WO2018126979A1 - 一种配置参考信号的方法和装置 - Google Patents

一种配置参考信号的方法和装置 Download PDF

Info

Publication number
WO2018126979A1
WO2018126979A1 PCT/CN2017/119357 CN2017119357W WO2018126979A1 WO 2018126979 A1 WO2018126979 A1 WO 2018126979A1 CN 2017119357 W CN2017119357 W CN 2017119357W WO 2018126979 A1 WO2018126979 A1 WO 2018126979A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
port
configuration information
user terminal
Prior art date
Application number
PCT/CN2017/119357
Other languages
English (en)
French (fr)
Inventor
刘永
武露
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710313518.4A external-priority patent/CN108282322A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17890767.1A priority Critical patent/EP3562081A4/en
Priority to BR112019014001-8A priority patent/BR112019014001A2/pt
Publication of WO2018126979A1 publication Critical patent/WO2018126979A1/zh
Priority to US16/505,251 priority patent/US11405154B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for configuring a reference signal.
  • the reference signal (English: reference signal, abbreviation: RS) is a signal that both the transmitting and receiving parties are predicting.
  • the receiving end can use the reference signal sent by the transmitting end to perform channel estimation, and estimate the data signal sent by the transmitting end according to the channel estimation result.
  • the method for configuring the reference signal provided in the communication standard is as follows: in a transmission process, a reference signal corresponding to each port (ie, an antenna port) is usually generated according to a fixed sequence, and then according to the number of available ports, in a fixed mapping manner, The reference signal corresponding to each port is mapped to a physical resource block (English: physical resource block, abbreviation: PRB).
  • PRB physical resource block
  • the reference signal in a single transmission process, as long as the number of available ports is determined, the reference signal may be configured according to preset information, such as a fixed mapping manner and a function of a reference signal. Moreover, once the reference signal corresponding to each port is configured, its configuration information does not change. Therefore, when the technical solution is applied to a complicated and varied scene, such as a high-band scene or a high-frequency selection scene, the channel estimation result is inaccurate.
  • Embodiments of the present invention provide a method and apparatus for configuring a reference signal for improving the accuracy of channel estimation results in a complex and varied scenario.
  • a method for configuring a reference signal includes: determining configuration information of a first reference signal; the first reference signal is a reference signal corresponding to a first port that can be used in a single transmission process, and is usable during transmission.
  • the port further includes a second port, where the configuration information of the reference signal corresponding to the second port is different from the configuration information of the first reference signal; and then, configuring the first reference signal according to the configuration information of the first reference signal.
  • the configuration information of the reference signals corresponding to different ports may be different in one transmission process, that is, the technical solution of configuring the reference signals by using the port as the granularity, and the number of available ports provided by the prior art Compared with the technical solution of configuring the reference signal for granularity, it is more able to adapt to complex and varied scenarios.
  • the reference signal can be configured in combination with actual requirements to improve the accuracy of the channel estimation result.
  • the method may further include: sending the configured first reference signal.
  • the method may further include: transmitting indication information, the indication information being used to instruct the receiving end to determine configuration information of the first reference signal.
  • the base station may send the indication information to the user terminal through radio resource control (radio resource control, RRC) signaling or downlink control information (English: downlink control information, abbreviated as DCI).
  • RRC radio resource control
  • DCI downlink control information
  • the base station can indicate the configuration information of the first reference signal to the user terminal in a explicit or implicit manner, and the specific implementation process can be referred to below. This possible implementation enables the receiving end to learn the first reference signal.
  • the indication information is DCI or MAC signaling, which is used to indicate configuration information of the first reference signal; before the indication information is sent, the method may further include: sending system configuration signaling; wherein, the system configuration The signaling includes RRC signaling, and the system configuration signaling includes at least one information item, and each information item records a configuration information of the first reference signal.
  • the configuration information of the first reference signal may include at least one of the following information: a density of resources occupied by the first reference signal, a function carried by the first reference signal, and a first reference signal
  • the density of resources occupied by the first reference signal refers to a ratio of the number of resource units occupied by the first reference signal to the number of resource units used in the transmission process.
  • the function carried by the first reference signal includes at least two types.
  • the density of the resources occupied by the first reference signal is considered to be the configuration information of the first reference signal.
  • the density of the resource occupied by the first reference signal may not be used as the configuration information of the first reference signal, but the density of the resource occupied by the first reference signal may be used as the configuration information of the first reference signal.
  • the indication information in the above possible design may include information about the density of the resource occupied by the first reference signal, such as the adjustment value of the density value or the density, and the information indicating that the receiving end determines the first reference signal. The location of the resource.
  • determining the configuration information of the first reference signal may include: selecting a target pilot map from the preset pilot map set according to a current state of the user terminal; wherein the current state of the user terminal includes the following information At least one of the following: a frame structure used by the user terminal to transmit information, a scenario in which the user terminal is located, a carrier frequency used when scheduling the user terminal, and a subcarrier spacing used when the user terminal transmits information. Then, according to the target pilot map, configuration information of the first reference signal is acquired.
  • the target pilot map corresponds to configuration information of the first reference signal.
  • Each preset pilot map may have a correspondence relationship with configuration information of some or all of the reference signals transmitted during one transmission.
  • the method may further include: sending indication information, where the indication information includes an identifier of the target pilot map.
  • the optional implementation manner can be understood as: indicating the configuration information of the first reference signal by a method of implicit indication.
  • the indication information includes DCI or MAC signaling for indicating a target pilot map; before transmitting the indication information, the method further includes: transmitting system configuration signaling; wherein the system configuration signaling includes an RRC letter And the system configuration signaling includes at least one information item, and each information item records information of a pilot map of the first reference signal.
  • determining the configuration information of the first reference signal may include: according to the channel corresponding to the first port Determining a density of resources occupied by the first reference signal by at least one of a time-frequency characteristic, a phase noise of a channel corresponding to the first port, system information of the user terminal, system configuration information of the user terminal, and a moving speed of the user terminal;
  • the first port is any port assigned to the user terminal.
  • determining the configuration information of the first reference signal may include: time-frequency characteristics of the channel corresponding to the first port At least one of phase noise of a channel corresponding to the first port determines a function carried by the first reference signal.
  • determining the configuration information of the first reference signal may include: determining channel quality according to the channel corresponding to the first port The information, the average peak ratio of the user terminal, and at least one of the PAPR requirement and the number of scheduling layers of the user terminal determine the transmission waveform used by the first reference signal; the first port is any port allocated for the user terminal.
  • determining the configuration information of the first reference signal may include: a transmission waveform according to the first reference signal, The type of the sequence of the first reference signal is determined by at least one of a PAPR requirement of the user terminal and a scheduling flexibility requirement of the user terminal; the first port is any one of the ports assigned to the user terminal.
  • determining the configuration information of the first reference signal may include: according to the time of the channel corresponding to the first reference signal A manner of generating a sequence of the first reference signal is determined by at least one of a frequency characteristic and a type of the first reference signal sequence.
  • determining the configuration information of the first reference signal may include: time-frequency according to the channel corresponding to the first port The at least one of the characteristics and the phase noise superimposed on the channel corresponding to the first port determines a resource multiplexing manner of the first reference signal.
  • a second aspect provides a method for configuring a reference signal, including: receiving indication information; and, according to the indication information, determining configuration information of the first reference signal; wherein the first reference signal is a first available in a transmission process
  • a port corresponding to the reference signal, the port that can be used in the transmission process further includes a second port, and the configuration information of the reference signal corresponding to the second port is different from the configuration information of the first reference signal.
  • the indication information may be DCI or MAC signaling or RRC signaling.
  • the method may further include: receiving the first reference signal.
  • the indication information includes DCI or MAC signaling for indicating configuration information of the first reference signal; before receiving the indication information, the method may further include: receiving system configuration signaling; wherein, the system configuration The signaling includes RRC signaling, and the system configuration signaling includes at least one information item, and each information item records a configuration information of the first reference signal.
  • determining the configuration information of the first reference signal according to the indication information may include: acquiring the configuration of the first reference signal according to the target pilot map. information.
  • the target pilot map corresponds to configuration information of the first reference signal.
  • the indication information includes DCI or MAC signaling for indicating a target pilot map; before receiving the indication information, the method may further include: receiving system configuration signaling; wherein the system configuration signaling includes RRC signaling, and the system configuration signaling includes at least one information item, and each information item records information of a pilot map of the first reference signal.
  • determining the configuration information of the first reference signal according to the indication information may include: occupying according to the first reference signal The density information of the resource and the preset rule determine the location information of the resource occupied by the first reference signal; the preset rule is a location information indicating a density information of the resource occupied by the first reference signal and a resource occupied by the first reference signal The rules of the correspondence.
  • an apparatus for configuring a reference signal comprising: a determining unit and a configuration unit.
  • the determining unit is configured to determine configuration information of the first reference signal;
  • the first reference signal is a reference signal corresponding to the first port that can be used in one transmission, and the port that can be used in the transmission process further includes a second port,
  • the configuration information of the reference signal corresponding to the two ports is different from the configuration information of the first reference signal.
  • a configuration unit configured to configure the first reference signal according to the configuration information of the first reference signal.
  • the apparatus may further include: a sending unit, configured to send indication information, where the indication information is used to instruct the receiving end to determine configuration information of the first reference signal.
  • the indication information may be DCI or MAC signaling or RRC signaling.
  • the sending unit may be further configured to: send the configured first reference signal.
  • the indication information includes DCI or MAC signaling, which is used to indicate configuration information of the first reference signal; in this case, the sending unit may be further configured to: send system configuration signaling; wherein, the system configuration signal The RRC signaling is included in the RRC signaling, and the system configuration signaling includes at least one information item, and each information item records a configuration information of the first reference signal.
  • the determining unit may be configured to: select a target pilot map from the preset pilot map set according to a current state of the user terminal; where, the current state of the user terminal includes at least one of the following information. : a frame structure used by the user terminal to transmit information, a scenario in which the user terminal is located, a carrier frequency used when scheduling the user terminal, and a subcarrier spacing used when the user terminal transmits information; and then, according to the target pilot map, obtain the first A configuration information of a reference signal.
  • the apparatus may further include: a sending unit, configured to send indication information, where the indication information includes an identifier of the target pilot map.
  • the target pilot map corresponds to configuration information of the first reference signal.
  • the indication information includes DCI or MAC signaling for indicating a target pilot map
  • the receiving unit is further configured to: receive system configuration signaling; where the system configuration signaling includes RRC signaling, and The system configuration signaling includes at least one information item, and each information item records information of a pilot map of the first reference signal.
  • the determining may be specifically used to: according to the time-frequency characteristic of the channel corresponding to the first port, the first port Determining a density of resources occupied by the first reference signal by at least one of phase noise of the corresponding channel, system information of the user terminal, system configuration information of the user terminal, and moving speed of the user terminal; the first port is a user terminal Any port assigned.
  • the determining unit may be configured to: correspond to the first port according to the time-frequency characteristic of the channel corresponding to the first port At least one of phase noise of the channel determines a function carried by the first reference signal.
  • the determining unit may be specifically configured to: according to the channel quality information of the channel corresponding to the first port, the user terminal
  • the transmission peak waveform used by the first reference signal is determined by at least one of the peak-to-peak ratio PAPR requirement and the number of scheduling layers of the user terminal; the first port is any port allocated for the user terminal.
  • the determining unit may be specifically configured to: use the transmission waveform adopted by the first reference signal, and the PAPR requirement of the user terminal.
  • the type of the sequence of the first reference signal is determined by at least one of the scheduling flexibility requirements of the user terminal; the first port is any one of the ports assigned to the user terminal.
  • the determining unit may be specifically configured to: according to a time-frequency characteristic of the channel corresponding to the first reference signal, and the first The manner in which the sequence of the first reference signal is generated is determined by at least one of the types of reference signal sequences.
  • the determining unit may be specifically configured to: according to a time-frequency characteristic of the channel corresponding to the first port, and the first port At least one of phase noise superimposed on the corresponding channel determines a resource multiplexing manner of the first reference signal.
  • an apparatus for configuring a reference signal comprising a receiving unit and a determining unit.
  • the receiving unit is configured to receive the indication information.
  • a determining unit configured to determine, according to the indication information, configuration information of the first reference signal; wherein, the first reference signal is a reference signal corresponding to the first port that can be used in one transmission, and the port that can be used in the transmission process further includes The configuration information of the reference signal corresponding to the second port and the second port is different from the configuration information of the first reference signal.
  • the indication information may be DCI or MAC signaling or RRC signaling.
  • the indication information includes downlink control information DCI or media access control MAC signaling, and is used to indicate configuration information of the first reference signal.
  • the receiving unit is further configured to receive system configuration signaling, where the system configuration signaling includes radio resource control RRC signaling, and the system configuration signaling includes at least one information item, where each information item records A configuration information of a reference signal.
  • the indication information includes an identifier of the target pilot map
  • the determining unit is specifically configured to: acquire configuration information of the first reference signal according to the target pilot map.
  • the indication information includes DCI or MAC signaling for indicating the target pilot map.
  • the receiving unit is further configured to: receive system configuration signaling, where the system configuration signaling includes radio resource control RRC signaling, and the system configuration signaling includes at least one information item, where each information item records Information of a pilot map of a reference signal.
  • a fifth aspect provides an apparatus for configuring a reference signal, where the apparatus for configuring a reference signal can implement the functions performed in the method for configuring a reference signal provided by the foregoing first aspect, and the function can be implemented by hardware or by The hardware implements the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the apparatus for configuring the reference signal includes a processor memory, a system bus, and a communication interface; the processor is configured to support the apparatus for configuring the reference signal to perform a corresponding function in the above method.
  • the communication interface is used to support communication between the device that configures the reference signal and other network elements.
