WO2020143815A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2020143815A1
WO2020143815A1 PCT/CN2020/071604 CN2020071604W WO2020143815A1 WO 2020143815 A1 WO2020143815 A1 WO 2020143815A1 CN 2020071604 W CN2020071604 W CN 2020071604W WO 2020143815 A1 WO2020143815 A1 WO 2020143815A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
vectors
frequency combining
vector
domain beam
Prior art date
Application number
PCT/CN2020/071604
Other languages
English (en)
French (fr)
Inventor
高翔
刘鹍鹏
张瑞齐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910364435.7A external-priority patent/CN111435849B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738278.9A priority Critical patent/EP3910807A4/en
Priority to KR1020217025258A priority patent/KR102645275B1/ko
Priority to BR112021013640-1A priority patent/BR112021013640A2/pt
Publication of WO2020143815A1 publication Critical patent/WO2020143815A1/zh
Priority to US17/371,978 priority patent/US11962381B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Definitions

  • the embodiments of the present invention relate to the field of communication technologies, and in particular, to a communication method and device.
  • Multiple-input (multiple-input, multiple-output, MIMO) technology refers to the use of multiple transmit antennas and receive antennas at the transmitter and receiver, respectively, so that signals are transmitted and received through multiple antennas at the transmitter and receiver, thereby improving Communication quality.
  • the network device in order to improve the signal transmission performance and system capacity, the network device needs to determine the optimal precoding vector according to the downlink channel state information (channel) state information (CSI), and then precoding the downlink data.
  • channel state information channel state information
  • CSI downlink channel state information
  • TDD time division duplexing
  • the downlink precoding vector can be estimated according to the uplink channel.
  • the downlink precoding vector is generally obtained by the terminal device feeding back a precoding vector or a precoding matrix indication (PMI).
  • PMI precoding matrix indication
  • the precoding vector is formed by linearly combining multiple orthogonal spatial domain beam vectors.
  • the terminal device reports PMI to the network device, it is necessary to determine the selected spatial domain beam. If the power of the selected airspace beam is large and the airspace beam is directed to a neighboring cell, when the network device uses the airspace beam to send downlink data to the terminal device, it will cause strong interference to the neighboring cell, which reduces the system performance .
  • Embodiments of the present invention disclose a communication method and device, which are used to improve system performance.
  • a communication method is disclosed.
  • One or more airspace beam basis vector groups and Q thresholds are received from a network device, and L airspace beam basis vectors are selected from the set of airspace beam basis vector groups to be L airspace beams.
  • Each space-domain beam base vector in the basis vector selects K frequency-domain base vectors from the set of frequency-domain base vectors, and according to the L frequency-domain beam base vectors and the K frequency corresponding to each space-domain beam base vector in the L space-domain beam base vectors
  • the domain base vector and the target precoding vector determine M space-frequency combining coefficient vectors, and send the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors to the network device.
  • the Q thresholds correspond one-to-one to the airspace beam basis vectors in one or more airspace beam basis vector groups
  • one space frequency combining coefficient vector corresponds to one space domain beam basis vector
  • one space domain beam basis vector corresponds to the space frequency combining coefficient vector
  • the restriction rule is satisfied, and the restriction rule is associated with a threshold corresponding to the airspace beam basis vector. It can be seen that in the case where one or more airspace beam base vector groups include L airspace beam base vectors, the space-frequency combining coefficients in the M space-frequency combining coefficient vectors need to meet the corresponding restriction rules.
  • the airspace beam The amplitude or power of the space-frequency combining coefficient corresponding to the base vector is limited to limit the energy corresponding to the space-domain beam vector, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, thereby improving system performance.
  • the restriction rule may be that the value of the power function of the space-frequency combining coefficient contained in the space-frequency combining coefficient vector corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector.
  • An airspace beam basis vector is any airspace beam basis vector in one or more airspace beam basis vector groups. It can be seen that, by limiting the power of the space-frequency combining coefficient corresponding to the space-domain beam base vector, the energy corresponding to the space-domain beam vector can be limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the square of the threshold corresponding to the first space-domain beam base vector.
  • the first space-domain beam base vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups. It can be seen that, by limiting the power of the space-frequency combining coefficient corresponding to the space-domain beam base vector, the energy corresponding to the space-domain beam vector can be limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the linear combination of the square of the threshold corresponding to the first spatial domain beam base vector and the fixed value, the first The airspace beam basis vector is any airspace beam basis vector in one or more airspace beam basis vector groups. It can be seen that, by limiting the power of the space-frequency combining coefficient corresponding to the space-domain beam base vector, the energy corresponding to the space-domain beam vector can be limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the power function may be the ratio of the first power to the second power
  • the first power may be the power sum of the space-frequency combining coefficients corresponding to the first space-domain beam base vector
  • the second power may be M space-domain beams The maximum value of the power sum of the space-frequency combining coefficients corresponding to the base vector respectively.
  • the power function may be the power sum of the space-frequency combining coefficients corresponding to the first space-domain beam basis vector.
  • the power of the space-frequency combining coefficient corresponding to the first space-domain beam base vector may be the square of the amplitude of the space-frequency combining coefficient corresponding to the first space-domain beam base vector.
  • the threshold corresponding to the first spatial domain beam basis vector is 0, Or 1.
  • the threshold corresponding to the first spatial domain beam basis vector is 0, 1/4, 1/2, or 1.
  • the restriction rule may be that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector, and the first space-domain beam base vector is one or Any airspace beam basis vector in multiple airspace beam basis vector groups. It can be seen that the limitation of the energy of the space-domain beam vector can be achieved by limiting the amplitude of the space-frequency combining coefficient corresponding to the space-domain beam base vector, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the amplitude function is the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam basis vector.
  • the amplitude of the first spatial-frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the quantized amplitude of the spatial-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector
  • the maximum value of the differential amplitude can be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude.
  • the first space-frequency combining coefficient is the space-frequency combining coefficient of the first spatial domain beam basis vector corresponding to the first polarization direction.
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the amplitude function may be the maximum value of the quantized amplitude of the space-frequency combining coefficients in the first polarization direction corresponding to the first spatial domain beam basis vector, and the first polarization direction is the pole of the first spatial domain beam basis vector Any of the polarization directions.
  • a set of airspace beam basis vectors may be selected from the set of airspace beam basis vector groups, and L airspace beam basis vectors may be selected from the set of airspace beam basis vectors.
  • the L frequency-domain beam base vectors, the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target The coding vector determines M initial space-frequency combining coefficient vectors.
  • M initial space-frequency combining coefficient vectors can be determined as M space-frequency Merge coefficient vector. Among them, M is equal to L.
  • the K frequency-domain base vectors and the target corresponding to each space-domain beam base vector in the L space-domain beam base vectors and the L space-domain beam base vectors may be used
  • the precoding vector determines L initial space-frequency combining coefficient vectors, and then selects a part of the space-frequency combining coefficients from the L initial space-frequency combining coefficient vectors to obtain M initial space-frequency combining coefficient vectors. If the set of space-domain beam base vectors is not included, M initial space-frequency combining coefficient vectors are determined to be M space-frequency combining coefficient vectors.
  • M is less than or equal to L, and the number of space-frequency combining coefficients included in each initial space-frequency combining coefficient vector in the M initial space-frequency combining coefficient vectors is less than or equal to the corresponding initial space-frequency combining coefficient in the L initial space-frequency combining coefficient vectors The number of space-frequency combining coefficients included in the vector.
  • one or more space-domain beam basis vector groups include the set of space-domain beam basis vectors, and the space-frequency combining coefficients of the M initial space-frequency combining coefficient vectors all satisfy the corresponding restriction rule, determine The M initial space-frequency combining coefficient vectors are M space-frequency combining coefficient vectors. It can be seen that in the case where one or more airspace beam base vector groups include L airspace beam base vectors, the space-frequency combining coefficients in the M space-frequency combining coefficient vectors need to meet the corresponding restriction rules.
  • the airspace beam The amplitude or power of the space-frequency combining coefficient corresponding to the base vector is limited to limit the energy corresponding to the space-domain beam vector, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, thereby improving system performance.
  • one or more space-domain beam basis vector groups include the set of space-domain beam basis vectors, and there are M initial space-frequency combining coefficient vectors where the space-frequency combining coefficients do not satisfy the corresponding restriction rule
  • the amplitudes of the space-frequency combining coefficients that do not satisfy the restriction rule can be adjusted to obtain M space-frequency combining coefficient vectors. It can be seen that in the case where one or more airspace beam base vector groups include L airspace beam base vectors, the space-frequency combining coefficients in the M space-frequency combining coefficient vectors can satisfy the corresponding restriction rules through amplitude adjustment.
  • the energy corresponding to the space-domain beam vector is limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, which can improve System performance.
  • one or more space-domain beam basis vector groups include a set of space-domain beam basis vectors, and there are M initial space-frequency combining coefficient vectors in which the space-frequency combining coefficients do not satisfy the corresponding restriction rule
  • it may be Reselect the airspace beam basis vector from the set of airspace beam basis vector groups to replace the airspace beam basis vector that does not satisfy the corresponding restriction rule, to obtain new L airspace beam basis vectors, which are each airspace beam among the L airspace beam basis vectors
  • the basis vector selects K frequency domain basis vectors from the set of frequency domain basis vectors, according to the L frequency domain beam basis vectors, the K frequency domain basis vectors corresponding to each space domain beam basis vector in the L space domain beam basis vectors, and the target precoding
  • the vector determines M space-frequency combining coefficient vectors.
  • the space-frequency combining coefficients in the M space-frequency combining coefficient vectors need to meet the corresponding restriction rules. Therefore, the airspace beam The amplitude or power of the space-frequency combining coefficient corresponding to the base vector is limited to limit the energy corresponding to the space-domain beam vector, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, thereby improving system performance.
  • the configuration information may also indicate the number of space-frequency combining coefficients, and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors is equal to the number of space-frequency combining coefficients. It can be seen that the number of partial space-frequency combining coefficients that the terminal device needs to report can be configured by the network device.
  • the amplitude and phase of the space-frequency combining coefficients of M space-frequency combining coefficient vectors and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors may be sent to the network device. It can be seen that the number of partial space-frequency combining coefficients that the terminal device needs to report can be determined and reported by the terminal device.
  • the amplitude and phase of the space-frequency combining coefficients of M space-frequency combining coefficient vectors, the index of the base vector in the L space-domain beam base vectors, and each space domain in the L space-space beam base vectors may be sent to the network device The index of the base vector in the K frequency-domain base vectors corresponding to the beam base vector.
  • the second aspect discloses a communication method that sends one or more space-domain beam basis vector groups and Q thresholds to the terminal device, and receives the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device.
  • the Q thresholds correspond one-to-one to the airspace beam basis vectors in one or more airspace beam basis vector groups, and the M space-frequency combining coefficient vectors are based on each of the airspace beam basis vectors and the L airspace beam basis vectors.
  • the K frequency domain basis vectors corresponding to the vector and the target precoding vector are determined, L space domain beam basis vectors are selected from the set of space domain beam basis vector groups, K frequency domain basis vectors are selected from the set of frequency domain basis vectors, one space frequency
  • the merging coefficient vector corresponds to a space-domain beam base vector, and the space-frequency merging coefficient vector corresponding to a space-domain beam base vector satisfies a restriction rule, and the restriction rule is associated with the threshold corresponding to the space-domain beam base vector. It can be seen that in the case where one or more airspace beam base vector groups include L airspace beam base vectors, the space-frequency combining coefficients in the M space-frequency combining coefficient vectors need to meet the corresponding restriction rules.
  • the airspace beam The amplitude or power of the space-frequency combining coefficient corresponding to the base vector is limited to limit the energy corresponding to the space-domain beam vector, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, thereby improving system performance.
  • the restriction rule may be that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam basis vector is less than or equal to the threshold corresponding to the first space-domain beam basis vector, and the first space-domain beam basis vector is one or Any airspace beam basis vector in multiple airspace beam basis vector groups. It can be seen that, by limiting the power of the space-frequency combining coefficient corresponding to the space-domain beam base vector, the energy corresponding to the space-domain beam vector can be limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the square of the threshold corresponding to the first space-domain beam base vector.
  • the first space-domain beam base vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups. It can be seen that, by limiting the power of the space-frequency combining coefficient corresponding to the space-domain beam base vector, the energy corresponding to the space-domain beam vector can be limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the linear combination of the square of the threshold corresponding to the first spatial domain beam base vector and the fixed value, the first The airspace beam basis vector is any airspace beam basis vector in one or more airspace beam basis vector groups. It can be seen that, by limiting the power of the space-frequency combining coefficient corresponding to the space-domain beam base vector, the energy corresponding to the space-domain beam vector can be limited, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the power function may be the ratio of the first power to the second power
  • the first power may be the power sum of the space-frequency combining coefficients corresponding to the first space-domain beam base vector
  • the second power may be M space-domain beams The maximum value of the power sum of the space-frequency combining coefficients corresponding to the base vector respectively.
  • the power function may be the power sum of the space-frequency combining coefficients corresponding to the first space-domain beam basis vector.
  • the power of the space-frequency combining coefficient corresponding to the first space-domain beam base vector may be the square of the amplitude of the space-frequency combining coefficient corresponding to the first space-domain beam base vector.
  • the threshold corresponding to the first spatial domain beam basis vector is 0, Or 1.
  • the threshold corresponding to the first spatial domain beam basis vector is 0, 1/4, 1/2, or 1.
  • the restriction rule may be that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector, and the first space-domain beam base vector is one or Any airspace beam basis vector in multiple airspace beam basis vector groups. It can be seen that the limitation of the energy of the space-domain beam vector can be achieved by limiting the amplitude of the space-frequency combining coefficient corresponding to the space-domain beam base vector, so as to reduce the interference caused by the communication between the terminal device and the network device to the neighboring cell, so that Improve system performance.
  • the amplitude function is the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam basis vector.
  • the amplitude of the first spatial-frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the quantized amplitude of the spatial-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector
  • the maximum value of the differential amplitude can be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude.
  • the first space-frequency combining coefficient is the space-frequency combining coefficient of the first spatial domain beam basis vector corresponding to the first polarization direction.
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the amplitude function may be the maximum value of the quantized amplitude of the space-frequency combining coefficients in the first polarization direction corresponding to the first spatial domain beam basis vector, and the first polarization direction is the pole of the first spatial domain beam basis vector Any of the polarization directions.
  • the configuration information may also indicate the number of space-frequency combining coefficients, and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors is equal to the space-frequency combining coefficients number. It can be seen that the number of partial space-frequency combining coefficients that the terminal device needs to report can be configured by the network device.
  • the amplitude and phase of the space-frequency combining coefficients and the M space-frequency combining coefficient vectors of M space-frequency combining coefficient vectors from the terminal device may be received
  • the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device, the index of the base vector in the L space-domain beam base vectors, and each of the L space-domain beam base vectors can be received The index of the base vector in the K frequency-domain base vectors corresponding to the space-domain beam base vector.
  • a third aspect discloses a communication apparatus including a unit for performing the communication method disclosed in the first aspect or any embodiment of the first aspect, or includes a unit for performing the second aspect or the second aspect The unit of the communication method disclosed in any embodiment.
  • a fourth aspect discloses a communication device.
  • the communication device may be a terminal device or a chip in the terminal device.
  • the communication device may include a processor.
  • the processor and the memory are coupled to each other.
  • the memory is used to store a computer program or instruction.
  • the processor is used to execute the computer program or instruction stored in the memory, so that the communication device executes the communication method disclosed in the first aspect.
  • a fifth aspect discloses a communication device.
  • the communication device may be a network device or a chip in the network device.
  • the communication device may include a processor.
  • the processor and the memory are coupled to each other.
  • the memory is used to store a computer program or instruction.
  • the processor is used to execute the computer program or instruction stored in the memory, so that the communication device executes the communication method disclosed in the second aspect.
  • a sixth aspect discloses a computer storage medium for storing a computer program or instruction.
  • the communication method of the first aspect or the second aspect described above is executed.
  • a seventh aspect provides a computer program product that includes computer program code, and when the computer program code is executed, causes the above-described communication method of the first aspect or the second aspect to be executed.
  • An eighth aspect discloses a communication system including the communication device of the fourth aspect described above and the communication device of the fifth aspect described above.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the amplitude of a space-frequency combining coefficient disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal device disclosed in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network device disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • Embodiments of the present invention disclose a communication method and device, which are used to improve system performance. The details are described below.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture may include one or more terminal devices 1 (one shown in FIG. 1) and one or more network devices 2 (one shown in FIG. 1).
  • the terminal device 1 and the network Device 2 constitutes a MIMO system.
  • the communication between the terminal device 1 and the network device 2 includes uplink (ie, terminal device 1 to network device 2) communication and downlink (ie, network device 2 to terminal device 1) communication.
  • uplink communication the terminal device 1 is used to send uplink signals to the network device 2; the network device 2 is used to receive uplink signals from the terminal device 1.
  • downlink communication the network device 2 is used to send a downlink signal to the terminal device 1; the terminal device 1 is used to receive a downlink signal from the network device 2.
  • the terminal device 1 may be a user equipment (UE), a customer terminal equipment (CPE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, UE terminal, terminal, wireless communication device, UE agent or UE device, etc.
  • Access terminals can be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (personal digital assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in future 5G networks or terminals in future evolved public land mobile network (PLMN) networks Wait.
  • UE user equipment
  • CPE customer terminal equipment
  • PLMN personal digital assistant
  • the network device 2 is a device capable of communicating with the terminal device 1, and may be a base station, a relay station, or an access point.
  • the base station may be a global mobile communication system (global) for mobile communications (GSM) or a base station transceiver station (BTS) in a code division multiple access (CDMA) network, or a broadband code division Nodebase (NB) in wideband code division multiple access (WCDMA), or evolutional NB (eNB or eNodeB) in long term evolution (LTE), or It is a wireless controller in the cloud radio access network (CRAN) scenario, it can also be a base station device in the future 5G network or a network device in the future evolved PLMN network, or it can be a wearable device or a vehicle equipment.
  • GSM global mobile communication system
  • BTS base station transceiver station
  • CDMA code division multiple access
  • NB broadband code division Nodebase
  • WCDMA wideband code division multiple access
  • eNB or eNodeB
  • the high-precision codebook that is, the Type II codebook
  • the high-precision codebook can be formed by linearly combining the selected multiple orthogonal spatial-domain beam base vectors.
  • the airspace beam basis vector may be referred to as a beam basis vector, may also be referred to as an airspace basis vector, and may also be referred to as a beam.
  • the precoding vector W dimension 2N 1 N 2 ⁇ N L ) corresponding to a spatial layer can be expressed as follows:
  • the frequency domain length occupied by the PMI frequency domain unit may be the bandwidth of the frequency domain subband or R times the bandwidth of the frequency domain subband, and may also be 1, 2 or 4 resource blocks (RB) .
  • R may be 1/2, 1/4, or other values.
  • N 1 and N 2 represent the number of antenna ports in the horizontal and vertical directions, respectively, and N L is the number of spatial layers.
  • W 1 is a 2N 1 N 2 ⁇ L space-space beam matrix, which can be a dual-polarization rotating 2D (2-dimensional) discrete Fourier transform (DFT) basis matrix, which contains a total of L space-space beam vectors, of which two The polarization directions use the same L/2 space-domain beam basis vectors, which can be expressed as follows:
  • Is the space-space beam basis vector selected from the oversampled 2D DFT basis matrix (that is, the rotated 2D DFT basis matrix)
  • the rotating DFT base matrix can be expressed as follows:
  • R N is a rotation matrix of N ⁇ N, which can be expressed as follows:
  • D N is an N ⁇ N orthogonal DFT matrix, and D N in the mth row and nth column can be expressed as follows:
  • W 2 is the combination coefficient matrix, which is the combination coefficient corresponding to the L spatial domain beam basis vectors in W 1 .
  • W 2 can be expressed as follows:
  • W 2 can be expressed as follows:
  • the broadband amplitude is the average value of the amplitude values of the merge coefficients corresponding to all PMI frequency domain units that need to be reported by the PMI, and all PMI frequency domain units use the same broadband amplitude.
  • the sub-band differential amplitude is the difference value of the amplitude of the merge coefficient corresponding to each PMI frequency domain unit relative to the broadband amplitude.
  • the above precoding vector reporting method brings a performance improvement, it also brings a huge precoding vector indication overhead.
  • the above precoding vector needs to report corresponding to the L space domain beam base vectors corresponding to each PMI frequency domain unit.
  • the amplitude and phase of the merge coefficient In particular, the larger the number of PMI frequency domain units, the more merge coefficients need to be reported. For example, if the number of PMI frequency domain units is N 3 , the number of merge coefficients to be reported will reach L*N 3 , Bringing huge reporting overhead.
  • the frequency domain channel correlation is used, and the frequency domain compression idea is used to realize the space frequency compression Type II codebook.
  • the spatial domain beam basis vector combination coefficient matrix corresponding to the i-th (1 ⁇ i ⁇ N 3 ) PMI frequency domain unit is recorded as W 2 (i)
  • the spatial domain beam basis vector combination coefficient matrix corresponding to the N 3 PMI frequency domain units Can be combined into L ⁇ N 3 joint merger coefficient matrix From the frequency domain basis matrix W freq of dimension N 3 ⁇ N 3 , select K frequency domain basis vectors corresponding to each space domain beam basis vector in the L/2 space domain beam basis vectors to form the frequency domain matrix W 3 .
  • the frequency domain base matrix W freq may be a DFT matrix or a conjugate transpose matrix of the DFT matrix, or may be an oversampled DFT matrix or a conjugate transpose matrix of the oversampled DFT matrix.
  • the combined precoding matrix W composed of precoding vectors can be further expressed as
  • the dimension of the frequency domain matrix W 3 is K ⁇ N 3 , including L space domain beam basis
  • the vector corresponds to the same K frequency-domain basis vectors.
  • the dimension of the matrix of space-frequency combining coefficients is L ⁇ K.
  • Space frequency combining coefficient matrix The i-th row in L corresponds to the i-th space-domain beam base vector in L space-domain beam base vectors, and the space-frequency combining coefficient matrix
  • the jth column in corresponds to the jth frequency domain basis vector in the K frequency domain basis vectors.
  • the space-frequency combining coefficient vector corresponding to the i-th space-domain beam base vector is a space-frequency combining coefficient matrix
  • the i-th row vector in, the space-frequency combining coefficient corresponding to the i-th space-domain beam base vector is the space-frequency combining coefficient matrix
  • each of the L space-domain beam basis vectors may also correspond to a different frequency-domain basis vector.
  • TypeII uncompressed codebooks network devices implement codebook subset limitation through high-level parameters n1-n2-codebookSubsetRestriction.
  • the Type II codebook subset limitation mainly restricts the selectable airspace beam base vectors in the predefined airspace beam matrix.
  • the network equipment configures the limitation of Y airspace beam basis vector groups from O 1 O 2 airspace beam basis vector groups for the terminal equipment.
  • the kth space-domain beam basis vector group includes N 1 N 2 orthogonal space-domain beam basis vectors, and the set of these orthogonal space-domain beam basis vectors can be expressed as
  • the maximum allowable value of the wideband amplitude corresponding to the selected spatial domain beam is limited.
  • the frequency domain compressed codebook there is no concept of broadband combining coefficients and subband combining coefficients, but the spatial domain and frequency.
  • the broadband combining coefficient may be the average of all subband combining coefficients.
  • FIG. 2 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention. As shown in FIG. 2, the communication method may include the following steps.
  • the network device sends configuration information to the terminal.
  • the network device includes O 1 O 2 airspace beam basis vector groups, and each of the O 1 O 2 airspace beam basis vector groups includes N 1 N 2 airspace beam basis vectors.
  • the value of O 1 may be 4, and the value of O 2 may be 1 or 4.
  • (N 1, N 2) may be a combination of values (N 1, N 2) ⁇ ⁇ (2,1), (2,2), (4,1), (3,2), (6,1 ), (4, 2), (8, 1), (4, 3), (6, 2), (12, 1), (4, 4), (8, 2), (16, 1) .
  • N 1 , N 2 There may be a correspondence between the value of (N 1 , N 2 ) and the value of (O 1 , O 2 ).
  • the value of (N 1 , N 2 ), the value of (O 1 , O 2 ), and the corresponding relationship between the value and the value may be predefined or configured by the network device.
  • the O 1 O 2 airspace beam basis vector groups there are beams corresponding to the airspace beam basis vectors included in the airspace beam basis vector group to point to one or more neighboring cells, if these beams are used, and the energy corresponding to these beams or When the power is large, it will cause strong interference between adjacent one or more cells. Therefore, in a case where the network device needs to pre-code the information sent by the terminal device, the configuration information may be sent to the terminal device.
  • the configuration information may indicate one or more airspace beam basis vector groups and Q thresholds.
  • One or more airspace beam basis vector groups are selected from O 1 O 2 airspace beam basis vector groups and need to be restricted.
  • the airspace beam basis vector groups need to be restricted, and can be selected according to beams communicating with neighboring cells of the terminal device, or The selection is made according to other methods, and this embodiment is not limited.
  • the Q thresholds correspond one-to-one to the airspace beam basis vectors in one or more airspace beam basis vector groups, that is, one beam uniquely corresponds to one threshold.
  • Q is an integer greater than 1, and the beams have a one-to-one correspondence with the airspace beam base vector.
  • the airspace beam basis vectors in each airspace beam basis vector group may or may not be orthogonal to each other.
  • the threshold can be 0, Or 1.
  • the configuration information may explicitly indicate the above information.
  • the configuration information may include one or more airspace beam basis vector groups and Q thresholds.
  • the configuration information may also implicitly indicate the above information.
  • the configuration information may include codebook subset limitation information, and the codebook subset limitation information may include indication information and limitation information, and the indication information may include one or more airspace beam basis vectors.
