在版本Release 8和Release 9中,4天线的码本和2天线的码本都是单码字的形式,只有一个PMI其值表示为i=1,...,N 11,N 11为码字的个数。在Release 10的8天线码本和Release 12的4天线码本时,就是双码本反馈的形式了,即码字可以写成W=W 1*W 2的形式,其中,W 1是长期反馈的码本,称为第一码本;W 2表示一个短期反馈的码本,称为第二码本,W 2的作用是在W 1码字里选择M 1个备选波束里的一个,并为同一个数据层的每个极化方向选择的波束选择极化相位(Co-phasing),W 2里的每个码字用PMI 2量化和反馈,其值为i 2=1,...,M 1,M 1为W 2的个数,相关内容可以参考LTE Release 10协议。
在Release 12以前的码字都是针对一维(1D(Dimension))天线阵列的,属于1D的码字,在Release 13的码本里设计里,由于使用了更多的天线,码本的维度变得更大了。天线的拓扑一般也是平面阵列的,即为有两个维度方向的天线设计了2D的码字。从而第一码本W 1里的每个波束具有2维的形式
Figure PCTCN2017119582-appb-000006
其中,v m和u n分别为第一维度和第二维度的离散傅里叶矢量(Discrete Fourier Transform,DFT),
Figure PCTCN2017119582-appb-000007
表示v m和u n的kronecker乘积,m=1,2,…,B 1,n=1,2,…,B 2。第一维度端口(端口包括天线、端口(port)、传输单元、阵子或阵元等可以发送信号的装置)的数量N 1个,第二维度端口为N 2个,第一维度端口对应的DFT进行了O 1倍的过采样,第二维度的端口对应的DFT进行了O 2倍的过采样,上述第一维度或者第二维度天线的离散傅里叶矢量的个数是相应端口的数目的过采样因子的倍数,所以有B 1=N 1*O 1,B 2=N 2*O 2,O 1为第一维度过采样因子,O 2为第二维度过采样因子。第一码本的第一维度码本用PMI 11表示,其值为i 11=1,...,N 11,第一码本的第二维度的码本用PMI 12表示,其值为i 12=1,...,N 12。对于上述的每一个PMI 11和PMI 12的索引,都有M 1个W 2码字,每个W 2码字就是为了从W 1里选择二维波束
Figure PCTCN2017119582-appb-000008
以及不同极化方向的Co-phasing,对应的码字索引为PMI 2,用i 2=1,...,M 1表示。
把第一维度端口数N 11=1或第二维度端口数N 12=1的码字成为1D码字,而第一维度端口数N 11>1且第二维度端口数N 12>1的码字成为2D码字。如果是1D码字且是单码字结构用PMI或者i表示,如果是1D码字且在双码字结构中用PMI 1和PMI 2共同表示,索引由i 1或者i 2共同表示,如果是2D码字用PMI 11,PMI 12,PMI 2三个码本索引共同表示或者由索引i 11,i 12,i 2共同表示。
上述的PMI反馈方法都是基于信道中的最强路径信息进行反馈预编码矩阵或者配置波束,而忽略信道的其它路径的信息,可能导致反馈的信息或者配置的信息不能很好地与信道匹配,从而影响系统的性能。因此,在LTE Rel-14的讨论中,线性组合码本被引入以增强CSI反馈的精确度。在线性组合码本中,预编码码字由一组一维或二维的DFT矢量通过线性加权组合得到,通过上述PMI反馈确定一组波束,并通过反馈每个波束的加权系数幅度和相位相关信息得到最终的预编码。相关技术中的线性组合码本的反馈中,波束选择是正交的,而加权幅度和相位却不能保证最终多层预编码相互正交,这对于层数较多的单用户MIMO的性能可能会带来损失。此外,5G中,天线阵列将从一个面板扩展到多个面板,不同面板的波束选择可能会不一样,也可能会存在一定的相关性,因此,不同面板的波束选择如何进行优化也是需要解决的问题。
相关技术中存在着无法对多面板的天线相关性进行很好的反馈,以及多层的线性组合码本无法保证层间正交的问题。以下实施例提供的方法可以在移动 终端、计算机终端或者类似的运算装置中执行。一实施例中,以以下方法运行在移动终端上为例,图1是根据本实施例的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括微处理器(Micro computer unit,MCU)或可编程逻辑器件(Field-Programmable Gate Array,FPGA)等的处理装置)、设置为存储数据的存储器104、以及具有通信功能的传输装置106。图1所示的结构仅为示意,例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储应用软件的软件程序以及模块,如以下实施例中的信道信息的反馈方法对应的程序指令或模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行多种功能应用以及数据处理,即实现以下的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),NIC可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,RF模块可通过无线方式与互联网进行通讯。
一实施例提供了一种信道信息的反馈方法,图2是根据本实施例的信道信息的反馈方法的流程图,如图2所示,该流程包括如下步骤。
在步骤202中,根据确定的信道状态信息的结构反馈上述信道状态信息;其中,上述信道状态信息的结构包括M个信道状态信息子集;上述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;上述M个信道状态信息子集包括N个信道状态信息子集,上述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,上述L n个信道信息分量由一组矢量基经过变换确定;上述M为正整数,上述N为正整数且上述N小于或者等于上述M,上述m和n均为正整数,上述k m为大于或者等于0的整数, 上述L n为大于或者等于0且小于或者等于上述k m的整数。
通过上述步骤,由于终端根据确定的信道状态信息的结构反馈信道状态信息;并且信道状态信息的结构中包括了信道状态信息子集,信道状态信息子集中的L n个信道信息分量由一组矢量基经过变换确定。因此,可以解决相关技术中存在的无法对多面板的天线相关性进行很好的反馈,以及多层的线性组合码本无法保证层间正交的问题,对多面板的天线相关性进行反馈,以及可以保证多层的线性组合码本层间正交。
上述步骤的执行主体可以为终端(可以是数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙等多种终端,也可以是中继、拉远设备、无线接入点等多种无线通信设备)。
在一个实施例中,上述k m个信道信息分量包括以下至少之一:
B m个预编码指示信息,其中,上述B m为大于或者等于0的整数;
A m个加权系数幅度指示信息,其中,上述A m为大于或者等于0的整数;
P m个加权系数相位指示信息,其中,上述P m为大于或者等于0的整数;以及
R m个波束指示信息,其中,上述R m为大于或者等于0的整数。
在一实施例中,上述B m、A m、P m、R m的取值可以是相同的,也可以是不同的。上述波束,可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束ID可以被替换为资源ID,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送或接收)方式;上述的传输方式可以包括空分复用以及频域分集(或时域分集)。
在一个实施例中,上述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,A m和P m均为大于或者等于0的整数。
在一个实施例中,上述信道状态信息的子集的划分方式包括以下至少之一:根据测量导频资源分组划分;根据测量导频端口分组划分;根据解调导频资源分组划分;根据解调导频端口分组划分;以及根据层划分。在一实施例中,上述中的层可以是高层(例如:链路层),也可以是物理层。
在一个实施例中,上述信道状态信息的子集的划分方式通过以下方式至少 之一进行确定:根据高层信令进行确定的方式;以及根据物理层信令进行确定的方式。
在一个实施例中,上述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;其中,上述b m、b n均为正整数,且上述b m小于或者等于上述B m
在一个实施例中,上述角度旋转为通过角度旋转矩阵作用于上述预编码指示信息指示的信息进行确定的,其中,上述角度旋转矩阵包括以下至少之一:单位矩阵;对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;以及对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,上述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,上述S为大于1的正整数,上述s为大于或者等于1且小于或者等于S的正整数。
在一个实施例中,上述信道状态信息子集中至少包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:角度旋转,幅度扩展,以及相位变换。在一实施例中,上述信道状态信息子集中还可以是包括多个信道状态信息子集的预编码指示信息具备角度旋转、幅度扩展和相位变换中至少之一的信息。
在一个实施例中,上述b m的取值通过以下方式至少之一进行确定:通过高层信令或物理层信令的方式;以及通过第一约定方式。在一实施例中,上述b m的取值可以是通过高层信令或物理层信令的方式至少之一进行确定。
在一个实施例中,上述第一约定的方式包括上述b m等于上述B m。在一实施例中,上述第一约定方式可以是终端与基站之间进行的约定。
在一个实施例中,上述角度旋转的频域反馈粒度、上述幅度扩展的频域反馈粒度、上述相位变换的频域反馈粒度、所述角度旋转的最小变化单位、所述幅度扩展的最小变化单位、上述相位变换的最小变化单位中的至少之一通过以 下方式至少之一进行确定:通过高层信令或物理层信令的方式;通过第二约定方式;其中,上述频域反馈粒度包括子带反馈和带宽反馈中的至少之一。在本实施例中,上述第二约定的方式可以是终端与基站之间进行的约定。
在一个实施例中,上述第二约定方式包括以下至少之一:角度旋转宽带反馈;幅度扩展宽带反馈;以及相位变换子带反馈。
在一个实施例中,上述角度旋转、上述幅度扩展以及上述相位变换的反馈周期中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令的方式;以及通过第三约定方式。在一实施例中,上述第三约定方式可以是终端与基站之间进行的约定。
在一个实施例中,上述第三约定方式包括以下信息至少之一,其中,上述以下信息至少之一的反馈周期和上述第n个信道状态信息子集中的上述b n个预编码指示信息的反馈周期一致:角度旋转;幅度扩展以及相位变换。
在一个实施例中,上述方法还包括:确定并上报以下信息至少之一:
角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;
角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;以及
角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
在一个实施例中,上述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组以及第k个导频端口组的预编码指示信息指示的信息和波束指示信息指示的信息中至少之一由一组基矢量经过以下方式至少之一进行确定:角度旋转,幅度扩展以及相位变换得到。在一实施例中,上述K可以是正整数。
在一个实施例中,上述一组基矢量包括以下之一:单位矩阵中的一个矢量;以及单位矩阵中的多个列矢量。
在一个实施例中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:
每一层或每个导频资源组或每个导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息独立通过所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息由相同的基矢量确定;
不同层、相同导频资源组或者相同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息独立通过基矢量得到;
不同层、相同导频资源组或者相同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息由相同的基矢量确定;
相同层、不同导频资源组或者不同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息独立通过上述基矢量确定;
同一层的上述信道状态信息选取部分资源或者端口反馈对应的上述预编码指示信息或者上述波束指示信息;以及
不同层的上述信道状态信息选取的资源或者端口不同,不同层的上述信道状态信息的上述预编码指示信息或者上述波束指示信息独立通过一组基矢量确定。
在一个实施例中,第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中至少之一确定,其中,上述h为大于或者等于1的整数。
在一个实施例中,上述一组基矢量通过以下方式至少之一进行确定:根据高层信令进行确定的方式;根据物理层信令进行确定的方式;以及通过第四约定的方式。在一实施例中,上述第四约定方式可以是终端与基站之间进行的约定。
在一个实施例中,上述第四约定方式包括以下之一:在上述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转和相位变换中至少之一,其中,上述q列包括以下至少之一:前q 1列和后q 1列;将上述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中至少之一,其中,上述x列包括以下至少之一:前x 1列和后x 1列。在一实施例中,上述前q 1与上述x 1可以是相同的,上述信道状态信息的第Q层与上述信道状态信息的第X层也可以是相同的层。
在一个实施例中,上述角度旋转和相位变换包括:将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,上述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;以及r个角度旋转矩阵的乘积,r大于或者等于1。
在一个实施例中,上述相位变换矩阵是对角矩阵,上述对角矩阵对角线上的元素包括以下至少之一:正实数;复数的自然指数函数。
在一个实施例中,包括以下至少之一:
每层上述信道状态信息CSI对应至少一个上述相位变换矩阵,其中,第h层上述CSI对应的上述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;