  • the apparatus for configuring the reference signal can also include a memory for coupling with the processor that retains program instructions and data necessary for the device that configures the reference signal.
  • the communication interface may specifically be a transceiver.
  • an embodiment of the present invention provides a computer storage medium, and a computer software instruction corresponding to the method for storing the configuration reference signal provided by the first aspect, which includes the program designed to execute the fifth aspect. .
  • a seventh aspect provides an apparatus for configuring a reference signal, where the apparatus for configuring a reference signal may implement a function performed in an example of a method for configuring a reference signal provided by the foregoing third aspect, and the function may be implemented by hardware or by The hardware implements the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus for configuring the reference signal includes a processor memory, a system bus, and a communication interface; the processor is configured to support the apparatus for configuring the reference signal to perform a corresponding function in the above method.
  • the communication interface is used to support communication between the device that configures the reference signal and other network elements.
  • the apparatus for configuring the reference signal can also include a memory for coupling with the processor that retains program instructions and data necessary for the device that configures the reference signal.
  • the communication interface may specifically be a transceiver.
  • an embodiment of the present invention provides a computer storage medium, and a computer software instruction corresponding to the method for storing a configuration reference signal provided by the foregoing third aspect, which includes a program designed to execute the foregoing sixth aspect. .
  • any of the devices or computer storage media configured with the reference signals provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the corresponding ones provided above.
  • the beneficial effects in the method are not described here.
  • FIG. 2 is a schematic structural diagram of a system to which the technical solution provided by the embodiment of the present invention is applied;
  • FIG. 3 is a schematic flowchart of a method for configuring a reference signal according to an embodiment of the present disclosure
  • FIG. 5 is another pilot diagram according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another method for configuring a reference signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an apparatus for configuring a reference signal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another apparatus for configuring a reference signal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another apparatus for configuring a reference signal according to an embodiment of the present invention.
  • the main purpose of channel estimation is to compensate for channel fading and noise, which utilizes reference signals predicted by the transmitting and receiving ends to track the time and frequency domain variations of the channel.
  • the transmitting end may carry the reference signal on different resource elements (RE: resource elements, RE) in the time-frequency two-dimensional space, and send the reference signal to the receiving end.
  • RE resource elements
  • Each transmitting antenna (including a virtual antenna or a physical antenna) at the transmitting end has an independent data channel, that is, each port corresponds to one channel.
  • the receiving end can perform channel estimation for each transmitting antenna according to the predicted reference signal.
  • a long-term evolution enhancement (English: long term evolution-advanced, abbreviation: LTE-A) system defines a variety of reference signals, for example, demodulation reference signal (English: demodulation reference signal, abbreviation: DMRS), cell common reference signal ( English: cell-specific reference signal, abbreviation: CRS) and channel state information reference signal (English: channel state information reference signal, abbreviation: CSI-RS).
  • the function corresponding to each reference signal is single and fixed.
  • the DMRS is used for demodulation of a physical downlink shared channel (PDSCH).
  • CRS is used to measure downlink channel quality for resource scheduling and support link adaptation techniques.
  • the CSI-RS is used to measure the quality of a channel corresponding to a physical antenna port.
  • Each reference signal has a fixed antenna port configuration.
  • a reference signal corresponding to each port is usually generated according to a fixed sequence, and then a reference signal corresponding to each port is mapped on the PRB according to the number of available ports in a fixed mapping manner. Moreover, the function of the reference signal corresponding to each port in one transmission process is single and the same.
  • the pilot map can be used to describe the time-frequency resource location of the reference signal corresponding to each port in the PRB during a transmission.
  • each pilot map is preset, and the mapping rules and functions of the reference signals corresponding to each port in each pilot map are the same.
  • the pilot map of the CSI-RS is determined by the configuration information of the CSI-RS, and each configuration information includes a time-frequency resource location mapped by the reference signal corresponding to the number of available ports in the subframe.
  • FIG. 1 it is a pilot picture of a single user (English: single-user, abbreviation: SU) DMRS in the LTE standard. As can be seen from Figure 1, the number of available ports is 8.
  • the resource multiplexing mode of the reference signals corresponding to ports 0, 1, 4, and 6 is code division multiplexing (abbreviation: CDM), and the reference signals corresponding to ports 0, 1, 4, and 6, and port 2,
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • the density of the time-frequency resources occupied by the reference signals corresponding to each port is the same.
  • the number of REs occupied by the reference signals corresponding to each of the ports 0 to 7 in FIG. 1 is 12.
  • the reference signals corresponding to each port carry the same functions.
  • the DMRS corresponding to each port in the LTE system is used to demodulate data transmitted by the corresponding port.
  • the transmission waveforms used by the reference signals corresponding to each port are the same.
  • the transmission waveform used by the DMRS corresponding to each port in the downlink direction is a multi-carrier generated by orthogonal frequency-division multiplexing (OFDM) technology
  • the uplink direction is
  • the transmission waveform used by the DMRS corresponding to each port is a single carrier generated by a single-carrier frequency-division multiple access (SC-FDMA) technique.
  • SC-FDMA single-carrier frequency-division multiple access
  • the sequence of the reference signals corresponding to each port is the same.
  • the DMRS corresponding to each port in the downlink direction adopts a Gold sequence.
  • the sequence of the reference signals corresponding to each port is generated in the same manner.
  • the DMRS generation method corresponding to each port in the downlink direction is a full bandwidth generation mode.
  • the DMRS generation method corresponding to each port in the uplink direction is generally a ZC (English: zadoff-chu) sequence.
  • the resource multiplexing mode adopted by the reference signals corresponding to each port is the same.
  • the DMRS corresponding to each port uses the FDM+CDM method for resource multiplexing.
  • the above technical solution can be understood as configuring the reference signal with the available port number as the granularity.
  • an embodiment of the present invention provides a method and a device for configuring a reference signal.
  • the basic principle is that the configuration information of the reference signals corresponding to different ports may be different in a single transmission process, that is, the transmitting end may be in the port granularity.
  • Configure the reference signal In an optional embodiment, the transmitting end may configure configuration information of the reference signal corresponding to each port in real time or semi-statically. In another optional embodiment, the transmitting end may further configure the reference signal by using the user terminal as the granularity. Specifically, the transmitting end selects the target pilot map from the preset pilot map set according to the current state of the user terminal. The configuration information corresponding to the target pilot map is determined by using the correspondence between each preset pilot map and the configuration information, so that the configuration information of the reference signals corresponding to each port is configured by using the target pilot map and the determined configuration information.
  • the technical solutions provided by the embodiments of the present invention can be applied to various communication systems. Especially suitable for future evolution networks, such as 5G communication systems, such as 5G NR systems.
  • 5G communication systems such as 5G NR systems.
  • 5G NR systems such as 5G NR systems.
  • 5G communication systems such as 5G NR systems
  • 2G, 3G, 4G communication systems for example, LTE systems, third generation partnership projects (English: 3rd generation partnership project, abbreviation: 3GPP) related cellular systems, and the like, and other such communication systems.
  • the 5G communication system may include a machine-to-machine (English: machine to machine, abbreviation: M2M) communication scenario and a macro-micro communication scenario, and these communication scenarios may include, but are not limited to, between the user terminal and the user terminal.
  • Communication communication between a base station and a base station, communication between a base station and a user terminal, and the like.
  • the technical solution provided by the embodiment of the present invention can be applied to any of the foregoing communication scenarios. The following is an example in which the technical solution provided by the embodiment of the present invention is applied between a base station and a user terminal.
  • FIG. 2 is an example in which the system architecture includes a base station and a plurality of user terminals connected to the base station.
  • a downlink reference signal is configured, for example, a base station configuration reference signal; in this case, the transmitting end may be a base station, and the receiving end may be a user terminal.
  • an uplink reference signal is configured, for example, a scenario in which a user terminal configures a reference signal; in this case, the transmitting end may be a user terminal, and the receiving end may be a base station.
  • the following is an example of a base station configuration reference signal.
  • a transmitting end refers to a device that configures and transmits a reference signal
  • a receiving end refers to a device that receives a reference signal.
  • a method for configuring a reference signal may include the following steps S101 to S102:
  • the base station determines configuration information of a reference signal corresponding to each port that can be used in one transmission.
  • the ports that can be used in the transmission include a first port and a second port.
  • the first port and the second port can be any two different ports that can be used during the transmission.
  • the configuration information of the first port is different from the configuration information of the second port.
  • the first port and the second port may be two ports allocated by the base station to the same user terminal, or may be two ports allocated by the base station to different user terminals.
  • a transmission process can be understood as a transmission cycle.
  • the time domain resource allocated in one transmission may be a transmission time interval (English: transmission time interval, abbreviation: TTI), or a symbol level short TTI, or a short TTI of a large subcarrier interval in a high frequency system. It can also be a time slot (English: slot) or a mini-slot in a 5G system. This embodiment of the present invention does not limit this.
  • the time-frequency resource used in one transmission is a PRB.
  • the base station can determine the configuration information of the reference signal corresponding to each port that can be used in the next transmission process every several transmission processes.
  • the number of transmission processes that are separated between any two processes that determine the configuration information of the reference signal corresponding to each port that can be used in the next transmission process may be the same or different.
  • the specificity can be determined according to the actual communication environment. For example, the base station may determine configuration information of a reference signal corresponding to each port that can be used in the transmission process before each transmission process.
  • the reference signal in the embodiment of the present invention may include, but is not limited to, any one of the following reference signals: DMRS, CRS, and CSI-RS. Alternatively, it may be a newly defined reference signal.
  • the reference signal corresponding to the first port is marked as the first reference signal
  • the configuration information of the first reference signal may include, but is not limited to, at least one of the following information:
  • the density of resources occupied by a reference signal refers to the ratio of the number of resource units occupied by the reference signal to the number of resource units used in one transmission of the current transmission process.
  • the density of the time domain resource occupied by the reference signal that is, the number of time domain resources occupied by the reference signal and the number of time domain resources used in a transmission process of the current transmission process. ratio.
  • the ratio of the frequency domain resource occupied by the reference signal that is, the ratio of the number of frequency domain resources occupied by the reference signal to the number of frequency domain resources used in one transmission process of the current transmission process.
  • the ratio of the time-frequency resource occupied by the reference signal that is, the ratio of the number of time-frequency resources occupied by the reference signal to the number of time-frequency resources used in one transmission of the current transmission process.
  • the density of the resources occupied by the reference signals corresponding to the same port may be the same or different.
  • the functions carried by a reference signal may include, but are not limited to, at least one of the following: data demodulation, phase noise compensation, Doppler frequency offset compensation, channel estimation, beam management, and the like.
  • the reference signal corresponding to the first port can carry at least two functions, so that system resource overhead can be reduced by function multiplexing.
  • DMRS can be used for both data demodulation, phase noise compensation, and Doppler frequency offset compensation
  • CSI-RS can be used for both channel estimation and beam management.
  • the reference signals corresponding to the same port can carry the same function and can also carry different functions.
  • reference signals such as DMRS, CRS, and CSI-RS are used to carry a specific function.
  • the transmitting and receiving parties may not distinguish the type of the reference signal, but only the functions carried by itself.
  • both DMRS and CRS can be used for data demodulation and phase noise compensation.
  • the transmission waveform used by a reference signal may include single carrier or multiple carriers.
  • the embodiment of the present invention does not limit the single carrier technology and the multi-carrier technology.
  • the transmission waveforms used by the reference signals corresponding to the same port may be the same or different.
  • the type of sequence of a reference signal may include, but is not limited to, any of the following: a ZC sequence, a Gold sequence, and a pseudo noise (English: pseudo-noise, abbreviation: PN) sequence.
  • the sequence of the reference signals corresponding to the same port may be the same or different in different transmission processes.
  • the manner of generating a sequence of reference signals may include, but is not limited to, a full bandwidth generation mode, a plurality of resource blocks (English: resource block, abbreviated as RB) generation mode, and a scheduling bandwidth generation mode of the user terminal.
  • a full bandwidth generation mode a plurality of resource blocks (English: resource block, abbreviated as RB) generation mode
  • RB resource block
  • scheduling bandwidth generation mode of the user terminal a scheduling bandwidth generation mode of the user terminal.
  • the sequence of the reference signals corresponding to the same port may be generated in the same manner or differently.
  • the resource multiplexing manner of the first reference signal refers to a resource multiplexing manner between the first reference signal and other reference signals.
  • the other reference signal may or may not include the second reference signal.
  • the ports corresponding to the reference signals of resource multiplexing form one port group, and each port group may include at least two ports.
  • the resource multiplexing manner of the reference signal corresponding to each port in each port group may include, but is not limited to, at least one of the following: CDM, FDM, and time division multiplexing (abbreviation: TDM).
  • the resource multiplexing modes of the reference signals corresponding to the ports in the same port group may be the same or different in different transmission processes.
  • the reference signal corresponding to the second port is marked as the second reference signal
  • the configuration information of the first reference signal is different from the configuration information of the second reference signal, and may include, but is not limited to, at least one of the following information: a) The density of the resources occupied by the first reference signal is different from the density of the resources occupied by the second reference signal. b) The function carried by the first reference signal is different from the function carried by the second reference signal. c) The transmission waveform used by the first reference signal is different from the transmission waveform used by the second reference signal. d) The type of the sequence of the first reference signal is different from the type of the sequence of the second reference signal. e) The generation of the sequence of the first reference signal is different from the generation of the sequence of the second reference signal. f) The resource multiplexing manner of the first reference signal is different from the resource multiplexing manner of the second reference signal.
  • the base station configures a reference signal corresponding to the port according to the configuration information of the reference signal corresponding to each port that can be used in the transmission process.
  • the reference signal corresponding to a port may be configured, or the reference signal corresponding to the port may be configured for the first time, or the reference signal corresponding to the port may be reconfigured.