  • the index of the group and the restriction information may indicate Q thresholds, and may also include indexes corresponding to the Q thresholds.
  • the configuration information may also include first indication information and second indication information.
  • the first indication information may include indexes of one or more space-domain beam basis vector groups, and the second indication information may indicate Q thresholds.
  • the configuration information includes indexes corresponding to Q thresholds, and the correspondence between the indexes and the thresholds is predefined.
  • the configuration information includes an index of one or more airspace beam base vector groups, the index is related to the airspace beam rotation factor.
  • Configuration information can be sent to the terminal device through a high-level signaling.
  • This high-level signaling can include multiple sub-signals.
  • One sub-signal can send only one information in the configuration information, and one sub-signal can also send multiple information in the configuration information.
  • Configuration information can also be sent to the terminal device through multiple fields.
  • One or more of the multiple fields can only send one of the configuration information, and one or more of the multiple fields can also send multiple of the configuration information. information.
  • the configuration information may also indicate the number of space-frequency combining coefficients, which may be explicitly indicated, that is, the configuration information may also include the number of space-frequency combining coefficients. . It may also be implicitly indicated, that is, the configuration information may further include indication information indicating the number of space-frequency combining coefficients.
  • the network device may have multiple spatial layers, and the number of spatial layers is different, the corresponding downlink precoding vectors may be different. Therefore, in the case where the network device has multiple spatial layers, the above configuration information that the network device may configure for different spatial layers may include the same or different information. In a case where the above configuration information configured by the network device for different space layers includes different information, the configuration information may include the above information of different space layers.
  • the terminal device selects L airspace beam base vectors from the set of airspace beam base vector groups.
  • the terminal device may select L airspace beam basis vectors from the set of airspace beam basis vector groups.
  • the set of airspace beam basis vector groups is a set of multiple airspace beam basis vector groups, that is, a set of O 1 O 2 airspace beam basis vector groups of a network device. You can first select a set of airspace beam basis vectors from the set of airspace beam basis vector groups, that is, select an airspace beam basis vector group from the set of airspace beam basis vector groups, and then select L airspace beam basis from a set of airspace beam basis vectors vector.
  • the selection of a set of airspace beam base vectors and L airspace beam base vectors may be randomly selected, or may be selected for maximum power, or may be selected for minimum power, or may be selected according to other rules, which is not limited in this embodiment .
  • the L airspace beam basis vectors are L different airspace beam basis vectors selected from the set of airspace beam basis vector groups.
  • the polarization direction is 2
  • actually L/2 space domain beam basis vectors are selected from the set of space domain beam basis vector groups, and the same L/2 space domain beam basis vectors are used for both polarization directions.
  • Each of the selected airspace beam base vectors in the selected L/2 airspace beam base vectors is selected twice. Therefore, L airspace beam base vectors are obtained.
  • L/P airspace beam base vectors are selected from the set of airspace beam base vector groups, but each of the selected L/P airspace beam base vectors is P times are selected, so L space-space beam basis vectors are obtained.
  • P is the number of polarization directions.
  • L/P can be 2, 3, 4, or 6.
  • L may be determined by the terminal device, or may be configured by the network device, or may be predetermined. In the case where L is a network device configuration, the configuration information is also used to implicitly or explicitly indicate the number of airspace beam basis vectors L/P.
  • the L spatial domain beam basis vectors corresponding to different spatial layers may be the same or different.
  • the terminal device selects K frequency domain basis vectors from the frequency domain basis vector set for each of the L space domain beam basis vectors.
  • the terminal device After the terminal device selects L airspace beam basis vectors from the set of airspace beam basis vectors, it may select K frequency domain basis vectors from the frequency domain basis vector set for each airspace beam basis vector of the L airspace beam basis vectors.
  • the K frequency domain base vectors corresponding to each airspace beam base vector may be all the same, or may be partially the same, or may be all different.
  • the K frequency-domain base vectors selected for each of the L space-domain beam base vectors may be randomly selected, may be selected for maximum power, may be selected for minimum power, or may be based on other rules Selected, this embodiment is not limited.
  • K can be 1, 2, 3, 4, 5, or 6.
  • the set of frequency domain basis vectors may include multiple groups of frequency domain basis vectors.
  • the frequency domain basis vectors in each group of frequency domain basis vectors in the multiple groups of frequency domain basis vectors are orthogonal to each other, which is each of the airspace beam basis vectors among the L space domain beam basis vectors.
  • K may be determined by the terminal device, or may be configured by the network device, or may be predetermined.
  • the configuration information is also used to implicitly or explicitly indicate the number K of frequency-domain base vectors.
  • the frequency domain basis vectors corresponding to different spatial layers may be the same or different.
  • the terminal device determines M space-frequency combining coefficient vectors according to the L space-domain beam base vectors, the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector.
  • Matrix composed of target precoding vectors ie compressed high-precision codebook W 1 can be referred to as a spatial-domain beam matrix, that is, a matrix of L spatial-domain beam basis vectors. It may be called a space-frequency combining coefficient matrix, that is, a matrix composed of L space-frequency combining coefficient vectors.
  • W 3 can be called a frequency domain matrix, that is, a matrix of K frequency domain basis vectors corresponding to each space domain beam basis vector in L space domain beam basis vectors. When L space domain beam basis vectors use the same K frequency domain basis In the case of vectors, W 3 may be a matrix of K frequency-domain basis vectors.
  • W 1 can be determined according to L airspace beam base vectors, and W can be determined according to K frequency domain base vectors corresponding to each airspace beam base vector among L airspace beam base vectors 3 . Therefore, it can be determined by W, W 1 and W 3
  • W, W 1 and W 3 Refers to a matrix of all space-frequency combining coefficient vectors.
  • a column in W 1 represents an airspace beam basis vector,
  • the row in represents a space-frequency combining coefficient vector, and the space-domain beam basis vector in column i in W 1 corresponds to The space-frequency combining coefficient vector in the i-th row in.
  • the space-frequency combining coefficient vector corresponding to the space-domain beam base vector is the space-frequency combining coefficient vector determined by the space-domain beam base vector and the frequency-domain base vector corresponding to the space-domain beam base vector.
  • the space-frequency combining coefficient vector is composed of multiple space-frequency combining coefficients
  • the composed vector, the space-frequency combining coefficient vector includes or the corresponding space-frequency combining coefficients are all space-frequency combining coefficients in the space-frequency combining coefficient vector.
  • the terminal device can select from L airspace beam basis vectors and L airspace beam basis vectors
  • the K frequency-domain base vectors corresponding to each space-domain beam base vector and the target precoding vector determine M space-frequency combining coefficient vectors.
  • a space-frequency combining coefficient vector corresponds to a space-domain beam base vector, which may be a correspondence relationship or a correspondence table, and may be predefined.
  • a space-frequency combining coefficient vector means that there is one, or at least one.
  • L combining coefficient vectors which can be one-to-one correspondence with L space domain beam base vectors (may be multiple space frequency combining coefficient vectors corresponding to the same/same space domain beam base vector), if only the report part, Then there are M.
  • Each of these L corresponds to an airspace beam basis vector, or these M all correspond to an airspace beam basis vector.
  • the space-frequency combining coefficient vector corresponding to a space-domain beam base vector satisfies the restriction rule, and the restriction rule is associated with a threshold corresponding to the space-domain beam base vector.
  • one or more airspace beam basis vector groups include L airspace beam basis vectors
  • the selected The space-domain beam base vector is restricted, and the space-frequency combining coefficient vector corresponding to a space-domain beam base vector needs to satisfy the restriction rule.
  • one or more airspace beam basis vector groups do not include L airspace beam basis vectors
  • each of the L airspace beam basis vectors does not have a corresponding threshold
  • there is no need to perform Restrictions so that the space-frequency combining coefficient vector corresponding to a space-domain beam base vector does not need to meet the predefined restriction rules.
  • Different airspace beam basis vectors may have different restriction rules, or may have the same restriction rules.
  • the restriction rule may be that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam basis vector is less than or equal to the threshold corresponding to the first space-domain beam basis vector, and the first space-domain beam basis vector is one or more space-domain beam basis vectors Any airspace beam basis vector in the group.
  • the restriction rule may also be that the value of the power function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the square of the threshold corresponding to the first spatial domain beam base vector.
  • the restriction rule may also be that the value of the power function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the linear combination of the square of the threshold corresponding to the first spatial domain beam base vector and the fixed value, and the linear combination may be multiplication and division, It can also be addition and subtraction, multiplication and division addition and subtraction, and a fixed value can be one or more.
  • the restriction rule may also be that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to other values of the threshold corresponding to the first space-domain beam base vector, such as open root, open cubic, open four Power, power, power, product of a fixed value, linear combination with a fixed value after the root sign.
  • the first space-domain beam basis vector here may be the space-domain beam basis vector that needs to satisfy the restriction rule only for general description.
  • the first airspace beam basis vector is any one of the L airspace beam basis vectors.
  • the power function may be the ratio of the first power to the second power, the first power is the power sum of the space-frequency combining coefficients corresponding to the first space-domain beam base vector, and the second power is the space-frequency combining corresponding to the M space-domain beam base vectors, respectively The maximum value of the power sum of the coefficients.
  • the M space-domain beam basis vectors are the space-domain beam basis vectors corresponding to the M space-frequency combining coefficient vectors.
  • the first airspace beam basis vector is any one of the M airspace beam basis vectors.
  • the L airspace beam base vectors include M airspace beam base vectors, that is, the M airspace beam base vectors may be L airspace beam base vectors All airspace beam basis vectors or partial airspace beam basis vectors in.
  • M space-domain beam basis vectors are L space-domain beam basis vectors; when only some space-frequency combining coefficients are reported, M space-domain beam basis vectors may be L space-domain beam bases Part of the airspace beam base vectors in the vector may also be all the airspace beam base vectors among the L airspace beam base vectors.
  • the power function ⁇ 1 can be expressed as follows:
  • ⁇ 1 is the power function
  • Is the amplitude of the jth space-frequency combining coefficient in the sth space-frequency combining coefficient vector
  • Xs is the number of space-frequency combining coefficients in the s-th space-frequency combining coefficient vector
  • Xi is the space frequency in the i-th space-frequency combining coefficient vector
  • the number of merge coefficients, s is greater than or equal to 1 and less than or equal to M
  • Space-frequency combining coefficients are complex numbers, including real and imaginary parts.
  • the amplitude of the space-frequency combining coefficient is the square of the sum of the square of the real part of the space-frequency combining coefficient and the square of the imaginary part
  • the power of the space-frequency combining coefficient is the square of the amplitude of the space-frequency combining coefficient.
  • the restriction rule may be ⁇ 1 ⁇ Z, where Z is the threshold corresponding to the s-th space-domain beam base vector. May be a limiting rule ⁇ 1 ⁇ Z 2, ⁇ 1 restriction rules may also be less than or equal Z values associated with the other, may be described with reference to the specific description above, which is not further described herein.
  • the power function may also be the power sum of the spatial frequency combining coefficients corresponding to the first spatial domain beam basis vector.
  • the power function ⁇ 2 can be expressed as follows:
  • the restriction rule may be ⁇ 2 ⁇ Z. May be a limiting rule ⁇ 2 ⁇ Z 2, ⁇ 2 restriction rules may also be less than or equal Z values associated with the other, may be described with reference to the specific description above, which is not further described herein.
  • the restriction rule may also be a linear combination of ⁇ 2 less than or equal to Z 2 and a fixed value, for example, ⁇ 1 ⁇ Z 2 .
  • the amplitude of the first spatial frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the maximum value among the quantized amplitudes of the spatial frequency combining coefficients in the first polarization direction corresponding to the first spatial domain beam base vector
  • the differential amplitude may be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude.
  • the first space-frequency combining coefficient is any space-frequency combining of the space-frequency combining coefficients corresponding to the first spatial domain beam basis vector in the first polarization direction Coefficient
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the restriction rule may also be that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the threshold corresponding to the first spatial domain beam base vector.
  • the restriction rule may also be that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to other values related to the threshold corresponding to the first spatial domain beam base vector.
  • the amplitude function may be the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector.
  • the amplitude function ⁇ 3 can be expressed as follows:
  • the restriction rule may be ⁇ 3 ⁇ Z. May be a limiting rule ⁇ 3 ⁇ Z 2, ⁇ 3 restriction rules may also be equal to or less than the value associated with the other Z, may be described with reference to the specific description above, which is not further described herein.
  • the amplitude function may also be the average value of the amplitudes of the space-frequency combining coefficients corresponding to the first spatial domain beam base vector.
  • the amplitude function ⁇ 4 can be expressed as follows:
  • the restriction rule may be ⁇ 4 ⁇ Z. May be a limiting rule ⁇ 4 ⁇ Z 2, limit rules may also be associated with other Z values less than or equal ⁇ 4, may be specifically described with reference to the above related description, which is not further described herein.
  • the amplitude function may also be the sum of the amplitudes of the space-frequency combining coefficients corresponding to the first spatial domain beam base vector.
  • the amplitude function ⁇ 5 can be expressed as follows:
  • the restriction rule may be ⁇ 5 ⁇ Z. May be a limiting rule ⁇ 5 ⁇ Z 2, ⁇ 5 may also be a limiting rule than or equal to the value associated with the other Z, may be described with reference to the specific description above, which is not further described herein.
  • the amplitude function may also be the maximum value among the quantized amplitudes of the space-frequency combining coefficients in the first polarization direction corresponding to the first spatial domain beam basis vector.
  • the first polarization direction is any of the polarization directions of the first spatial domain beam basis vector One polarization direction.
  • the amplitude of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors can be directly based on the L frequency-domain beam base vectors, the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding
  • the vector calculation can also be obtained by calculating the space-frequency combining coefficients calculated from the L space-domain beam base vectors, the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector.
  • the processing here may be normalization, quantization, or the same processing as the amplitude of the first space-frequency combining coefficient.
  • the determined M space-frequency combining coefficient vectors are all space-frequency combining coefficients that the terminal device needs to report.
  • the number of included space-frequency combining coefficients is greater than the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors.
  • each space-frequency combining coefficient vector in the M space-frequency combining coefficient vectors includes The number of space-frequency combining coefficients is less than or equal to The number of space-frequency combining coefficient vectors included in the corresponding space-frequency combining coefficient vector in the included L space-frequency combining coefficient vectors.
  • M L
  • the target precoding vector determines M initial space-frequency combining coefficient vectors.
  • M initial space-frequency combining coefficient vectors are determined to be M space-frequency combining coefficient vectors.
  • M initial space-frequency can be determined
  • the combining coefficient vector is M space-frequency combining coefficient vectors.
  • one or more space-domain beam basis vector groups include a set of space-domain beam basis vectors, and there are M space-frequency combining coefficient vectors where the space-frequency combining coefficients do not meet the corresponding restriction rules, the ones that do not meet the restriction rules can be adjusted
  • the amplitudes of the space-frequency combining coefficients obtain M space-frequency combining coefficient vectors, and steps 202 to 204 may be re-executed until M space-frequency combining coefficient vectors are determined.
  • M initial space-frequency combining coefficient vectors after determining M initial space-frequency combining coefficient vectors, or after selecting L airspace beam basis vectors from the set of airspace beam basis vector groups, it may be determined whether one or more airspace beam basis vector groups include L Airspace beam basis vectors, when it is determined that one or more airspace beam basis vector groups do not include L airspace beam basis vectors, it indicates that there is no need to limit the determined space-frequency combining coefficients, and M initial space frequencies are determined After combining the coefficients, M initial space-frequency combining coefficient vectors may be determined as M space-frequency combining coefficient vectors, that is, space-frequency combining coefficient vectors that need to be reported.
  • the space-frequency combining coefficients of the M initial space-frequency combining coefficient vectors may continue to be determined Whether they all meet the corresponding restriction rules.
  • the space-frequency combining coefficients of the M initial space-frequency combining coefficient vectors all satisfy the corresponding restriction rules, it indicates that the determined space-frequency combining coefficients have satisfied the corresponding restriction rules. Therefore, the M initial space-frequency combining coefficients can be combined
  • the coefficient vector is determined to be M space-frequency combining coefficient vectors, that is, the space-frequency combining coefficient vectors that need to be reported.
  • steps 202-204 may be repeatedly performed until M space-frequency combining coefficient vectors are determined.
  • the space-frequency combining coefficient satisfies the corresponding restriction rule, that is, the space-frequency combining coefficient meets the corresponding restriction rule corresponding to the corresponding space-domain beam base vector.
  • Different restriction rules can correspond to different adjustment rules.
  • the configuration information of the network device indicates that there are 4 beam vector groups among O 1 O 2 beam vector groups that need to satisfy the corresponding restriction rule.
  • the restriction rule is that the maximum value of the amplitude function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the threshold corresponding to the first spatial domain beam base vector.
  • N 1 N 2 4 orthogonal space-space beam basis vectors
  • N 1 N 2 4 orthogonal spatial beam base vector indexes are jointly coded by (x 1 , x 2 )
  • the limit threshold corresponding to the airspace beam base vector with index V is indicated by 2 bits according to a predetermined rule, which can be shown in Table 1.
  • FIG. 3 is a schematic diagram of the amplitude of a space-frequency combining coefficient disclosed in an embodiment of the present invention.
  • the polarization direction is 1 and the polarization direction is 2
  • the amplitude of each space-frequency combining coefficient is less than or equal to 1, therefore, the space-frequency combining coefficient corresponding to beam 1 satisfies the corresponding restriction rule.
  • the amplitudes of the four space-frequency combining coefficients corresponding to beam 3 are all greater than the space-frequency combining coefficients. That is, among the space-frequency combining coefficients corresponding to beam 3, there are space-frequency combining coefficients that do not satisfy the corresponding restriction rule. If you need to use beam 3, you need to adjust the amplitude of the space-frequency combining coefficients. You can only adjust the space-frequency combining coefficients that do not meet the restriction rules to the limit threshold among the four space-frequency combining coefficients.
  • the space-frequency combining coefficients are divided by the maximum amplitude among the four space-frequency combining coefficients, or only the space-frequency combining coefficients that do not meet the restriction rules among the four space-frequency combining coefficients are divided by the four space-frequency combining coefficients
  • the maximum amplitude in the merge coefficient may also be other adjustment methods, which is not limited in this embodiment. In the case where the polarization direction is 2, if the beam 2 needs to be used, the amplitude of the space-frequency combining coefficient needs to be adjusted, and the adjustment method may be the same as described above. Different restriction rules can correspond to different adjustment strategies. If beam 3 is not used, beam selection may be performed again, and beam 3 may not be selected when beam selection is performed again.
  • the target precoding vector determines L initial space-frequency combining coefficient vectors, and selects some space-frequency combining coefficients from L initial space-frequency combining coefficient vectors to obtain M initial space-frequency combining coefficient vectors and M initial space-frequency combining coefficient vectors
  • the number of space-frequency combining coefficients included in each initial space-frequency combining coefficient vector in is less than or equal to the number of space-frequency combining coefficients included in the corresponding initial space-frequency combining coefficient vector in the L initial space-frequency combining coefficient vectors.
  • the subsequent process is the same as the process that the terminal device needs to report all the space-frequency combining coefficients.
  • the configuration information indicates the number of space-frequency combining coefficients
  • the number of space-frequency combining coefficients included in the M initial space-frequency combining coefficient vectors is equal to the number of space-frequency combining coefficients.
  • the configuration information does not indicate the number of space-frequency combining coefficients
  • the number of space-frequency combining coefficients included in the M initial space-frequency combining coefficient vectors is determined by the terminal device.
  • the terminal device sends the space-frequency combining coefficient information of the M space-frequency combining coefficient vectors to the network device.
  • the terminal device determines M space-frequency combining coefficient vectors according to the L space-domain beam base vectors, the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector.
  • the network device sends the information of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors.
  • the information of the space-frequency combining coefficients may include the amplitude and phase of the space-frequency combining coefficients.
  • the index of the base vector in the L airspace beam base vectors and the index of the base vector in the K frequency domain base vectors corresponding to each airspace beam base vector in the L airspace beam base vectors may also be sent to the network device.
  • the K frequency corresponding to each airspace beam basis vector among the L airspace beam basis vectors may also be The corresponding relationship of the domain basis vector is sent to the network device together.
  • the information of the space-frequency combining coefficients may also include the index of the space-frequency combining coefficients.
  • the index of the space-frequency combining coefficients is used to indicate the space-frequency combining coefficients as the number of space-frequency combining coefficients in the vector of space-frequency combining coefficients.
  • the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors can also be sent to the network device together .
  • the amplitude and phase of the space-frequency combining coefficient may be quantized values or non-quantized values.
  • the space-frequency combining with the largest amplitude among all the space-frequency combining coefficients included in the M space-frequency combining coefficient vectors can be used
  • the amplitude of the coefficients is normalized by reference, that is, the normalized amplitude of each space-frequency combining coefficient included in the space-frequency combining coefficient vector is the amplitude of the space-frequency combining coefficient and the M space-frequency combining coefficient vectors.
  • the phase of the space-frequency combining coefficient with the largest amplitude among all the space-frequency combining coefficients included in the M space-frequency combining coefficient vectors can be used as a reference Normalization, that is, the normalized phase of each space-frequency combining coefficient included in the space-frequency combining coefficient vector is the phase of the space-frequency combining coefficient and all the space-frequency combining coefficients included in the M space-frequency combining coefficient vectors The result of the phase subtraction of the space-frequency combining coefficient with the largest amplitude.
  • the terminal device can report the amplitude and phase of the space-frequency combining coefficient to the network device in an index manner, and the correspondence between the index and the amplitude or phase can be predefined . Assuming that the quantized amplitude can be taken as 0, And 1, each of these eight values can uniquely correspond to an index.
  • the quantization and reporting of the phase of the space-frequency combining coefficient are similar to the amplitude, and will not be described in detail here.
  • the network device receives the information of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device, the index of the base vector in the L space-domain beam base vectors, and the corresponding After the index of the base vector in the K frequency domain base vectors, W 1 can be determined according to the index of the base vector in the L space domain beam base vectors, and the K frequency corresponding to each space domain beam base vector in the L space domain beam base vectors can be determined The index of the base vector in the domain base vector determines W 3 , which can be determined according to the information of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors In the case that the terminal device only reports part of the space-frequency combining coefficient, The position of the unreported space-frequency combining coefficient can be filled with 0, and then according to W 1 , And W 3 to determine the target precoding vector.
  • the quantization of the amplitude and phase can be quantized separately.
  • a quantization method is: for the T space-frequency combining coefficients to be reported, the amplitude of the T space-frequency combining coefficients can be divided by the maximum value of the amplitudes of the T space-frequency combining coefficients, respectively, to obtain a normalization After the T spatial frequency merging coefficients are selected, the normalized T spatial frequency merging coefficients are respectively selected from the quantized values closest to the quantized value to obtain the quantization amplitude of the T spatial frequency merging coefficients.
  • the quantized amplitude of the space-frequency combining coefficient with the largest amplitude is 1.
  • the amplitude of the i-th space-frequency combining coefficient among the T space-frequency combining coefficients before quantization is a
  • the amplitude of the normalized unquantized space-frequency combining coefficient is a/c, where c is T
  • the maximum value of the amplitude of the space-frequency combining coefficient is 1.
  • the reference amplitude for the polarization direction where the space-frequency combining coefficient with the largest amplitude is 1 is 1, and the reference amplitude for other polarization directions is the quantized amplitude for the combining coefficient with the largest amplitude in the corresponding polarization direction.
  • the reference amplitude can be quantized and reported with 4 bits.
  • the desirable quantization values are 1, (1/2) 1/4 , (1/4) 1/4 , (1/8) 1/4 , (1/16) 1 /4 , ..., (1/2 14 ) 1/4 and 0.
  • the quantized amplitude of the space-frequency combining coefficient of the polarization direction is divided by the reference amplitude of the polarization direction, respectively, to obtain the differential amplitude of the space-frequency combining coefficient of the polarization direction.
  • the differential amplitude of each space-frequency combining coefficient can be quantized and reported using 3 bits, and the quantizable value is 1, 1/2, 1/4, 1/8 and
  • the quantized amplitude value of each space-frequency combining coefficient may be expressed as the product of the reference amplitude value corresponding to the polarization direction of the space-frequency combining coefficient and the differential amplitude value corresponding to the space-frequency combining coefficient.
  • the phase of each space-frequency combining coefficient can be quantized using 3 bits (such as 8 phase shift keying (PSK)) or 4 bits (such as 16PSK).
  • the configuration information of the network device indicates that there are 4 beam vector groups among O 1 O 2 beam vector groups that need to satisfy the corresponding restriction rule.
  • the restriction rule is that the maximum value of the amplitude function of the space-frequency combining coefficient corresponding to the first spatial domain beam base vector is less than or equal to the threshold corresponding to the first spatial domain beam base vector, and the amplitude function is the first pole corresponding to the first spatial domain beam base vector.
  • the maximum value of the quantized amplitude of the space-frequency combining coefficient in the polarization direction, that is, the amplitude function is the reference amplitude of the first polarization direction corresponding to the first spatial domain beam basis vector.
  • N 1 N 2 4 space-space beam basis vectors
  • the maximum value of the frequency combining coefficient is limited.
  • the limit threshold corresponding to the spatial beam base vector with index V is indicated by 2 bits according to a predetermined rule.
  • the predetermined rule may only satisfy certain rows in Table 3, or It is other preset rules, or a combination of some rows in Table 3 and other preset rules.
  • the information of the space-frequency combining coefficients of the T space-frequency combining coefficient vectors includes the index of the reference amplitude for each polarization direction, and T space-frequency The index of the difference amplitude of each space-frequency combining coefficient among the space-frequency combining coefficients of the combining coefficient vector.
  • the information of the space-frequency combining coefficients of the T space-frequency combining coefficient vectors includes each The index of the reference amplitude of the polarization direction, and the index of the differential amplitude and the phase corresponding index of each of the space-frequency combining coefficients of the T space-frequency combining coefficient vectors.