每层上述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层上述CSI对应的上述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,上述g(h)与上述n均大于或者等于1,且n不等于上述g(h),上述g(h)是关于h的正整数函数;上述元素变换后为实数的三角函数。
在一实施例中,上述f(h)与上述g(h)可以是相同的,也可以是不相同的。
在一个实施例中,每层信道状态信息CSI对应上述角度旋转矩阵的个数随着上述角度旋转矩阵层数的增加而递减。
在一个实施例中,上述相位变换矩阵中信息的频域反馈粒度、上述角度旋转矩阵中信息的频域反馈粒度、上述相位变换矩阵中信息的反馈周期、上述角度旋转矩阵中信息的反馈周期、上述相位变换矩阵中信息的最小变化单位、上述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:根据高层信令进行确定的方式;根据物理层信令进行确定的方式;通过第五约定方式。在一实施例中,上述第五约定方式可以是终端与基站之间进行的约定。
在一个实施例中,上述第五约定方式至少包括以下至少之一:上述角度旋转矩阵中包含的信息宽带反馈;上述相位变换矩阵中包含的信息子带反馈;上述角度旋转矩阵包含的信息反馈周期是上述相位变换矩阵包含的信息反馈周期的C倍,上述C是正整数;以及上述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
在一个实施例中,上述方法还包括:确定并上报以下信息至少之一:上述相位变换矩阵中信息的频域反馈粒度;上述角度旋转矩阵中信息的频域反馈粒度;上述相位变换矩阵中信息的反馈周期;上述角度旋转矩阵中信息的反馈周期;上述相位变换矩阵中信息的最小变化单位;以及上述角度旋转矩阵中信息的最小变化单位。
在一个实施例中,相同层的上述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和角度旋转信息中的至少之一。
在一个实施例中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一反馈相位变换信息和角度旋转信息中至少之一:不同端口组分别反馈相位变换信息和角度旋转信息中至少之一;不同端口组联合反馈相位变换信息和角度旋转信息中至少之一。
一实施例提供了一种信道信息的反馈方法,图3是根据本发明实施例信道信息的确定方法的流程图,如图3所示,该流程包括如下步骤。
步骤302中,根据信道状态信息的结构确定终端反馈的上述信道状态信息;其中,上述信道状态信息的特定结构包括M个信道状态信息子集;上述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;上述M个信道状态信息子集包括N个信道状态信息子集,上述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,上述L n个信道信息分量由一组基矢量经过变换确定;上述M为正整数,上述N为正整数且上述N小于或者等于上述M,上述m和n均为正整数,上述k m为大于或者等于0的整数,上述L n为大于或者等于0且小于或者等于上述k m的整数。
通过上述步骤,由于基站根据确定的信道状态信息的结构反馈信道状态信息;并且信道状态信息的结构中包括了信道状态信息子集,信道状态信息子集中的L n个信道信息分量由线性空间中的至少一组基经过以下方式至少之一进行确定:角度旋转,相位变换,幅度扩展。因此,可以解决相关技术中存在的无法对多面板的天线相关性进行很好的反馈,以及多层的线性组合码本无法保证层间正交的问题,对多面板的天线相关性进行反馈,以及可以保证多层的线性组合码本层间正交。
上述步骤的执行主体可以为基站(可以是宏基站、微基站或无线接入点等多种无线通信设备)。
在一个实施例中,上述k m个信道信息分量包括以下至少之一:B m个预编码指示信息,其中,上述B m为大于或者等于0的整数;A m个加权系数幅度指示信息,其中,上述A m为大于或者等于0的整数;P m个加权系数相位指示信息,其中,上述P m为大于或者等于0的整数;以及R m个波束指示信息,其中,上述R m为大于或者等于0的整数。
在一个实施例中,上述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,A m和P m均为大于或者等于0的整数。
在一个实施例中,上述信道状态信息的子集的划分方式包括以下至少之一:根据测量导频资源分组划分;根据测量导频端口分组划分;根据解调导频资源分组划分;根据解调导频端口分组划分;以及根据层划分。
在一个实施例中,上述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:根据高层信令通知终端进行确定的方式;以及根据物理层信令通知终端进行确定的方式。
在一个实施例中,上述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;其中,上述b m、b n均为正整数,且上述b m小于或者等于上述B m
在一个实施例中,上述角度旋转为通过角度旋转矩阵作用于上述预编码指示信息指示的信息进行确定的,其中,上述角度旋转矩阵包括以下至少之一:单位矩阵;对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;以及对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,上述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,上述S为大于1的正整数,上述s为大于或者等于1且小于或者等于S的正整数。
在一个实施例中,上述信道状态信息子集中至少包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:角度旋转,幅度扩展,以及相位变换。
在一个实施例中,上述b m的取值通过以下方式至少之一进行确定:通过高层信令通知终端进行确定的方式;通过物理层信令通知终端进行确定的方式;以及通过第一约定方式。
在一个实施例中,上述第一约定的方式包括上述b m等于上述B m
在一个实施例中,上述角度旋转的频域反馈粒度、上述幅度扩展的频域反馈粒度、上述相位变换的频域反馈粒度、上述角度旋转的最小变化单位、上述幅度扩展的最小变化单位、上述相位变换的最小变化单位中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令通知终端进行确定的方式;通过第二约定方式;其中,上述频域反馈粒度包括子带反馈和带宽反馈中的至少之一。
在一个实施例中,上述第二约定方式包括以下至少之一:角度旋转宽带反馈;幅度扩展宽带反馈;以及相位变换子带反馈。
在一个实施例中,上述角度旋转、上述幅度扩展以及上述相位变换的反馈周期中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令通知终端进行确定的方式;以及通过第三约定方式。
在一个实施例中,上述第三约定方式包括以下信息至少之一,其中,上述以下信息至少之一的反馈周期和上述第n个信道状态信息子集中的上述b n个预编码指示信息的反馈周期一致:角度旋转;幅度扩展;相位变换。
在一个实施例中,上述方法还包括:接收以下信息至少之一:角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;以及角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
在一个实施例中,上述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组以及第k个导频端口组的预编码指示信息指示的信息和波束指示信息指示的信息至少之一由一组基矢量经过以下方式至少之一进行确定:角度旋转,幅度扩展,以及相位变换得到。在一实施例中,上述波束,可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束ID可以被替换为资源ID,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送或接收)方式;上述传输方式可以包括空分复用以及频域分集(或时域分集)等。
在一个实施例中,上述一组基矢量包括以下之一:单位矩阵中的一个矢量;以及单位矩阵中的多个列矢量。
在一个实施例中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指 示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:
每一层或每个导频资源组或每个导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量得到;
不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
同一层的所述信道状态信息选取部分资源或者端口反馈对应的所述预编码指示信息或者所述波束指示信息;以及
不同层的所述信道状态信息选取的资源或者端口不同,不同层的所述信道状态信息的所述预编码指示信息或者所述波束指示信息独立通过一组基矢量确定。
在一实施例中,上述波束,可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束ID可以被替换为资源ID,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送或接收)方式;上述传输方式可以包括空分复用和频域分集(或时域分集)等。
在一个实施例中,第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中至少之一确定,其中,所述h为大于或者等于1的整数。
在一个实施例中,上述一组基矢量通过以下方式至少之一进行确定:根据高层信令通知终端进行确定的方式;根据物理层信令通知终端进行确定的方式;以及通过第四约定的方式。
在一个实施例中,上述第四约定方式包括以下之一:在上述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转和相位变换中至少之一,其中,上述q列包括以下至少之一:前q 1列和后q 1列;将上述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中至少之一,其 中,上述x列包括以下至少之一:前x 1列和后x 1列。
在一个实施例中,上述角度旋转和相位变换中至少之一包括:将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,上述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;以及r个角度旋转矩阵的乘积,r大于或者等于1。
在一个实施例中,上述相位变换矩阵是对角矩阵,上述相位变换矩阵对角线上的元素包括以下至少之一:正实数;以及复数的自然指数函数。
在一个实施例中,包括以下至少之一:
每层上述信道状态信息CSI对应至少一个上述相位变换矩阵,其中,第h层上述CSI对应的上述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;以及
每层上述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层上述CSI对应的上述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,上述g(h)与上述n均大于或者等于1,且n不等于上述g(h),上述g(h)是关于1的正整数函数;上述元素变换后为实数的三角函数。
在一个实施例中,每层信道状态信息CSI对应上述角度旋转矩阵的个数随着上述角度旋转矩阵层数的增加而递减。
在一个实施例中,上述相位变换矩阵中信息的频域反馈粒度、上述角度旋转矩阵中信息的频域反馈粒度、上述相位变换矩阵中信息的反馈周期、上述角度旋转矩阵的反馈周期、上述相位变换矩阵的最小变化单位、上述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:根据高层信令通知终端进行确定的方式;根据物理层信令通知终端进行确定的方式;以及通过第五约定方式。
在一个实施例中,上述第五约定方式至少包括以下至少之一:上述角度旋转矩阵中包含的信息宽带反馈;上述相位变换矩阵中包含的信息子带反馈;上述角度旋转矩阵包含的信息反馈周期是上述相位变换矩阵包含的信息反馈周期的C倍,上述C是正整数;以及上述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中的至少之 一。
在一个实施例中,上述方法还包括:接收以下信息至少之一:上述相位变换矩阵中信息的频域反馈粒度;上述角度旋转矩阵中信息的频域反馈粒度;上述相位变换矩阵中信息的反馈周期;上述角度旋转矩阵中信息的反馈周期;上述相位变换矩阵中信息的最小变化单位;以及上述角度旋转矩阵中信息的最小变化单位。
在一个实施例中,相同层的上述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和角度旋转信息中至少之一。
在一个实施例中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一接收终端反馈的相位变换信息和角度旋转信息中至少之一:不同端口组分别反馈相位变换信息和角度旋转信息中至少之一;不同端口组联合反馈相位变换信息和角度旋转信息中至少之一。
一实施例给出了多面板下信道信息量化反馈的一种实施方式。在5G技术中,图4是本实施例中的多面板大规模天线阵列的示意图,如图4所示,基站端配置多面板大规模天线阵列的方式得到了广泛的研究。在图4中,整个平面天线阵列包含了M gN g个面板,每个面板包含MN个端口。在每个面板中,天线端口间距是均匀分布的,相邻天线面板之间的距离也是均匀分布的,而相邻天线面板的相邻端口之间的距离并不一定和面板内天线间距相等,因此,面板之间天线的相关性并不一定和面板内天线的相关性等价,相关技术中的使用一维或二维离散傅氏变换(Discrete Fourier Transform,DFT)矢量量化所有端口之间相关性的码本设计对于多面板的天线阵列不再适用。
一实施例给出了一种基于线性组合码本的框架下,多面板天线阵列的码本设计案例。对于图4中的天线阵列,面板间的天线空间相关性可以用DFT矢量进行量化,对于共有T个端口的单个面板,使用线性组合码本可以很精确地反馈信道状态信息。例如,以秩为1的线性组合预编码为例,假设共有K个面板、双极化天线阵列,每个极化方向选取N个波束,对于第k个面板,第i={1,2}个极化方向的预编码矩阵为
Figure PCTCN2017119582-appb-000009
其中,
Figure PCTCN2017119582-appb-000010
表示第k个面板的极化方向i上选出的N个正交波束,
Figure PCTCN2017119582-appb-000011
表示极化方向i上第k个面板的第n个波束的加权系数,包含幅度和相位。考虑所有面板和极化方向上分别 进行线性组合预编码,最后的预编码如下:
Figure PCTCN2017119582-appb-000012