  • the reconfiguration of the reference signal corresponding to the port can be understood as: adjusting the current configuration information of the reference signal corresponding to the port.
  • the method may further include: the base station transmitting the configured reference signal.
  • the method for configuring a reference signal provided by the embodiment of the present invention may have different configuration information of a reference signal corresponding to different ports in a single transmission process, that is, a technical solution for configuring a reference signal by using a port as a granularity, and existing
  • the technical solution provided by the technology to configure the reference signal with the number of available ports as the granularity is more suitable for adapting to complex and varied scenarios.
  • the reference signal can be configured in combination with actual requirements to improve the accuracy of the channel estimation result.
  • the method may further include: the base station transmitting the indication information, where the indication information is used to instruct the receiving end to determine configuration information of the first reference signal.
  • the indication information includes any one of the following information: DCI or medium access control (MAC) signaling or RRC signaling.
  • the indication information may include configuration information of the first reference signal or an index of configuration information of the first reference signal.
  • the foregoing method may further include the following steps a to b:
  • the base station sends system configuration signaling, where the system configuration signaling includes at least one information item, and each information item records a configuration information of the first reference signal.
  • the "configuration information" recorded in each information item may be any one of the configuration information provided above, for example, the density of resources occupied by the first reference signal, the function carried by the first reference signal, and the first reference signal Any of the transmitted waveforms and the like used.
  • the same configuration information may be recorded in different information items.
  • the density of the resource occupied by the first reference signal recorded in the information entry 1 is density 1
  • the density of the resource occupied by the first reference signal in the information entry 2 is the density.
  • Different types of configuration information may be recorded in different information items.
  • the density of resources occupied by the first reference signal recorded in the information item 1 is density 1
  • the transmission waveform used in the information entry 2 to record the first reference signal is transmission. Waveform 1.
  • the system configuration signaling may be multiplexed with one signaling implementation in the prior art.
  • one RRC signaling implementation in the prior art may be multiplexed.
  • the system configuration signaling may also be a new signaling provided by the present application. This application does not limit this.
  • the base station sends the indication information, where the indication information may include DCI or MAC signaling, where the indication information is used to indicate configuration information of the first reference signal.
  • the configuration information may be one of the at least one configuration information configured in the foregoing step a.
  • the at least one information item in step a is a total of four information items, and the density of resources occupied by one first reference signal is recorded in each information item.
  • the density of the resource occupied by the first reference signal is recorded as the density 1
  • the density of the resource occupied by the first reference signal recorded in the information entry 2 is the density 2
  • the first is recorded in the information entry 1.
  • the density of the resource occupied by the reference signal is density 3
  • the density of the resource occupied by the first reference signal in the information entry 1 is the density 4.
  • the base station may indicate one of the four densities through DCI or MAC signaling, and may specifically indicate the density value, or may indicate an index of the density value.
  • the configuration information of the first reference signal configured by the system configuration signaling may be configuration information of the first reference signal that is available to the terminal, and the configuration information of the first reference signal configured by the indication information may be used by the terminal in the configuration process.
  • the configuration information of the semi-static configuration reference signal is configured by the system configuration signaling, which can save the dynamic indication overhead; and dynamically configure the configuration information of the reference signal by using the indication information, so that channel estimation and the like can be improved based on the reference signal.
  • the accuracy of the results of the operation in the process is configured by the system configuration signaling, which can save the dynamic indication overhead; and dynamically configure the configuration information of the reference signal by using the indication information, so that channel estimation and the like can be improved based on the reference signal.
  • the base station determines configuration information of the first reference signal in real time or semi-statically. specific:
  • the base station determines the density of the resource occupied by the first reference signal (ie, information 1) according to any of the following manners:
  • Manner 1 The base station determines the density of the time-frequency resource occupied by the first reference signal according to the time-frequency characteristic of the channel corresponding to the first port.
  • the base station can measure the time-frequency characteristics of the corresponding channel of the first port according to a reference signal, such as a reference signal (such as CRS, CSI-RS or DMRS, etc.) in the existing standard or a newly designed reference signal, and This determines the density of the resources occupied by the first reference signal.
  • a reference signal such as CRS, CSI-RS or DMRS, etc.
  • the time-frequency characteristic may include, but is not limited to, at least one of a Doppler shift and a multipath delay.
  • the base station can determine the time domain density based on the Doppler shift. Alternatively, the larger the Doppler shift, the greater the determined time domain density.
  • the Doppler shift is generally caused by the mobility of the user terminal (English: mobility). For example, if the Doppler shift of the channel corresponding to the first port is greater than 700 Hz (hertz), the time domain density corresponding to the first port must be at least 3 RE/subframe (ie, at least 3 REs per subframe are used for carrying Reference signal) to ensure the accuracy of channel estimation. If the Doppler shift of the channel corresponding to the first port is less than 7 Hz, the time domain density corresponding to the first port ensures 1RE/subframe to ensure channel estimation accuracy.
  • the base station can determine the frequency domain density based on the maximum multipath delay. Alternatively, the larger the maximum multi-delay, the greater the density of the determined frequency domain. For example, if the maximum multipath delay of the channel corresponding to the first port is 5000 ns (nanoseconds) or more, the density of the frequency domain resources occupied by the first reference signal must be at least 3RE/PRB (ie, the total of each PRB). At least 3 REs in the frequency band are used to carry the reference signal). If the maximum multipath delay of the channel corresponding to the first port is 1000-5000 ns, the density of the frequency domain resources occupied by the first reference signal is at least 2RE/PRB. If the maximum multipath delay of the channel corresponding to the first port is 1000 ns or less, the density of the frequency domain resources occupied by the first reference signal is at least 1 RE/PRB.
  • the base station can determine the density of the time-frequency resources occupied by the first reference signal by combining information such as maximum multipath delay and Doppler shift.
  • Manner 2 The base station determines the time domain density according to the phase noise of the channel corresponding to the first port.
  • phase noise the greater the determined time domain density. It can be understood that when the phase noise is larger, it is necessary to set a lot of reference signals in the time domain to overcome the influence of phase noise.
  • Manner 3 The base station determines the density of the time-frequency resource occupied by the first reference signal according to the system information of the user terminal, where the first port is any port allocated for the user terminal.
  • the base station may determine the time-frequency resource occupied by the first reference signal according to the system information corresponding to the first port, for example, an acknowledgment (English: acknowledgment: ACK) indication or an acknowledgment (English: unacknowledgement, abbreviation: NACK) indication. density.
  • the system information corresponding to the first port can be understood as the system information transmitted on the first port. For example, if the number of times that the base station receives the NACK indication of the user terminal in the preset time period is greater than the preset threshold, the current time indicates that the reference signal corresponding to the port allocated to the user terminal has a lower density of time-frequency resources. Then, the base station can increase the density of the time-frequency resources occupied by the first reference signal in the subsequent transmission process.
  • Manner 4 The base station determines the density of the time-frequency resource occupied by the first reference signal according to the system configuration information of the user terminal, where the first port is any port allocated to the user terminal.
  • the base station can adjust the density of the time-frequency resources occupied by the first reference signal according to the system configuration information of the user terminal, for example, the frequency information or the scheduling bandwidth of the user terminal. Specifically, if the data of the user terminal is transmitted in the high frequency band, the channel corresponding to the port allocated by the user terminal is relatively flat, and the base station may downgrade the density of the time-frequency resource occupied by the first reference signal in the subsequent transmission process. If the data of the user terminal is transmitted in the low frequency band, the base station may adjust the density of the time-frequency resource occupied by the first reference signal in the subsequent transmission process.
  • Manner 5 The base station determines the density of the time domain resource occupied by the first reference signal according to the moving speed of the user terminal, where the first port is any port allocated for the user terminal.
  • the greater the moving speed of the user terminal the greater the density of the determined time domain resources.
  • the density of the time domain resource occupied by the first reference signal may be 1 RE/subframe.
  • the density of the time domain resource occupied by the first reference signal may be 2 RE/subframe.
  • the density of the time domain resource occupied by the first reference signal may be 3 RE/subframe.
  • the base station can determine the density of resources occupied by the first reference signal in combination with at least two of the foregoing manners 1 to 4.
  • the base station may determine the density of resources occupied by the first reference signal according to the time-frequency characteristic of the channel corresponding to the first port and the system information corresponding to the first port.
  • Other examples are not listed one by one. Of course, the specific implementation is not limited to this.
  • the information used by the transmitting end to determine the density of the time domain resource occupied by the first reference signal may be It is measured at the transmitting end or it is not measured at the transmitting end. If it is not measured by the transmitting end, the measured execution body can feed back relevant information to the transmitting end.
  • the related information may include, but is not limited to, at least one of the following: density adjustment requirement, suggested density value, value of frequency shift, value of multipath delay, value of phase noise, and the like.
  • the values, for example, the value of the frequency shift, the value of the multipath delay, and the value of the phase noise may be statistical values, instantaneous values, or quantized values, and the like.
  • the transmitting end may further send indication information to the receiver, where the indication information is used to enable the receiver to learn the configured reference signal.
  • the location of the time-frequency resource Specifically, if the density of resources occupied by the reference signal corresponding to one port is configured for the first time, the indication information may include a density value or a position of a time-frequency resource occupied by the reference signal, for example, an index of the RE occupied by the reference signal. : index), where RE index can be the subcarrier where the RE is located, the symbol index, and the like.
  • the indication information may include any one of the following information: the adjusted density value, the density adjustment direction, the density adjustment, and the adjusted reference signal. The location of the time-frequency resource, etc.
  • the transmitting end and the receiving end may preset indication information (for example, density value, density adjustment direction, or density adjustment, etc.) Corresponding to the position of the time-frequency resource occupied by the reference signal, so that the receiving end can determine the position of the time-frequency resource occupied by the reference signal according to the indication information.
  • indication information for example, density value, density adjustment direction, or density adjustment, etc.
  • the base station may send the indication information to the user terminal by using RRC signaling or DCI.
  • the base station determines, according to at least one of a time-frequency characteristic of a channel corresponding to the first port and a phase noise of a channel corresponding to the first port, a function (ie, information 2) carried by the first reference signal.
  • the function carried by the first reference signal may include Doppler shift compensation.
  • the function carried by the first reference signal may include phase noise compensation or the like.
  • the method may further include: the transmitting end may send indication information to the receiving end, where the indication information is used to indicate a function carried by the first reference signal.
  • the transmitting end may additionally carry other functions.
  • the transmitting end may indicate to the receiving end an additional function added by the reference signal corresponding to the port.
  • the base station determines a transmission waveform (ie, information 3) used by the first reference signal according to any one of the following ways:
  • Manner 1 The base station determines a transmission waveform used by the first reference signal according to channel quality information of the channel corresponding to the first port.
  • the base station may receive channel quality information of a channel corresponding to the first port that is fed back by the user terminal, for example, a signal to noise ratio (SNR) or a channel quality indication (abbreviation: CQI).
  • SNR signal to noise ratio
  • CQI channel quality indication
  • the information is used to determine the transmission waveform used by the first reference signal. For example, if the value of the CQI is large, the transmission waveform used by the first reference signal may be a single carrier; if the value of the CQI is small, the transmission waveform used by the first reference signal may be a multi-carrier.
  • the base station determines a transmission waveform used by the first reference signal according to a peak to average power ratio (abbreviation: PAPR, referred to as a peak-to-average ratio) requirement of the user terminal.
  • PAPR peak to average power ratio
  • the transmission waveform used by the first reference signal may be a single carrier. If the PAPR of the user terminal is greater than the preset threshold, the transmission waveform used by the first reference signal may be multiple carriers.
  • the specific value of the preset threshold is not limited in the embodiment of the present invention.
  • the user terminal with a lower PAPR may be a user terminal at the cell edge, because the signal to noise ratio (English: signal to noise ratio, abbreviation: SNR) of the user terminal at the cell edge is low, and the signal is transmitted with a low PAPR. , can increase the transmission power to improve the receiving efficiency.
  • a user terminal with a higher PAPR may be a user terminal at the cell center.
  • Manner 3 The base station determines a transmission waveform used by the first reference signal according to the scheduling layer of the user terminal.
  • the transmission waveform used by the first reference signal may be a single carrier or a multiple carrier. If the number of scheduling layers of the user terminal is >1, the transmission waveform used by the first reference signal may be multi-carrier.
  • the base station can determine the transmission waveform used by the first reference signal in combination with at least two of the foregoing manners 1 to 3. For example, the base station may determine the density of the resources occupied by the first reference signal according to the channel quality information of the channel corresponding to the first port and the PAPR requirement of the user terminal. Other examples are not listed one by one. Of course, the specific implementation is not limited to this.
  • the method may further include: the transmitting end may send indication information to the receiving end, where the indication information is used to indicate a transmission waveform used by the first reference signal.
  • the base station determines the type of the sequence of the first reference signal (ie, information 4) according to at least one of a transmission waveform adopted by the first reference signal, a PAPR requirement of the user terminal, and a scheduling flexibility requirement of the user terminal.
  • the sequence of the first reference signal may be a ZC sequence. It should be noted that the sequence has the characteristics of low PAPR.
  • the sequence of the first reference signal may be a ZC sequence. If the transmission waveform used by the first reference signal is multi-carrier, the sequence of the first reference signal may be a PN sequence.
  • the sequence of the first reference signal may be a PN sequence.
  • the method may further include: the transmitting end may send indication information to the receiving end, where the indication information is used to indicate a type of the sequence of the first reference signal.
  • the base station determines a manner of generating the sequence of the first reference signal (ie, information 5) according to at least one of a time-frequency characteristic of the channel corresponding to the first reference signal and a type of the first reference signal sequence.
  • the sequence of generating the first reference signal may be in a full-bandwidth generation manner. If the first reference signal sequence is a ZC sequence, the sequence of generating the first reference signal may be generated according to a scheduling bandwidth of the user terminal.