  • each polarization direction corresponds to the same L/2 spatial domain beam basis vectors
  • the L spatial domain beam basis vectors selected by multiple spatial layers are all the same
  • the K frequency-domain base vectors corresponding to each space-domain beam base vector among the L space-domain beam base vectors are the same.
  • the network device may send configuration information to indicate the maximum number of space-frequency combining coefficients that need to be reported.
  • the maximum number of space-frequency combining coefficients can be expressed as That is, the product of ⁇ , L, and K i is rounded up.
  • is the scale factor of the space-frequency combining coefficient configured by the network device, and the possible values are 3/4, 1/2, 1/4, and 1/8.
  • the terminal device can only report to the network device at most Space-frequency combining coefficients.
  • the terminal device may only report Among the space-frequency combining coefficients, the space-frequency combining coefficients with non-zero amplitudes and the indexes corresponding to these space-frequency combining coefficients do not need to report the information of the space-frequency combining coefficients with amplitude 0.
  • the number K i of frequency domain basis vectors corresponding to different spatial layers may be the same or different.
  • the K i frequency domain basis vectors corresponding to different space layers may be the same, different, or partially the same.
  • K i can be the number of frequency domain basis vectors of different space layers. It can be seen that the number of frequency domain basis vectors of different space layers can be different, and the maximum number of corresponding space-frequency combining coefficients can be different. K i can also be the number of frequency domain basis vectors of the first space layer among multiple space layers. It can be seen that the maximum number of space-frequency combining coefficients corresponding to different space layers is the same.
  • the indexes of the space-frequency combining coefficients whose amplitude is non-zero among the space-frequency combining coefficients can be indicated by bitmaps corresponding to all spatial layers.
  • the two polarization directions use the same spatial beam basis vector
  • the strong polarization direction (including the polarization with the largest spatial-frequency combining coefficient) Direction) corresponds to a reference amplitude of 1
  • the weakly polarized direction (excluding the polarization direction of the space-frequency combining coefficient with the largest amplitude) corresponds to a reference amplitude of If the product of the differential amplitude of each space-frequency combining coefficient corresponding to the two polarization directions of beam 1 and the corresponding reference amplitude is less than or equal to Then, the space-frequency combining coefficient corresponding to beam 1 satisfies the corresponding restriction rule.
  • the space-frequency combining coefficient corresponding to beam 1 does not satisfy the corresponding restriction rule. If beam 1 needs to be used, the amplitude of the space-frequency combining coefficient needs to be adjusted. It may be that only the space-frequency combining coefficient corresponding to beam 1 does not meet the limit rule to the threshold of the limit, or it may be the beam.
  • the space-frequency combining coefficients corresponding to 1 are divided by the maximum amplitude of the space-frequency combining coefficients corresponding to beam 1, or only the space-frequency combining coefficients that do not meet the restriction rules among the space-frequency combining coefficients corresponding to beam 1 are divided by the beam
  • the maximum amplitude of the space-frequency combining coefficient corresponding to 1 may also be other adjustment methods, which is not limited in this embodiment. If beam 1 is not used, beam selection can be performed again, and beam 1 may not be selected when beam selection is performed again.
  • Step 201-step 205 may be a processing procedure for one space layer.
  • the processing procedure for each space layer may be the same as step 201-step 205.
  • FIG. 4 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention. As shown in FIG. 4, the communication method may include the following steps.
  • the network device sends configuration information to the terminal.
  • Step 401 is the same as step 201.
  • step 201 For detailed description, please refer to step 201, which will not be described in detail here.
  • the terminal device selects L/P airspace beam basis vectors from the set of airspace beam basis vector groups to obtain L airspace beam basis vectors.
  • the terminal device may select L/P airspace beam base vectors from the set of airspace beam base vector groups to obtain L airspace beam base vectors.
  • P is the number of polarization directions. That is, only L/P airspace beam base vectors need to be selected from the set of airspace beam base vector groups, and the same L/P airspace beam base vectors are used for the P polarization directions, which can be regarded as the selection of L/P airspace beams.
  • the base vector can be obtained by copying the base vector P-1 times.
  • step 202 You can first select a set of airspace beam base vectors from the set of airspace beam base vector groups, that is, select an airspace beam base vector group from the set of airspace beam base vector groups, and then select L/P airspace from a set of airspace beam base vectors. Beam basis vector. Other processing procedures are similar to step 202. For detailed description, please refer to step 202, which will not be described in detail here.
  • the terminal device selects K frequency-domain base vectors from the set of frequency-domain base vectors for each of the L-space beam base vectors.
  • Step 403 is the same as step 203.
  • step 203 For detailed description, please refer to step 203, which will not be described in detail here.
  • the terminal device determines M space-frequency combining coefficient vectors according to the L space-domain beam base vectors, the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector.
  • Step 404 is the same as step 204.
  • step 204 please refer to step 204, which will not be described in detail here.
  • the terminal device sends the space-frequency combining coefficient information of the M space-frequency combining coefficient vectors to the network device.
  • Step 405 is the same as step 205.
  • step 205 For a detailed description, please refer to step 205, which will not be described in detail here.
  • FIG. 5 is a schematic structural diagram of a terminal device disclosed in an embodiment of the present invention.
  • the terminal device can be applied to the above-mentioned communication method shown in FIG. 2 and FIG. 4.
  • the terminal device may include:
  • the receiving unit 501 is configured to receive configuration information from a network device, where the configuration information indicates one or more airspace beam base vector groups and Q thresholds, and the Q thresholds and one or more airspace beam base vector group airspace beams Base vectors correspond to each other;
  • the first selection unit 502 is configured to select L space-domain beam basis vectors from the set of space-domain beam basis vector groups;
  • the second selection unit 503 is configured to select K frequency domain basis vectors from the frequency domain basis vector set for each of the L space domain beam basis vectors selected by the first selection unit 502;
  • the determining unit 504 is configured to use the K frequency-domain base vectors corresponding to each air-space beam base vector in the L air-space beam base vectors selected by the first selection unit 502 and the L air-space beam base vectors selected by the second selection unit 503
  • the target precoding vector determines M space-frequency combining coefficient vectors, where one space-frequency combining coefficient vector corresponds to a space-domain beam base vector, and the space-frequency combining coefficient vector corresponding to a space-domain beam base vector satisfies the restriction rule.
  • the threshold corresponding to the basis vector is associated;
  • the sending unit 505 is configured to send the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors determined by the determining unit 504 to the network device.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam basis vector is less than or equal to the threshold corresponding to the first space-domain beam basis vector, and the first space-domain beam basis vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the power function is the ratio of the first power to the second power
  • the first power is the power sum of the space-frequency combining coefficients corresponding to the first spatial domain beam basis vector
  • the second power is M spatial domain beam bases The maximum value of the power sum of the space-frequency combining coefficients corresponding to the vectors respectively.
  • the power function is a power sum of space-frequency combining coefficients corresponding to the first space-domain beam basis vector.
  • the power of the space-frequency combining coefficient corresponding to the first space-domain beam base vector may be the square of the amplitude of the space-frequency combining coefficient corresponding to the first space-domain beam base vector.
  • the restriction rule is that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector, and the first space-domain beam base vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the amplitude function is the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam basis vector.
  • the amplitude of the first space-frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the quantization of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector
  • the maximum value of the amplitude, the differential amplitude can be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude
  • the first space-frequency combining coefficient is the space-frequency combining coefficient corresponding to the first spatial domain beam base vector in the first polarization direction
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the amplitude function may be the maximum value of the quantized amplitude of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector, and the first polarization direction is the first spatial domain beam basis vector Any of the polarization directions.
  • the first selection unit 502 is specifically configured to:
  • L airspace beam base vectors are selected.
  • the determining unit 504 is specifically configured to:
  • the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector determine M initial space-frequency combining coefficient vectors, where M is equal to L;
  • M initial space-frequency combining coefficient vectors are determined to be M space-frequency combining coefficient vectors.
  • the determining unit 504 is specifically configured to:
  • M initial space-frequency combining coefficient vectors are determined to be M space-frequency combining coefficient vectors.
  • the determining unit 504 is specifically further used to:
  • space-domain beam basis vector groups include a set of space-domain beam basis vectors and the space-frequency combining coefficients of the M initial space-frequency combining coefficient vectors all satisfy the corresponding restriction rule, determine M initial space-frequency combining coefficients
  • the vector is M space-frequency combining coefficient vectors.
  • the determining unit 504 is specifically further used to:
  • space-domain beam basis vector groups include a set of space-domain beam basis vectors, and there are M initial space-frequency combining coefficient vectors where the space-frequency combining coefficients do not satisfy the corresponding restriction rule, adjust the space that does not meet the restriction rule
  • the amplitudes of frequency combining coefficients are used to obtain M space-frequency combining coefficient vectors.
  • the determining unit 504 determines that the one or more space-domain beam basis vector groups include a set of space-domain beam basis vectors, and that there are M initial space-frequency combining coefficient vectors in which the space-frequency combining coefficients do not meet the corresponding restrictions.
  • the first selection unit 502 is triggered to select L airspace beam basis vectors from the set of airspace beam basis vector groups, and the second selection unit 503 is for each airspace beam basis vector of the L airspace beam basis vectors from the frequency domain basis K frequency domain basis vectors are selected from the vector set, and the determining unit 504 determines based on the L space domain beam basis vectors, the K frequency domain basis vectors corresponding to each space domain beam basis vector in the L space domain beam basis vectors, and the target precoding vector, to determine M space-frequency combining coefficient vectors.
  • the configuration information further indicates the number of space-frequency combining coefficients, and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors is equal to the number of space-frequency combining coefficients.
  • the sending unit 505 is specifically configured to send the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors and the space-frequency combining coefficients included in the M space-frequency combining coefficient vectors to the network device. Quantity.
  • the sending unit 505 is specifically configured to send the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors, the index of the base vector in the L space-domain beam base vectors, and the L number to the network device.
  • the index of the base vector in the K frequency-domain base vectors corresponding to each air-domain beam base vector in the air-domain beam base vector.
  • the receiving unit 501 For a more detailed description of the receiving unit 501, the first selecting unit 502, the second selecting unit 503, the determining unit 504, and the sending unit 505, reference may be made directly to the relevant description of the terminal device in the method embodiments shown in FIG. 2 and FIG. 4 above Get it directly, I won't go into details here.
  • FIG. 6 is a schematic structural diagram of a network device disclosed in an embodiment of the present invention.
  • the network device can be applied to the above-mentioned communication methods shown in FIG. 2 and FIG. 4.
  • the network device may include a processing unit 601 and a transceiver unit 602.
  • the processing unit 601 is used to:
  • the control transceiver unit 602 sends configuration information to the terminal device.
  • the configuration information indicates one or more airspace beam basis vector groups and Q thresholds, and the Q thresholds correspond to the airspace beam basis vectors in one or more airspace beam basis vector groups. ;
  • the control transceiving unit 602 receives the amplitude and phase of the space-frequency combining coefficients of M space-frequency combining coefficient vectors from the terminal device, and the M space-frequency combining coefficient vectors are based on each of L space-domain beam basis vectors and L space-domain beam basis vectors
  • the K frequency domain basis vectors and target precoding vectors corresponding to the space domain beam basis vectors are determined, L space domain beam basis vectors are selected from the set of space domain beam basis vector groups, and K frequency domain basis vectors are selected from the frequency domain basis vector set, Among them, one space-frequency combining coefficient vector corresponds to one space-domain beam base vector, and one space-frequency beam combining vector corresponds to the space-frequency combining coefficient vector satisfying the restriction rule, and the restriction rule is associated with the threshold corresponding to the space-domain beam base vector.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam basis vector is less than or equal to the threshold corresponding to the first space-domain beam basis vector, and the first space-domain beam basis vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the power function is the ratio of the first power to the second power
  • the first power is the power sum of the space-frequency combining coefficients corresponding to the first spatial domain beam basis vector
  • the second power is M spatial domain beam bases The maximum value of the power sum of the space-frequency combining coefficients corresponding to the vectors respectively.
  • the power function is a power sum of space-frequency combining coefficients corresponding to the first space-domain beam basis vector.
  • the power of the space-frequency combining coefficient corresponding to the first space-domain beam base vector may be the square of the amplitude of the space-frequency combining coefficient corresponding to the first space-domain beam base vector.
  • the restriction rule is that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector, and the first space-domain beam base vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the amplitude function is the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam basis vector.
  • the amplitude of the first space-frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the quantization of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector
  • the maximum value of the amplitude, the differential amplitude can be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude
  • the first space-frequency combining coefficient is the space-frequency combining coefficient corresponding to the first spatial domain beam base vector in the first polarization direction
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the amplitude function may be the maximum value of the quantized amplitude of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector, and the first polarization direction is the first spatial domain beam basis vector Any of the polarization directions.
  • the configuration information also indicates the number of space-frequency combining coefficients, and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors is equal to the space-frequency combining The number of coefficients.
  • the transceiver unit 602 receives the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device including:
  • the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors are received.
  • the receiving and sending unit 602 receiving the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device includes:
  • processing unit 601 and transceiver unit 602 can be directly obtained by directly referring to the relevant description of the network device in the method embodiments shown in FIG. 2 and FIG. 4, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • the communication device may include a processor 701, a memory 702, a transceiver 703, and a bus 704.
  • the processor 701 may be a general-purpose central processing unit (CPU), multiple CPUs, microprocessors, application-specific integrated circuits (ASIC), or one or more programs used to control the execution of the program of the present invention. integrated circuit.
  • the memory 702 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Access to any other media, but not limited to this.
  • the memory 702 may exist independently, or may be integrated with the processor 701.
  • the bus 704 is connected to the processor 701.
  • the memory 702 bus 704 may include a path to transfer information between the above components.
  • the transceiver 703 may be a transceiver antenna, or other transceiver devices, such as a radio frequency transceiver or a signal transceiver interface. among them:
  • the communication device may be a terminal device or a chip in the terminal device, where:
  • the transceiver 703 is configured to receive configuration information from a network device, where the configuration information indicates one or more airspace beam base vector groups and Q thresholds, and the Q thresholds and one or more airspace beam base vector group airspace beams Base vectors correspond to each other;
  • a group of program codes is stored in the memory 702, and the processor 701 is used to call the program codes stored in the memory 702 to perform the following operations:
  • the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector determine M space-frequency combining coefficient vectors, of which, one space-frequency combining The coefficient vector corresponds to an airspace beam base vector, and the space-frequency combining coefficient vector corresponding to an airspace beam base vector satisfies the restriction rule, which is associated with the threshold corresponding to the airspace beam base vector;
  • the transceiver 703 is also used to send the amplitude and phase of the space-frequency combining coefficients of M space-frequency combining coefficient vectors to the network device.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam basis vector is less than or equal to the threshold corresponding to the first space-domain beam basis vector, and the first space-domain beam basis vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the power function is the ratio of the first power to the second power
  • the first power is the power sum of the space-frequency combining coefficients corresponding to the first spatial domain beam basis vector
  • the second power is M spatial domain beam bases The maximum value of the power sum of the space-frequency combining coefficients corresponding to the vectors respectively.
  • the power function is a power sum of space-frequency combining coefficients corresponding to the first space-domain beam basis vector.
  • the power of the space-frequency combining coefficient corresponding to the first space-domain beam base vector may be the square of the amplitude of the space-frequency combining coefficient corresponding to the first space-domain beam base vector.
  • the restriction rule is that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector, and the first space-domain beam base vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the amplitude function is the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam basis vector.
  • the amplitude of the first space-frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the quantization of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector
  • the maximum value of the amplitude, the differential amplitude can be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude
  • the first space-frequency combining coefficient is the space-frequency combining coefficient corresponding to the first spatial domain beam base vector in the first polarization direction
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the amplitude function may be the maximum value of the quantized amplitude of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector, and the first polarization direction is the first spatial domain beam basis vector Any of the polarization directions.
  • the processor 701 selecting L airspace beam base vectors from the set of airspace beam base vector groups includes:
  • the processor 701 when all space-frequency combining coefficients are reported, the processor 701 according to the L space-domain beam base vectors and the K frequency-domain bases corresponding to each space-domain beam base vector of the L space-domain beam base vectors Vector and target precoding vector, and determining M space-frequency combining coefficient vectors include:
  • the K frequency-domain base vectors corresponding to each space-domain beam base vector in the L space-domain beam base vectors, and the target precoding vector determine M initial space-frequency combining coefficient vectors, where M is equal to L;
  • M initial space-frequency combining coefficient vectors are determined to be M space-frequency combining coefficient vectors.
  • the processor 701 when only a part of the space-frequency combining coefficients are reported, the processor 701 according to the L space-domain beam base vectors and the K frequency domains corresponding to each space-domain beam base vector of the L space-domain beam base vectors
  • the base vector and the target precoding vector, and determining M space-frequency combining coefficient vectors include:
  • M initial space-frequency combining coefficient vectors are determined to be M space-frequency combining coefficient vectors.
  • the processor 701 determines M airspaces according to the L airspace beam base vectors, the K frequency domain base vectors corresponding to each airspace beam base vector in the L airspace beam base vectors, and the target precoding vector
  • the frequency combining coefficient vector also includes:
  • space-domain beam basis vector groups include a set of space-domain beam basis vectors and the space-frequency combining coefficients of the M initial space-frequency combining coefficient vectors all satisfy the corresponding restriction rule, determine M initial space-frequency combining coefficients
  • the vector is M space-frequency combining coefficient vectors.
  • the processor 701 determines M airspaces according to the L airspace beam base vectors, the K frequency domain base vectors corresponding to each airspace beam base vector in the L airspace beam base vectors, and the target precoding vector
  • the frequency combining coefficient vector also includes:
  • space-domain beam basis vector groups include a set of space-domain beam basis vectors, and there are M initial space-frequency combining coefficient vectors where the space-frequency combining coefficients do not satisfy the corresponding restriction rule, adjust the space that does not meet the restriction rule
  • the amplitudes of frequency combining coefficients are used to obtain M space-frequency combining coefficient vectors.
  • the processor 701 determines M airspaces according to the L airspace beam base vectors, the K frequency domain base vectors corresponding to each airspace beam base vector in the L airspace beam base vectors, and the target precoding vector
  • the frequency combining coefficient vector also includes:
  • one or more airspace beam basis vector groups include a set of airspace beam basis vectors, and there are M initial space-frequency combining coefficient vectors where the space-frequency combining coefficients do not meet the corresponding restriction rules
  • the slave airspace beam base vector group is executed.
  • Select L airspace beam base vectors in the set select K frequency domain base vectors from the frequency domain base vector set for each airspace beam base vector in L airspace beam base vectors, according to L airspace beam base vectors, L airspaces
  • the K frequency-domain base vectors and the target precoding vectors corresponding to each space-domain beam base vector in the beam base vector determine M space-frequency combining coefficient vectors.
  • the configuration information further indicates the number of space-frequency combining coefficients, and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors is equal to the number of space-frequency combining coefficients.
  • the transceiver 703 sending the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors to the network device includes:
  • the amplitude and phase of the space-frequency combining coefficients of M space-frequency combining coefficient vectors and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors are sent to the network device.
  • the transceiver 703 sending the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors to the network device includes:
  • the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors, the index of the base vector in the L space-domain beam base vectors, and the K number of the L space-domain beam base vectors corresponding to each of the space-space beam base vectors are sent to the network device The index of the base vector in the frequency domain base vector.
  • Steps 202-204 and 402-404 can be executed by the processor 701 and the memory 702 in the terminal device, and steps 201 and 405 of the terminal device side receiving configuration information in step 201 and step 402 can be executed by the terminal The transceiver 703 in the device performs.
  • the first selection unit 502, the second selection unit 503, and the determination unit 504 can be implemented by the processor 701 and the memory 702 in the terminal device, and the receiving unit 501 and the transmission unit 505 can be implemented by the transceiver 703 in the terminal device .
  • the foregoing terminal device may also be used to execute various methods performed by the terminal device in the foregoing method embodiments, and details are not described herein again.
  • the communication device may be a network device or a chip in the network device, where:
  • a group of program codes is stored in the memory 702, and the processor 701 is used to call the program codes stored in the memory 702 to control the transceiver 703 to perform the following operations:
  • the configuration information indicates one or more airspace beam basis vector groups and Q thresholds, and the Q thresholds correspond to the airspace beam basis vectors in one or more airspace beam basis vector groups;
  • the M space-frequency combining coefficient vectors are based on each of the L-space beam base vectors and the L-space beam base vectors Corresponding K frequency domain basis vectors and target precoding vectors are determined, L space domain beam basis vectors are selected from the set of space domain beam basis vector groups, and K frequency domain basis vectors are selected from the set of frequency domain basis vectors, one of which is empty.
  • the frequency combining coefficient vector corresponds to a space domain beam base vector, and the space frequency combining coefficient vector corresponding to a space domain beam base vector satisfies the restriction rule, which is associated with the threshold corresponding to the space domain beam base vector.
  • the restriction rule is that the value of the power function of the space-frequency combining coefficient corresponding to the first space-domain beam basis vector is less than or equal to the threshold corresponding to the first space-domain beam basis vector, and the first space-domain beam basis vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the power function is the ratio of the first power to the second power
  • the first power is the power sum of the space-frequency combining coefficients corresponding to the first spatial domain beam basis vector
  • the second power is M spatial domain beam bases The maximum value of the power sum of the space-frequency combining coefficients corresponding to the vectors respectively.
  • the power function is a power sum of space-frequency combining coefficients corresponding to the first space-domain beam basis vector.
  • the power of the space-frequency combining coefficient corresponding to the first space-domain beam base vector may be the square of the amplitude of the space-frequency combining coefficient corresponding to the first space-domain beam base vector.
  • the restriction rule is that the value of the amplitude function of the space-frequency combining coefficient corresponding to the first space-domain beam base vector is less than or equal to the threshold corresponding to the first space-domain beam base vector, and the first space-domain beam base vector is one Or any airspace beam basis vector in a plurality of airspace beam basis vector groups.
  • the amplitude function is the maximum value of the amplitude of the space-frequency combining coefficient corresponding to the first spatial domain beam basis vector.
  • the amplitude of the first space-frequency combining coefficient may be the product of the reference amplitude and the differential amplitude
  • the reference amplitude may be the quantization of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector
  • the maximum value of the amplitude, the differential amplitude can be the ratio of the quantized amplitude of the first space-frequency combining coefficient to the reference amplitude
  • the first space-frequency combining coefficient is the space-frequency combining coefficient corresponding to the first spatial domain beam base vector in the first polarization direction
  • the first polarization direction is any one of the polarization directions of the first spatial domain beam basis vector.
  • the amplitude function may be the maximum value of the quantized amplitude of the space-frequency combining coefficient in the first polarization direction corresponding to the first spatial domain beam basis vector, and the first polarization direction is the first spatial domain beam basis vector Any of the polarization directions.
  • the configuration information also indicates the number of space-frequency combining coefficients, and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors is equal to the space-frequency combining The number of coefficients.
  • the transceiver 703 receives the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device including:
  • the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device and the number of space-frequency combining coefficients included in the M space-frequency combining coefficient vectors are received.
  • the transceiver 703 receiving the amplitude and phase of the space-frequency combining coefficients of the M space-frequency combining coefficient vectors from the terminal device includes:
  • the steps of receiving the amplitude and phase of the space-frequency combining coefficient in the network device side in step 201, step 401, step 205, and step 405 may be performed by the processor 701, the memory 702, and the transceiver 703 in the network device.
  • the processing unit 601 and the transceiver unit 602 can be implemented by the processor 701, the memory 702, and the transceiver 703 in the network device.
  • the foregoing network device may also be used to perform various methods performed by the network device in the foregoing method embodiments, and details are not described herein again.
  • An embodiment of the present invention also discloses a readable storage medium, and the readable storage medium stores a program, and when the program runs, the communication method shown in FIGS. 2 and 4 is implemented.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • a computer program product is further provided.
  • the computer program product includes the computer instructions stored in the computer-readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种通信方法及设备,接收来自网络设备的指示一个或多个空域波束基向量组和Q个阈值的配置信息,Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应;从空域波束基向量组集合中选取L个空域波束基向量;为L个空域波束基向量分别从频域基向量集合中选取K个频域基向量;根据L个空域波束基向量、L个空域波束基向量分别对应的K个频域基向量和预编码向量确定M个空频合并系数向量,一个空域波束基向量对应的一个空频合并系数向量的空频合并系数满足限制规则,限制规则与空域波束基向量对应的阈值相关联;向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位。本发明实施例,可以提高系统性能。