一实施例中,在通过上述预编码结构计算预编码信息时,一种复杂度比较低的方法是计算出波束矩阵W 1,通过W 1计算最优加权系数集合W 2。在进行波束计算时,如果每个面板联合进行波束计算,会带来较大的复杂度,如果每个面板独立波束,面板之间的相关性无法体现在波束选择上,可能带来性能损失,例如极端的情况,多个面板选出的波束两两正交,无法通过调节加权系数体现不同面板之间的相关性大小。因此,一种控制不同面板之间的相关性,并不带来较大的反馈开销和处理复杂度的方式是给不同面板之间的基序列带来一定的限制,即给不同面板的波束选择带来一定的限制。一种预编码构造方式为:在W 1中,第一个面板选出N个波束之后,第k个面板的波束选择具有如下的模型
Figure PCTCN2017119582-appb-000013
其中,Q k表示对N个波束进行角度旋转的矩阵,例如,是具有以下的形式的对角矩阵:
Figure PCTCN2017119582-appb-000014
其中,q k表示第k个面板的角度旋转矩阵,例如,q k=m kq,其中,m k是正整数,而q是角度旋转的最小变化单位,可以由网络通过信令配置,也可以由约定的方式成为固定值。此外,当面板中端口为二维面阵时,Q k的对角线元素为两个DFT矢量的克罗内克积,其中,每个DFT矢量对应角度为第一维度或第二维度角度旋转信息。从上式可以看出,角度旋转矩阵的对角线元素形成DFT矢量,如果把第一个面板的波束选择看成是信道矩阵空间的一组基,那么其他面板的波束选择即为将这组基进行角度旋转之后的结果。利用上述结构,终端进行信道估计之后,可以通过m k和加权系数的计算控制不同面板之间的相关性, 即多个面板的联合处理从波束选择就开始,并且不会带来较高的计算复杂度,反馈开销和性能也都可以得到保证。此外,对于同一面板两个极化方向上的端口,由于理论上每条路径可以认为是一样的,一种更为简单的处理方式是将同一面板上不同极化方向的波束选择看成是一样的,可减小复杂度和开销,即,
Figure PCTCN2017119582-appb-000015
在上述情况下,对于同一面板不同极化方向的两个端口组,相对基准波束选择有着相同的角度旋转。
在上述预编码结构中,每个面板的波束选择是互相关联的。一实施例中,多个面板有部分波束选择是互相关联的,另外部分波束选择是独立进行的。对于第k个面板,每个面板N个波束中,只有其中N k个是通过第一个面板的波束选择进行角度旋转得到的,即第k个面板的波束选择为:
Figure PCTCN2017119582-appb-000016
这种情况下,依然能够通过波束选择对不同面板的相关性进行优化。其中,Nk的取值可以由基站通过高层信令或物理层信令进行配置。此外,当不使用线性组合反馈,而是只反馈单一路径对应的DFT码字时,使用Q k反馈不同面板之间的角度旋转,可以等效于以基准面板为参考的差分预编码指示信息反馈。
上述预编码结构中,多个面板关于波束选择的反馈除了预编码指示信息反馈外,还包括了角度旋转指示信息Q k,网络可以通过信令配置角度旋转信息的时频域反馈粒度,即宽带、子带反馈,以及反馈周期。终端也可以通过和基站约定的方式确定时频域反馈粒度,由于Q k可以确定波束的选择,因此,可以约定Q k和预编码指示信息具有相同的时频域反馈粒度。此外,Q k的变化是和信道长期特性相关的,可以默认Q k的变化为宽带反馈。由于终端本身可以通过测量得到不同信道信息参数的变化特性,因此,终端可以自行决定反馈的时频域粒度并上报基站。
一实施例给出了多面板下信道状态信息量化的方式。在上述实施例中,通过对波束进行角度旋转得到不同面板的波束,除了角度旋转外,还可以通过相位变换和幅度扩展进行波束的改变。例如,极化方向i上第k个面板的预编码可以表示为:
Figure PCTCN2017119582-appb-000017
其中,矩阵P k,i是对角阵,表示对面板k上的波束进行相位变换和幅度扩展,其形式如下:
Figure PCTCN2017119582-appb-000018
Figure PCTCN2017119582-appb-000019
表示对波束的幅度扩展,
Figure PCTCN2017119582-appb-000020
表示对波束的相位变换。这样,预编码满足以下的结构:
Figure PCTCN2017119582-appb-000021
利用上述预编码矩阵,可以优化不同面板上报的CSI中的空间相关性,可以通过W 1,W 2和W 3反馈粒度的设置优化反馈开销和性能。其中,W 2的时频域反馈粒度可以由基站通过信令配置,也可以和W 1或W 3绑定关系,例如时频域粒度和W 1一样,或者时频域粒度是W 3的正整数倍。对于幅度和相位,由于幅度变化较缓慢,相位变换较迅速,可以默认幅度宽带反馈以及相位子带反馈。由于终端本身可以通过测量得到不同信道信息参数的变化特性,因此,终端可以自行决定反馈的时频域粒度并上报基站。
一实施例给出了多面板下信道信息量化的一种实施方式。在LTE Rel-13中,引入了两种反馈方式,基于NP CSI-RS的Class A反馈和基于BF CSI-RS的Class B反馈。Class A使用端口合并预编码,而Class B使用端口选择预编码。上述两个实施例可以被视作使用Class A反馈进行预编码信息获取,本实施例给出了多面板下使用Class B的端口选择预编码进行CSI获取的方法。对于每个面板,基站通过BF CSI-RS将天线端口转变为B个虚拟化的CSI-RS端口,每个端口对应一个波束,终端反馈时,通过反馈面板内波束选择信息和面板间相关性信息来反馈CSI。对于LTE中,Rel-13新的Class B码本可以一定程度上实现该功能。但是,Rel-13中Class B码本针对的端口组划分是相同面板、不同极化方向的天线阵列,此外,为了减小开销,Rel-13中Class B码本设计限制了不同的层或端口组使用相同的波束选择指示。一实施例中,以秩为2、两个端口组的码本为例,Class B码本为如下的形式:
Figure PCTCN2017119582-appb-000022
其中,W i,j表示第j层第i端口组上的端口选择码字,可以是单位矩阵的一列,用于从多个虚拟化端口中选择一个端口上报,以表示终端选出的波束。另外,α j表示第j层上用于对两个端口组之间相关性进行反馈的信息,至少包含幅度和相位信息,分别表示对W i,j选出的预编码进行幅度扩展和相位变换的信息。上式给出了多端口组Class B码本最一般的结构,即每一层、每一端口组都独立进行波束选择。在一些条件下,可以对上述结构进行简化或限制,以减小反馈开销。如果端口组的划分仅通过不同极化方向实现,可以认为不同端口组看到的波束方向是一致的,即有不同端口组看到的波束是一样的,而不同层可以是不一样的。对于一些距离比较近的面板,同样可以认为不同端口组的波束选择是一致的,但是对于距离相隔较远的面板,可以认为不同面板的波束选择独立进行的,而可以通过限制不同层的波束选择一样以减小开销。当不同端口组分布在不同站点,即多站点协作通信的场景,不同站点之间的相关性可以忽略,因此,可以有W 1,2=0,W 2,1=0,且不同站点的波束选择是独立进行的。利用上述的预编码结构,可以通过Class B的方式进行端口组内波束信息和端口组间相关性信息的反馈。
一实施例给出了线性组合码本反馈的一种实施方式。线性组合码本反馈通过将基于多条路径的波束线性加权合并,以构造高精度的信道信息反馈,因此,线性组合反馈的开销包括波束相关的预编码码字信息,加权系数幅度信息,以及加权系数相位信息。
相关技术中,线性组合码本选取了正交的波束,但是由于加权系数的选取并没有优化和限制,因此,在层数大于1的时候,并不能保证多层之间的正交性。在单用户MIMO中,多层之间正交可以较好的保证空分的性能,因而可以得到比较好的预编码增益。本实施例通过对加权系数选取设置限制,可以比较好的保证多层之间的正交性,并且,在给加权系数进行了限制之后,可以减小加权系数反馈的开销。
对于选取了N个正交波束的两层码字,假设总共L层,每层、极化方向的加权幅度和相位都是单独计算,因此,任意两层h,l 2的预编码可以表示为:
Figure PCTCN2017119582-appb-000023
Figure PCTCN2017119582-appb-000024
其中,v 1,…,v N表示每层选出的正交波束,两个极化方向选出的波束是相同的,a a,i,l表示第n个波束在第i个极化方向和第l层的加权系数,包含加权系数相位信息和加权系数幅度信息。为了满足任意层之间的预编码正交
Figure PCTCN2017119582-appb-000025
有如下表达式:
Figure PCTCN2017119582-appb-000026
由上述可知,在选择相同的正交波束组的条件下,满足预编码层间正交的条件是多层加权系数构成的向量相互正交,即如下矩阵A中L个长度2N的列向量相互正交:
Figure PCTCN2017119582-appb-000027
对于任意L个长度为2N的正交向量,可以用下面的公式参数化:
Figure PCTCN2017119582-appb-000028
其中,I(:,1:L)表示2N维的单位矩阵的前L列,P m表示相位变换矩阵,是如下的对角阵:
P m=diag(1,…1,exp(jφ m,m+1),…,exp(jφ 2N,m))
其中,U n,m表示角度旋转矩阵,是由2N维单位矩阵I的第n行、第n列,第m行、第m列,第n行、第m列以及第n列、第m行的元素变为如下子矩阵得到的:
Figure PCTCN2017119582-appb-000029
在上述表达式中,L(4N-L-1)/2个相位变换信息φ n,m∈[0,2π],和加权系数的相位相关,可子带反馈,L(4N-L-1)/2个角度旋转信息θ n,m∈[0,π/2],和加权系数的幅度相关,可宽带反馈。此外,角度旋转的反馈周期可以是相位变换的反馈周期的整数倍以减小反馈开销和信令配置的开销。在构造线性组合的反馈时,按照上述的码本搜索φ n,m和θ n,m,即可得到满足层间正交性的加权系数。此外,总共L(4N-L-1)个参数需要反馈,和不加限制的加权系数反馈相比,减小了L(L+1)个参数的反馈。因此,和相关技术相比,该方案满足层间正交性,反馈开销减小,性能相近,可能会有增益,子带、宽带反馈的灵活性没有降低。另外,在量化反馈相位变换信息和角度旋转信息时,最小的量化单位决定了反馈的精度 以及需要的比特数,终端可以根据基站配置的方式确定最小的量化单位,也可以通过基站和终端约定好的方式,例如,正交相移键控(Quadrature Phase Shift Keying,QPSK)或8PSK确定最小的量化单位。另一方面,由于终端通过信道测量,对于信道特性更为了解,因此,终端也可以自行确定量化范围、反馈时频域粒度等,并将相关信息连同CSI一起上报基站。
一实施例给出了线性组合码本反馈的一种实施方式,本实施例给出了对层数较多的线性组合码本反馈的一种优化设计方式,对加权系数的构造进行限制,以减小反馈开销。由于不同极化方向看到的多条路径的幅度可以近似相等,因此可以将两个极化方向的加权系数幅度设为相等。为了在这样的情况下依然保证多层之间的正交性,可以对两个极化方向分别进行加权系数的参数化,即对于每个极化方向i,满足以下公式:
Figure PCTCN2017119582-appb-000030
上述依然能保证多层之间预编码的正交性。每个极化方向的加权系数矩阵Ai满足:
Figure PCTCN2017119582-appb-000031
其中,I N(:,1:L)表示N维单位矩阵的前L列,
Figure PCTCN2017119582-appb-000032
表示相位变换矩阵,有如下表达式:
Figure PCTCN2017119582-appb-000033
其中,
Figure PCTCN2017119582-appb-000034
表示角度旋转矩阵,通过将N维单位矩阵的第n行、第n列,第m行、第m列,第n行、第m列以及第n列、第m行的元素变为如下子矩阵得到的:
Figure PCTCN2017119582-appb-000035
可以通过分别反馈两个极化方向中端口组的角度旋转和相位变换以实现上述预编码结构。另外,可以为两个极化方向反馈相同的
Figure PCTCN2017119582-appb-000036
这样可以保证两个极化方向有相同的加权系数幅度。这样,在性能损失不大的情况下,加权系数的反馈开销可以减小,此时至少存在两个不同端口组,反馈相同的角度旋转信息。另一方面,当子带反馈的相位变换开销太大时,可以通过不同极化方向使用相同的相位变换以减小开销,即在上述表达式中,不同极化方向i和j有
Figure PCTCN2017119582-appb-000037
此时,至少存在两个不同端口组,反馈相同的相位变换信息。
一实施例给出了划分信道信息子集的实施方式。可以利用多种方式进行信道子集划分。其中一种方式是通过层进行信道子集划分。在终端测量上报信道状态信息时,可以利用信道测量得到并反馈信道的秩,信道秩可以表示无线信道最多可支持的传输层数。对于多面板或线性组合反馈CSI来说,不同层可以对应不同的信道信息,而多层之间进行联合处理或独立反馈会带来不一样的性能,而多层之间是否正交也会对MIMO增益,例如,对单用户MIMO增益带来比较大的差别,因此,通过层进行信道子集划分,并对多层的CSI进行联合或独立的优化可以带来较大的性能增益。
一实施例中,通过端口组进行信道子集的划分。这种划分的方式是适用于多个面板、传输节点或极化方向的天线阵列配置,不同极化方向、传输站点或面板对应的端口组可以进行联合或独立的优化,以增加MIMO传输的性能。天线端口可以表现为测量导频端口或解调导频端口。因此,一种端口组划分的方式是通过测量导频端口组进行划分,在信道测量反馈时对不同面板、传输站点或极化方向对应的测量导频端口组进行CSI的优化。另一种端口组划分的方式是通过解调导频端口组进行划分,由于解调导频和数据拥有相同的资源分配、调度、预编码等,可以较好地反映数据传输时,信道变化带来的影响,因此,通过不同面板、极化方向、站点对应的解调导频端口组进行一定的CSI反馈,可以在数据传输时,对信道状态进行即时的监控和调整。对于终端来说,可以通过基站的配置信令确定是通过测量导频或是解调导频端口组进行信道子集划分,以及后续CSI计算、反馈等。
上述实施例的方法可借助软件加通用硬件平台的方式来实现,也可以通过硬件实现。上述技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或光盘)中,包括一个或多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行上述多个实施例所述的方法。
一实施例提供了一种信道信息的反馈装置,该装置可以用于实现上述实施例。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少之一。
图5是根据一实施例的信道状态信息的反馈装置的结构框图,如图5所示,该装置包括:反馈模块52。
反馈模块52,设置为根据确定的信道状态信息的结构反馈上述信道状态信息;其中,上述信道状态信息的结构包括M个信道状态信息子集;上述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;上述M个信道状态信息子集包括N个信道状态信息子集,上述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,上述L n个信道信息分量由一组基矢量经过变换确定;上述M为正整数,上述N为正整数且上述N小于或者等于上述M,上述m和n均为正整数,上述k m为大于或者等于0的整数,上述L n为大于或者等于0且小于或者等于上述k m的整数。