  • the method may further include: the transmitting end may send the indication information to the receiving end, where the indication information is used to indicate a manner of generating the sequence of the first reference signal.
  • the indication information may include an index of each of the plurality of RBs.
  • the base station may determine a resource multiplexing manner (ie, information 6) of the first reference signal according to any one of the following manners:
  • Manner 1 The base station determines a resource multiplexing manner of the first reference signal according to a time-frequency characteristic of the channel corresponding to the first port.
  • the resource multiplexing mode of the first reference signal may be FDM or low-order CDM. If the value of the multi-transmission delay of the channel corresponding to the first port is small, if the channel frequency selection scenario is less than 500 ns, the resource multiplexing mode of the first reference signal may adopt the frequency domain CDM.
  • the resource multiplexing mode of the first reference signal may adopt TDM. If the frequency shift of the channel corresponding to the first port is small, the resource multiplexing manner of the first reference signal may adopt a time domain CDM.
  • port 0, 1 can use CDM in the time domain, and port 0, 1 and port 2, 3 use FDM multiplexing.
  • ports 0, 2 can use CDM in the frequency domain, while ports 0, 2, and 1, 3 use TDM multiplexing to ensure that CDM performance is not affected by channel characteristics.
  • TDM multiplexing to ensure that CDM performance is not affected by channel characteristics.
  • Manner 2 The base station determines a resource multiplexing manner of the first reference signal according to the phase noise superimposed on the channel corresponding to the first port.
  • the resource multiplexing manner of the first reference signal may be TDM; if the value of the phase noise superimposed on the channel corresponding to the first port is smaller, Then, the resource multiplexing manner of the first reference signal may adopt a time domain CDM.
  • the resource multiplexing mode can also be switched by designing the multiplexing mode adjustment signaling.
  • 1 bit can be used to indicate the switching between TDM and time domain CDM, and 1 bit is used to indicate the switching between FDM and frequency domain CDM.
  • the resource multiplexing manner of the reference signal in the same pilot map is switched by designing a multiplexing manner to adjust signaling.
  • the base station selects a target pilot map from the preset pilot map set, thereby determining configuration information of the first reference signal by using a correspondence between the target pilot map and the configuration information.
  • the pilot map can reflect the position of the time-frequency resource occupied by the reference signal corresponding to all the ports in one transmission.
  • the resource multiplexing manner of the reference signal corresponding to all ports in a transmission process may also be obtained.
  • the S102 may include: the base station acquiring configuration information of the first reference signal according to the target pilot map.
  • the method may further include the base station transmitting the indication information, the indication information including an identifier indicating the target pilot map.
  • the identifier of the target pilot map may be the sequence number of the target pilot map, and the like.
  • the transmitting and receiving parties may pre-agreed the pilot maps in different scenarios, and stipulate the correspondence between the configuration information of each pilot map and the reference signals corresponding to some or all ports in a single transmission process.
  • the method may further include: the base station transmitting the indication information, where the indication information is used to indicate the target pilot map.
  • the indication information includes any one of the following information: DCI or MAC signaling or RRC signaling.
  • the indication information may include an identifier of the target pilot map or information of the target pilot map.
  • the information of the pilot map may include at least one of the following information: a mapping manner of the time-frequency resource of the first reference signal, a port number corresponding to the first reference signal, and a multiplexing manner thereof, and the first reference signal Port mapping method, etc.
  • the foregoing method may further include the following steps a to b:
  • the base station sends system configuration signaling, where the system configuration signaling includes at least one information item, and each information item records information of a pilot map of the first reference signal.
  • system configuration signaling includes at least one information item
  • each information item records information of a pilot map of the first reference signal.
  • the system configuration signaling may be multiplexed with one signaling implementation in the prior art.
  • one RRC signaling implementation in the prior art may be multiplexed.
  • the system configuration signaling may also be a new signaling provided by the present application. This application does not limit this.
  • the base station sends indication information, where the indication information may include DCI or MAC signaling, where the indication information is used to indicate a target pilot map.
  • the target pilot map may be a pilot map indicated by the information of the pilot map recorded in the at least one information item configured in step a above.
  • At least one information item in step a is a total of four information items, and information of a possible pilot picture of the first reference signal is recorded in each information item, wherein the pilot picture 1 is recorded in the information item 1.
  • the information of the pilot map 2 is recorded in the information entry 2
  • the information of the pilot map 3 is recorded in the information entry 3
  • the information of the pilot map 4 is recorded in the information entry 4.
  • the base station may indicate one of the four pilot patterns as a target pilot map by using DCI or MAC signaling, and may specifically indicate the identifier of the pilot map.
  • the pilot map of the first reference signal configured by the system configuration signaling may be a pilot map of the first reference signal that is available to the terminal, and the pilot map (ie, the target pilot map) of the first reference signal configured by the indication information may be It is the pilot map of the first reference signal used by the terminal in this configuration process.
  • the pilot map of the reference signal is semi-statically configured by the system configuration signaling, which can save dynamic indication overhead; and dynamically configure the pilot map of the reference signal by using the indication information, so that channel estimation based on the reference signal can be improved.
  • the manner of dividing the scenario corresponding to the preset pilot map in the embodiment of the present invention is not limited, and several examples are listed below:
  • Example 1 Differentiating a scenario corresponding to a pilot map according to a frame structure used by a user terminal to transmit information.
  • the frame structure may include, but is not limited to, a frame structure in which the time domain length is any one of the following information: TTI in the LTE system or short TTI in the symbol level, short TTI in the large subcarrier interval in the high frequency system, 5G system In the slot or mini-slot etc.
  • a reference signal in a pilot structure corresponding to a frame structure having a long time domain has a higher time domain density and a lower frequency domain density to better measure time-varying characteristics.
  • Example 2 Differentiate the scenario corresponding to the pilot map according to the scene in which the user terminal is located.
  • the scenario in which the user terminal is located may include, but is not limited to, a rural scene, an urban scene, and a high-speed rail scene.
  • the reference signal in the pilot map occupies a higher density of time domain resources.
  • the reference signal in the pilot map occupies a lower density of time domain resources.
  • Example 3 Differentiate the scenario corresponding to the pilot map according to the carrier frequency used when scheduling the user terminal.
  • the carrier frequency used when scheduling the user terminal may include high frequency, low frequency, and ultra high frequency.
  • the function of the reference signal may include phase noise compensation.
  • Example 4 Differentiate the scenario corresponding to the pilot map according to the subcarrier spacing used when the user terminal transmits information. For example, in a scenario where the subcarrier spacing is large, the frequency domain density of the resources occupied by the reference signal is small to overcome the frequency selection.
  • the configuration information of the first reference signal may be determined in combination with any of the multiple manners provided above. For example, when configuring configuration information of the first reference signal for the first time, the base station may select a target pilot map from the preset pilot map set, and then determine a first reference signal by using a correspondence between the target pilot map and the configuration information. Configuration information; subsequently, the configuration information of the first reference signal can be reconfigured in real time or semi-statically.
  • a PRB can carry control signals, reference signals, and data signals.
  • the specific examples below are described by taking the first time domain symbol of one PRB of the control signal and the time-frequency resource composed of the full bandwidth as an example.
  • the resource multiplexing mode of the reference signal corresponding to the port 0, 1 in the time domain is CDM
  • the resource multiplexing mode of the reference signal corresponding to the port 2, 3 in the time domain is CDM
  • the reference signal corresponding to port 0, 1 and the resource multiplexing mode of the reference signals of ports 2 and 3 in the time domain are FDM.
  • ports 0, 1, 2, and 3 are evenly distributed on the front end of the PRB, and the reference signal corresponding to each port occupies 12 REs.
  • the reference signals corresponding to ports 0, 1 are continuously distributed in the time domain and occupy 7 REs; the reference signals of ports 2, 3 are distributed at regular intervals in the time domain, and occupy 3 REs.
  • the base station may determine the type and generation manner of the sequence of the reference signal according to the manner provided above, and then generate a reference signal; then map the reference signal to the time-frequency resource by using the pilot map shown in FIG. 4, and Send to the user terminal.
  • the user terminal can learn the configuration information of each reference signal in the pilot map as shown in FIG. 4 according to the manner provided above, thereby implementing measurement of channel information parameters and measurement and compensation of phase noise.
  • the mapping manner and function of the reference signal in this embodiment can ensure low pilot consumption while suppressing phase noise.
  • the resource multiplexing mode of the reference signal corresponding to port 0, 1 in the frequency domain is FDM.
  • ports 0, 1 are evenly distributed on the front end of the PRB, and the reference signal corresponding to each port occupies 6 REs.
  • the reference signals corresponding to ports 0, 1 are distributed in different symbols and occupy different sub-carriers, that is, the resource multiplexing mode is TDM+FDM.
  • the reference signal corresponding to port 0 occupies 6 REs, and the reference signal corresponding to port 1 occupies 3 REs.
  • the base station may determine the type and generation manner of the sequence of the reference signal according to the manner provided above, and then generate a reference signal; then map the reference signal to the time-frequency resource by using the pilot map shown in FIG. 5, and Send to the user terminal.
  • the user terminal can learn configuration information of each reference signal in the pilot map as shown in FIG. 5 according to the manner provided above, thereby implementing measurement of fast time-varying channel information parameters.
  • different reference signal irregular mapping modes can ensure channel estimation accuracy while effectively reducing pilot overhead.
  • the foregoing description is directed to the configuration of the reference signal from the transmitting end.
  • the embodiment of the present invention further provides a method for configuring the reference signal at the receiving end.
  • the following is an example in which the receiving end is a user terminal as an example.
  • FIG. 6 is a schematic flowchart of a method for configuring a reference signal according to an embodiment of the present invention.
  • the method may include the following steps S201 to S202:
  • S201 The user terminal receives the indication information.
  • the user terminal determines, according to the indication information, configuration information of the first reference signal, where the first reference signal is a reference signal corresponding to the first port that can be used in one transmission, and the port that can be used in the transmission process further includes The configuration information of the reference signal corresponding to the second port and the second port is different from the configuration information of the first reference signal.
  • the indication information includes an identifier of the target pilot map.
  • the S202 may include: acquiring configuration information of the first reference signal according to the target pilot map.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspectives of the transmitting end and the receiving end. It can be understood that the transmitting end and the receiving end and the like include hardware structures and/or software modules corresponding to each function in order to implement the above functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module by using the device for configuring the reference signal according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 is a schematic structural diagram of an apparatus 7 for configuring a reference signal according to an embodiment of the present invention.
  • the device 7 can include a determining unit 701 and a configuration unit 702.
  • the sending unit 703 is further included.
  • the functions of each of the functional modules may be inferred from the steps in the various method embodiments provided above, or may be referred to the content provided in the Summary of the Invention above.
  • determination unit 701 can be used to perform the actions performed by the base station in S101 of FIG. 3, and/or other processes for supporting the techniques described herein.
  • Configuration unit 702 can be used to perform the actions performed by the base station in S102 of FIG. 3, and/or other processes for supporting the techniques described herein.
  • the above transmitting unit 703 may be a transmitter, which may be integrated with the receiver to form a transceiver.
  • the determining unit 701 and the configuration unit 702 may be embedded in hardware or in a memory independent of the device 7 configuring the reference signal, so that the processor invokes the operations corresponding to the above respective units.
  • FIG. 8 is a schematic structural diagram of an apparatus 8 for configuring a reference signal according to an embodiment of the present invention.
  • the device 8 can include a receiving unit 801 and a determining unit 802.
  • the functions of each of the functional modules may be inferred from the steps in the various method embodiments provided above, or may be referred to the content provided in the Summary of the Invention above.
  • receiving unit 801 can be used to perform the actions performed by the base station in S201 of FIG. 6, and/or other processes for supporting the techniques described herein.
  • the determining unit 802 can be used to perform the actions performed by the base station in S202 of FIG. 6, and/or other processes for supporting the techniques described herein.
  • the receiving unit 801 may be a receiver, which may form a transceiver together with the transmitter.
  • the determining unit 802 can be embedded in hardware or in a memory independent of the device 8 that configures the reference signal, so that the processor invokes the operations corresponding to the various units above.
  • FIG. 9 is a schematic structural diagram of an apparatus 9 for configuring a reference signal according to an embodiment of the present invention.
  • the apparatus 9 can include a processor 901, a memory 902, a system bus 903, and a communication interface 904.
  • the processor 901, the memory 902, and the communication interface 904 are connected by a system bus 903.
  • the memory 902 is used to store computer-executed instructions, and when the device 9 is running, the processor 901 executes computer-executed instructions stored by the memory 902 to cause the device 9 to perform any of the methods of configuring reference signals provided above.
  • For a specific method for configuring the reference signal refer to the related descriptions in the following and the drawings, and details are not described herein again.
  • the embodiment of the invention further provides a storage medium, which may include a memory 902.
  • the processor 901 can be a processor or a collective name of a plurality of processing elements.
  • the processor 901 can be a central processing unit (English: central processing unit, abbreviated: CPU), a general-purpose processor, a digital signal processor (English: digital signal processor, abbreviation: DSP), an application specific integrated circuit (English: application- Specific integrated circuit (abbreviation: ASIC), field programmable gate array (English: field programmable gate array, abbreviation: FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 901 may also be a dedicated processor, which may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of device 9.
  • the memory 902 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 902 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD); the memory 902 may also include a combination of the above types of memories.
  • ROM read-only memory
  • flash memory English: flash memory
  • HDD hard disk drive
  • SSD solid state drive
  • the system bus 903 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as system bus 903 in FIG.
  • Communication interface 904 may specifically be a transceiver on device 9.
  • the transceiver can be a wireless transceiver.
  • the wireless transceiver can be an antenna or the like of the device 9.