Description

一种通信方法及设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
多输入多输出(multiple-input multiple-output,MIMO)技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。在MIMO系统中,为了提升信号的传输性能和系统容量,网络设备需要根据下行信道状态信息(channel state information,CSI)确定最优预编码向量,进而对下行数据进行预编码(precoding)。对于时分复用(time division duplexing,TDD)的MIMO系统,利用无线信道的上下行互异性,可以根据上行信道来估计出下行的预编码向量。对于频分复用(time division duplexing,FDD)的MIMO系统,由于上下行采用不同的频段,因此,无法利用上行信道估计出下行的预编码向量。在现有无线通信系统中,一般通过终端设备反馈预编码向量或预编码矩阵指示(precodingmatrix indication,PMI)的方式获取下行的预编码向量。预编码向量由多个正交空域波束向量进行线性合并构成,终端设备向网络设备上报PMI时,需要确定选择的空域波束。若选择的空域波束的功率较大,且该空域波束指向相邻小区的情况下,网络设备使用该空域波束向终端设备发送下行数据时会对邻小区造成较强的干扰,以致降低了系统性能。
发明内容
本发明实施例公开了一种通信方法及设备,用于提高系统性能。
第一方面公开一种通信方法,接收来自网络设备的指示一个或多个空域波束基向量组和Q个阈值,从空域波束基向量组集合中选取L个空域波束基向量,为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量,根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定M个空频合并系数向量,向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位。其中,Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应,一个空频合并系数向量对应一个空域波束基向量,一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的阈值相关联。可见,在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,M个空频合并系数向量中的空频合并系数需要满足对应的限制规则,因此,可以通过对空域波束基向量对应的空频合并系数的幅度或功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,限制规则可以为第一空域波束基向量对应的空频合并系数向量中包含的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的功率进行限制来实现对该空域波束向量对应的能 量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的平方,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的平方与固定值的线性组合,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,功率函数可以为第一功率与第二功率的比值,第一功率可以为第一空域波束基向量对应的空频合并系数的功率和,第二功率可以为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
在一个实施例中,功率函数可以为第一空域波束基向量对应的空频合并系数的功率和。
在一个实施例中,第一空域波束基向量对应的空频合并系数的功率可以为第一空域波束基向量对应的空频合并系数的幅度的平方。
在一个实施例中,第一空域波束基向量对应的阈值为0、
Figure PCTCN2020071604-appb-000001
或者1。
在一个实施例中,第一空域波束基向量对应的阈值为0、1/4、1/2或者1。
在一个实施例中,限制规则可以为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的幅度进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,幅度函数为第一空域波束基向量对应的空频合并系数的幅度的最大值。
在一个实施例中,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
在一个实施例中,幅度函数可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
在一个实施例中,可以从空域波束基向量组集合中选取一组空域波束基向量,从该一组空域波束基向量中选取L个空域波束基向量。
在一个实施例中,在上报全部空频合并系数的情况下,可以根据L个空域波束基向量、 L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定M个初始空频合并系数向量,在一个或多个空域波束基向量组不包括该一组空域波束基向量的情况下,可以确定M个初始空频合并系数向量为M个空频合并系数向量。其中,M等于L。
在一个实施例中,在只上报部分空频合并系数的情况下,可以根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定L个初始空频合并系数向量,之后从L个初始空频合并系数向量中选取部分空频合并系数得到M个初始空频合并系数向量,在一个或多个空域波束基向量组不包括该一组空域波束基向量的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。M小于或等于L,M个初始空频合并系数向量中每个初始空频合并系数向量包括的空频合并系数的数量小于或等于L个初始空频合并系数向量中对应的初始空频合并系数向量包括的空频合并系数的数量。
在一个实施例中,在一个或多个空域波束基向量组包括该一组空域波束基向量,且M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。可见,在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,M个空频合并系数向量中的空频合并系数需要满足对应的限制规则,因此,可以通过对空域波束基向量对应的空频合并系数的幅度或功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,在一个或多个空域波束基向量组包括该一组空域波束基向量,且M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,可以调整不满足限制规则的空频合并系数的幅度得到M个空频合并系数向量。可见,在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,可以通过幅度调整使M个空频合并系数向量中的空频合并系数满足对应的限制规则,因此,可以通过对空域波束基向量对应的空频合并系数的幅度或功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,可以从空域波束基向量组集合中重新选取空域波束基向量来替换不满足对应的限制规则的空域波束基向量,得到新的L个空域波束基向量,为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量,根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定M个空频合并系数向量。可见,在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,M个空频合并系数向量中的空频合并系数需要满足对应的限制规则,因此,可以通过对空域波束基向量对应的空频合并系数的幅度或功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,配置信息还可以指示空频合并系数数目,M个空频合并系数向量包括的空频合并系数数量等于空频合并系数数目。可见,终端设备需要上报的部分空频合并 系数的数量可以由网络设备配置。
在一个实施例中,可以向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位以及M个空频合并系数向量包括的空频合并系数的数量。可见,终端设备需要上报的部分空频合并系数的数量可以由终端设备确定并上报。
在一个实施例中,可以向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位、L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
第二方面公开一种通信方法,向终端设备发送指示一个或多个空域波束基向量组和Q个阈值,接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位。Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应,M个空频合并系数向量根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定,L个空域波束基向量从空域波束基向量组集合中选取,K个频域基向量从频域基向量集合中选取,一个空频合并系数向量对应一个空域波束基向量,一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的所述阈值相关联。可见,在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,M个空频合并系数向量中的空频合并系数需要满足对应的限制规则,因此,可以通过对空域波束基向量对应的空频合并系数的幅度或功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,限制规则可以为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的平方,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的平方与固定值的线性组合,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的功率进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,功率函数可以为第一功率与第二功率的比值,第一功率可以为第一空域波束基向量对应的空频合并系数的功率和,第二功率可以为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
在一个实施例中,功率函数可以为第一空域波束基向量对应的空频合并系数的功率和。
在一个实施例中,第一空域波束基向量对应的空频合并系数的功率可以为第一空域波束基向量对应的空频合并系数的幅度的平方。
在一个实施例中,第一空域波束基向量对应的阈值为0、
Figure PCTCN2020071604-appb-000002
或者1。
在一个实施例中,第一空域波束基向量对应的阈值为0、1/4、1/2或者1。
在一个实施例中,限制规则可以为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。可见,可以通过对空域波束基向量对应的空频合并系数的幅度进行限制来实现对该空域波束向量对应的能量的限制,以便降低终端设备与网络设备的通信对邻小区造成的干扰,从而可以提高系统性能。
在一个实施例中,幅度函数为第一空域波束基向量对应的空频合并系数的幅度的最大值。
在一个实施例中,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
在一个实施例中,幅度函数可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
在一个实施例中,在终端设备只上报部分空频合并系数的情况下,配置信息还可以指示空频合并系数数目,M个空频合并系数向量包括的空频合并系数数量等于空频合并系数数目。可见,终端设备需要上报的部分空频合并系数的数量可以由网络设备配置。
在一个实施例中,在终端设备只上报部分空频合并系数的情况下,可以接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位以及M个空频合并系数向量包括的空频合并系数的数量。可见,终端设备需要上报的部分空频合并系数的数量可以由终端设备确定并上报。
在一个实施例中,可以接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位、L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
第三方面公开一种通信装置,该通信装置包括用于执行第一方面或第一方面的任一种实施例所公开的通信方法的单元,或者包括用于执行第二方面或第二方面的任一种实施例所公开的通信方法的单元。
第四方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的芯片。该通信装置可以包括处理器,处理器和存储器相互耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器中存储的计算机程序或指令,使得通信装置执行第一方面公开的通信方法。
第五方面公开一种通信装置,该通信装置可以是网络设备或者网络设备内的芯片。该通信装置可以包括处理器,处理器和存储器相互耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器中存储的计算机程序或指令,使得通信装置执行第二方面公开的通信方法。
第六方面公开一种计算机存储介质,该计算机存储介质用于存储计算机程序或指令,计算机程序或指令被执行时,使得上述第一方面或者第二方面的通信方法被执行。
第七方面提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述第一方面或者第二方面的通信方法被执行。
第八方面公开一种通信系统,该通信系统包括上述第四方面的通信装置和上述第五方面的通信装置。
附图说明
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的一种通信方法的流程示意图;
图3是本发明实施例公开的一种空频合并系数的幅度的示意图;
图4是本发明实施例公开的另一种通信方法的流程示意图;
图5是本发明实施例公开的一种终端设备的结构示意图;
图6是本发明实施例公开的一种网络设备的结构示意图;
图7是本发明实施例公开的一种通信装置的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法及设备,用于提高系统性能。以下分别进行详细说明。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括一个或多个终端设备1(图1中示意出了一个)和一个或多个网络设备2(图1中示意出了一个),终端设备1与网络设备2组成MIMO系统。
终端设备1与网络设备2之间的通信包括上行(即终端设备1到网络设备2)通信和下行(即网络设备2到终端设备1)通信。在上行通信中,终端设备1,用于向网络设备2发送上行信号;网络设备2,用于接收来自终端设备1的上行信号。在下行通信中,网络设备2,用于向终端设备1发送下行信号;终端设备1,用于接收来自网络设备2的下行信号。
终端设备1可以是用户设备(user equipment,UE)、客户终端设备(customer premise equipment,CPE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、 未来5G网络中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端等。
网络设备2是能和终端设备1进行通信的设备,可以是基站、中继站或接入点。基站可以是全球移动通信系统(global aystem for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的节点基站(nodebase station,NB),还可以是长期演进(long term evolution,LTE)中的演进型(evolutional)NB(eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备,还可以是可穿戴设备或车载设备。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例的应用场景进行描述。高精度码本,即类型(Type)II码本,可以通过对选择的多个正交空域波束(beam)基向量进行线性合并构成。空域波束基向量,可以称为波束基向量,也可以称为空域基向量,还可以称为波束。在采用非压缩码本结构(2级结构)的情况下,对于一个频域PMI单元,一个空间层对应的预编码向量W(维度为2N 1N 2×N L)可以表示如下:
W=W 1×W 2
其中,PMI频域单元所占的频域长度可以是频域子带的带宽,也可以是频域子带带宽的R倍,还可以是1、2或4个资源块(resource block,RB)。R可以为1/2,也可以为1/4,还可以为其它值。N 1和N 2分别表示水平和垂直方向的天线端口数目,N L为空间层的数目。W 1为2N 1N 2×L的空域波束矩阵,可以是双极化旋转2D(2维)离散傅里叶变换(discrete fourier transform,DFT)基矩阵,共包含L个空域波束向量,其中两个极化方向采用相同的L/2个空域波束基向量,可以表示如下:
Figure PCTCN2020071604-appb-000003
其中,
Figure PCTCN2020071604-appb-000004
为从过采样2D DFT基矩阵(即旋转2D DFT基矩阵)中选择的空域波束基向量,I S(i)为选择的第i个空域波束基向量的索引,i=0,1,…,L/2-1,旋转DFT基矩阵可以表示如下:
Figure PCTCN2020071604-appb-000005
其中,R N为N×N的旋转矩阵,可以表示如下:
Figure PCTCN2020071604-appb-000006
D N为N×N的正交DFT矩阵,第m行第n列的D N可以表示如下:
Figure PCTCN2020071604-appb-000007
Figure PCTCN2020071604-appb-000008
表示克罗内克积。假设旋转因子q均匀分布,那么q 1=0,1,…,O 1-1,q 2=0,1,…,O 2-1,O 1和O 2为过采样因子。旋转矩阵与DFT正交矩阵的乘积构成的矩阵满足
Figure PCTCN2020071604-appb-000009
Figure PCTCN2020071604-appb-000010
根据q 1和q 2的一组取值,可以确定对应的旋转DFT基矩阵
Figure PCTCN2020071604-appb-000011
其中,旋转DFT基矩阵
Figure PCTCN2020071604-appb-000012
中的每个列向量构成一组正交空域波束基向量。所有 (q 1,q 2)的取值组合构成空域波束基向量组集合。在选择L/2个空域波束基向量的时候,首先确定q 1和q 2的取值,从而从空域波束基向量组集合中选取一组空域波束基向量
Figure PCTCN2020071604-appb-000013
进而从选取的一组空域波束基向量
Figure PCTCN2020071604-appb-000014
中选择L/2个空域波束基向量。W 2为合并系数矩阵,为W 1中L个空域波束基向量对应的合并系数。在空间层(即可以同时发送的数据流数目)的数目为1的情况下,W 2可以表示如下:
Figure PCTCN2020071604-appb-000015
在空间层的数目为2的情况下,W 2可以表示如下:
Figure PCTCN2020071604-appb-000016
其中,
Figure PCTCN2020071604-appb-000017
为第i个极化方向、第j层、第k个波束对应的合并系数的宽带幅度,
Figure PCTCN2020071604-appb-000018
为第i个极化方向、第j层、第k个波束对应的合并系数的子带差分幅度。宽带幅度为需要PMI上报的所有PMI频域单元对应的合并系数的幅度值的平均值,且所有PMI频域单元使用相同的宽带幅度。子带差分幅度为每个PMI频域单元对应的合并系数的幅度相对于宽带幅度的差异值。在
Figure PCTCN2020071604-appb-000019
采用3比特(bit)量化的情况下,
Figure PCTCN2020071604-appb-000020
Figure PCTCN2020071604-appb-000021
Figure PCTCN2020071604-appb-000022
采用1比特量化的情况下,
Figure PCTCN2020071604-appb-000023
为第i个极化方向、第j层、第k个波束对应的合并系数的相位,
Figure PCTCN2020071604-appb-000024
可以采用2比特或3比特进行量化,即N PSK=4或N PSK=8。
利用上述非压缩Type II码本量化预编码向量,并将预编码向量指示信息上报给网络设备, 有利于网络设备获得最优的预编码向量。然而上述预编码向量上报方法虽然带来了性能的提升,但也带来了巨大的预编码向量指示开销,比如上述预编码向量需要上报每个PMI频域单元对应的L个空域波束基向量对应的合并系数的幅度和相位。特别是PMI频域单元的数目较大,所需要上报的合并系数就越多,例如,PMI频域单元的数目为N 3,则所需要上报的合并系数的数目将达到L*N 3个,带来了巨大的上报开销。
为了解决该问题,利用频域信道相关性,采用频域压缩思想实现空频压缩Type II码本。若第i(1≤i≤N 3)个PMI频域单元所对应的空域波束基向量合并系数矩阵记为W 2 (i),N 3个PMI频域单元对应的空域波束基向量合并系数矩阵可以组合为L×N 3的联合合并系数矩阵
Figure PCTCN2020071604-appb-000025
从维度为N 3×N 3的频域基矩阵W freq中选择L/2个空域波束基向量中每个空域波束基向量对应的K个频域基向量构成频域矩阵W 3,将
Figure PCTCN2020071604-appb-000026
转换为
Figure PCTCN2020071604-appb-000027
其中,频域基矩阵W freq可以是DFT矩阵或DFT矩阵的共轭转置矩阵,也可以是过采样的DFT矩阵或过采样DFT矩阵的共轭转置矩阵。预编码向量组合成的联合预编码矩阵W可以进一步表示为
Figure PCTCN2020071604-appb-000028
举例说明,在L个空域波束基向量对应的K个频域基向量为相同的K个频域基向量的情况下,频域矩阵W 3的维度为K×N 3,包含L个空域波束基向量对应的相同的K个频域基向量。
Figure PCTCN2020071604-appb-000029
为空频合并系数矩阵的维度为L×K。空频合并系数矩阵
Figure PCTCN2020071604-appb-000030
中的第i行对应L个空域波束基向量中的第i个空域波束基向量,空频合并系数矩阵
Figure PCTCN2020071604-appb-000031
中的第j列对应K个频域基向量中的第j个频域基向量。第i个空域波束基向量对应的空频合并系数向量为空频合并系数矩阵
Figure PCTCN2020071604-appb-000032
中的第i个行向量,第i个空域波束基向量对应的空频合并系数为空频合并系数矩阵
Figure PCTCN2020071604-appb-000033
中的第i个行向量中包含的元素。此外,L个空域波束基向量中的每一个空域波束基向量也可以对应不同的频域基向量。
在TypeII非压缩码本中,网络设备通过高层参数n1-n2-codebookSubsetRestriction实现码本子集限制。Type II码本子集限制主要针对预定义的空域波束矩阵中可选择的空域波束基向量进行限制。高层参数n1-n2-codebookSubsetRestriction中的比特位构成比特序列B=B 1B 2,码本子集限制方法可以包括以下两步:
(1)网络设备为终端设备从O 1O 2个空域波束基向量组中配置Y个空域波束基向量组的限制,Y个空域波束基向量组中的第k个空域波束基向量组可以用对应的空域波束旋转因子索引
Figure PCTCN2020071604-appb-000034
来表示,k=0,1,…,Y-1,且
Figure PCTCN2020071604-appb-000035
第k个空域波束基向量组中包括N 1N 2个正交空域波束基向量,这些正交空域波束基向量构成的集合可以表示为
Figure PCTCN2020071604-appb-000036
Figure PCTCN2020071604-appb-000037
为了减小指示开销,通常取Y=4,将配置的空域波束基向量组的索引联合编码为
Figure PCTCN2020071604-appb-000038
若N 2=1,g (k)=k。若N 2>1,g (k)可以以组合数的方式通过序列
Figure PCTCN2020071604-appb-000039
进行指示。
(2)通过比特序列
Figure PCTCN2020071604-appb-000040
分别对第k个空域波束基向量组包括的 N 1N 2个空域波束基向量的宽带幅度的最大值进行限制。比特位
Figure PCTCN2020071604-appb-000041
用于指示第k个空域波束基向量组g (k)中包含的索引为(x 1,x 2)对应的空域波束基向量的最大允许的宽带幅度值。其中,每个空域波束基向量对应的最大允许的宽带幅度值采用2比特指示。Y个限制的空域波束基向量组对应的幅度限制指示序列
Figure PCTCN2020071604-appb-000042
构成比特序列
Figure PCTCN2020071604-appb-000043
在Type II码本中是对选择的空域波束对应的宽带幅度的最大允许取值进行限制,然而,对于频域压缩码本,并没有宽带合并系数和子带合并系数的概念,而是空域和频域基向量联合对应的二维空频合并系数。其中,宽带合并系数可以为所有子带合并系数的平均。
基于图1所示的网络架构,请参阅图2,图2是本发明实施例公开的一种通信方法的流程示意图。如图2,该通信方法可以包括如下步骤。
201、网络设备向终端发送配置信息。
网络设备包括O 1O 2个空域波束基向量组,O 1O 2个空域波束基向量组中每个空域波束基向量组包括N 1N 2个空域波束基向量。其中,O 1的取值可以为4,O 2的取值可以为1或者4。(N 1,N 2)的取值组合可以为(N 1,N 2)∈{(2,1),(2,2),(4,1),(3,2),(6,1),(4,2),(8,1),(4,3),(6,2),(12,1),(4,4),(8,2),(16,1)}。(N 1,N 2)的取值与(O 1,O 2)的取值可以存在对应关系。当N 2=1时,O 2=1。(N 1,N 2)的取值与(O 1,O 2)的取值以及取值的对应关系可以是预定义的,也可以是网络设备配置的。在O 1O 2个空域波束基向量组中存在空域波束基向量组包括的空域波束基向量对应的波束指向相邻的一个或多个小区,如果这些波束被使用,且这些波束对应的能量或功率较大的情况下,会对相邻的一个或多个小区之间产生较强的干扰。因此,在网络设备需要对终端设备发送的信息进行预编码的情况下,可以向终端设备发送配置信息。配置信息可以指示一个或多个空域波束基向量组和Q个阈值。一个或多个空域波束基向量组是从O 1O 2个空域波束基向量组中选取的需要进行限制的空域波束基向量组,可以根据与终端设备相邻小区通信的波束进行选择,也可以根据其他方式进行选择,本实施例不作限定。Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应,即一个波束唯一对应一个阈值。Q为大于1的整数,波束与空域波束基向量一一对应。例如,Q=N 1N 2*组数目,组数目为一个或多个空域波束基向量组包括的空域波束基向量组的数目。其中,O 1O 2个空域波束基向量组中每个空域波束基向量组中的空域波束基向量可以相互正交,也可以不相互正交。阈值可以为0、