在一个实施例中,上述k m个信道信息分量包括以下至少之一:B m个预编码指示信息,其中,上述B m为大于或者等于0的整数;A m个加权系数幅度指示信息,其中,上述A m为大于或者等于0的整数;P m个加权系数相位指示信息,其中,上述P m为大于或者等于0的整数;R m个波束指示信息,其中,上述R m为大于或者等于0的整数。
在一个实施例中,上述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,A m和P m均为大于或者等于0的整数。
在一个实施例中,上述信道状态信息的子集的划分方式包括以下至少之一:根据测量导频资源分组划分;根据测量导频端口分组划分;根据解调导频资源分组划分;根据解调导频端口分组划分;根据层划分。
在一个实施例中,上述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:根据高层信令进行确定的方式;根据物理层信令进行确定的方式。
在一个实施例中,上述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息可以通过以下方式至少之一进行确定:通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的 信息经过相位变换进行确定;其中,上述b m、b n均为正整数,且上述b m小于或者等于上述B m
在一个实施例中,上述角度旋转为通过角度旋转矩阵作用于上述预编码指示信息指示的信息进行确定的,其中,上述角度旋转矩阵可以包括以下至少之一:单位矩阵;对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,上述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,上述S为大于1的正整数,上述s为大于或者等于1且小于或者等于S的正整数。
在一个实施例中,上述信道状态信息子集中至少包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:角度旋转,幅度扩展,相位变换。
在一个实施例中,上述b m的取值可以通过以下方式至少之一进行确定:通过高层信令或物理层信令的方式;以及通过第一约定方式。
在一个实施例中,上述第一约定的方式可以包括上述b m等于上述B m
在一个实施例中,上述角度旋转的频域反馈粒度、上述幅度扩展的频域反馈粒度、上述相位变换的频域反馈粒度、上述角度旋转的最小变化单位、上述幅度扩展的最小变化单位、上述相位变换的最小变化单位中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令的方式;通过第二约定方式;其中,上述频域反馈粒度包括子带反馈和带宽反馈中至少之一。
在一个实施例中,上述第二约定方式可以包括以下至少之一:角度旋转宽带反馈;幅度扩展宽带反馈;以及相位变换子带反馈。
在一个实施例中,上述角度旋转、上述幅度扩展以及上述相位变换的反馈周期中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令的方式;以及通过第三约定方式。
在一个实施例中,上述第三约定方式可以包括以下信息至少之一,其中,上述以下信息至少之一的反馈周期和上述第n个信道状态信息子集中的上述bn个预编码指示信息的反馈周期一致:角度旋转;幅度扩展;以及相位变换。
在一个实施例中,上述装置确定并上报以下信息至少之一:角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;角度旋转、幅度扩展以及相位变换的 反馈周期中的至少之一。
在一个实施例中,上述信道状态信息包括预编码指示信息和波束指示信息中至少之一,的第h层、第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息和波束指示信息指示的信息至少之一由一组基矢量经过以下方式至少之一进行确定:角度旋转,幅度扩展,相位变换得到。
在一个实施例中,上述一组基矢量可以包括以下之一:单位矩阵中的一个矢量;单位矩阵中的多个列矢量。
在一个实施例中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:每一层或每个导频资源组或每个导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息独立通过基矢量确定;相同层、不同导频资源组或者不同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息由相同的基矢量确定;不同层、相同导频资源组或者相同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息独立通过基矢量得到;不同层、相同导频资源组或者相同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息由相同的基矢量确定;相同层、不同导频资源组或者不同导频端口组的上述预编码指示信息指示的信息或者上述波束指示信息指示的信息独立通过基矢量确定;同一层的上述信道状态信息选取部分资源或者端口反馈对应的上述预编码指示信息或者上述波束指示信息;不同层的上述信道状态信息选取的资源或者端口不同,不同层的上述信道状态信息的上述预编码指示信息或者上述波束指示信息独立通过一组基矢量确定。
在一个实施例中,第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中的至少之一确定,其中,上述h为大于或者等于1的整数。
在一个实施例中,上述一组基矢量可以通过以下方式至少之一进行确定:根据高层信令进行确定的方式;根据物理层信令进行确定的方式;以及通过第四约定的方式。
在一个实施例中,上述第四约定方式可以包括以下之一:在上述信道状态 信息的第Q层中选取单位矩阵中的q列进行角度旋转和相位变换中至少之一,其中,上述q列包括以下至少之一:前q 1列和后q 1列;将上述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中至少之一,其中,上述x列包括以下至少之一:前x 1列和后x 1列。
在一个实施例中,上述角度旋转和相位变换中至少之一包括:将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,上述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;r个角度旋转矩阵的乘积,r大于或者等于1。
在一个实施例中,上述相位变换矩阵是对角矩阵,上述对角矩阵对角线上的元素包括以下至少之一:正实数;以及复数的自然指数函数。在一实施例中,上述对角矩阵对角线上的元素为1或者复数的自然指数函数。
在一个实施例中,上述装置可以包括以下至少之一:每层上述信道状态信息CSI对应至少一个上述相位变换矩阵,其中,第h层上述CSI对应的上述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;每层上述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层上述CSI对应的上述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,上述g(h)与上述n均大于或者等于1,且n不等于上述g(h),上述g(h)是关于h的正整数函数;上述元素变换后为实数的三角函数。
在一个实施例中,每层信道状态信息CSI对应上述角度旋转矩阵的个数随着上述角度旋转矩阵层数的增加而递减。
在一个实施例中,上述相位变换矩阵中信息的频域反馈粒度、上述角度旋转矩阵中信息的频域反馈粒度、上述相位变换矩阵中信息的反馈周期、上述角度旋转矩阵中信息的反馈周期、上述相位变换矩阵中信息的最小变化单位、上述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:根据高层信令进行确定的方式;根据物理层信令进行确定的方式;通过第五约定方式。
在一个实施例中,上述第五约定方式至少包括以下至少之一:上述角度旋转矩阵中包含的信息宽带反馈;上述相位变换矩阵中包含的信息子带反馈;上 述角度旋转矩阵包含的信息反馈周期是上述相位变换矩阵包含的信息反馈周期的C倍,上述C是正整数;上述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
在一个实施例中,上述装置还确定并上报以下信息至少之一:上述相位变换矩阵中信息的频域反馈粒度;上述角度旋转矩阵中信息的频域反馈粒度;上述相位变换矩阵中信息的反馈周期;上述角度旋转矩阵中信息的反馈周期;上述相位变换矩阵中信息的最小变化单位;上述角度旋转矩阵中信息的最小变化单位。
在一个实施例中,相同层的上述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和相同的角度旋转信息中至少之一。
在一个实施例中,对于不同端口组的信道状态信息CSI,可以通过以下方式至少之一反馈相位变换信息和角度旋转信息中至少之一:不同端口组分别反馈相位变换信息和角度旋转信息中至少之一;不同端口组联合反馈相位变换信息和角度旋转信息中至少之一。
图6是根据一实施例的信道状态信息的确定装置的结构框图,如图6所示,该装置包括:确定模块62。
确定模块62,设置为根据信道状态信息的结构确定终端反馈的上述信道状态信息;其中,上述信道状态信息的特定结构包括M个信道状态信息子集;上述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;上述M个信道状态信息子集包括N个信道状态信息子集,上述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,上述L n个信道信息分量由一组矢量经过变换确定;上述M为正整数,上述N为正整数且上述N小于或者等于上述M,上述m和n均为正整数,上述k m为大于或者等于0的整数,上述L n为大于或者等于0且小于或者等于上述k m的整数。
在一个实施例中,上述k m个信道信息分量可以包括以下至少之一:B m个预编码指示信息,其中,上述B m为大于或者等于0的整数;A m个加权系数幅度指示信息,其中,上述A m为大于或者等于0的整数;P m个加权系数相位指示信息,其中,上述P m为大于或者等于0的整数;R m个波束指示信息,其中,上述R m为大于或者等于0的整数。
在一个实施例中,上述信道状态信息子集中,A m个加权系数幅度指示信息 指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,A m和P m均为大于或者等于0的整数。
在一个实施例中,上述信道状态信息的子集的划分方式可以包括以下至少之一:根据测量导频资源分组划分;根据测量导频端口分组划分;根据解调导频资源分组划分;根据解调导频端口分组划分;根据层划分。
在一个实施例中,上述信道状态信息的子集的划分方式可以通过以下方式至少之一进行确定:根据高层信令通知终端进行确定的方式;根据物理层信令通知终端进行确定的方式。
在一个实施例中,上述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;其中,上述b m、b n均为正整数,且上述b m小于或者等于上述B m
在一个实施例中,上述角度旋转为通过角度旋转矩阵作用于上述预编码指示信息指示的信息进行确定的,其中,上述角度旋转矩阵包括以下至少之一:单位矩阵;对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,上述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,上述S为大于1的正整数,上述s为大于或者等于1且小于或者等于S的正整数。
在一个实施例中,上述信道状态信息子集中至少包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:角度旋转,幅度扩展,相位变换。
在一个实施例中,上述b m的取值可以通过以下方式至少之一进行确定:通过高层信令通知终端进行确定的方式;通过物理层信令通知终端进行确定的方式;通过第一约定方式。
在一个实施例中,上述第一约定的方式可以包括上述b m等于上述B m
在一个实施例中,上述角度旋转的频域反馈粒度、上述幅度扩展的频域反 馈粒度、上述相位变换的频域反馈粒度、上述角度旋转的最小变化单位、上述幅度扩展的最小变化单位、上述相位变换的最小变化单位中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令通知终端进行确定的方式;以及通过第二约定方式;其中,上述频域反馈粒度包括子带反馈和带宽反馈中的至少之一。
在一个实施例中,上述第二约定方式可以包括以下至少之一:角度旋转宽带反馈;幅度扩展宽带反馈;以及相位变换子带反馈。
在一个实施例中,上述角度旋转、上述幅度扩展、上述相位变换的反馈周期中的至少之一通过以下方式至少之一进行确定:通过高层信令或物理层信令通知终端进行确定的方式;通过第三约定方式。
在一个实施例中,上述第三约定方式可以包括以下信息至少之一,其中,上述以下信息至少之一的反馈周期和上述第n个信道状态信息子集中的上述b n个预编码指示信息的反馈周期一致:角度旋转;幅度扩展;相位变换。
在一个实施例中,上述装置接收以下信息至少之一:角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
在一个实施例中,上述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组和第k个导频端口组中至少之一的预编码指示信息指示的信息和波束指示信息指示的信息至少之一由一组基矢量经过以下方式至少之一进行确定:角度旋转,幅度扩展,相位变换得到。
在一个实施例中,上述一组基矢量包括以下之一:单位矩阵中的一个矢量;单位矩阵中的多个列矢量。
在一个实施例中,上述信道状态信息的第h层、上述第k个导频资源组以及第k个导频端口组中的至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:每一层或每个导频资源组或每个导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;不同层、相同导频资源组或者相同导频端口组的所述预编码指示信 息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量得到;不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;同一层的所述信道状态信息选取部分资源或者端口反馈对应的所述预编码指示信息或者所述波束指示信息;不同层的所述信道状态信息选取的资源或者端口不同,不同层的所述信道状态信息的所述预编码指示信息或者所述波束指示信息独立通过一组基矢量确定。
在一个实施例中,第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中至少之一确定,其中,所述h为大于或者等于1的整数。