  • the processor 901 transmits and receives data to and from other devices, such as the base station, via the communication interface 904.
  • each step in the method flow for obtaining a reference signal provided in the above may be implemented by the processor 901 in hardware form executing a computer-executed instruction in the form of software stored in the memory 902. To avoid repetition, we will not repeat them here.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请公开了一种配置参考信号的方法和装置,涉及通信领域,用以在复杂多变的场景,提高信道估计结果的精确度。该方法可以包括:包括:确定第一参考信号的配置信息;第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,传输过程中可使用的端口还包括第二端口,第二端口对应的参考信号的配置信息与第一参考信号的配置信息不同;然后,根据第一参考信号的配置信息,配置第一参考信号。

Description

一种配置参考信号的方法和装置
本申请要求于2017年01月06日提交中国专利局、申请号为201710011868.5、申请名称为“一种配置参考信号的方法和装置”的中国专利申请的优先权,和2017年05月05日提交中国专利局、申请号为201710313518.4、申请名称为“一种配置参考信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种配置参考信号的方法和装置。
背景技术
参考信号(英文:reference signal,缩写:RS)是收发双方均预知的信号。接收端可以利用发射端发送的参考信号进行信道估计,并根据信道估计结果估计发送端发送的数据信号。
目前,通信标准中提供的配置参考信号的方法如下:在一次传输过程中,通常按照固定的序列生成各端口(即天线端口)对应的参考信号,然后根据可用端口数,以固定的映射方式,将每个端口对应的参考信号映射在物理资源块(英文:physical resource block,缩写:PRB)上。其中,一次传输过程中的各端口对应的参考信号的功能唯一,且相同。并且,各端口对应的参考信号一旦配置好,其配置信息不再改变。
上述技术方案中,在一次传输过程中,只要确定了可用端口数,就可根据预设的信息,例如固定的映射方式和参考信号的功能等,配置参考信号。并且,各端口对应的参考信号一旦配置好,其配置信息不再改变。因此,该技术方案应用于复杂多变的场景,例如高频段场景或高频选场景等,中时,会导致信道估计结果不精确。
发明内容
本发明的实施例提供一种配置参考信号的方法和装置,用以在复杂多变的场景,提高信道估计结果的精确度。
第一方面,提供一种配置参考信号的方法,包括:确定第一参考信号的配置信息;第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,传输过程中可使用的端口还包括第二端口,第二端口对应的参考信号的配置信息与第一参考信号的配置信息不同;然后,根据第一参考信号的配置信息,配置第一参考信号。本技术方案中,在一次传输过程中,不同端口对应的参考信号的配置信息可以不同,也就是说,提供了以端口为粒度配置参考信号的技术方案,与现有技术提供的以可用端口数为粒度配置参考信号的技术方案相比,更能够适应复杂多变的场景中。具体实现时,结合实际需求配置参考信号,即可提高信道估计结果的精确度。
实际实现时,该方法还可以包括:发送配置后的第一参考信号。
在一种可能的设计中,该方法还可以包括:发送指示信息,所述指示信息用于指示接收端确定第一参考信号的配置信息。
示例的,基站可以通过无线资源控制(英文:radio resource control,缩写:RRC)信令或者下行控制信息(英文:downlink control information,缩写:DCI)向用户终 端发送指示信息。基站可以通过显性或隐性的方式向用户终端指示第一参考信号的配置信息,其具体实现过程可以参考下文。该可能的实现方式,能够使接收端获知第一参考信号。
在一种可能的设计中,指示信息是DCI或MAC信令,用于指示第一参考信号的配置信息;在发送指示信息之前,该方法还可以包括:发送系统配置信令;其中,系统配置信令包括RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一配置信息。
在一种可能的设计中,第一参考信号的配置信息可以包括以下信息中的至少一种:第一参考信号所占的资源的密度,第一参考信号所承载的功能,第一参考信号所采用的传输波形,第一参考信号的序列的类型,第一参考信号的序列的生成方式,第一参考信号的资源复用方式。其中,第一参考信号所占的资源的密度是指第一参考信号所占的资源单元的个数与传输过程中所使用的资源单元的个数的比值。可选的,第一参考信号所承载的功能包括至少两种。
该可能的设计中,认为第一参考信号所占的资源的密度是第一参考信号的配置信息。实际实现时,也可以不将第一参考信号所占的资源的密度作为第一参考信号的配置信息,而是将第一参考信号所占的资源的密度作为第一参考信号的配置信息作为用于确定第一参考信号所占的资源的位置信息的一种实现方式,并将第一参考信号所占的资源的位置信息作为丢一参考信号的一种配置信息。该情况下,上述可能的设计中的指示信息可以包括第一参考信号所占的资源的密度信息,例如密度值或密度的调整方向等信息,用于指示接收端确定第一参考信号所占的资源的位置。
在一种可能的设计中,确定第一参考信号的配置信息,可以包括:根据用户终端的当前状态从预设导频图集合中选择目标导频图;其中,用户终端的当前状态包括以下信息中的至少一种:用户终端传输信息所采用的帧结构,用户终端所处的场景,调度用户终端时所使用的载频,用户终端传输信息时所采用的子载波间隔。然后,根据目标导频图,获取第一参考信号的配置信息。
可选的,目标导频图与第一参考信号的配置信息对应。预设的每个导频图可以与一次传输过程中传输的部分或全部参考信号的配置信息之间存在对应关系。可选的,该方法还可以包括:发送指示信息,该指示信息包括目标导频图的标识。该可选的实现方式可以理解为:通过隐性指示的方法向指示第一参考信号的配置信息。
在一种可能的设计中,指示信息包括DCI或MAC信令,用于指示目标导频图;在发送指示信息之前,方法还包括:发送系统配置信令;其中,系统配置信令包括RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一导频图的信息。
在一种可能的设计中,如果第一参考信号的配置信息包括第一参考信号所占的资源的密度;则,确定第一参考信号的配置信息,可以包括:根据第一端口对应的信道的时频特性、第一端口对应的信道的相位噪声、用户终端的系统信息、用户终端的系统配置信息和用户终端的移动速度中的至少一种,确定第一参考信号所占的资源的密度;第一端口是为用户终端分配的任一端口。该可能的设计提供了确定第一参考信号所占的资源的密度的技术方案。
在一种可能的设计中,如果第一参考信号的配置信息包括第一参考信号所承载的功能;则确定第一参考信号的配置信息,可以包括:根据第一端口对应的信道的时频特性和第一端口对应的信道的相位噪声中的至少一种,确定第一参考信号所承载的功能。该可能的设计提供了确定第一参考信号所承载的功能的技术方案。
在一种可能的设计中,如果第一参考信号的配置信息包括第一参考信号所采用的传输波形;则确定第一参考信号的配置信息,可以包括:根据第一端口对应的信道的信道质量信息、用户终端的均峰比PAPR需求和用户终端的调度层数中的至少一种,确定第一参考信号所采用的传输波形;第一端口是为用户终端分配的任一端口。该可能的设计提供了确定第一参考信号所采用的传输波形的技术方案。
在一种可能的设计中,如果第一参考信号的配置信息包括第一参考信号的序列的类型;则确定第一参考信号的配置信息,可以包括:根据第一参考信号所采用的传输波形、用户终端的PAPR需求和用户终端的调度灵活性需求中的至少一种,确定第一参考信号的序列的类型;第一端口是为用户终端分配的端口中的任一端口。该可能的设计提供了确定第一参考信号的序列的类型的技术方案。
在一种可能的设计中,如果第一参考信号的配置信息包括第一参考信号的序列的生成方式;则确定第一参考信号的配置信息,可以包括:根据第一参考信号对应的信道的时频特性和第一参考信号序列的类型中的至少一种,确定第一参考信号的序列的生成方式。该可能的设计提供了确定第一参考信号的序列的生成方式的技术方案。
在一种可能的设计中,如果第一参考信号的配置信息包括第一参考信号的资源复用方式;则确定第一参考信号的配置信息,可以包括:根据第一端口对应的信道的时频特性和第一端口对应的信道上所叠加的相位噪声中的至少一种,确定第一参考信号的资源复用方式。该可能的设计提供了确定第一参考信号的资源复用方式的技术方案。
第二方面,提供一种配置参考信号的方法,包括:接收指示信息;然后,根据该指示信息,确定第一参考信号的配置信息;其中,第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,传输过程中可使用的端口还包括第二端口,第二端口对应的参考信号的配置信息与第一参考信号的配置信息不同。在一种可能的设计中,指示信息可以是DCI或MAC信令或RRC信令。
实际实现时,该方法还可以包括:接收第一参考信号。
在一种可能的设计中,指示信息包括DCI或MAC信令,用于指示第一参考信号的配置信息;在接收指示信息之前,该方法还可以包括:接收系统配置信令;其中,系统配置信令包括RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一配置信息。
在一种可能的设计中,如果指示信息中包括目标导频图的标识;则根据指示信息,确定第一参考信号的配置信息,可以包括:根据目标导频图,获取第一参考信号的配置信息。可选的,目标导频图与第一参考信号的配置信息对应。
在一种可能的设计中,指示信息包括DCI或MAC信令,用于指示目标导频图;在接收指示信息之前,该方法还可以包括:接收系统配置信令;其中,系统配置信令包括RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一导频图的信息。
在一种可能的实现中,如果指示信息中包括第一参考信号所占的资源的密度信息;则根据指示信息,确定第一参考信号的配置信息,可以包括:根据第一参考信号所占的资源的密度信息和预设规则,确定第一参考信号所占的资源的位置信息;预设规则是表示第一参考信号所占的资源的密度信息与第一参考信号所占的资源的位置信息的对应关系的规则。
该方面中的相关信息的解释(例如,第一参考信号的配置信息和指示信息等)及有益效果均可以参考上述第一方面,此处不再赘述。
第三方面,提供一种配置参考信号的装置,该装置包括:确定单元和配置单元。其中,确定单元,用于确定第一参考信号的配置信息;第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,传输过程中可使用的端口还包括第二端口,第二端口对应的参考信号的配置信息与第一参考信号的配置信息不同。配置单元,用于根据第一参考信号的配置信息,配置第一参考信号。
在一种可能的设计中,该装置还可以包括:发送单元,用于发送指示信息,指示信息用于指示接收端确定第一参考信号的配置信息。在一种可能的设计中,指示信息可以是DCI或MAC信令或RRC信令。
实际实现时,该发送单元还可以用于:发送配置后的第一参考信号。
在一种可能的设计中,指示信息包括DCI或MAC信令,用于指示第一参考信号的配置信息;该情况下,发送单元还可以用于:发送系统配置信令;其中,系统配置信令包括无线资源控制RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一配置信息。
在一种可能的实现中,确定单元具体可以用于:根据用户终端的当前状态从预设导频图集合中选择目标导频图;其中,用户终端的当前状态包括以下信息中的至少一种:用户终端传输信息所采用的帧结构,用户终端所处的场景,调度用户终端时所使用的载频,用户终端传输信息时所采用的子载波间隔;然后,根据目标导频图,获取第一参考信号的配置信息。
在一种可能的实现中,该装置还可以包括:发送单元,用于发送指示信息,该指示信息包括目标导频图的标识。可选的,目标导频图与第一参考信号的配置信息对应。
在一种可能的实现中,指示信息包括DCI或MAC信令,用于指示目标导频图;接收单元还可以用于:接收系统配置信令;其中,系统配置信令包括RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一导频图的信息。
在一种可能的实现中,如果第一参考信号的配置信息包括第一参考信号所占的资源的密度;则确定具体可以用于:根据第一端口对应的信道的时频特性、第一端口对应的信道的相位噪声、用户终端的系统信息、用户终端的系统配置信息和用户终端的移动速度中的至少一种,确定第一参考信号所占的资源的密度;第一端口是为用户终端分配的任一端口。
在一种可能的实现中,如果第一参考信号的配置信息包括第一参考信号所承载的功能;则确定单元具体可以用于:根据第一端口对应的信道的时频特性和第一端口对应的信道的相位噪声中的至少一种,确定第一参考信号所承载的功能。
在一种可能的实现中,如果第一参考信号的配置信息包括第一参考信号所采用的传输波形;则确定单元具体可以用于:根据第一端口对应的信道的信道质量信息、用户终端的均峰比PAPR需求和用户终端的调度层数中的至少一种,确定第一参考信号所采用的传输波形;第一端口是为用户终端分配的任一端口。
在一种可能的实现中,如果第一参考信号的配置信息包括第一参考信号的序列的类型;则确定单元具体可以用于:根据第一参考信号所采用的传输波形、用户终端的PAPR需求和用户终端的调度灵活性需求中的至少一种,确定第一参考信号的序列的类型;第一端口是为用户终端分配的端口中的任一端口。