Figure PCTCN2020071604-appb-000044
或1。
配置信息可以显式地指示上述信息,例如,配置信息可以包括一个或多个空域波束基向量组和Q个阈值。配置信息也可以隐式地指示上述信息,例如,配置信息可以包括码本子集限制信息,码本子集限制信息可以包括指示信息和限制信息,指示信息可以包含一个或多个空域波束基向量组的索引,限制信息可以指示Q个阈值,也可以包括Q个阈值对应的索引。例如,配置信息也可以包括第一指示信息和第二指示信息,第一指示信息可以包含一个或多个空域波束基向量组的索引,第二指示信息可以指示Q个阈值。在配置信息包括Q个阈值对应的索引,该索引与阈值的对应关系是预定义的。在配置信息包括一个或多个空域波束基向量组的索引的情况下,该索引与空域波束旋转因子有关,详细描述请参考应用场景对应的描述。
配置信息可以通过一个高层信令发送给终端设备,这个高层信令可以包括多个子信令,一个子信令可以只发送配置信息中一个信息,一个子信令也可以发送配置信息中多个信息。配置信息也可以通过多个字段发送给终端设备,多个字段中的一个或多个字段可以只发送配置信息中一个信息,多个字段中的一个或多个字段也可以发送配置信息中多个信息。
可选地,在网络设备只需要终端设备上报部分空频合并系数的情况下,配置信息还可以指示空频合并系数数目,可以是显式地指示,即配置信息还可以包括空频合并系数数目。也可以是隐式地指示,即配置信息还可以包括用于指示空频合并系数数目的指示信息。
可选地,由于网络设备可能具有多个空间层,而空间层的数目不同对应的下行预编码向量可能不同。因此,在网络设备具有多个空间层的情况下,网络设备可以为不同空间层配置的上述配置信息包括的信息可能相同,也可能不同。在网络设备为不同空间层配置的上述配置信息包括的信息不同的情况下,配置信息可以包括不同空间层的上述信息。
202、终端设备从空域波束基向量组集合中选取L个空域波束基向量。
终端设备接收到来自网络设备的配置信息之后,可以从空域波束基向量组集合中选取L个空域波束基向量。空域波束基向量组集合是多个空域波束基向量组的一个集合,即是网络设备的O 1O 2个空域波束基向量组的集合。可以先从空域波束基向量组集合中选取一组空域波束基向量,即从空域波束基向量组集合中选取一个空域波束基向量组,之后从一组空域波束基向量中选取L个空域波束基向量。选取一组空域波束基向量和L个空域波束基向量可以是随机选取的,也可以是选取功率最大的,还可以是选取功率最小的,还可以是根据其他规则选取的,本实施例不作限定。
可选地,在极化方向为1的情况下,L个空域波束基向量是从空域波束基向量组集合中选取的L个不同空域波束基向量。在极化方向为2的情况下,实际上从空域波束基向量组集合中选取了L/2个空域波束基向量,两个极化方向采用了相同的L/2个空域波束基向量,可以视为选取的L/2个空域波束基向量中每个空域波束基向量被选取了两次,因此,得到了L个空域波束基向量。在极化方向为P的情况下,实际上从空域波束基向量组集合中选取了L/P个空域波束基向量,只是选取的L/P个空域波束基向量中每个空域波束基向量被选取了P次,因此,得到了个L个空域波束基向量。P为极化方向的数目。L/P可以为2、3、4或6。
L可以是终端设备确定的,也可以是网络设备配置的,还可以是预先约定的。在L是网络设备配置的情况下,配置信息还用于隐式或显示地指示空域波束基向量数目L/P。
可选地,在网络设备具有多个空间层的情况下,不同空间层对应的L个空域波束基向量可以相同,也可以不同。
203、终端设备为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量。
终端设备从空域波束基向量组集合中选取L个空域波束基向量之后,可以为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量。L个空域波束基向量中每个空域波束基向量对应的K个频域基向量可以全部相同,也可以部分相同,还可以全部不同。为L个空域波束基向量中每个空域波束基向量选取的K个频域基向量可以是随机选取的,也可以是选取功率最大的,还可以是选取功率最小的,还可以是根据其他规则选取的,本实施例不作限定。K可以为1、2、3、4、5或6。
频域基向量集合可以包括多组频域基向量,多组频域基向量中每组频域基向量中的频域基向量相互正交,为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量时,可以先从多组频域基向量中选取一组频域基向量,之后再从一组频域基向量中选取K个频域基向量。具体的选取方式可以与上述相同。
K可以是终端设备确定的,也可以是网络设备配置的,还可以是预先约定的。在K是网络设备配置的情况下,配置信息还用于隐式或显示地指示频域基向量数目K。
可选地,在网络设备具有多个空间层的情况下,不同空间层对应的频域基向量可以相同,也可以不同。
204、终端设备根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量。
目标预编码向量组成的矩阵,即压缩高精度码本
Figure PCTCN2020071604-appb-000045
W 1可以称为空域波束矩阵,即L个空域波束基向量组成的矩阵。
Figure PCTCN2020071604-appb-000046
可以称为空频合并系数矩阵,即L个空频合并系数向量组成的矩阵。W 3可以称为频域矩阵,即L个空域波束基向量中每个空域波束基向量对应的K个频域基向量组成的矩阵,当L个空域波束基向量采用相同的K个频域基向量时,W 3可以是K个频域基向量组成的矩阵。由于W是终端设备根据估计的下行信道确定的,可以根据L个空域波束基向量确定W 1,可以根据L个空域波束基向量中每个空域波束基向量对应的K个频域基向量确定W 3。因此,可以通过W、W 1和W 3确定
Figure PCTCN2020071604-appb-000047
此处的
Figure PCTCN2020071604-appb-000048
是指所有的空频合并系数向量组成的矩阵。W 1中的一列代表一个空域波束基向量,
Figure PCTCN2020071604-appb-000049
中的一行代表一个空频合并系数向量,W 1中的第i列空域波束基向量对应
Figure PCTCN2020071604-appb-000050
中的第i行空频合并系数向量。空域波束基向量对应的空频合并系数向量为该空域波束基向量和该空域波束基向量对应的频域基向量确定的空频合并系数向量,空频合并系数向量是由多个空频合并系数组成的向量,空频合并系数向量包括的或对应的空频合并系数即空频合并系数向量中的所有空频合并系数。
因此,为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量之后,终端设备可以根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定M个空频合并系数向量。一个空频合并系数向量对应一个空域波束基向量,可以是对应关系或对应关系表,可以是预定义的。这里的一个空频合并系数向量是指有一个,或至少存在一个。例如有L个合并系数向量,可以是和L个空域波束基向量是一对一对应的(可以是空频合并系数向量多个对应同一个/相同的空域波束基向量),若只是上报部分,那么就是M个。这L个都对应一个空域波束基向量,或者是这M个都对应一个空域波束基向量。一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的阈值相关联。具体地,在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,由于L个空域波束基向量中每个空域波束基向量都有对应的阈值,因此,需要对选取的空域波束基向量进行限制,一个空域波束基向量对应的空频合并系数向量需要满足限制规则。在一个或多个空域波束基向量组不包括L个空域波束基向量的情况下,由于L个空域波束基向量中每个空域波束基向量没有对应的阈值,因此,不需要对选取的波束进行限制,从而一个空域波束基向量对应的空频合并系数向量不需要满足预定义的限制规则。不同空域波束基向量可以具有不同的限制规则, 也可以具有相同的限制规则。
限制规则可以为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。限制规则也可以为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的平方。限制规则还可以为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的平方与固定值的线性组合,线性组合可以为乘除,也可以为加减,还可以为乘除加减,固定值可以为一个,也可以为多个。限制规则还可以为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值的其它值,如开根号、开三次方、开四次方、三次方、四次方、与固定值的乘积、开根号后与固定值的线性组合等。这里的第一空域波束基向量可以是仅仅为了一般化描述所述需要满足限制规则的空域波束基向量。在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,第一空域波束基向量为L个空域波束基向量中的任一空域波束基向量。功率函数可以为第一功率与第二功率的比值,第一功率为第一空域波束基向量对应的空频合并系数的功率和,第二功率为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。M个空域波束基向量是M个空频合并系数向量对应的空域波束基向量。第一空域波束基向量为M个空域波束基向量中的任一空域波束基向量。在一个或多个空域波束基向量组包括L个空域波束基向量的情况下,L个空域波束基向量包括M个空域波束基向量,即M个空域波束基向量可以是L个空域波束基向量中的全部空域波束基向量或部分空域波束基向量。在上报全部空频合并系数的情况下,M个空域波束基向量即L个空域波束基向量;在只上报部分空频合并系数的情况下,M个空域波束基向量可以是L个空域波束基向量中的部分空域波束基向量,也可以是L个空域波束基向量中的全部空域波束基向量。例如,功率函数α 1可以表示如下:
Figure PCTCN2020071604-appb-000051
其中,α 1为功率函数,
Figure PCTCN2020071604-appb-000052
为第s个空频合并系数向量中的第j个空频合并系数的幅度,Xs为第s个空频合并系数向量中空频合并系数的数量,Xi为第i个空频合并系数向量中空频合并系数的数量,s大于或等于1且小于或等于M,
Figure PCTCN2020071604-appb-000053
为第i个空频合并系数向量中的第j个空频合并系数的幅度。空频合并系数为复数,包括实部和虚部。空频合并系数的幅度即对空频合并系数的实部的平方与虚部的平方之和的开方,空频合并系数的功率即空频合并系数的幅度的平方。限制规则可以为α 1≤Z,Z为第s个空域波束基向量对应的阈值。限制规则也可以为α 1≤Z 2,限制规则还可以为α 1小于或等于与Z相关的其它值,具体描述可以参考上面的相关描述,在此不加赘述。功率函数也可以为第一空域波束基向量对应的空频合并系数的功率和。例如,功率函数α 2可以表示如下:
Figure PCTCN2020071604-appb-000054
限制规则可以为α 2≤Z。限制规则也可以为α 2≤Z 2,限制规则还可以为α 2小于或等于与Z 相关的其它值,具体描述可以参考上面的相关描述,在此不加赘述。在一种实施方式中,限制规则还可以为α 2小于或等于Z 2与固定数值的线性组合,例如α 1≤δ·Z 2。δ为确定的固定值,例如δ=Xs。其中,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
限制规则也可以为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值。限制规则也可以为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于与第一空域波束基向量对应的阈值相关的其它值,具体描述可以参考上面的相关描述,在此不加赘述。幅度函数可以为第一空域波束基向量对应的空频合并系数的幅度的最大值。例如,幅度函数α 3可以表示如下:
Figure PCTCN2020071604-appb-000055
限制规则可以为α 3≤Z。限制规则也可以为α 3≤Z 2,限制规则还可以为α 3小于或等于与Z相关的其它值,具体描述可以参考上面的相关描述,在此不加赘述。幅度函数也可以为第一空域波束基向量对应的空频合并系数的幅度的平均值。例如,幅度函数α 4可以表示如下:
Figure PCTCN2020071604-appb-000056
限制规则可以为α 4≤Z。限制规则也可以为α 4≤Z 2,限制规则还可以为α 4小于或等于与Z相关的其它值,具体描述可以参考上面的相关描述,在此不加赘述。幅度函数还可以为第一空域波束基向量对应的空频合并系数的幅度的和。例如,幅度函数α 5可以表示如下:
Figure PCTCN2020071604-appb-000057
限制规则可以为α 5≤Z。限制规则也可以为α 5≤Z 2,限制规则还可以为α 5小于或等于与Z相关的其它值,具体描述可以参考上面的相关描述,在此不加赘述。幅度函数还可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
M个空频合并系数向量的空频合并系数的幅度可以是直接根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量计算得到的,也可以是根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量计算得到的空频合并系数经过处理后的空频合并系数。此处的处理可以是归一化,也可以是量化,还可以是如第一空频合并系数的幅度一样的处理。
确定的M个空频合并系数向量是终端设备需要上报的所有空频合并系数。在终端设备需要上报所有的空频合并系数的情况下,
Figure PCTCN2020071604-appb-000058
包括的空频合并系数的数量等于M个空频合并系数向量包括的空频合并系数的数量,此时,M=L。在终端设备只需要上报部分空频合并系数的情况下,
Figure PCTCN2020071604-appb-000059
包括的空频合并系数的数量大于M个空频合并系数向量包括的空频合并 系数的数量,此时,M≤L,且M个空频合并系数向量中每个空频合并系数向量包括的空频合并系数的数量小于或等于
Figure PCTCN2020071604-appb-000060
包括的L个空频合并系数向量中对应的空频合并系数向量包括的空频合并系数向量的数量。
在终端设备需要上报所有的空频合并系数的情况下,M=L,可以根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定M个初始空频合并系数向量。之后在一个或多个空域波束基向量组不包括一组空域波束基向量的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。之后在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,可以确定M个初始空频合并系数向量为M个空频合并系数向量。之后在一个或多个空域波束基向量组包括一组空域波束基向量,且M个空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,可以调整不满足限制规则的空频合并系数的幅度得到M个空频合并系数向量,也可以重新执行步骤202-步骤204,直到确定出M个空频合并系数向量。具体地,在确定出M个初始空频合并系数向量,或者在从空域波束基向量组集合中选取出L个空域波束基向量之后,可以先判断一个或多个空域波束基向量组是否包括L个空域波束基向量,在判断出一个或多个空域波束基向量组不包括L个空域波束基向量的情况下,表明不需要对确定的空频合并系数进行限制,确定出M个初始空频合并系数之后,可以将M个初始空频合并系数向量确定为M个空频合并系数向量,即需要上报的空频合并系数向量。在判断出一个或多个空域波束基向量组包括L个空域波束基向量的情况下,确定出M个初始空频合并系数之后,可以继续判断M个初始空频合并系数向量的空频合并系数是否均满足对应的限制规则。在判断出M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,表明确定的空频合并系数已经满足对应的限制规则,因此,可以将M个初始空频合并系数向量确定为M个空频合并系数向量,即需要上报的空频合并系数向量。在判断出M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,表明确定的空频合并系数中存在不满足对应的限制规则的空频合并系数,可以调整不满足限制规则的空频合并系数的幅度,使调整后的空频合并系数均满足对应的限制规则得到M个空频合并系数向量。在对不满足限制规则的空频合并系数的幅度进行调整时,可以只对不满足限制规则的空频合并系数的幅度进行调整,也可以对不满足限制规则的空频合并系数对应的空频合并系数向量对应的所有空频合并系数的幅度进行调整。在判断出M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,也可以重复执行步骤202-步骤204,直到确定出M个空频合并系数向量。空频合并系数满足对应的限制规则,即空频合并系数满足对应的空域波束基向量所对应的限制规则。不同的限制规则可以对应不同的调整规则。
举例说明,假设N 1=2、N 2=2,网络设备的配置信息指示了在O 1O 2个波束向量组中存在4个波束向量组需要满足对应的限制规则。假设限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的最大值要小于或等于第一空域波束基向量对应的阈值。对限制的4个空域波束基向量组中的第k个空域波束基向量组g (k)包含的N 1N 2=4个正交空域波束基向量,网络设备通过比特序列
Figure PCTCN2020071604-appb-000061
指示了该N 1N 2=4个正交空域波束基向量所对应的阈值,从而实现在极化方向为2的情况下,对N 1N 2=4个正交空 域波束基向量对应的K=8个空频合并系数的幅度最大值进行限制。其中N 1N 2=4个正交空域波束基向量的索引通过(x 1,x 2)进行联合编码V=N 1x 2+x 1,x 1=0,1,…,N 1-1,x 2=0,1,…,N 2-1。其中索引为V的空域波束基向量对应的限制阈值通过2比特按照预定的规则进行指示,可以如表1所示。
Figure PCTCN2020071604-appb-000062
表1
也可以如表2所示。
Figure PCTCN2020071604-appb-000063
表2
请参阅图3,图3是本发明实施例公开的一种空频合并系数的幅度的示意图。如图3所示,波束1(索引为(x 1=0,x 2=0))对应的阈值为1,对于极化方向为1和极化方向为2的情况,由于波束1对应的4个空频合并系数的幅度均小于或等于1,因此,波束1对应的空频合并系数满足对应的限制规则。波束2(索引为(x 1=0,x 2=1))对应的阈值为
Figure PCTCN2020071604-appb-000064
对于极化方向为1的情况,由于波束2对应的4个空频合并系数的幅度均小于或等于
Figure PCTCN2020071604-appb-000065
因此,波束2对应的空频合并系数满足对应的限制规则。对于极化方向为2的情况,由于波束2对应的4个空频合并系数的幅度中存在1个合并系数的幅度大于
Figure PCTCN2020071604-appb-000066
因此,波束2对应的空频合并系数不满足对应的限制规则。波束3(索引为(x 1=1,x 2=0))对应的阈值为
Figure PCTCN2020071604-appb-000067
对于极化方向为1和极化方向为2的情况,波束3对应的4个空频合并系数的幅度中均存在空频合并系数的幅度大于
Figure PCTCN2020071604-appb-000068
即波束3对应的空频合并系数中存在不满足对应的限制规则的空频合并系数。如果需要使用波束3,需要对空频合并系数的幅度进行调整,可以是只对这4个空频合并系数中不满足限制规则的空频合并系数调整到限制的阈值,也可以是对这4个空频合并系数均除以这4个空频合并系数中最大的幅度,还可以是只对这4个空频合并系数中不满足限制规则的空频合并系数均除以这4个空频合并系数中最大的幅度,也可以是其它调整方式,本实施例不作限定。在极化方向为2的情况下,如果需要使用波束2,需要对空频合并系数的幅度进行调整,调整方式可以与上述相同。不同的限制规则可以对应不同的调整策略。如果不使用波束3,可以重新进行波束选取,重新选取波束时可以不选取波束3。波束4(索引为(x 1=1,x 2=1))对应的阈值为0,此时表示波束4不可使用,重新进行波束选取,重新选取波束时可以不选取波束4。
在终端设备只需要上报部分空频合并系数的情况下,M≤L,可以根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确 定L个初始空频合并系数向量,并从L个初始空频合并系数向量中选取部分空频合并系数,得到M个初始空频合并系数向量,M个初始空频合并系数向量中每个初始空频合并系数向量包括的空频合并系数的数量小于或等于L个初始空频合并系数向量中对应的初始空频合并系数向量包括的空频合并系数的数量。之后的处理过程与终端设备需要上报所有空频合并系数的处理过程一样,详细描述请参考对应的描述,在此不再详细赘述赘述。在配置信息指示空频合并系数数目的情况下,M个初始空频合并系数向量包括的空频合并系数的数量等于空频合并系数数目。在配置信息未指示空频合并系数数目的情况下,M个初始空频合并系数向量包括的空频合并系数的数量由终端设备确定。
205、终端设备向网络设备发送M个空频合并系数向量的空频合并系数的信息。
终端设备根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定出M个空频合并系数向量之后,可以向网络设备发送M个空频合并系数向量的空频合并系数的信息,空频合并系数的信息可以包括空频合并系数的幅度和相位。也可以将L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引一起发送给网络设备。在L个空域波束基向量中每个空域波束基向量对应的K个频域基向量不完全相同的情况下,还可以将L个空域波束基向量中每个空域波束基向量对应的K个频域基向量的对应关系一起发送给网络设备。空频合并系数的信息还可以包括空频合并系数的索引,空频合并系数的索引用于指示空频合并系数为第几个空频合并系数向量中的第几个空频合并系数。在终端设备只上报部分空频合并系数,且部分空频合并系数的数量由终端设备确定的情况下,还可以将M个空频合并系数向量包括的空频合并系数的数量一起发送给网络设备。其中,空频合并系数的幅度和相位可以是量化值,也可以是非量化值。在幅度量化过程中,对于M个空频合并系数向量中包含的每一个空频合并系数的幅度,可以以M个空频合并系数向量中包含的所有空频合并系数中幅度最大的空频合并系数的幅度为参照进行归一化,即空频合并系数向量中包含的每一个空频合并系数的归一化后幅度为该空频合并系数的幅度与M个空频合并系数向量中包含的所有空频合并系数中幅度最大的空频合并系数的幅度相除得到的结果。对于M个空频合并系数向量中包含的每一个空频合并系数的相位,可以以M个空频合并系数向量中包含的所有空频合并系数中幅度最大的空频合并系数的相位为参照进行归一化,即空频合并系数向量中包含的每一个空频合并系数的归一化后相位为该空频合并系数的相位与M个空频合并系数向量中包含的所有空频合并系数中幅度最大的空频合并系数的相位相减得到的结果。在空频合并系数的幅度和相位为量化值的情况下,终端设备可以将空频合并系数的幅度和相位以索引的方式上报给网络设备,索引与幅度或相位的对应关系可以是预定义的。假设幅度量化后可取的值为0、
Figure PCTCN2020071604-appb-000069
Figure PCTCN2020071604-appb-000070
和1,这八个值中的每个值可以唯一对应一个索引。在空频合并系数的幅度归一化后的值与
Figure PCTCN2020071604-appb-000071
最接近的情况下,确定空频合并系数的幅度的量化值为
Figure PCTCN2020071604-appb-000072
在向网络设备上报空频合并系数的幅度时,可以上报
Figure PCTCN2020071604-appb-000073
对应的索引。对空频合并系数的相位的量化和上报与幅度类似,在此不再详细赘述。
网络设备接收到来自终端设备的M个空频合并系数向量的空频合并系数的信息、L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频 域基向量中基向量的索引之后,可以根据L个空域波束基向量中基向量的索引确定W 1,可以根据L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引确定W 3,可以根据M个空频合并系数向量的空频合并系数的信息确定
Figure PCTCN2020071604-appb-000074
在终端设备只上报部分空频合并系数的情况下,
Figure PCTCN2020071604-appb-000075
中未上报的空频合并系数的位置可以进行补0处理,之后根据W 1
Figure PCTCN2020071604-appb-000076
和W 3确定目标预编码向量。
在终端设备向网络设备上报的空频合并系数的幅度和相位为量化值的情况下,幅度和相位的量化可以分别进行量化。针对幅度,一种量化方式为:对于要上报的T个空频合并系数,可以使用T个空频合并系数的幅度分别除以T个空频合并系数的幅度中的最大值,得到归一化后的T个空频合并系数,再对归一化后的T个空频合并系数分别从可取的量化值中选取与之最接近的量化值,得到T个空频合并系数的量化幅度。幅度最大的空频合并系数量化后的幅度为1。例如,T个空频合并系数中的第i个空频合并系数量化前的幅度为a,则归一化后的未量化的空频合并系数的幅度为a/c,其中,c为T个空频合并系数的幅度中的最大值。
对于幅度最大的空频合并系数所在极化方向的参考幅度为1,对于其它极化方向的参考幅度为对应极化方向内幅度最大的合并系数的量化幅度。参考幅度可以采用4比特进行量化上报,可取的量化值为1、(1/2) 1/4、(1/4) 1/4、(1/8) 1/4、(1/16) 1/4、…、(1/2 14) 1/4和0。对于每个极化方向,分别以该极化方向的空频合并系数的量化幅度除以该极化方向的参考幅度,得到该极化方向的空频合并系数的差分幅度。每个空频合并系数的差分幅度可以采用3比特进行量化上报,可取的量化值为1、
Figure PCTCN2020071604-appb-000077
1/2、
Figure PCTCN2020071604-appb-000078
1/4、
Figure PCTCN2020071604-appb-000079
1/8和
Figure PCTCN2020071604-appb-000080
每个空频合并系数的量化幅度值可以表示为该空频合并系数所在极化方向对应的参考幅度值与该空频合并系数对应的差分幅度值的乘积。对于每个空频合并系数的相位可以采用3比特(如8相移键控(phaseshift keying,PSK))或4比特(如16PSK)进行量化。