在一个实施例中,上述一组基矢量通过以下方式至少之一进行确定:根据高层信令通知终端进行确定的方式;根据物理层信令通知终端进行确定的方式;通过第四约定的方式。
在一个实施例中,上述第四约定方式可以包括以下之一:在上述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转和相位变换中至少之一,其中,上述q列包括以下至少之一:前q 1列和后q 1列;将上述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中至少之一,其中,上述x列包括以下至少之一:前x 1列和后x 1列。
在一个实施例中,其特征在于,上述角度旋转和相位变换中至少之一包括:将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,上述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;以及r个角度旋转矩阵的乘积,r大于或者等于1。
在一个实施例中,上述相位变换矩阵可以包括以下至少之一:对角阵,其中,对角线上元素为1;以及复数的自然指数函数。
在一个实施例中,上述装置可以包括以下至少之一:每层上述信道状态信息CSI对应至少一个上述相位变换矩阵,其中,第h层上述CSI对应的上述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;每层上述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层上述CSI对应的上述角度旋转矩阵由单位矩阵中的以下至少之一 的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,上述g(h)与上述n均大于或者等于1,且n不等于上述g(h),上述g(h)是关于1的正整数函数;上述元素变换后为实数的三角函数。
在一个实施例中,每层信道状态信息CSI对应上述角度旋转矩阵的个数随着上述角度旋转矩阵层数的增加而递减。
在一个实施例中,上述相位变换矩阵中信息的频域反馈粒度、上述角度旋转矩阵中信息的频域反馈粒度、上述相位变换矩阵中信息的反馈周期、上述角度旋转矩阵的反馈周期、上述相位变换矩阵的最小变化单位、上述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:根据高层信令通知终端进行确定的方式;根据物理层信令通知终端进行确定的方式;以及通过第五约定方式。
在一个实施例中,上述第五约定方式至少包括以下至少之一:上述角度旋转矩阵中包含的信息宽带反馈;上述相位变换矩阵中包含的信息子带反馈;上述角度旋转矩阵包含的信息反馈周期是上述相位变换矩阵包含的信息反馈周期的C倍,上述C是正整数;以及上述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
在一个实施例中,上述装置还可以接收以下信息至少之一:上述相位变换矩阵中信息的频域反馈粒度;上述角度旋转矩阵中信息的频域反馈粒度;上述相位变换矩阵中信息的反馈周期;上述角度旋转矩阵中信息的反馈周期;上述相位变换矩阵中信息的最小变化单位;以及上述角度旋转矩阵中信息的最小变化单位。
在一个实施例中,相同层的上述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和相同的角度旋转信息中至少之一。
在一个实施例中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一接收终端反馈的相位变换信息和角度旋转信息中至少之一:不同端口组分别反馈相位变换信息和角度旋转信息中至少之一;不同端口组联合反馈相位变换信息和角度旋转信息中至少之一。
一个实施例提供一种信道状态信息的反馈装置,上述装置包括:第一处理器;设置为存储第一处理器可执行指令的第一存储器;其中,上述第一处理器 被配置为:根据确定的信道状态信息的结构反馈上述信道状态信息;其中,上述信道状态信息的结构包括M个信道状态信息子集;上述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;上述M个信道状态信息子集包括N个信道状态信息子集,上述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,上述L n个信道信息分量由一组矢量基经过变换确定;上述M为正整数,上述N为正整数且上述N小于或者等于上述M,上述m和n均为正整数,上述k m为大于或者等于0的整数,上述L n为大于或者等于0且小于或者等于上述k m的整数。
在一个实施例中,上述k m个信道信息分量可以包括以下至少之一:B m个预编码指示信息,其中,上述B m为大于或者等于0的整数;A m个加权系数幅度指示信息,其中,上述A m为大于或者等于0的整数;P m个加权系数相位指示信息,其中,上述P m为大于或者等于0的整数;R m个波束指示信息,其中,上述R m为大于或者等于0的整数。
在一个实施例中,上述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,A m和P m均为大于或者等于0的整数。
在一个实施例中,上述信道状态信息的子集的划分方式可以包括以下至少之一:根据测量导频资源分组划分;根据测量导频端口分组划分;根据解调导频资源分组划分;根据解调导频端口分组划分;根据层划分。
在一个实施例中,上述信道状态信息的子集的划分方式可以通过以下方式至少之一进行确定:根据高层信令进行确定的方式;根据物理层信令进行确定的方式。
在一个实施例中,上述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息可以通过以下方式至少之一进行确定:通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;其中,上述b m、b n均为正整数,且上述b m小于或者等于上述B m
一个实施例提供一种信道状态信息的确定装置,该装置包括:第二处理器;以及设置为存储第二处理器可执行指令的第二存储器。其中,上述第二处理器被配置为:根据信道状态信息的结构确定终端反馈的上述信道状态信息;其中,上述信道状态信息的特定结构包括M个信道状态信息子集;上述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;上述M个信道状态信息子集包括N个信道状态信息子集,上述N个信道状态信息子集的第n个信道状态信息子集中包括L n个信道信息分量,其中,上述L n个信道信息分量由一组矢量经变换确定;上述M为正整数,上述N为正整数且上述N小于或者等于上述M,上述m和n均为正整数,上述k m为大于或者等于0的整数,上述L n为大于或者等于0且小于或者等于上述k m的整数。
在一个实施例中,上述k m个信道信息分量可以包括以下至少之一:B m个预编码指示信息,其中,上述B m为大于或者等于0的整数;A m个加权系数幅度指示信息,其中,上述A m为大于或者等于0的整数;P m个加权系数相位指示信息,其中,上述P m为大于或者等于0的整数;R m个波束指示信息,其中,上述R m为大于或者等于0的整数。
在一个实施例中,上述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,A m和P m均为大于或者等于0的整数。
在一个实施例中,上述信道状态信息的子集的划分方式可以包括以下至少之一:根据测量导频资源分组划分;根据测量导频端口分组划分;根据解调导频资源分组划分;根据解调导频端口分组划分;根据层划分。
在一个实施例中,上述信道状态信息的子集的划分方式可以通过以下方式至少之一进行确定:根据高层信令通知终端进行确定的方式;根据物理层信令通知终端进行确定的方式。
在一个实施例中,上述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息可以通过以下方式至少之一进行确定:通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;通过上述第n个信道状态信息子集中的b n个预编码指示信息指示的 信息经过相位变换进行确定;其中,上述b m、b n均为正整数,且上述b m小于或者等于上述B m
上述多个模块是可以通过软件或硬件来实现的,在硬件实现方式中,上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
一实施例提供了一种存储介质。一实施例中,上述存储介质可以被设置为存储用于执行以上多个步骤的程序代码。
在一实施例中,上述存储介质可以包括:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
在实施例中,处理器根据存储介质中已存储的程序代码执行以上步骤。
上述的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
工业实用性
信道状态信息的反馈、确定方法及装置,能够解决相关技术中存在的无法对多面板的天线相关性进行很好的反馈,以及多层的线性组合码本无法保证层间正交的问题。

Claims (85)

  1. 一种信道状态信息的反馈方法,包括:
    根据确定的信道状态信息的结构反馈所述信道状态信息;
    其中,所述信道状态信息的结构包括M个信道状态信息子集;
    所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
    所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,所述L n个信道信息分量由一组矢量经过变换确定;
    所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
  2. 根据权利要求1所述的方法,其中,所述k m个信道信息分量包括以下至少之一:
    B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
    A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
    P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
    R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
  3. 根据权利要求1或2所述的方法,其中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
  4. 根据权利要求1所述的方法,其中,所述信道状态信息的子集的划分方式包括以下至少之一:
    根据测量导频资源分组划分;
    根据测量导频端口分组划分;
    根据解调导频资源分组划分;
    根据解调导频端口分组划分;以及
    根据层划分。
  5. 根据权利要求4所述的方法,其中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
    根据高层信令进行确定的方式;以及
    根据物理层信令进行确定的方式。
  6. 根据权利要求2所述的方法,其中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
    其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
  7. 根据权利要求6所述的方法,其中,
    所述角度旋转为通过角度旋转矩阵作用于所述预编码指示信息指示的信息进行确定的,其中,所述角度旋转矩阵包括以下至少之一:
    单位矩阵;
    对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;以及
    对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,所述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,所述S为大于1的正整数,所述s为大于或者等于1且小于或者等于S的正整数。
  8. 根据权利要求6所述的方法,其中,所述信道状态信息子集包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:
    角度旋转,幅度扩展以及相位变换。
  9. 根据权利要求6所述的方法,其中,所述b m的取值通过以下方式至少之一确定:
    通过高层信令或物理层信令的方式;以及
    通过第一约定方式。
  10. 根据权利要求9所述的方法,其中,所述第一约定的方式包括所述b m等于所述B m
  11. 根据权利要求6所述的方法,其中,所述角度旋转的频域反馈粒度、所述幅度扩展的频域反馈粒度、所述相位变换的频域反馈粒度、所述角度旋转的最小变化单位、所述幅度扩展的最小变化单位、所述相位变换的最小变化单位中的至少之一通过以下方式至少之一确定:
    通过高层信令或物理层信令的方式;以及
    通过第二约定方式;
    其中,所述频域反馈粒度包括子带反馈和带宽反馈中的至少之一。
  12. 根据权利要求11所述的方法,其中,所述第二约定方式包括以下至少之一:
    角度旋转宽带反馈;
    幅度扩展宽带反馈;以及
    相位变换子带反馈。
  13. 根据权利要求6所述的方法,其中,所述角度旋转、所述幅度扩展、所述相位变换的反馈周期中的至少之一通过以下方式至少之一确定:
    通过高层信令或物理层信令的方式;以及
    通过第三约定方式。
  14. 根据权利要求13所述的方法,其中,所述第三约定方式包括以下信息至少之一,其中,所述以下信息至少之一的反馈周期和所述第n个信道状态信息子集中的所述b n个预编码指示信息的反馈周期一致:
    角度旋转;
    幅度扩展;以及
    相位变换。
  15. 根据权利要求6所述的方法,还包括:
    确定并上报以下信息至少之一:
    角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;
    角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;以及
    角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
  16. 根据权利要求1或4所述的方法,其中,所述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息和波束指示信息指示的信息中至少之一由一组基矢量经过以下方式至少之一进行确定:
    角度旋转,幅度扩展,以及相位变换得到。
  17. 根据权利要求16所述的方法,其中,所述一组基矢量包括以下之一:
    单位矩阵中的一个矢量;以及
    单位矩阵中的多个列矢量。
  18. 根据权利要求16所述的方法,其中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:
    每一层或每个导频资源组或每个导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