在一种可能的实现中,如果第一参考信号的配置信息包括第一参考信号的序列的生成方式;则确定单元具体可以用于:根据第一参考信号对应的信道的时频特性和第一参考信号序列的类型中的至少一种,确定第一参考信号的序列的生成方式。
在一种可能的实现中,如果第一参考信号的配置信息包括第一参考信号的资源复用方式;则确定单元具体可以用于:根据第一端口对应的信道的时频特性和第一端口对应的信道上所叠加的相位噪声中的至少一种,确定第一参考信号的资源复用方式。
该方面中的相关信息的解释(例如,第一参考信号的配置信息和指示信息等)及有益效果均可以参考上述第一方面,此处不再赘述。
第四方面,提供一种配置参考信号的装置,包括接收单元和确定单元。其中,接收单元,用于接收指示信息。确定单元,用于根据指示信息,确定第一参考信号的配置信息;其中,第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,传输过程中可使用的端口还包括第二端口,第二端口对应的参考信号的配置信息与第一参考信号的配置信息不同。在一种可能的设计中,指示信息可以是DCI或MAC信令或RRC信令。
在一种可能的设计中,指示信息包括下行控制信息DCI或媒体接入控制MAC信令,用于指示第一参考信号的配置信息。该情况下,接收单元还用于,接收系统配置信令;其中,系统配置信令包括无线资源控制RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一配置信息。
在一种可能的实现中,指示信息中包括目标导频图的标识;确定单元具体用于:根据目标导频图,获取第一参考信号的配置信息。
在一种可能的设计中,指示信息包括DCI或MAC信令,用于指示目标导频图。该情况下,接收单元还用于:接收系统配置信令;其中,系统配置信令包括无线资源控制RRC信令,且系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一导频图的信息。
该方面中的相关信息的解释(例如,第一参考信号的配置信息和指示信息等)及有益效果均可以参考上述第一方面,此处不再赘述。
第五方面,提供一种配置参考信号的装置,该配置参考信号的装置可以实现上述第一方面提供的配置参考信号的方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该配置参考信号的装置的结构中包括处理器存储器、系统 总线和通信接口;该处理器被配置为支持该配置参考信号的装置执行上述方法中相应的功能。该通信接口用于支持该配置参考信号的装置与其他网元之间的通信。该配置参考信号的装置还可以包括存储器,该存储器用于与处理器耦合,其保存该配置参考信号的装置必要的程序指令和数据。该通信接口具体可以是收发器。
第六方面,本发明实施例提供了一种计算机存储介质,用于储存上述第一方面提供的配置参考信号的方法所对应的计算机软件指令,其包含用于执行上述第五方面所设计的程序。
第七方面,提供一种配置参考信号的装置,该配置参考信号的装置可以实现上述第三方面提供的配置参考信号的方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该配置参考信号的装置的结构中包括处理器存储器、系统总线和通信接口;该处理器被配置为支持该配置参考信号的装置执行上述方法中相应的功能。该通信接口用于支持该配置参考信号的装置与其他网元之间的通信。该配置参考信号的装置还可以包括存储器,该存储器用于与处理器耦合,其保存该配置参考信号的装置必要的程序指令和数据。该通信接口具体可以是收发器。
第八方面,本发明实施例提供了一种计算机存储介质,用于储存上述第三方面提供的配置参考信号的方法所对应的计算机软件指令,其包含用于执行上述第六方面所设计的程序。
可以理解地,上述提供的任一种配置参考信号的装置或计算机存储介质均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为现有技术提供的一种导频图;
图2为本发明实施例提供的技术方案所适用的系统架构示意图;
图3为本发明实施例提供的配置参考信号的方法的流程示意图;
图4为本发明实施例提供的一种导频图;
图5为本发明实施例提供的另一种导频图;
图6为本发明实施例提供的另一种配置参考信号的方法的流程示意图;
图7为本发明实施例提供的一种配置参考信号的装置的结构示意图;
图8为本发明实施例提供的另一种配置参考信号的装置的结构示意图;
图9为本发明实施例提供的另一种配置参考信号的装置的结构示意图。
具体实施方式
信道估计的主要目的是为了补偿信道衰落和噪声,其利用发射端与接收端预知的参考信号来追踪信道的时域和频域变化。具体的,发射端可以将参考信号承载在时频二维空间中的不同的资源单元(英文:resource element,RE)上,发送给接收端。发射端的各根发送天线(包括虚拟天线或物理天线)具有独立的数据信道,即每个端口对应一个信道。接收端可以根据预知的参考信号,针对每根发送天线进行信道估计。
长期演进增强(英文:long term evolution-advanced,缩写:LTE-A)系统中定 义了多种参考信号,例如,解调参考信号(英文:demodulation reference signal,缩写:DMRS)、小区公共参考信号(英文:cell-specific reference signal,缩写:CRS)和信道状态信息参考信号(英文:channel state information reference signal,缩写:CSI-RS)。每种参考信号对应的功能单一且固定不变,例如,DMRS用于物理下行共享信道(英文:physical downlink share channel,缩写:PDSCH)的解调。CRS用于测量下行信道质量,以便进行资源调度和支持链路自适应技术。CSI-RS用于测量物理天线端口对应的信道的质量等。每种参考信号具有固定的天线端口配置,例如,CRS支持天线端口数为1个、2个和4个共三种天线端口配置,对应的端口号分别是:p=0,p={0,1},p={0,1,2,3}。
如背景技术中所述,在一次传输过程中,通常按照固定的序列生成各端口对应的参考信号,然后根据可用端口数,以固定的映射方式,将每个端口对应的参考信号映射在PRB上。并且,一次传输过程中的各端口对应的参考信号的功能单一,且相同。
导频图可以用于描述一次传输过程中的各端口对应的参考信号在PRB中的时频资源位置。在LTE系统中,每个导频图均是预设的,并且,每个导频图中的各端口对应的参考信号的映射规则和功能均相同。例如CSI-RS的导频图由CSI-RS的配置信息决定,每种配置信息包括不同可用端口数对应的各参考信号在子帧内映射的时频资源位置。如图1所示,为LTE标准中的一种单用户(英文:single-user,缩写:SU)DMRS的导频图。由图1可知,可用端口数为8。端口0,1,4,6对应的参考信号的资源复用方式为码分复用(英文:code division multiplexing,缩写:CDM),端口0,1,4,6对应的参考信号与端口2,3,5,7对应的参考信号之间的资源复用方式为频分复用(英文:frequency division multiplexing,缩写:FDM)。
按照上述技术方案配置的参考信号主要具有以下特点:
1、各端口对应的参考信号所占的时频资源的密度相同。例如,图1中的端口0~7中的每个端口对应的参考信号所占的RE的个数均为12。
2、各端口对应的参考信号所承载的功能相同。例如,LTE系统中各端口对应的DMRS均用于对相应端口传输的数据进行解调。
3、各端口对应的参考信号所采用的传输波形相同。例如,LTE系统中,下行方向上的每个端口对应的DMRS所采用的传输波形为正交频分复用(英文:orthogonal frequency-division multiplexing,缩写:OFDM)技术生成的多载波,而上行方向的每个端口对应的DMRS所采用的传输波形为单载波频分多址(英文:single-carrier frequency-division multiple access,缩写:SC-FDMA)技术生成的单载波。
4、各端口对应的参考信号的序列的类型相同。例如,LTE系统中,下行方向的每个端口对应的DMRS均采用Gold序列。
5、各端口对应的参考信号的序列的生成方式均相同。例如,LTE系统中,下行方向的每个端口对应的DMRS的生成方式均为全带宽生成方式。上行方向上的每个端口对应的DMRS的生成方式一般均为ZC(英文:zadoff-chu)序列。
6、各端口对应的参考信号所采用的资源复用方式相同。例如,LTE系统中各端口对应的DMRS间均使用FDM+CDM的方式进行资源复用。
除上述特点之外,在上述技术方案中,各端口对应的参考信号一旦配置好,其配 置信息不再改变。由此可知,上述技术方案可以理解为以可用端口数为粒度配置参考信号。
随着5G NR系统对于多场景、多频段和多传输方式等需求的提出,未来的通信系统需要面对多种复杂的通信场景,如高频段场景或高频选场景。显然,上述以可用端口数为粒度配置参考信号的技术方案不能适用于未来的通信系统。
基于此,本发明实施例提供了一种参考信号的配置方法和装置,其基本原理为:在一次传输过程中,不同端口对应的参考信号的配置信息可以不同,即发射端可以以端口为粒度配置参考信号。在一种可选的实施例中,发射端可以实时地或者半静态地配置各端口对应的参考信号的配置信息。在另一种可选的实施例中,发射端还可以以用户终端为粒度配置参考信号,具体的,发射端根据用户终端的当前状态,从预设导频图集合中选择目标导频图;并利用每个预设导频图与配置信息的对应关系,确定目标导频图对应的配置信息,从而利用目标导频图和所确定的配置信息配置各端口对应的参考信号的配置信息。
本发明实施例提供的技术方案可以应用于各种通信系统。尤其适用于未来演进网络,如5G通信系统,例如,5G NR系统等。另外也可以应用于当前2G,3G,4G通信系统,例如,LTE系统,第三代合作伙伴计划(英文:3rd generation partnership project,缩写:3GPP)相关的蜂窝系统等,以及其他此类通信系统。
需要说明的是,5G通信系统可以包括机器对机器(英文:machine to machine,缩写:M2M)通信场景和宏微通信场景等,这些通信场景中可以包括但不限于:用户终端与用户终端之间的通信,基站与基站之间的通信,基站与用户终端之间的通信等。可以理解的,本发明实施例提供的技术方案可以应用于上述任一通信场景中。下文中均是以本发明实施例提供的技术方案应用于基站与用户终端之间为例进行说明的。
本发明实施例提供的技术方案可以应用于如图2所示的系统架构中,该系统架构中可以包括一个或多个基站,以及与每个基站连接的一个或多个用户终端(英文:user equipment,缩写:UE),其中,图2中是以该系统架构中包括一个基站和与该基站连接的多个用户终端为例进行说明的。
本发明实施例提供的技术方案可以应用于配置下行参考信号的场景中,例如,基站配置参考信号;该情况下,发射端可以是基站,接收端可以是用户终端。也可以应用于配置上行参考信号的场景中,例如用户终端配置参考信号的场景中;该情况下,发射端可以是用户终端,接收端可以是基站。如果不加说明,下文中均是以基站配置参考信号为例进行说明的。需要说明的是,本发明实施例中的发送端是指配置并发送参考信号的设备,接收端是指接收参考信号的设备。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行示例性描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
如图3所示,为本发明实施例提供的一种配置参考信号的方法,该方法可以包括以下步骤S101~S102:
S101:基站确定一次传输过程中可使用的每个端口对应的参考信号的配置信息。其中,该传输过程中可使用的端口包括第一端口和第二端口。第一端口和第二端口可以是该传输过程中可使用的任意的两个不同的端口。第一端口的配置信息与第二端口 的配置信息不同。
第一端口和第二端口可以是基站为同一个用户终端分配的两个端口,也可以是基站为不同用户终端分配的两个端口。
一次传输过程,可以理解为一个传输周期。一次传输过程中所分配的时域资源可以是LTE系统中的传输时间间隔(英文:transmission time interval,缩写:TTI),或符号级短TTI,或高频系统中的大子载波间隔的短TTI,也可以是5G系统中的时隙(英文:slot)或微型时隙(mini-slot)等。本发明实施例对此不做限定。一次传输过程中所使用的时频资源为一个PRB。
基站可以每隔若干个传输过程,确定下一次传输过程中可使用的每个端口对应的参考信号的配置信息。其中,任意两次确定下一次传输过程中可使用的每个端口对应的参考信号的配置信息的过程之间所间隔的传输过程的个数可以相同,也可以不同。具体可以根据实际的通信环境确定。示例的,基站可以在每次传输过程之前,均确定该传输过程中可使用的每个端口对应的参考信号的配置信息。
本发明实施例中的参考信号,可以包括但不限于以下参考信号中的任一种:DMRS、CRS和CSI-RS。另外,也可以是新定义的一种参考信号。
可选的,将第一端口对应的参考信号标记为第一参考信号,则第一参考信号的配置信息可以包括但不限于以下信息中的至少一种:
①第一参考信号所占的资源的密度。
一个参考信号所占的资源的密度是指该参考信号所占的资源单元的个数与本次传输过程一次传输过程中所使用的资源单元的个数的比值。具体的,可以是:该参考信号所占的时域资源的密度,即该参考信号所占的时域资源的个数与本次传输过程一次传输过程中所使用的时域资源的个数的比值。也可以是:该参考信号所占的频域资源的密度,即该参考信号所占的频域资源的个数与本次传输过程一次传输过程中所使用的频域资源的个数的比值。还可以是:该参考信号所占的时频资源的密度,即该参考信号所占的时频资源的个数与本次传输过程一次传输过程中所使用的时频资源的个数的比值。
在不同传输过程中,同一端口对应的参考信号所占的资源的密度可以相同,也可以不同。
②第一参考信号所承载的功能。
一个参考信号所承载的功能可以包括但不限于以下至少一种:数据解调,相位噪声补偿,多普勒频偏补偿,信道估计,波束管理(英文:beam management)等。可选的,第一端口对应的参考信号可以承载至少两种功能,这样通过功能复用,能够降低系统资源开销。例如,DMRS可以同时用于数据解调、相位噪声补偿和多普勒频偏补偿等;CSI-RS可以同时用于信道估计和波束管理等。
在不同传输过程中,同一端口对应的参考信号可以承载相同的功能,也可以承载不同的功能。