举例说明,假设N 1=2、N 2=2,网络设备的配置信息指示了在O 1O 2个波束向量组中存在4个波束向量组需要满足对应的限制规则。假设限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的最大值要小于或等于第一空域波束基向量对应的阈值,幅度函数为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,即幅度函数为第一空域波束基向量对应的第一极化方向的参考幅度。对限制的4个空域波束基向量组中的第k个空域波束基向量组g (k)包含的N 1N 2=4个空域波束基向量,网络设备通过比特序列
Figure PCTCN2020071604-appb-000081
指示了该N 1N 2=4个空域波束基向量所对应的阈值,从而实现在极化方向为2的情况下,对N 1N 2=4个空域波束基向量对应的K=8个空频合并系数的幅度最大值进行限制。其中N 1N 2=4个空域波束基向量的索引通过(x 1,x 2)进行联合编码V=N 1x 2+x 1,x 1=0,1,…,N 1-1,x 2=0,1,…,N 2-1。其中,索引为V的空域波束基向量对应的限制阈值通过2比特按照预定的规则进行指示,如表3所示,应理解,预定的规则也可以仅满足表3中的某些行,也可以是其它预设规则、或表3中的某些行与其它预设规则的组合。
Figure PCTCN2020071604-appb-000082
Figure PCTCN2020071604-appb-000083
表3
在空频合并系数的幅度为参考幅度与差分幅度的乘积的情况下,T个空频合并系数向量的空频合并系数的信息包括每个极化方向的参考幅度的索引,以及T个空频合并系数向量的空频合并系数中每个空频合并系数的差分幅度的索引。在幅度函数为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值的情况下,T个空频合并系数向量的空频合并系数的信息包括每个极化方向的参考幅度的索引,以及T个空频合并系数向量的空频合并系数中每个空频合并系数的差分幅度的索引和相位对应的索引。
在网络设备具有多个空间层,2个极化方向,每个极化方向对应相同的L/2个空域波束基向量,且多个空间层选取的L个空域波束基向量均相同的情况下,对于每个空间层,L个空域波束基向量中每个空域波束基向量对应的K个频域基向量均相同。网络设备可以发送配置信息,用于指示需要上报的空频合并系数的最大数目。空频合并系数的最大数目可以表示为
Figure PCTCN2020071604-appb-000084
即β、L和K i的乘积后向上取整。其中,β为由网络设备配置的空频合并系数的比例系数,可取的值为3/4、1/2、1/4和1/8。可见,经过空频压缩后,终端设备最多只能向网络设备上报
Figure PCTCN2020071604-appb-000085
个空频合并系数。此外,要上报的
Figure PCTCN2020071604-appb-000086
个空频合并系数中存在幅度为0的空频合并系数的情况下,终端设备可以只上报
Figure PCTCN2020071604-appb-000087
个空频合并系数中幅度非0的空频合并系数以及这些空频合并系数对应的索引,不需要上报幅度为0的空频合并系数的信息。此处,不同的空间层对应的频域基向量数目K i可以相同,也可以不同,同理,不同空间层对应的K i个频域基向量可以相同,也可以不同,还可以部分相同。K i可以为不同空间层的频域基向量数目,可见,不同空间层的频域基向量数目可以不同,对应的空频合并系数的最大数目可以不同。K i也可以为多个空间层中第一个空间层的频域基向量数目,可见,不同空间层对应的空频合并系数的最大数目相同。
Figure PCTCN2020071604-appb-000088
个空频合并系数中幅度非0的空频合并系数的索引可以通过所有空间层对应的比特位图(bitmap)进行指示。
例如,波束1(索引为(x 1=0,x 2=0))对应的阈值为
Figure PCTCN2020071604-appb-000089
对于双极化方向(极化方向为1和极化方向为2)的情况,两个极化方向采用相同的空域波束基向量,强极化方向(包含幅度最大的空频合并系数的极化方向)对应的参考幅度为1,弱极化方向(不包含幅度最大的空频合并系数的极化方向)对应的参考幅度为
Figure PCTCN2020071604-appb-000090
若波束1在两个极化方向对应的每个空频合并系数的差分幅度与相对应的参考幅度的乘积均小于或等于
Figure PCTCN2020071604-appb-000091
则波束1对应的空频合并系数满足对应的限制规则。假设波束1对应的所有空频合并系数的差分幅度与相对应的参考幅度的乘积中存在1个值大于
Figure PCTCN2020071604-appb-000092
此时波束1对应的空频合并系数不满足对 应的限制规则。如果需要使用波束1,需要对空频合并系数的幅度进行调整,可以是只对波束1对应的空频合并系数中不满足限制规则的空频合并系数调整到限制的阈值,也可以是对波束1对应的空频合并系数均除以波束1对应的空频合并系数中最大的幅度,还可以是只对波束1对应的空频合并系数中不满足限制规则的空频合并系数均除以波束1对应的空频合并系数中最大的幅度,也可以是其它调整方式,本实施例不作限定。如果不使用波束1,可以重新进行波束选取,重新选取波束时可以不选取波束1。
步骤201-步骤205可以是对一个空间层的处理过程,在网络设备包括多个空间层的情况下,每个空间层的处理过程可以与步骤201-步骤205相同。
基于图1所示的网络架构,请参阅图4,图4是本发明实施例公开的另一种通信方法的流程示意图。如图4,该通信方法可以包括如下步骤。
401、网络设备向终端发送配置信息。
其中,步骤401与步骤201相同,详细描述请参考步骤201,在此不再详细赘述。
402、终端设备从空域波束基向量组集合中选取L/P个空域波束基向量,得到L个空域波束基向量。
终端设备接收到来自网络设备的配置信息之后,可以从空域波束基向量组集合中选取L/P个空域波束基向量,得到L个空域波束基向量。P为极化方向的数目。即只需要从空域波束基向量组集合中选取L/P个空域波束基向量,P个极化方向采用相同的L/P个空域波束基向量,可以视为将选取的L/P个空域波束基向量复制P-1次即可得到L个空域波束基向量。可以先从空域波束基向量组集合中选取一组空域波束基向量,即从空域波束基向量组集合中选取一个空域波束基向量组,之后从一组空域波束基向量中选取L/P个空域波束基向量。其它处理过程与步骤202相似,详细描述请参考步骤202,在此不再详细赘述。
403、终端设备为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量。
其中,步骤403与步骤203相同,详细描述请参考步骤203,在此不再详细赘述。
404、终端设备根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量。
其中,步骤404与步骤204相同,详细描述请参考步骤204,在此不再详细赘述。
405、终端设备向网络设备发送M个空频合并系数向量的空频合并系数的信息。
其中,步骤405与步骤205相同,详细描述请参考步骤205,在此不再详细赘述。
基于图1所示的网络架构,以及上述实施例中的通信方法的同一构思,请参阅图5,图5是本发明实施例公开的一种终端设备的结构示意图。其中,该终端设备可以应用于上述图2和图4所示的通信方法中。如图5所示,该终端设备可以包括:
接收单元501,用于接收来自网络设备的配置信息,其中,配置信息指示一个或多个空域波束基向量组和Q个阈值,Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应;
第一选取单元502,用于从空域波束基向量组集合中选取L个空域波束基向量;
第二选取单元503,用于为第一选取单元502选取的L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量;
确定单元504,用于根据第一选取单元502选取的L个空域波束基向量、第二选取单元503选取的L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量,其中,一个空频合并系数向量对应一个空域波束基向量,一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的阈值相关联;
发送单元505,用于向网络设备发送确定单元504确定的M个空频合并系数向量的空频合并系数的幅度和相位。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,功率函数为第一功率与第二功率的比值,第一功率为第一空域波束基向量对应的空频合并系数的功率和,第二功率为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
作为一种可能的实施方式,功率函数为第一空域波束基向量对应的空频合并系数的功率和。
作为一种可能的实施方式,第一空域波束基向量对应的空频合并系数的功率可以为第一空域波束基向量对应的空频合并系数的幅度的平方。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,幅度函数为第一空域波束基向量对应的空频合并系数的幅度的最大值。
作为一种可能的实施方式,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
作为一种可能的实施方式,幅度函数可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
作为一种可能的实施方式,第一选取单元502具体用于:
从空域波束基向量组集合中选取一组空域波束基向量;
从该一组空域波束基向量中选取L个空域波束基向量。
作为一种可能的实施方式,在上报全部空频合并系数的情况下,确定单元504具体用于:
根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个初始空频合并系数向量,M等于L;
在一个或多个空域波束基向量组不包括一组空域波束基向量的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。
作为一种可能的实施方式,在只上报部分空频合并系数的情况下,确定单元504具体用于:
根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定L个初始空频合并系数向量;
从L个初始空频合并系数向量中选取部分空频合并系数,得到M个初始空频合并系数向量,M小于或等于L,M个初始空频合并系数向量中每个初始空频合并系数向量包括的空频合并系数的数量小于或等于L个初始空频合并系数向量中对应的初始空频合并系数向量包括的空频合并系数的数量;
在一个或多个空域波束基向量组不包括一组空域波束基向量的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。
作为一种可能的实施方式,确定单元504具体还用于:
在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。
作为一种可能的实施方式,确定单元504具体还用于:
在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,调整不满足限制规则的空频合并系数的幅度,得到M个空频合并系数向量。
作为一种可能的实施方式,确定单元504在确定一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,触发第一选取单元502从空域波束基向量组集合中选取L个空域波束基向量,第二选取单元503为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量,确定单元504根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量。
作为一种可能的实施方式,配置信息还指示空频合并系数数目,M个空频合并系数向量包括的空频合并系数数量等于空频合并系数数目。
作为一种可能的实施方式,发送单元505,具体用于向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位以及M个空频合并系数向量包括的空频合并系数的数量。
作为一种可能的实施方式,发送单元505,具体用于向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位、L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
有关上述接收单元501、第一选取单元502、第二选取单元503、确定单元504和发送单元505更详细的描述可以直接参考上述图2和图4所示的方法实施例中终端设备的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,以及上述实施例中的通信方法的同一构思,请参阅图6,图6 是本发明实施例公开的一种网络设备的结构示意图。其中,该网络设备可以应用于上述图2和图4所示的通信方法中。如图6所示,该网络设备可以包括处理单元601和收发单元602,处理单元601用于:
控制收发单元602向终端设备发送配置信息,配置信息指示一个或多个空域波束基向量组和Q个阈值,Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应;
控制收发单元602接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位,M个空频合并系数向量根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定,L个空域波束基向量从空域波束基向量组集合中选取,K个频域基向量从频域基向量集合中选取,其中,一个空频合并系数向量对应一个空域波束基向量,一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的阈值相关联。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,功率函数为第一功率与第二功率的比值,第一功率为第一空域波束基向量对应的空频合并系数的功率和,第二功率为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
作为一种可能的实施方式,功率函数为第一空域波束基向量对应的空频合并系数的功率和。
作为一种可能的实施方式,第一空域波束基向量对应的空频合并系数的功率可以为第一空域波束基向量对应的空频合并系数的幅度的平方。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,幅度函数为第一空域波束基向量对应的空频合并系数的幅度的最大值。
作为一种可能的实施方式,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
作为一种可能的实施方式,幅度函数可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
作为一种可能的实施方式,在终端设备只上报部分空频合并系数的情况下,配置信息还指示空频合并系数数目,M个空频合并系数向量包括的空频合并系数数量等于空频合并系数数目。
作为一种可能的实施方式,在终端设备只上报部分空频合并系数的情况下,收发单元 602接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位以及M个空频合并系数向量包括的空频合并系数的数量。
作为一种可能的实施方式,收发单元602接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位、L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
有关上述处理单元601和收发单元602更详细的描述可以直接参考上述图2和图4所示的方法实施例中网络设备的相关描述直接得到,这里不加赘述。
基于图1所描述的网络架构,请参阅图7,图7是本发明实施例公开的一种通信装置的结构示意图。如图7所示,该通信装置可以包括处理器701、存储器702、收发器703和总线704。处理器701可以是一个通用中央处理器(CPU),多个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以是独立存在,也可以与处理器701集成在一起。总线704与处理器701相连接。存储器702总线704可包括一通路,在上述组件之间传送信息。收发器703可以为收发天线,也可以为其他收发器件,如,射频收发器,或者信号收发接口。其中:
在一个实施例中,该通信装置可以为终端设备或者终端设备内的芯片,其中:
收发器703,用于接收来自网络设备的配置信息,其中,配置信息指示一个或多个空域波束基向量组和Q个阈值,Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应;
存储器702中存储有一组程序代码,处理器701用于调用存储器702中存储的程序代码执行以下操作:
从空域波束基向量组集合中选取L个空域波束基向量;
为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量;
根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量,其中,一个空频合并系数向量对应一个空域波束基向量,一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的阈值相关联;
收发器703,还用于向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,功率函数为第一功率与第二功率的比值,第一功率为第一空域波束基向量对应的空频合并系数的功率和,第二功率为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
作为一种可能的实施方式,功率函数为第一空域波束基向量对应的空频合并系数的功率和。
作为一种可能的实施方式,第一空域波束基向量对应的空频合并系数的功率可以为第一空域波束基向量对应的空频合并系数的幅度的平方。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,幅度函数为第一空域波束基向量对应的空频合并系数的幅度的最大值。
作为一种可能的实施方式,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
作为一种可能的实施方式,幅度函数可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
作为一种可能的实施方式,处理器701从空域波束基向量组集合中选取L个空域波束基向量包括:
从空域波束基向量组集合中选取一组空域波束基向量;
从一组空域波束基向量中选取L个空域波束基向量。
作为一种可能的实施方式,在上报全部空频合并系数的情况下,处理器701根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量包括:
根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个初始空频合并系数向量,M等于L;
在一个或多个空域波束基向量组不包括一组空域波束基向量的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。
作为一种可能的实施方式,在只上报部分空频合并系数的情况下,处理器701根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标 预编码向量,确定M个空频合并系数向量包括:
根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定L个初始空频合并系数向量;
从L个初始空频合并系数向量中选取部分空频合并系数,得到M个初始空频合并系数向量,M小于或等于L,M个初始空频合并系数向量中每个初始空频合并系数向量包括的空频合并系数的数量小于或等于L个初始空频合并系数向量中对应的初始空频合并系数向量包括的空频合并系数的数量;
在一个或多个空域波束基向量组不包括一组空域波束基向量的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。
作为一种可能的实施方式,处理器701根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量还包括:
在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,确定M个初始空频合并系数向量为M个空频合并系数向量。
作为一种可能的实施方式,处理器701根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量还包括:
在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,调整不满足限制规则的空频合并系数的幅度,得到M个空频合并系数向量。
作为一种可能的实施方式,处理器701根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量还包括:
在一个或多个空域波束基向量组包括一组空域波束基向量,且M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,执行从空域波束基向量组集合中选取L个空域波束基向量,为L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量,根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量。
作为一种可能的实施方式,配置信息还指示空频合并系数数目,M个空频合并系数向量包括的空频合并系数数量等于空频合并系数数目。
作为一种可能的实施方式,收发器703向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位包括:
向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位以及M个空频合并系数向量包括的空频合并系数的数量。
作为一种可能的实施方式,收发器703向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位包括:
向网络设备发送M个空频合并系数向量的空频合并系数的幅度和相位、L个空域波束基 向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
其中,步骤202-步骤204以及步骤402-404可以由终端设备中的处理器701和存储器702来执行,步骤201以及步骤402中终端设备侧接收配置信息的步骤、步骤205和步骤405可以由终端设备中的收发器703来执行。
其中,第一选取单元502、第二选取单元503和确定单元504可以由终端设备中的处理器701和存储器702来实现,接收单元501和发送单元505可以由终端设备中的收发器703来实现。
上述终端设备还可以用于执行前述方法实施例中终端设备执行的各种方法,不再赘述。
在另一实施例中,该通信装置可以为网络设备或者网络设备内的芯片,其中:
存储器702中存储有一组程序代码,处理器701用于调用存储器702中存储的程序代码控制收发器703执行以下操作:
向终端设备发送配置信息,配置信息指示一个或多个空域波束基向量组和Q个阈值,Q个阈值与一个或多个空域波束基向量组中的空域波束基向量一一对应;
接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位,M个空频合并系数向量根据L个空域波束基向量、L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定,L个空域波束基向量从空域波束基向量组集合中选取,K个频域基向量从频域基向量集合中选取,其中,一个空频合并系数向量对应一个空域波束基向量,一个空域波束基向量对应的空频合并系数向量满足限制规则,限制规则与空域波束基向量对应的阈值相关联。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,功率函数为第一功率与第二功率的比值,第一功率为第一空域波束基向量对应的空频合并系数的功率和,第二功率为M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
作为一种可能的实施方式,功率函数为第一空域波束基向量对应的空频合并系数的功率和。
作为一种可能的实施方式,第一空域波束基向量对应的空频合并系数的功率可以为第一空域波束基向量对应的空频合并系数的幅度的平方。
作为一种可能的实施方式,限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于第一空域波束基向量对应的阈值,第一空域波束基向量为一个或多个空域波束基向量组中的任一空域波束基向量。
作为一种可能的实施方式,幅度函数为第一空域波束基向量对应的空频合并系数的幅度的最大值。
作为一种可能的实施方式,第一空频合并系数的幅度可以为参考幅度与差分幅度的乘积,参考幅度可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,差分幅度可以为第一空频合并系数的量化幅度与参考幅度的比值,第一空频 合并系数为第一空域波束基向量在第一极化方向对应的空频合并系数中的任一空频合并系数,第一极化方向为第一空域波束基向量的极化方向中的任一方向。
作为一种可能的实施方式,幅度函数可以为第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,第一极化方向为第一空域波束基向量的极化方向中的任一极化方向。
作为一种可能的实施方式,在终端设备只上报部分空频合并系数的情况下,配置信息还指示空频合并系数数目,M个空频合并系数向量包括的空频合并系数数量等于空频合并系数数目。
作为一种可能的实施方式,在终端设备只上报部分空频合并系数的情况下,收发器703接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位以及M个空频合并系数向量包括的空频合并系数的数量。
作为一种可能的实施方式,收发器703接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
接收来自终端设备的M个空频合并系数向量的空频合并系数的幅度和相位、L个空域波束基向量中基向量的索引和L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
其中,步骤201、步骤401、步骤205以及步骤405中网络设备侧接收空频合并系数的幅度和相位的步骤可以由网络设备中的处理器701、存储器702和收发器703来执行。
其中,处理单元601和收发单元602可以由网络设备中的处理器701、存储器702和收发器703来实现。
上述网络设备还可以用于执行前述方法实施例中网络设备执行的各种方法,不再赘述。
本发明实施例还公开了一种可读存储介质,该可读存储介质上存储有程序,该程序运行时,实现如图2和图4所示的通信方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中,通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括上述计算机可读存储介质中存储的计算机指令。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (78)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息,其中,所述配置信息指示一个或多个空域波束基向量组和Q个阈值,所述Q个阈值与所述一个或多个空域波束基向量组中的空域波束基向量一一对应;