    相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
    不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量得到;
    不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
    相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
    同一层的所述信道状态信息选取部分资源或者端口反馈对应的所述预编码指示信息或者所述波束指示信息;以及
    不同层的所述信道状态信息选取的资源或者端口不同,不同层的所述信道状态信息的所述预编码指示信息或者所述波束指示信息独立通过一组基矢量确定。
  19. 根据权利要求1或4所述的方法,其中,
    第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中的至少之一确定,其中,所述h为大于或者等于1的整数。
  20. 根据权利要求19所述的方法,其中,所述一组基矢量通过以下方式至少之一进行确定:
    根据高层信令进行确定的方式;
    根据物理层信令进行确定的方式;以及
    通过第四约定的方式。
  21. 根据权利要求20所述的方法,其中,所述第四约定方式包括以下之一:
    在所述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转和相位变换中的至少之一,其中,所述q列包括以下至少之一:前q 1列,后q 1列;
    将所述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中的至少之一,其中,所述x列包括以下至少之一:前x 1列和后x 1列。
  22. 根据权利要求19至21中任一项所述的方法,其中,所述角度旋转和相位变换中的至少之一包括:
    将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,所述变换矩阵 包括以下至少之一:t个相位变换矩阵,t大于或者等于1;r个角度旋转矩阵的乘积,r大于或者等于1。
  23. 根据权利要求22所述的方法,其中,相位变换矩阵是对角矩阵,所述对角矩阵对角线上的元素包括以下至少之一:
    正实数;以及
    复数的自然指数函数。
  24. 根据权利要求22或23所述的方法,其中,所述信道状态信息包括以下至少之一:
    每层所述信道状态信息CSI对应至少一个所述相位变换矩阵,其中,第h层所述CSI对应的所述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;以及
    每层所述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层所述CSI对应的所述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,所述g(h)与所述n均大于或者等于1,且n不等于所述g(h),所述g(h)是关于h的正整数函数;所述元素变换后为实数的三角函数。
  25. 根据权利要求24所述的方法,其中,
    每层信道状态信息CSI对应所述角度旋转矩阵的个数随着所述角度旋转矩阵层数的增加而递减。
  26. 根据权利要求24所述的方法,其中,所述相位变换矩阵中信息的频域反馈粒度、所述角度旋转矩阵中信息的频域反馈粒度、所述相位变换矩阵中信息的反馈周期、所述角度旋转矩阵中信息的反馈周期、所述相位变换矩阵中信息的最小变化单位、所述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:
    根据高层信令进行确定的方式;
    根据物理层信令进行确定的方式;以及
    通过第五约定方式。
  27. 根据权利要求26所述的方法,其中,所述第五约定方式至少包括以下至少之一:
    所述角度旋转矩阵中包含的信息宽带反馈;
    所述相位变换矩阵中包含的信息子带反馈;
    所述角度旋转矩阵包含的信息反馈周期是所述相位变换矩阵包含的信息反馈周期的C倍,所述C是正整数;
    所述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
  28. 根据权利要求22所述的方法,还包括:
    确定并上报以下信息中的至少之一:
    所述相位变换矩阵中信息的频域反馈粒度;
    所述角度旋转矩阵中信息的频域反馈粒度;
    所述相位变换矩阵中信息的反馈周期;
    所述角度旋转矩阵中信息的反馈周期;
    所述相位变换矩阵中信息的最小变化单位;以及
    所述角度旋转矩阵中信息的最小变化单位。
  29. 根据权利要求19所述的方法,其中,相同层的所述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和角度旋转信息中的至少之一。
  30. 根据权利要求19所述的方法,其中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一反馈相位变换信息和角度旋转信息中的至少之一:
    不同端口组分别反馈相位变换信息和角度旋转信息中的至少之一;以及
    不同端口组联合反馈相位变换信息和角度旋转信息中的至少之一。
  31. 一种信道状态信息的确定方法,包括:
    根据信道状态信息的结构确定终端反馈的所述信道状态信息;
    其中,所述信道状态信息的特定结构包括M个信道状态信息子集;
    所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
    所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括Ln个信道信息分量,其中,所述Ln个信道信息分量由一组矢量经过变换确定;
    所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
  32. 根据权利要求31所述的方法,其中,所述k m个信道信息分量包括以下至少之一:
    B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
    A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
    P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;
    R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
  33. 根据权利要求31或32所述的方法,其中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
  34. 根据权利要求31所述的方法,其中,所述信道状态信息的子集的划分方式包括以下至少之一:
    根据测量导频资源分组划分;
    根据测量导频端口分组划分;
    根据解调导频资源分组划分;
    根据解调导频端口分组划分;以及
    根据层划分。
  35. 根据权利要求34所述的方法,其中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
    根据高层信令通知终端进行确定的方式;以及
    根据物理层信令通知终端进行确定的方式。
  36. 根据权利要求32所述的方法,其中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
    其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
  37. 根据权利要求36所述的方法,其中,
    所述角度旋转为通过角度旋转矩阵作用于所述预编码指示信息指示的信息进行确定的,其中,所述角度旋转矩阵包括以下至少之一:
    单位矩阵;
    对角线元素构成离散傅氏变换DFT矢量的第一对角矩阵;以及
    对角线元素构成S个离散傅氏变换DFT矢量的克罗内克积的第二对角矩阵,其中,所述S个DFT矢量中的第s个DFT矢量对应第s个角度旋转信息,所述S为大于1的正整数,所述s为大于或者等于1且小于或者等于S的正整数。
  38. 根据权利要求36所述的方法,其中,所述信道状态信息子集中至少包括两个信道状态信息子集的预编码指示信息指示的信息具备以下至少之一的相同信息:
    角度旋转,幅度扩展,以及相位变换。
  39. 根据权利要求36所述的方法,其中,所述b m的取值通过以下方式至少之一进行确定:
    通过高层信令通知终端进行确定的方式;
    通过物理层信令通知终端进行确定的方式;以及
    通过第一约定方式。
  40. 根据权利要求39所述的方法,其中,所述第一约定的方式包括所述b m等于所述B m
  41. 根据权利要求36所述的方法,其中,所述角度旋转的频域反馈粒度、所述幅度扩展的频域反馈粒度、所述相位变换的频域反馈粒度、所述角度旋转的最小变化单位、所述幅度扩展的最小变化单位、所述相位变换的最小变化单位中的至少之一通过以下方式至少之一进行确定:
    通过高层信令或物理层信令通知终端进行确定的方式;以及
    通过第二约定方式;
    其中,所述频域反馈粒度包括子带反馈和带宽反馈中至少之一。
  42. 根据权利要求41所述的方法,其中,所述第二约定方式包括以下至少之一:
    角度旋转宽带反馈;
    幅度扩展宽带反馈;以及
    相位变换子带反馈。
  43. 根据权利要求36所述的方法,其中,所述角度旋转、所述幅度扩展、所述相位变换的反馈周期中的至少之一通过以下方式至少之一进行确定:
    通过高层信令或物理层信令通知终端进行确定的方式;以及
    通过第三约定方式。
  44. 根据权利要求43所述的方法,其中,所述第三约定方式包括以下信息至少之一,其中,所述以下信息至少之一的反馈周期和所述第n个信道状态信息子集中的所述b n个预编码指示信息的反馈周期一致:
    角度旋转;
    幅度扩展;以及
    相位变换。
  45. 根据权利要求36所述的方法,所述方法还包括:接收以下信息至少之一:
    角度旋转、幅度扩展以及相位变换的最小变化单位中的至少之一;
    角度旋转、幅度扩展以及相位变换的频域反馈粒度中的至少之一;以及
    角度旋转、幅度扩展以及相位变换的反馈周期中的至少之一。
  46. 根据权利要求31或34所述的方法,其中,所述信道状态信息包括预编码指示信息和波束指示信息中至少之一,第h层、第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息和波束指示信息指示的信息中至少之一由一组基矢量经过以下方式至少之一进行确定:
    角度旋转,幅度扩展,以及相位变换得到。
  47. 根据权利要求46所述的方法,其中,所述一组基矢量包括以下之一:
    单位矩阵中的一个矢量;以及
    单位矩阵中的多个列矢量。
  48. 根据权利要求46所述的方法,其中,所述信道状态信息包括预编码指示信息或波束指示信息,第h层、所述第k个导频资源组以及第k个导频端口组中至少之一的预编码指示信息指示的信息或者波束指示信息指示的信息包括以下特征至少之一:
    每一层或每个导频资源组或每个导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
    相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
    不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息独立通过所述基矢量得到;
    不同层、相同导频资源组或者相同导频端口组的所述预编码指示信息指示的信息或者所述波束指示信息指示的信息由相同的所述基矢量确定;
    相同层、不同导频资源组或者不同导频端口组的所述预编码指示信息指示 的信息或者所述波束指示信息指示的信息独立通过所述基矢量确定;
    同一层的所述信道状态信息选取部分资源或者端口反馈对应的所述预编码指示信息或者所述波束指示信息;不同层的所述信道状态信息选取的资源或者端口不同,不同层的所述信道状态信息的所述预编码指示信息或者所述波束指示信息独立通过一组基矢量确定。
  49. 根据权利要求31或34所述的方法,其中,
    第h层的信道状态信息中,加权系数幅度指示信息指示的信息、加权系数相位指示信息指示的信息中至少之一由一组基矢量经过角度旋转和相位变换中至少之一确定,其中,所述h为大于或者等于1的整数。
  50. 根据权利要求49所述的方法,其中,所述一组基矢量通过以下方式至少之一进行确定:
    根据高层信令通知终端进行确定的方式;
    根据物理层信令通知终端进行确定的方式;以及
    通过第四约定的方式。
  51. 根据权利要求50所述的方法,其中,所述第四约定方式包括以下之一:
    在所述信道状态信息的第Q层中选取单位矩阵中的q列进行角度旋转,和相位变换中至少之一,其中,所述q列包括以下至少之一:前q 1列,后q 1列;
    将所述信道状态信息的第X层的不同端口组根据单位矩阵中的x列进行角度旋转和相位变换中至少之一,其中,所述x列包括以下至少之一:前x 1列,后x 1列。
  52. 根据权利要求49至51中任一项所述的方法,其中,所述角度旋转和相位变换中至少之一包括:
    将变换矩阵作用于一组基矢量中的一个或多个矢量,其中,所述变换矩阵包括以下至少之一:t个相位变换矩阵,t大于或者等于1;r个角度旋转矩阵的乘积,r大于或者等于1。
  53. 根据权利要求52所述的方法,其中,所述相位变换矩阵是对角矩阵,所述对角矩阵对角线上的元素包括以下至少之一:
    正实数;以及
    复数的自然指数函数。
  54. 根据权利要求52或53所述的方法,其中,信道状态信息满足以下至少之一:
    每层所述信道状态信息CSI对应至少一个所述相位变换矩阵,其中,第h层所述CSI对应的所述相位变换矩阵中,对角线上至少包括f(h)个元素为1,f(h)是关于1的正整数函数,且f(h)小于或者等于1;以及
    每层所述信道状态信息CSI对应至少一个角度旋转矩阵,其中,第h层所述CSI对应的所述角度旋转矩阵由单位矩阵中的以下至少之一的元素变换确定:第g(h)行的元素,第n列的元素,第n行的元素,第g(h)列的元素,第g(h)行的元素,第g(h)列的元素,第n行的元素,第n列的元素,其中,所述g(h)与所述n均大于或者等于1,且n不等于所述g(h),所述g(h)是关于1的正整数函数;所述元素变换后为实数的三角函数。
  55. 根据权利要求54所述的方法,其中,
    所述每层信道状态信息CSI对应所述角度旋转矩阵的个数随着所述角度旋转矩阵层数的增加而递减。
  56. 根据权利要求54所述的方法,其中,所述相位变换矩阵中信息的频域反馈粒度、所述角度旋转矩阵中信息的频域反馈粒度、所述相位变换矩阵中信息的反馈周期、所述角度旋转矩阵的反馈周期、所述相位变换矩阵的最小变化单位、所述角度旋转矩阵中信息的最小变化单位中的至少之一通过以下方式指示之一进行确定:
    根据高层信令通知终端进行确定的方式;
    根据物理层信令通知终端进行确定的方式;以及
    通过第五约定方式。
  57. 根据权利要求56所述的方法,其中,所述第五约定方式至少包括以下至少之一:
    所述角度旋转矩阵中包含的信息宽带反馈;
    所述相位变换矩阵中包含的信息子带反馈;
    所述角度旋转矩阵包含的信息反馈周期是所述相位变换矩阵包含的信息反馈周期的C倍,所述C是正整数;以及
    所述角度旋转矩阵中包含的信息和相应信道信息子集中的预编码指示信息具有相同的反馈周期和反馈的频域粒度中至少之一。
  58. 根据权利要求52所述的方法,还包括:
    接收以下信息至少之一:
    所述相位变换矩阵中信息的频域反馈粒度;
    所述角度旋转矩阵中信息的频域反馈粒度;
    所述相位变换矩阵中信息的反馈周期;
    所述角度旋转矩阵中信息的反馈周期;
    所述相位变换矩阵中信息的最小变化单位;以及
    所述角度旋转矩阵中信息的最小变化单位。
  59. 根据权利要求49所述的方法,其中,相同层的所述信道状态信息CSI,至少存在两个端口组具有相同的相位变换信息和角度旋转信息中的至少之一。
  60. 根据权利要求49所述的方法,其中,对于不同端口组的信道状态信息CSI,通过以下方式至少之一接收终端反馈的相位变换信息和角度旋转信息中的至少之一:
    不同端口组分别反馈相位变换信息,和,角度旋转信息中的至少之一;
    不同端口组联合反馈相位变换信息,和,角度旋转信息中的至少之一。
  61. 一种信道状态信息的反馈装置,包括:
    反馈模块,设置为根据确定的信道状态信息的结构反馈所述信道状态信息;
    其中,所述信道状态信息的结构包括M个信道状态信息子集;所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
    所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,所述L n 个信道信息分量由一组矢量经过变换确定;
    所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
  62. 根据权利要求61所述的装置,其中,所述k m个信道信息分量包括以下至少之一:
    B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
    A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
    P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
    R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
  63. 根据权利要求61或62所述的装置,其中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
  64. 根据权利要求62所述的装置,其中,所述信道状态信息的子集的划分方式包括以下至少之一:
    根据测量导频资源分组划分;
    根据测量导频端口分组划分;
    根据解调导频资源分组划分;
    根据解调导频端口分组划分;以及
    根据层划分。
  65. 根据权利要求64所述的装置,其中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
    根据高层信令进行确定的方式;以及
    根据物理层信令进行确定的方式。
  66. 根据权利要求63所述的装置,其中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
    其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
  67. 一种信道状态信息的确定装置,包括:
    确定模块,设置为根据信道状态信息的结构确定终端反馈的所述信道状态信息;
    其中,所述信道状态信息的特定结构包括M个信道状态信息子集;
    所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
    所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括Ln个信道信息分量,其中,所述Ln个信道信息分量由一组矢量经过变换确定;
    所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
  68. 根据权利要求67所述的装置,其中,所述k m个信道信息分量包括以下至少之一:
    B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
    A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
    P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
    R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
  69. 根据权利要求67或68所述的装置,其中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
  70. 根据权利要求67所述的装置,其中,所述信道状态信息的子集的划分方式包括以下至少之一:
    根据测量导频资源分组划分;
    根据测量导频端口分组划分;
    根据解调导频资源分组划分;
    根据解调导频端口分组划分;以及
    根据层划分。
  71. 根据权利要求70所述的装置,其中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
    根据高层信令通知终端进行确定的方式;以及
    根据物理层信令通知终端进行确定的方式。
  72. 根据权利要求68所述的装置,其中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
    其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
  73. 一种信道状态信息的反馈装置,包括:
    第一处理器;
    设置为存储第一处理器可执行指令的第一存储器;
    其中,所述第一处理器被配置为:
    根据确定的信道状态信息的结构反馈所述信道状态信息;
    其中,所述信道状态信息的结构包括M个信道状态信息子集;
    所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信息分量;
    所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括L n个信道信息分量,其中,所述L n个信道信息分量由一组矢量经过变换确定;
    所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
  74. 根据权利要求73所述的装置,其中,所述k m个信道信息分量包括以下至少之一:
    B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
    A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
    P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;以及
    R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
  75. 根据权利要求73或74所述的装置,其中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
  76. 根据权利要求73所述的装置,其中,所述信道状态信息的子集的划分方式包括以下至少之一:
    根据测量导频资源分组划分;
    根据测量导频端口分组划分;
    根据解调导频资源分组划分;
    根据解调导频端口分组划分;以及
    根据层划分。
  77. 根据权利要求76所述的装置,其中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
    根据高层信令进行确定的方式;以及
    根据物理层信令进行确定的方式。
  78. 根据权利要求74所述的装置,其中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
    其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
  79. 一种信道状态信息的确定装置,包括:
    第二处理器;
    设置为存储第二处理器可执行指令的第二存储器;
    其中,所述第二处理器被配置为:
    根据信道状态信息的结构确定终端反馈的所述信道状态信息;
    其中,所述信道状态信息的特定结构包括M个信道状态信息子集;
    所述M个信道状态信息子集的第m个信道状态信息子集包括k m个信道信 息分量;
    所述M个信道状态信息子集包括N个信道状态信息子集,所述N个信道状态信息子集的第n个信道状态信息子集包括Ln个信道信息分量,其中,所述Ln个信道信息分量由一组矢量经过变换确定;
    所述M为正整数,所述N为正整数且所述N小于或者等于所述M,所述m和n均为正整数,所述k m为大于或者等于0的整数,所述L n为大于或者等于0且小于或者等于所述k m的整数。
  80. 根据权利要求79所述的装置,其中,所述k m个信道信息分量包括以下至少之一:
    B m个预编码指示信息,其中,所述B m为大于或者等于0的整数;
    A m个加权系数幅度指示信息,其中,所述A m为大于或者等于0的整数;
    P m个加权系数相位指示信息,其中,所述P m为大于或者等于0的整数;
    R m个波束指示信息,其中,所述R m为大于或者等于0的整数。
  81. 根据权利要求79或80所述的装置,其中,所述信道状态信息子集中,A m个加权系数幅度指示信息指示的信息和P m个加权系数相位指示信息指示的信息构成加权系数向量,至少存在一组信道状态信息子集的加权系数向量相互正交,其中,所述A m和所述P m均为大于或者等于0的整数。
  82. 根据权利要求79所述的装置,其中,所述信道状态信息的子集的划分方式包括以下至少之一:
    根据测量导频资源分组划分;
    根据测量导频端口分组划分;
    根据解调导频资源分组划分;
    根据解调导频端口分组划分;以及
    根据层划分。
  83. 根据权利要求82所述的装置,其中,所述信道状态信息的子集的划分方式通过以下方式至少之一进行确定:
    根据高层信令通知终端进行确定的方式;以及
    根据物理层信令通知终端进行确定的方式。
  84. 根据权利要求80所述的装置,其中,所述B m个预编码指示信息中包括的b m个预编码指示信息指示的信息通过以下方式至少之一进行确定:
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过角度旋转进行确定;
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过幅度扩展进行确定;以及
    通过所述第n个信道状态信息子集中的b n个预编码指示信息指示的信息经过相位变换进行确定;
    其中,所述b m、b n均为正整数,且所述b m小于或者等于所述B m
  85. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5中任一项的方法。
PCT/CN2017/119582 2017-01-09 2017-12-28 信道状态信息的反馈、确定方法及装置 WO2018126988A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17890769.7A EP3567742A4 (en) 2017-01-09 2017-12-28 FEEDBACK AND CHANNEL STATUS INFORMATION DETERMINATION PROCESSES, AND DEVICE
US16/476,828 US11652515B2 (en) 2017-01-09 2017-12-28 Method and device for feeding back channel state information, and method and device for determining channel state information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710014456.7A CN108288983B (zh) 2017-01-09 2017-01-09 信道状态信息的反馈、确定方法及装置
CN201710014456.7 2017-01-09

Publications (1)

Publication Number Publication Date
WO2018126988A1 true WO2018126988A1 (zh) 2018-07-12

Family

ID=62789218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119582 WO2018126988A1 (zh) 2017-01-09 2017-12-28 信道状态信息的反馈、确定方法及装置

Country Status (4)

Country Link
US (1) US11652515B2 (zh)
EP (1) EP3567742A4 (zh)
CN (2) CN114285447B (zh)
WO (1) WO2018126988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063719A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Subband-granularity linear combination for a csi codebook

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038566B2 (en) * 2017-01-06 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
CN110830092B (zh) * 2018-08-10 2021-10-26 华为技术有限公司 指示预编码矩阵和确定预编码矩阵的方法以及通信装置
CN110838856B (zh) 2018-08-17 2021-11-26 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