可以理解的,现有标准中,DMRS、CRS和CSI-RS等参考信号均用于承载特定的一种功能。在本发明实施例中,收发双方可以不区分参考信号的种类,而只关注其本身所承载的功能。例如,DMRS和CRS均可以用于数据解调和相位噪声补偿等。
③第一参考信号所采用的传输波形。
一个参考信号所采用的传输波形可以包括单载波或多载波。本发明实施例对单载波技术和多载波技术不进行限定。在不同传输过程中,同一端口对应的参考信号所采用的传输波形可以相同,也可以不同。
④第一参考信号的序列的类型。
一个参考信号的序列的类型可以包括但不限于以下任一种:ZC序列、Gold序列和伪噪声(英文:pseudo-noise,缩写:PN)序列等。在不同传输过程中,同一端口对应的参考信号的序列的类型可以相同也可以不同。
⑤第一参考信号的序列的生成方式。
一个参考信号的序列的生成方式可以包括但不限于:全带宽生成方式,若干个资源块(英文:resource block,缩写:RB)生成方式,用户终端的调度带宽生成方式等。在不同传输过程中,同一端口对应的参考信号的序列的生成方式可以相同,也可以不同。
⑥第一参考信号的资源复用方式。
第一参考信号的资源复用方式是指第一参考信号与其他参考信号之间的资源复用方式。该其他参考信号可以包括第二参考信号,也可以不包括第二参考信号。资源复用的各参考信号对应的端口组成一个端口组,每个端口组可以包括至少两个端口。每个端口组中的各端口对应的参考信号的资源复用方式可以包括但不限于以下至少一种:CDM、FDM和时分复用(英文:time division multiplexing,缩写:TDM)。
在不同传输过程中,同一端口组中的各端口对应的参考信号的资源复用方式可以相同,也可以不同。
可选的,将第二端口对应的参考信号标记为第二参考信号,则第一参考信号的配置信息与第二参考信号的配置信息不同,可以包括但不限于以下信息中的至少一种:a)第一参考信号所占的资源的密度与第二参考信号所占的资源的密度不同。b)第一参考信号所承载的功能与第二参考信号所承载的功能不同。c)第一参考信号所采用的传输波形与第二参考信号所采用的传输波形不同。d)第一参考信号的序列的类型与第二参考信号的序列的类型不同。e)第一参考信号的序列的生成方式与第二参考信号的序列的生成方式不同。f)第一参考信号的资源复用方式与第二参考信号的资源复用方式不同。
S102:基站根据该传输过程中可使用的每个端口对应的参考信号的配置信息,配置该端口对应的参考信号。
配置一个端口对应的参考信号,可以是首次配置该端口对应的参考信号,也可以是重配置该端口对应的参考信号。其中,重配置该端口对应的参考信号,可以理解为:调整该端口对应的参考信号的当前配置信息。
在S102之后,该方法还可以包括:基站发送配置后的参考信号。
本发明实施例提供的配置参考信号的方法,在一次传输过程中,不同端口对应的参考信号的配置信息可以不同,也就是说,提供了以端口为粒度配置参考信号的技术方案,与现有技术提供的以可用端口数为粒度配置参考信号的技术方案相比,更能够适应复杂多变的场景中。具体实现时,结合实际需求配置参考信号,即可提高信道估 计结果的精确度。
在本申请的一个实施例中,上述方法还可以包括:基站发送指示信息,其中,该指示信息用于指示接收端确定第一参考信号的配置信息。其中,指示信息包括以下信息中的任一种:DCI或媒体接入控制(medium access control,MAC)信令或RRC信令。可选的,指示信息中可以包括第一参考信号的配置信息,或第一参考信号的配置信息的索引。
在本申请的另一个实施例中,上述方法还可以包括以下步骤a~b:
a:基站发送系统配置信令;其中,系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一配置信息。
每一信息条目中记录的“配置信息”可以是上文提供的任一种配置信息,例如,第一参考信号所占的资源的密度,第一参考信号所承载的功能,第一参考信号所采用的传输波形等中的任一种。不同信息条目中可以记录同一种配置信息,例如信息条目1中记录了第一参考信号所占的资源的密度为密度1,信息条目2中记录了第一参考信号所占的资源的密度为密度2。不同信息条目中可以记录不同种类的配置信息,例如信息条目1中记录了第一参考信号所占的资源的密度为密度1,信息条目2中记录了第一参考信号所采用的传输波形为传输波形1。
系统配置信令可以复用现有技术中的一个信令实现,例如可以复用现有技术中的一个RRC信令实现,另外,系统配置信令也可以是本申请提供的一个新的信令,本申请对此不进行限定。
b:基站发送指示信息;其中,该指示信息可以包括DCI或MAC信令,其中,指示信息用于指示第一参考信号的配置信息。其中,该配置信息可以是上述步骤a中配置的至少一个配置信息中的一个配置信息。
以步骤a中的至少一个信息条目为共4个信息条目,且每一信息条目中均记录了一个第一参考信号所占的资源的密度。例如,信息条目1中记录了第一参考信号所占的资源的密度为密度1,信息条目2中记录了第一参考信号所占的资源的密度为密度2,信息条目1中记录了第一参考信号所占的资源的密度为密度3,信息条目1中记录了第一参考信号所占的资源的密度为密度4。则在步骤b中,基站可以通过DCI或MAC信令指示这4个密度中的一个密度,具体可以直接指示密度值,也可以指示该密度值的索引。
通过系统配置信令配置的第一参考信号的配置信息可以是终端可用的第一参考信号的配置信息,通过指示信息配置的第一参考信号的配置信息可以是本次配置过程中终端所用的第一参考信号的配置信息。
该实施例中,通过系统配置信令半静态配置参考信号的配置信息,能够节省动态指示开销;并通过指示信息动态配置参考信号的配置信息,这样,能够提高基于该参考信号进行信道估计等操作过程中的操作结果的精确度。
下面以如何确定第一参考信号的配置信息为例,对确定一个参考信号的配置信息的方法进行说明。具体的,可以包括以下实现方式中的任一种:
一、基站实时地或者半静态地确定第一参考信号的配置信息。具体的:
1)基站根据以下方式中的任一种,确定第一参考信号所占的资源的密度(即信息 ①):
方式1:基站根据第一端口对应的信道的时频特性,确定第一参考信号所占的时频资源的密度。
基站可以根据某种参考信号,例如现有标准中的参考信号(如CRS,CSI-RS或DMRS等)或者新设计的一种参考信号,来测量第一端口对应信道的时频特征,并依此来确定第一参考信号所占的资源的密度。其中,该时频特性可以包括但不限于多普勒频移和多径时延等中的至少一种。
基站可以根据多普勒频移确定时域密度。可选的,多普勒频移越大,所确定的时域密度就越大。其中,多普勒频移一般由用户终端的移动性(英文:mobility)造成的。例如,若第一端口对应的信道的多普勒频移大于700Hz(赫兹),则第一端口对应的时域密度至少要保证3RE/子帧(即每个子帧至少有3个RE用于承载参考信号),从而保证信道估计的精度。若第一端口对应的信道的多普勒频移小于7Hz,则第一端口对应的时域密度保证1RE/子帧即可保证信道估计的精度。
基站可以根据最大多径时延确定频域密度。可选的,最大多经时延越大,所确定的频域密度就越大。例如,若第一端口对应的信道的最大多径时延为5000ns(纳秒)以上,则第一参考信号所占的频域资源的密度至少要保证3RE/PRB(即:每个PRB的全频带内至少有3个RE用于承载参考信号)。若第一端口对应的信道的最大多径时延为1000~5000ns,则第一参考信号所占的频域资源的密度至少保证2RE/PRB。若第一端口对应的信道的最大多径时延为1000ns以下,则第一参考信号所占的频域资源的密度至少保证1RE/PRB。
可以理解的,基站可以结合最大多径时延和多普勒频移等信息来确定第一参考信号所占的时频资源的密度。
方式2:基站根据第一端口对应的信道的相位噪声,确定时域密度。
相位噪声越大,所确定的时域密度就越大。可以理解的,相位噪声越大时,需要在时域上设置很多参考信号才可以克服相位噪声的影响。
方式3:基站根据用户终端的系统信息,确定第一参考信号所占的时频资源的密度,其中,第一端口是为该用户终端分配的任一端口。
基站可以根据第一端口对应的系统信息,例如确认(英文:acknowledgement,缩写:ACK)指示或不确认(英文:unacknowledgement,缩写:NACK)指示等,确定第一参考信号所占的时频资源的密度。第一端口对应的系统信息,可以理解为在第一端口传输的系统信息。例如,若基站在预设时间段内接收到用户终端的NACK指示的次数大于预设阈值,说明当前时刻,为该用户终端分配的端口对应的参考信号所占的时频资源的密度较小,则基站可以在后续传输过程中上调第一参考信号所占的时频资源的密度。
方式4:基站根据用户终端的系统配置信息,确定第一参考信号所占的时频资源的密度,其中,第一端口是为该用户终端分配的任一端口。
基站可以根据用户终端的系统配置信息,例如,用户终端的频点信息或调度带宽等信息,调整第一参考信号所占的时频资源的密度。具体的:若用户终端的数据在高频段传输,说明为该用户终端分配的端口对应的信道相对平坦,则基站可以在后续传 输过程中下调第一参考信号所占的时频资源的密度。若用户终端的数据在低频段传输,则基站可以在后续传输过程中上调第一参考信号所占的时频资源的密度。
方式5:基站根据用户终端的移动速度,确定第一参考信号所占的时域资源的密度,第一端口是为用户终端分配的任一端口。
可选的,用户终端的移动速度越大,所确定的时域资源的密度越大。例如,若用户终端的移动速度小于30km/h(千米每小时),则第一参考信号所占的时域资源的密度可以为1RE/子帧。若用户终端的移动速度为30~300km/h,则第一参考信号所占的时域资源的密度可以为2RE/子帧。若用户终端的移动速度大于300km/h,则第一参考信号所占的时域资源的密度可以为3RE/子帧。
可以理解的,基站可以结合上述方式1~方式4中的至少两种方式,确定第一参考信号所占的资源的密度。例如,基站可以根据第一端口对应的信道的时频特性和第一端口对应的系统信息,确定第一参考信号所占的资源的密度。其他示例不再一一列举。当然,具体实现时,不限于此。
需要说明的是,发射端确定第一参考信号所占的时域资源的密度时所使用的信息(例如,第一端口对应的信道的时频特性或第一端口对应的系统配置信息等)可以是发射端测量得到的,也可以不是发射端测量得到的。若不是发射端测量得到的,则测量的执行主体可以向该发射端反馈相关信息。该相关信息可以包括但不限于以下信息中的至少一种:密度调整需求,建议密度值,频移的值,多径时延的值,相位噪声的值等。其中,这些值,例如,频移的值、多径时延的值和相位噪声的值等,可以是统计值、瞬时值或量化值等。
另外需要说明的是,发射端在配置任一端口对应的参考信号所占的资源的密度之后,还可以向接收方发送指示信息,该指示信息用于使接收方获知配置后的参考信号所占的时频资源的位置。具体的,若发射端首次配置一个端口对应的参考信号所占的资源的密度,则指示信息可以包括密度值或参考信号所占的时频资源的位置,例如参考信号所占的RE索引(英文:index),其中,RE index可以为该RE所在的子载波和符号index等。若发射端重配置一个端口对应的参考信号所占的资源的密度,则指示信息可以包括以下信息中的任一种:调整后的密度值、密度调整方向、密度调整大小、调整后该参考信号所占的时频资源的位置等。
可以理解的,在指示信息不是配置后的参考信号所占的时频资源的位置的场景中,发射端和接收端可以预先设置指示信息(例如,密度值、密度调整方向或密度调整大小等)与参考信号所占的时频资源的位置的对应关系,从而使得接收端可以根据指示信息,确定参考信号所占的时频资源的位置。
可选的,若发射端是基站,接收端是用户终端,则基站可以通过RRC信令或者DCI向用户终端发送指示信息。
2)基站根据第一端口对应的信道的时频特性和第一端口对应的信道的相位噪声中的至少一种,确定第一参考信号所承载的功能(即信息②)。
若第一端口对应的信道的多普勒频移较大(例如高速移动场景),则第一参考信号所承载的功能可以包括多普勒频移补偿。
若第一端口对应的信道的相位噪声较大(例如高频点场景),则第一参考信号所 承载的功能可以包括相位噪声补偿等。
该方法还可以包括:发射端可以向接收端发送指示信息,该指示信息用于指示第一参考信号所承载的功能。可选的,不同的场景中,同一种类的参考信号,例如DMRS,的某些端口可以额外地承载其他功能。该情况下,发送端可以向接收端指示该端口对应的参考信号所增加的额外的功能。
可以理解的,在该可选的实现方式中,若不同参考信号所承载的功能不用,则接收端对该不同参考信号的处理流程和估计算法也不同,这样可以降低系统复杂度。
3)基站根据以下方式中的任一种,确定第一参考信号所采用的传输波形(即信息③):
方式1:基站根据第一端口对应的信道的信道质量信息,确定第一参考信号所采用的传输波形。
基站可以接收用户终端反馈的第一端口对应的信道的信道质量信息,例如,信噪比(英文:signal to noise ratio,缩写:SNR)或信道质量指示(英文:channel quality indication,缩写:CQI)等信息,确定第一参考信号所采用的传输波形。例如,若CQI的值较大,则第一参考信号所采用的传输波形可以是单载波;若CQI的值较小,则第一参考信号所采用的传输波形可以是多载波。
方式2:基站根据用户终端的峰值平均功率比(英文:peak to average power ratio,缩写:PAPR,简称峰均比)需求,确定第一参考信号所采用的传输波形。
若用户终端的PAPR小于等于预设阈值,则第一参考信号所采用的传输波形可以为单载波。若用户终端的PAPR大于该预设阈值,则第一参考信号所采用的传输波形可以为多载波。本发明实施例对该预设阈值的具体取值不进行限定。例如,PAPR较低的用户终端可以是小区边缘的用户终端,这是因为:小区边缘的用户终端的信噪比(英文:signal to noise ratio,缩写:SNR)较低,采用具有低PAPR发送信号,可以加大发射功率来提高接收效率。相反的,PAPR较高的用户终端可以是小区中心的用户终端。
方式3:基站根据用户终端的调度层数,确定第一参考信号所采用的传输波形。
若用户终端的调度层数rank=1,则第一参考信号所采用的传输波形可以是单载波,也可以是多载波。若用户终端的调度层数>1,则第一参考信号所采用的传输波形可以是多载波。
可以理解的,基站可以结合上述方式1~方式3中的至少两种方式,确定第一参考信号所采用的传输波形。例如,基站可以根据第一端口对应的信道的信道质量信息和用户终端的PAPR需求,确定第一参考信号所占的资源的密度。其他示例不再一一列举。当然,具体实现时,不限于此。