    从空域波束基向量组集合中选取L个空域波束基向量;
    为所述L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量;
    根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量,其中,一个所述空频合并系数向量对应一个空域波束基向量,所述一个空域波束基向量对应的空频合并系数向量满足限制规则,所述限制规则与空域波束基向量对应的所述阈值相关联;
    向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位。
  2. 根据权利要求1所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  3. 根据权利要求1所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  4. 根据权利要求1所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方与固定值的线性组合,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述功率函数为第一功率与第二功率的比值,所述第一功率为所述第一空域波束基向量对应的空频合并系数的功率和,所述第二功率为所述M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
  6. 根据权利要求2-4任一项所述的方法,其特征在于,所述功率函数为所述第一空域波束基向量对应的空频合并系数的功率和。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一空域波束基向量对应的空频合并系数的功率为所述第一空域波束基向量对应的空频合并系数的幅度的平方。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,所述第一空域波束基向量对应的阈值为0、
    Figure PCTCN2020071604-appb-100001
    或者1。
  9. 根据权利要求2-7任一项所述的方法,其特征在于,所述第一空域波束基向量对应的阈值为0、1/4、1/2或者1。
  10. 根据权利要求1所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  11. 根据权利要求10所述的方法,其特征在于,所述幅度函数为所述第一空域波束基向量对应的空频合并系数的幅度的最大值。
  12. 根据权利要求7或11所述的方法,其特征在于,第一空频合并系数的幅度为参考幅度与差分幅度的乘积,所述参考幅度为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述差分幅度为所述第一空频合并系数的量化幅度与所述参考幅度的比值,所述第一空频合并系数为所述第一空域波束基向量在所述第一极化方向对应的空频合并系数中的任一空频合并系数,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一方向。
  13. 根据权利要求10所述的方法,其特征在于,所述幅度函数为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一极化方向。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述从空域波束基向量组集合中选取L个空域波束基向量包括:
    从空域波束基向量组集合中选取一组空域波束基向量;
    从所述一组空域波束基向量中选取L个空域波束基向量。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,在上报全部空频合并系数的情况下,所述根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量包括:
    根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个初始空频合并系数向量,所述M等于所述L;
    在所述一个或多个空域波束基向量组不包括所述一组空域波束基向量的情况下,确定所述M个初始空频合并系数向量为M个空频合并系数向量。
  16. 根据权利要求1-14任一项所述的方法,其特征在于,在只上报部分空频合并系数 的情况下,所述根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量包括:
    根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定L个初始空频合并系数向量;
    从所述L个初始空频合并系数向量中选取部分空频合并系数,得到M个初始空频合并系数向量,所述M小于或等于所述L,所述M个初始空频合并系数向量中每个初始空频合并系数向量包括的空频合并系数的数量小于或等于所述L个初始空频合并系数向量中对应的初始空频合并系数向量包括的空频合并系数的数量;
    在所述一个或多个空域波束基向量组不包括所述一组空域波束基向量的情况下,确定所述M个初始空频合并系数向量为M个空频合并系数向量。
  17. 根据权利要求15或16所述的方法,其特征在于,所述根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量还包括:
    在所述一个或多个空域波束基向量组包括所述一组空域波束基向量,且所述M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,确定所述M个初始空频合并系数向量为M个空频合并系数向量。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量还包括:
    在所述一个或多个空域波束基向量组包括所述一组空域波束基向量,且所述M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,调整不满足限制规则的空频合并系数的幅度,得到M个空频合并系数向量。
  19. 根据权利要求15-17任一项所述的方法,其特征在于,所述根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量还包括:
    在所述一个或多个空域波束基向量组包括所述一组空域波束基向量,且所述M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,执行所述从空域波束基向量组集合中选取L个空域波束基向量,为所述L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量,根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量。
  20. 根据权利要求16-19任一项所述的方法,其特征在于,所述配置信息还指示空频合并系数数目,所述M个空频合并系数向量包括的空频合并系数数量等于所述空频合并系数数目。
  21. 根据权利要求16-19任一项所述的方法,其特征在于,所述向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位包括:
    向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位以及所述M个空频合并系数向量包括的空频合并系数的数量。
  22. 根据权利要求1-14任一项所述的方法,其特征在于,所述向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位包括:
    向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位、所述L个空域波束基向量中基向量的索引和所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
  23. 一种通信方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息指示一个或多个空域波束基向量组和Q个阈值,所述Q个阈值与所述一个或多个空域波束基向量组中的空域波束基向量一一对应;
    接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位,所述M个空频合并系数向量根据L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定,所述L个空域波束基向量从空域波束基向量组集合中选取,所述K个频域基向量从频域基向量集合中选取,其中,一个所述空频合并系数向量对应一个空域波束基向量,所述一个空域波束基向量对应的空频合并系数向量满足限制规则,所述限制规则与空域波束基向量对应的所述阈值相关联。
  24. 根据权利要求23所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  25. 根据权利要求23所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  26. 根据权利要求23所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方与固定值的线性组合,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  27. 根据权利要求24-26任一项所述的方法,其特征在于,所述功率函数为第一功率与第二功率的比值,所述第一功率为所述第一空域波束基向量对应的空频合并系数的功率和,所述第二功率为所述M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
  28. 根据权利要求24-26任一项所述的方法,其特征在于,所述功率函数为所述第一空域波束基向量对应的空频合并系数的功率和。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第一空域波束基向量对应的空频合并系数的功率为所述第一空域波束基向量对应的空频合并系数的幅度的平方。
  30. 根据权利要求24-29任一项所述的方法,其特征在于,所述第一空域波束基向量对应的阈值为0、
    Figure PCTCN2020071604-appb-100002
    或者1。
  31. 根据权利要求24-29任一项所述的方法,其特征在于,所述第一空域波束基向量对应的阈值为0、1/4、1/2或者1。
  32. 根据权利要求23所述的方法,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  33. 根据权利要求32所述的方法,其特征在于,所述幅度函数为所述第一空域波束基向量对应的空频合并系数的幅度的最大值。
  34. 根据权利要求29或33所述的方法,其特征在于,第一空频合并系数的幅度为参考幅度与差分幅度的乘积,所述参考幅度为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述差分幅度为所述第一空频合并系数的量化幅度与所述参考幅度的比值,所述第一空频合并系数为所述第一空域波束基向量在所述第一极化方向对应的空频合并系数中的任一空频合并系数,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一方向。
  35. 根据权利要求32所述的方法,其特征在于,所述幅度函数为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一极化方向。
  36. 根据权利要求23-35任一项所述的方法,其特征在于,在所述终端设备只上报部分空频合并系数的情况下,所述配置信息还指示空频合并系数数目,所述M个空频合并系数向量包括的空频合并系数数量等于所述空频合并系数数目。
  37. 根据权利要求23-35任一项所述的方法,其特征在于,在所述终端设备只上报部分空频合并系数的情况下,所述接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
    接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位以及所 述M个空频合并系数向量包括的空频合并系数的数量。
  38. 根据权利要求23-35任一项所述的方法,其特征在于,所述接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
    接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位、所述L个空域波束基向量中基向量的索引和所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
  39. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的配置信息,其中,所述配置信息指示一个或多个空域波束基向量组和Q个阈值,所述Q个阈值与所述一个或多个空域波束基向量组中的空域波束基向量一一对应;
    第一选取单元,用于从空域波束基向量组集合中选取L个空域波束基向量;
    第二选取单元,用于为所述第一选取单元选取的L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量;
    确定单元,用于根据所述第一选取单元选取的L个空域波束基向量、所述第二选取单元选取的L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量,其中,一个所述空频合并系数向量对应一个空域波束基向量,所述一个空域波束基向量对应的空频合并系数向量满足限制规则,所述限制规则与空域波束基向量对应的所述阈值相关联;
    发送单元,用于向所述网络设备发送所述确定单元确定的M个空频合并系数向量的空频合并系数的幅度和相位。
  40. 根据权利要求39所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  41. 根据权利要求39所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  42. 根据权利要求39所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方与固定值的线性组合,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  43. 根据权利要求40-42任一项所述的装置,其特征在于,所述功率函数为第一功率与 第二功率的比值,所述第一功率为所述第一空域波束基向量对应的空频合并系数的功率和,所述第二功率为所述M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
  44. 根据权利要求40-42任一项所述的装置,其特征在于,所述功率函数为所述第一空域波束基向量对应的空频合并系数的功率和。
  45. 根据权利要求43或44所述的装置,其特征在于,所述第一空域波束基向量对应的空频合并系数的功率为所述第一空域波束基向量对应的空频合并系数的幅度的平方。
  46. 根据权利要求40-45任一项所述的装置,其特征在于,所述第一空域波束基向量对应的阈值为0、
    Figure PCTCN2020071604-appb-100003
    或者1。
  47. 根据权利要求40-45任一项所述的装置,其特征在于,所述第一空域波束基向量对应的阈值为0、1/4、1/2或者1。
  48. 根据权利要求39所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  49. 根据权利要求48所述的装置,其特征在于,所述幅度函数为所述第一空域波束基向量对应的空频合并系数的幅度的最大值。
  50. 根据权利要求45或49所述的装置,其特征在于,第一空频合并系数的幅度为参考幅度与差分幅度的乘积,所述参考幅度为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述差分幅度为所述第一空频合并系数的量化幅度与所述参考幅度的比值,所述第一空频合并系数为所述第一空域波束基向量在所述第一极化方向对应的空频合并系数中的任一空频合并系数,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一方向。
  51. 根据权利要求48所述的装置,其特征在于,所述幅度函数为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一极化方向。
  52. 根据权利要求39-51任一项所述的装置,其特征在于,所述第一选取单元具体用于:
    从空域波束基向量组集合中选取一组空域波束基向量;
    从所述一组空域波束基向量中选取L个空域波束基向量。
  53. 根据权利要求39-52任一项所述的装置,其特征在于,在上报全部空频合并系数的 情况下,所述确定单元具体用于:
    根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个初始空频合并系数向量,所述M等于所述L;
    在所述一个或多个空域波束基向量组不包括所述一组空域波束基向量的情况下,确定所述M个初始空频合并系数向量为M个空频合并系数向量。
  54. 根据权利要求39-52任一项所述的装置,其特征在于,在只上报部分空频合并系数的情况下,所述确定单元具体用于:
    根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定L个初始空频合并系数向量;
    从所述L个初始空频合并系数向量中选取部分空频合并系数,得到M个初始空频合并系数向量,所述M小于或等于所述L,所述M个初始空频合并系数向量中每个初始空频合并系数向量包括的空频合并系数的数量小于或等于所述L个初始空频合并系数向量中对应的初始空频合并系数向量包括的空频合并系数的数量;
    在所述一个或多个空域波束基向量组不包括所述一组空域波束基向量的情况下,确定所述M个初始空频合并系数向量为M个空频合并系数向量。
  55. 根据权利要求53或54所述的装置,其特征在于,所述确定单元具体还用于:
    在所述一个或多个空域波束基向量组包括所述一组空域波束基向量,且所述M个初始空频合并系数向量的空频合并系数均满足对应的限制规则的情况下,确定所述M个初始空频合并系数向量为M个空频合并系数向量。
  56. 根据权利要求53-55任一项所述的装置,其特征在于,所述确定单元具体还用于:
    在所述一个或多个空域波束基向量组包括所述一组空域波束基向量,且所述M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,调整不满足限制规则的空频合并系数的幅度,得到M个空频合并系数向量。
  57. 根据权利要求53-55任一项所述的装置,其特征在于,所述确定单元在确定所述一个或多个空域波束基向量组包括所述一组空域波束基向量,且所述M个初始空频合并系数向量中存在空频合并系数不满足对应的限制规则的情况下,触发所述第一选取单元从空域波束基向量组集合中选取L个空域波束基向量,所述第二选取单元为所述L个空域波束基向量中每个空域波束基向量从频域基向量集合中选取K个频域基向量,所述确定单元根据所述L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量,确定M个空频合并系数向量。
  58. 根据权利要求54-57任一项所述的装置,其特征在于,所述配置信息还指示空频合并系数数目,所述M个空频合并系数向量包括的空频合并系数数量等于所述空频合并系数数目。
  59. 根据权利要求54-57任一项所述的装置,其特征在于,所述发送单元,具体用于向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位以及所述M个空频合并系数向量包括的空频合并系数的数量。
  60. 根据权利要求39-52任一项所述的装置,其特征在于,所述发送单元,具体用于向所述网络设备发送所述M个空频合并系数向量的空频合并系数的幅度和相位、所述L个空域波束基向量中基向量的索引和所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
  61. 一种通信装置,其特征在于,包括处理单元和收发单元,所述处理单元用于:
    控制所述收发单元向终端设备发送配置信息,所述配置信息指示一个或多个空域波束基向量组和Q个阈值,所述Q个阈值与所述一个或多个空域波束基向量组中的空域波束基向量一一对应;
    控制所述收发单元接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位,所述M个空频合并系数向量根据L个空域波束基向量、所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量和目标预编码向量确定,所述L个空域波束基向量从空域波束基向量组集合中选取,所述K个频域基向量从频域基向量集合中选取,其中,一个所述空频合并系数向量对应一个空域波束基向量,所述一个空域波束基向量对应的空频合并系数向量满足限制规则,所述限制规则与空域波束基向量对应的所述阈值相关联。
  62. 根据权利要求61所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  63. 根据权利要求61所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  64. 根据权利要求61所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的功率函数的值要小于或等于所述第一空域波束基向量对应的阈值的平方与固定值的线性组合,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  65. 根据权利要求62-64任一项所述的装置,其特征在于,所述功率函数为第一功率与第二功率的比值,所述第一功率为所述第一空域波束基向量对应的空频合并系数的功率和,所述第二功率为所述M个空域波束基向量分别对应的空频合并系数的功率和中的最大值。
  66. 根据权利要求62-64任一项所述的装置,其特征在于,所述功率函数为所述第一空域波束基向量对应的空频合并系数的功率和。
  67. 根据权利要求65或66所述的装置,其特征在于,所述第一空域波束基向量对应的空频合并系数的功率为所述第一空域波束基向量对应的空频合并系数的幅度的平方。
  68. 根据权利要求62-67任一项所述的装置,其特征在于,所述第一空域波束基向量对应的阈值为0、
    Figure PCTCN2020071604-appb-100004
    或者1。
  69. 根据权利要求62-67任一项所述的装置,其特征在于,所述第一空域波束基向量对应的阈值为0、1/4、1/2或者1。
  70. 根据权利要求61所述的装置,其特征在于,所述限制规则为第一空域波束基向量对应的空频合并系数的幅度函数的值要小于或等于所述第一空域波束基向量对应的阈值,所述第一空域波束基向量为所述一个或多个空域波束基向量组中的任一空域波束基向量。
  71. 根据权利要求70所述的装置,其特征在于,所述幅度函数为所述第一空域波束基向量对应的空频合并系数的幅度的最大值。
  72. 根据权利要求67或71所述的装置,其特征在于,第一空频合并系数的幅度为参考幅度与差分幅度的乘积,所述参考幅度为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述差分幅度为所述第一空频合并系数的量化幅度与所述参考幅度的比值,所述第一空频合并系数为所述第一空域波束基向量在所述第一极化方向对应的空频合并系数中的任一空频合并系数,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一方向。
  73. 根据权利要求70所述的装置,其特征在于,所述幅度函数为所述第一空域波束基向量对应的第一极化方向的空频合并系数的量化幅度中的最大值,所述第一极化方向为所述第一空域波束基向量的极化方向中的任一极化方向。
  74. 根据权利要求61-73任一项所述的装置,其特征在于,在所述终端设备只上报部分空频合并系数的情况下,所述配置信息还指示空频合并系数数目,所述M个空频合并系数向量包括的空频合并系数数量等于所述空频合并系数数目。
  75. 根据权利要求61-73任一项所述的装置,其特征在于,在所述终端设备只上报部分空频合并系数的情况下,所述收发单元接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
    接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位以及所 述M个空频合并系数向量包括的空频合并系数的数量。
  76. 根据权利要求61-73任一项所述的装置,其特征在于,所述收发单元接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位包括:
    接收来自所述终端设备的M个空频合并系数向量的空频合并系数的幅度和相位、所述L个空域波束基向量中基向量的索引和所述L个空域波束基向量中每个空域波束基向量对应的K个频域基向量中基向量的索引。
  77. 一种通信装置,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权利要求1-38中任一项所述的方法步骤。
  78. 一种可读存储介质,其特征在于,所述可读存储介质上存储有程序,当所述程序运行时,实现如权利要求1-38任一项所述的通信方法。
PCT/CN2020/071604 2019-01-11 2020-01-11 一种通信方法及设备 WO2020143815A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20738278.9A EP3910807A4 (en) 2019-01-11 2020-01-11 METHOD AND COMMUNICATION DEVICE
KR1020217025258A KR102645275B1 (ko) 2019-01-11 2020-01-11 통신 방법 및 장치
BR112021013640-1A BR112021013640A2 (pt) 2019-01-11 2020-01-11 Método de comunicação, aparelho, e mídia de armazenamento legível
US17/371,978 US11962381B2 (en) 2019-01-11 2021-07-09 Communication method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910028819 2019-01-11
CN201910028819.1 2019-01-11
CN201910364435.7 2019-04-30
CN201910364435.7A CN111435849B (zh) 2019-01-11 2019-04-30 一种通信方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,978 Continuation US11962381B2 (en) 2019-01-11 2021-07-09 Communication method and device