WO2020056644A1 (zh) * 2018-09-19 2020-03-26 Oppo广东移动通信有限公司 一种信息传输方法、设备及存储介质
CN112840697B (zh) * 2018-09-27 2024-01-23 上海诺基亚贝尔股份有限公司 关于csi开销减少的装置、方法和计算机程序
EP3874604A4 (en) * 2018-10-31 2021-11-10 ZTE Corporation CHANNEL STATUS INFORMATION MESSAGE IN WIRELESS COMMUNICATION NETWORK
CN111436075B (zh) * 2019-01-11 2022-04-01 大唐移动通信设备有限公司 信道状态信息的上报方法、解码方法、终端及网络侧设备
CN112737648B (zh) 2019-01-11 2022-07-29 华为技术有限公司 一种通信方法、设备及计算机可读存储介质
EP3910807A4 (en) * 2019-01-11 2022-03-23 Huawei Technologies Co., Ltd. METHOD AND COMMUNICATION DEVICE
CN111837344B (zh) * 2019-02-15 2022-01-11 Oppo广东移动通信有限公司 确定配置参数的方法、终端设备和网络设备
CN111726154B (zh) * 2019-03-21 2022-04-01 大唐移动通信设备有限公司 一种信道状态信息上报的方法和设备
CN111756419B (zh) * 2019-03-27 2021-06-04 电信科学技术研究院有限公司 一种信道状态信息反馈方法及装置
CN111800172B (zh) * 2019-04-09 2022-02-25 华为技术有限公司 一种通信方法及装置
CN111865372B (zh) * 2019-04-30 2021-06-08 华为技术有限公司 一种用于构建预编码矩阵的系数指示方法和通信装置
JP7413672B2 (ja) * 2019-07-25 2024-01-16 日本電気株式会社 アンテナ装置、無線送信機、無線受信機、及び無線通信システム
US10715242B1 (en) * 2019-09-25 2020-07-14 Facebook, Inc. Grouping antenna elements to enhanced an antenna array response resolution
CN112583501B (zh) * 2019-09-30 2023-09-22 华为技术有限公司 信道测量方法和通信装置
CN115378544A (zh) * 2021-05-19 2022-11-22 中兴通讯股份有限公司 一种信道状态信息传输方法、装置、通信节点及存储介质
WO2023164839A1 (en) * 2022-03-02 2023-09-07 Zte Corporation Channel state information reporting and configuration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594527A (zh) * 2011-01-10 2012-07-18 夏普株式会社 下行多天线多载波多小区信道状态信息反馈方法
US20120275313A1 (en) * 2011-04-29 2012-11-01 Nec Laboratories America, Inc. Enhancement of Download Multi-User Multiple-Input Multiple-Output Wireless Communications
CN103178888A (zh) * 2011-12-23 2013-06-26 华为技术有限公司 一种反馈信道状态信息的方法及装置
WO2014165711A1 (en) * 2013-04-03 2014-10-09 Interdigital Patent Holdings, Inc. Enhanced interference coordination mechanisms for small cell deployments
CN105991171A (zh) * 2015-02-15 2016-10-05 电信科学技术研究院 一种三维信道状态信息确定方法及装置
CN106170927A (zh) * 2014-07-29 2016-11-30 华为技术有限公司 一种信道状态信息的反馈和接收方法、设备
CN106302269A (zh) * 2015-06-04 2017-01-04 电信科学技术研究院 一种信道状态信息的反馈及其控制方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826951B (zh) * 2010-05-05 2016-03-30 中兴通讯股份有限公司 反馈信道状态信息的方法及装置
CN102291220B (zh) * 2010-06-18 2014-01-08 电信科学技术研究院 一种反馈、获得信道状态信息的反馈方法及装置
CN101917260B (zh) * 2010-08-18 2015-01-28 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
EP2719217A4 (en) * 2011-06-09 2015-09-02 Broadcom Corp INTERFERENCE CONTROL IN TIME-DIVISION DUPLEX COMMUNICATION
US20130010880A1 (en) * 2011-07-05 2013-01-10 Renesas Mobile Corporation Feedback Framework for MIMO Operation in Heterogeneous Communication Network
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
US9660784B2 (en) * 2012-03-14 2017-05-23 Nokia Solutions And Networks Oy Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission CoMP
CN103516464B (zh) * 2012-06-20 2018-04-10 中兴通讯股份有限公司 信道状态信息报告的反馈方法及装置
CN110830165B (zh) * 2013-05-24 2021-12-21 中兴通讯股份有限公司 信道状态信息反馈方法和终端
CN104753628B (zh) * 2013-12-26 2019-12-10 中兴通讯股份有限公司 一种信道信息反馈方法、系统及基站和终端
PT3116258T (pt) * 2014-03-06 2018-10-19 Huawei Tech Co Ltd Método para reportar informação do estado de canal, equipamento de utilizador e estação base
KR102344081B1 (ko) * 2014-05-23 2021-12-28 삼성전자 주식회사 다수의 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 피드백 송수신 방법 및 장치
US9654195B2 (en) 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
WO2016086971A1 (en) * 2014-12-02 2016-06-09 Nokia Solutions And Networks Management International Gmbh Coded allocation of channel state information reference signals
EP3311505B1 (en) * 2015-06-18 2020-03-18 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for adapting a codebook for use with multiple antenna configurations
WO2017039166A1 (ko) * 2015-09-01 2017-03-09 엘지전자 주식회사 채널 상태 보고 방법 및 이를 위한 장치
US11290160B2 (en) * 2016-08-02 2022-03-29 Lg Electronics Inc. Method for transmitting feedback information for three-dimensional MIMO on basis of beamformed reference signal in wireless communication system, and apparatus therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594527A (zh) * 2011-01-10 2012-07-18 夏普株式会社 下行多天线多载波多小区信道状态信息反馈方法
US20120275313A1 (en) * 2011-04-29 2012-11-01 Nec Laboratories America, Inc. Enhancement of Download Multi-User Multiple-Input Multiple-Output Wireless Communications
CN103178888A (zh) * 2011-12-23 2013-06-26 华为技术有限公司 一种反馈信道状态信息的方法及装置
WO2014165711A1 (en) * 2013-04-03 2014-10-09 Interdigital Patent Holdings, Inc. Enhanced interference coordination mechanisms for small cell deployments
CN106170927A (zh) * 2014-07-29 2016-11-30 华为技术有限公司 一种信道状态信息的反馈和接收方法、设备
CN105991171A (zh) * 2015-02-15 2016-10-05 电信科学技术研究院 一种三维信道状态信息确定方法及装置
CN106302269A (zh) * 2015-06-04 2017-01-04 电信科学技术研究院 一种信道状态信息的反馈及其控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567742A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063719A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Subband-granularity linear combination for a csi codebook
US11799525B2 (en) 2018-09-27 2023-10-24 Qualcomm Incorporated Subband-granularity linear combination for a CSI codebook

Also Published As

Publication number Publication date
EP3567742A4 (en) 2020-09-02
CN114285447A (zh) 2022-04-05
CN114285447B (zh) 2022-11-08
US20190363760A1 (en) 2019-11-28
US11652515B2 (en) 2023-05-16
CN108288983B (zh) 2022-01-28
EP3567742A1 (en) 2019-11-13
CN108288983A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2018126988A1 (zh) 信道状态信息的反馈、确定方法及装置
JP6977232B2 (ja) コードブックベースのチャネル状態情報のフィードバック方法及びデバイス
CN109004964B (zh) 用于确定无线通信网络中的预编码器参数的方法和设备
CN107196749B (zh) 一种信道状态信息测量、参考信号的发送方法和装置
CN111342912B (zh) 一种信道测量方法和通信装置
WO2018059072A1 (zh) 一种信道状态信息的传输方法和设备
EP3537620B1 (en) Method and apparatus for channel information quantification feedback, electronic device, and storage medium
EP2950458A1 (en) Feedback method for channel state information, transmission method for channel state information reference signal, user equipment and base station
CN107733476B (zh) 信道状态信息的反馈方法及装置
TWI622276B (zh) Channel state information acquisition method, channel state information feedback method and device
CN111342873A (zh) 一种信道测量方法和通信装置
CN111342913B (zh) 一种信道测量方法和通信装置
CN106160938B (zh) 一种信道信息的获取方法和装置
WO2016119655A1 (zh) 一种确定码本的方法及装置
CN111865377A (zh) 指示和确定预编码矩阵的方法以及通信装置
CN115053465B (zh) 一种信息传输方法及装置
WO2016065557A1 (zh) 码书确定方法、装置以及通信系统
US9112559B2 (en) Low complexity and accurate cluster of beams selection
CN112054824B (zh) 一种信道测量方法和通信装置
CN111756416B (zh) 一种通信方法及装置
EP2816768B1 (en) Low complexity and accurate cluster of beams selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890769

Country of ref document: EP

Effective date: 20190809