Publications (1)

Publication Number Publication Date
WO2020143815A1 true WO2020143815A1 (zh) 2020-07-16

Family

ID=71520449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071604 WO2020143815A1 (zh) 2019-01-11 2020-01-11 一种通信方法及设备

Country Status (3)

Country Link
EP (1) EP3910807A4 (zh)
BR (1) BR112021013640A2 (zh)
WO (1) WO2020143815A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102660181B1 (ko) 2019-04-04 2024-04-24 노키아 테크놀로지스 오와이 업링크 제어 정보의 통신

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196098A1 (ko) * 2016-05-11 2017-11-16 엘지전자(주) 다중 안테나 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN107888323A (zh) * 2016-09-29 2018-04-06 电信科学技术研究院 一种信道状态信息的传输方法和设备
CN108288983A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196098A1 (ko) * 2016-05-11 2017-11-16 엘지전자(주) 다중 안테나 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN107888323A (zh) * 2016-09-29 2018-04-06 电信科学技术研究院 一种信道状态信息的传输方法和设备
CN108288983A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 信道状态信息的反馈、确定方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Codebook Subset Restriction in advanced CSI", 3GPP TSG RAN WG1 MEETING #91 R1-1721065, 1 December 2017 (2017-12-01), XP051363816, DOI: 20200316144521Y *
See also references of EP3910807A4 *

Also Published As

Publication number Publication date
EP3910807A1 (en) 2021-11-17
EP3910807A4 (en) 2022-03-23
BR112021013640A2 (pt) 2021-09-14

Similar Documents

Publication Publication Date Title
US11211988B2 (en) Method for determining precoding matrix indicator, receiving device, and sending device
CN107872261B (zh) 一种报告信道状态信息的方法、用户设备和基站
US20160204842A1 (en) Information Feedback Method, Codebook Determination Method, UE and Base Station
WO2020221582A1 (en) Methods and apparatuses for csi reporting in a wireless communication system
KR102645275B1 (ko) 통신 방법 및 장치
CN112311431B (zh) 一种空频合并系数的指示方法及装置
CN111106857B (zh) 指示和确定预编码向量的方法以及通信装置
US10581497B2 (en) Transmit diversity method, terminal, and base station
CN111800172A (zh) 一种通信方法及装置
CN115426018A (zh) 指示和确定预编码矩阵的方法以及通信装置
CN111865376B (zh) 一种通信方法及装置
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
CN113746514A (zh) 一种通信方法、装置及系统
WO2020143815A1 (zh) 一种通信方法及设备
JP2017163551A (ja) プリコーディング行列インジケータを決定するための方法および装置、ユーザ機器、ならびに基地局
CN111756416B (zh) 一种通信方法及装置
CN111010218B (zh) 指示和确定预编码向量的方法以及通信装置
RU2795933C2 (ru) Способ и устройство связи
CN111587543A (zh) 信道状态信息矩阵信息处理方法及通信装置
JP6629823B2 (ja) プリコーディングマトリクス指標を決定する方法、受信装置、および送信装置
CN117178495A (zh) 端口选择码本增强
CN115333582A (zh) 预编码信息

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013640

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020738278

Country of ref document: EP

Effective date: 20210811

ENP Entry into the national phase

Ref document number: 112021013640

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210709