该方法还可以包括:发射端可以向接收端发送指示信息,该指示信息用于指示第一参考信号所采用的传输波形。
4)基站根据第一参考信号所采用的传输波形、用户终端的PAPR需求和用户终端的调度灵活性需求中的至少一种,确定第一参考信号的序列的类型(即信息④)。
若用户终端的PAPR需求较高,则第一参考信号的序列可以是ZC序列。需要说明的是,该序列具有低PAPR的特性。
若第一参考信号所采用的传输波形为单载波,则第一参考信号的序列可以是ZC序列。若第一参考信号所采用的传输波形为多载波,则第一参考信号的序列可以是PN序列。
由于很难寻找到低相关特性较好的长度较小的ZC序列,因此,若调度颗粒度较小时,如用户终端的调度子带小于3RB时,第一参考信号的序列可以是PN序列。
该方法还可以包括:发射端可以向接收端发送指示信息,该指示信息用于指示第一参考信号的序列的类型。
5)基站根据第一参考信号对应的信道的时频特性和第一参考信号序列的类型中的至少一种,确定第一参考信号的序列的生成方式(即信息⑤)。
若第一参考信号序列为PN序列,则第一参考信号的序列的生成方式可以是全宽带生成方式。若第一参考信号序列为ZC序列,则第一参考信号的序列的生成方式可以是按照用户终端的调度带宽生成方式。
该方法还可以包括:发射端可以向接收端发送指示信息,该指示信息用于指示第一参考信号的序列的生成方式。可选的,若第一参考信号的序列的生成方式是若干个RB生成方式,则该指示信息中可以包括该若干个RB中的每个RB的index。
6)基站可以根据以下方式中的任一种,确定第一参考信号的资源复用方式(即信息⑥):
方式1:基站根据第一端口对应的信道的时频特性,确定第一参考信号的资源复用方式。
若第一端口对应的信道的多经时延较大,如大于5000ns的高频选信道场景,则第一参考信号的资源复用方式可以采用FDM或者低阶CDM。若第一端口对应的信道的多经时延的值较小,若小于500ns的信道频选场景,则第一参考信号的资源复用方式可以采用频域CDM。
若第一端口对应的信道的频移较大,则第一参考信号的资源复用方式可以采用TDM。若第一端口对应的信道的频移较小,则第一参考信号的资源复用方式可以采用时域CDM。
示例的,在高频选信道中,端口0,1可以在时域上使用CDM,端口0,1与端口2,3使用FDM复用。在快时变信道中,端口0,2可以在频域上使用CDM,而端口0,2与1,3使用TDM复用方式,从而保证CDM的性能不受信道特性所影响。此外,时频双选择性信道中,还可以考虑端口间使用FDM+TDM的方式进行复用。
方式2:基站根据第一端口对应的信道上所叠加的相位噪声,确定第一参考信号的资源复用方式。
若第一端口对应的信道上所叠加的相位噪声的值较大,则第一参考信号的资源复用方式可以采用TDM;若第一端口对应的信道上所叠加的相位噪声的值较小,则第一参考信号的资源复用方式可以采用时域CDM。
上述2)~6)中的任一测量和反馈确定第一参考信号的配置信息时所需的信息(例如,第一端口对应的信道的时频特性和第一端口对应的信道的信道质量信息等)的方法均可以参考上述1)。除此之外,对于6),还可以通过设计复用方式调整信令来切换资源复用方式。例如,可以使用1bit来指示TDM和时域CDM的切换,1bit来指示 FDM和频域CDM的切换。可选的,通过设计复用方式调整信令来切换同一导频图中的参考信号的资源复用方式。
二、基站从预设导频图集合中选择目标导频图,从而利用目标导频图与配置信息之间的对应关系,确定第一参考信号的配置信息。
可以理解的,导频图可以反映一次传输过程中的所有端口对应的参考信号所占的时频资源的位置。可选的,还可以获知一次传输过程中的所有端口对应的参考信号的资源复用方式。
该情况下,S102可以包括:基站根据目标导频图,获取第一参考信号的配置信息。该方法还可以包括:基站发送指示信息,该指示信息包括指示目标导频图的标识。目标导频图的标识可以是目标导频图的序号等。
在本实施例中,收发双方可以预先约定不同场景下的导频图,并约定每个导频图与一次传输过程中的部分或全部端口对应的参考信号的配置信息之间的对应关系。
在本申请的一个实施例中,上述方法还可以包括:基站发送指示信息,其中,该指示信息用于指示目标导频图。其中,指示信息包括以下信息中的任一种:DCI或MAC信令或RRC信令。可选的,指示信息中可以包括目标导频图的标识,或目标导频图的信息。
其中,导频图的信息可以包括不限于以下信息中的至少一种:第一参考信号的时频资源的映射方式,第一参考信号对应的端口号及其复用方式,第一参考信号的端口映射方式等。
在本申请的另一个实施例中,上述方法还可以包括以下步骤a~b:
a:基站发送系统配置信令;其中,系统配置信令中包含至少一条信息条目,每一信息条目中记录有第一参考信号的一导频图的信息。关于导频图的信息的解释可以参考上文,此处不再赘述。
系统配置信令可以复用现有技术中的一个信令实现,例如可以复用现有技术中的一个RRC信令实现,另外,系统配置信令也可以是本申请提供的一个新的信令,本申请对此不进行限定。
b:基站发送指示信息;其中,该指示信息可以包括DCI或MAC信令,其中,指示信息用于指示目标导频图。其中,目标导频图可以是上述步骤a中配置的至少一个信息条目中记录的导频图的信息所指示的一个导频图。
以步骤a中的至少一个信息条目为共4个信息条目,且每一信息条目中记录了第一参考信号的可能的一个导频图的信息,其中,信息条目1中记录了导频图1的信息,信息条目2中记录了导频图2的信息,信息条目3中记录了导频图3的信息,信息条目4中记录了导频图4的信息。则在步骤b中,基站可以通过DCI或MAC信令指示这4个导频图中的一个导频图作为目标导频图,具体可以指示导频图的标识。
通过系统配置信令配置的第一参考信号的导频图可以是终端可用的第一参考信号的导频图,通过指示信息配置的第一参考信号的导频图(即目标导频图)可以是本次配置过程中终端所用的第一参考信号的导频图。
该实施例中,通过系统配置信令半静态配置参考信号的导频图,能够节省动态指示开销;并通过指示信息动态配置参考信号的导频图,这样,能够提高基于该参考信 号进行信道估计等操作过程中的操作结果的精确度。
可选的,本发明实施例预设的导频图所对应的场景的划分方式不进行限定,下面列举几种示例:
示例1:根据用户终端传输信息所采用的帧结构区分导频图所对应的场景。其中,该帧结构可以包括但不限于时域长度是以下信息中的任一种的帧结构:LTE系统中TTI或符号级短TTI,高频系统中的大子载波间隔的短TTI,5G系统中的slot或mini-slot等。例如,时域长度较长的帧结构所对应的导频图中的参考信号的时域密度较高,频域密度较低,以更好地测量时变特性。
示例2:根据用户终端所处的场景区分导频图所对应的场景。其中,用户终端所处的场景可以包括但不限于:农村场景、城市场景和高铁场景等。例如,用户终端的移动速率较大的场景中,例如农村场景或高铁场景,导频图中的参考信号所占的时域资源的密度较高。反之,用户的移动速率较小的场景中,例如城市场景,则导频图中的参考信号所占的时域资源的密度较低。
示例3:根据调度用户终端时所使用的载频区分导频图所对应的场景。其中,调度用户终端时所使用的载频可以包括高频、低频、超高频。例如,载频较高的场景中,参考信号的功能可以包括相位噪声补偿。
示例4:根据用户终端传输信息时所采用的子载波间隔区分导频图所对应的场景。例如,在子载波间隔大的场景中,参考信号所占的资源的频域密度较小,以克服频选。
可以理解的,具体实现时,可以结合上述提供的任意的多种方式,确定第一参考信号的配置信息。例如,首次配置第一参考信号的配置信息时,基站可以从预设导频图集合中选择目标导频图,然后利用目标导频图与配置信息之间的对应关系,确定第一参考信号的配置信息;后续,可以实时地或者半静态地重配置第一参考信号的配置信息。
下面列举两种具体示例。需要说明的是,一个PRB上可以承载控制信号、参考信号和数据信号等。下文中的具体示例均是以控制信号所占一个PRB的第一个时域符号以及全带宽构成的时频资源为例进行说明的。
如图4所示,为高频场景中对应的一种导频图。在图4中,端口0,1对应的参考信号在时域上的资源复用方式为CDM,端口2,3对应的参考信号在时域上的资源复用方式为CDM。端口0,1对应的参考信号,与端口2,3的参考信号在时域上的资源复用方式为FDM。为了进行信道估计,端口0,1,2,3均匀分布于PRB前端,每个端口对应的参考信号占用12个RE。在PRB后端,端口0,1对应的参考信号在时域上连续分布,且占7个RE;端口2,3应的参考信号在时域上以固定间隔分布,且占3个RE。
该实施例中,基站可以根据上文提供的方式确定参考信号的序列的类型和生成方式,然后生成参考信号;接着以图4所示的导频图将参考信号映射至时频资源上,并发送给用户终端。用户终端可以根据上文提供的方式获知如图4所示的导频图中的各参考信号的配置信息,从而实现信道信息参数的测量和相位噪声的测量及补偿。本实施例中的参考信号的映射方式及功能,能够在抑制相位噪声的同时,保证较低的导频消耗。
如图5所示,为高速移动场景中对应的一种导频图。在图5中,端口0,1对应的 参考信号在频域上的资源复用方式为FDM。为了进行信道估计,端口0,1均匀分布于PRB前端,每个端口对应的参考信号占用6个RE。为了准确估计高速移动场景中快时变信道的信道信息,在PRB后端,端口0,1对应的参考信号分布于不同符号内,且占用不同的子载波,也就是说,资源复用方式为TDM+FDM。其中,端口0对应的参考信号占用6个RE,端口1对应的参考信号占用3个RE。
该实施例中,基站可以根据上文提供的方式确定参考信号的序列的类型和生成方式,然后生成参考信号;接着以图5所示的导频图将参考信号映射至时频资源上,并发送给用户终端。用户终端可以根据上文提供的方式获知如图5所示的导频图中的各参考信号的配置信息,从而实现对快时变信道信息参数的测量。该实施例中不同参考信号不规则的映射方式,可以保证信道估计精度的同时有效降低导频开销。
上文中均是从发送端配置参考信号的角度进行说明的,本发明实施例还提供了接收端配置参考信号的方法。下文中是以接收端为用户终端为例进行说明的。
如图6所示,为本发明实施例提供的一种配置参考信号的方法的流程示意图,该方法可以包括以下步骤S201~S202:
S201:用户终端接收指示信息。
S202:用户终端根据该指示信息,确定第一参考信号的配置信息;其中,第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,传输过程中可使用的端口还包括第二端口,第二端口对应的参考信号的配置信息与第一参考信号的配置信息不同。
可选的,该指示信息中包括目标导频图的标识;该情况下,S202可以包括:根据目标导频图,获取第一参考信号的配置信息。
该实施例中的相关内容的解释及有益效果均可以参考上文,此处不再赘述。
上述主要从发射端和接收端的角度对本发明实施例提供的方案进行了介绍。可以理解的是,发射端和接收端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对配置参考信号的装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图7所示,为本发明实施例提供的一种配置参考信号的装置7的结构示意图。该装置7可以包括确定单元701和配置单元702。可选的,还可以包括发送单元703。这各功能模块中的每个功能模块所具有的功能可以根据上文所提供的各方法实施例中的各步骤推断出来,或者可以参考上文发明内容部分所提供的内容。示例的,确定单元701可以用于执行图3中S101中的基站所执行的动作,和/或用于支持本文所描述 的技术的其它过程。配置单元702可以用于执行图3中S102中的基站所执行的动作,和/或用于支持本文所描述的技术的其它过程。
在硬件实现上,上述发送单元703可以为发送器,其可以与接收器集成在一起构成收发器。确定单元701和配置单元702可以以硬件形式内嵌于或独立于配置参考信号的装置7的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图8所示,为本发明实施例提供的一种配置参考信号的装置8的结构示意图。该装置8可以包括接收单元801和确定单元802。这各功能模块中的每个功能模块所具有的功能可以根据上文所提供的各方法实施例中的各步骤推断出来,或者可以参考上文发明内容部分所提供的内容。示例的,接收单元801可以用于执行图6中S201中的基站所执行的动作,和/或用于支持本文所描述的技术的其它过程。确定单元802可以用于执行图6中S202中的基站所执行的动作,和/或用于支持本文所描述的技术的其它过程。
在硬件实现上,上述接收单元801可以为接收器,其可以与发送器一起构成收发器。确定单元802可以以硬件形式内嵌于或独立于配置参考信号的装置8的存储器中,以便于处理器调用执行以上各个单元对应的操作。
如图9所示,为本发明实施例提供的一种配置参考信号的装置9的结构示意图。该装置9可以包括:处理器901、存储器902、系统总线903以及通信接口904。其中,处理器901、存储器902以及通信接口904通过系统总线903连接。存储器902用于存储计算机执行指令,当装置9运行时,处理器901执行存储器902存储的计算机执行指令,以使装置9执行上文提供的任意一种配置参考信号的方法。具体的配置参考信号的方法可参考下文及附图中的相关描述,此处不再赘述。
本发明实施例还提供一种存储介质,该存储介质可以包括存储器902。
处理器901可以是一个处理器,也可以是多个处理元件的统称。例如,处理器901可以是中央处理器(英文:central processing unit,缩写:CPU),通用处理器,数字信号处理器(英文:digital signal processor,缩写:DSP),专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),现场可编程门阵列(英文:field programmable gate array,缩写:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。处理器901还可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有装置9其他专用处理功能的芯片。
存储器902可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器902也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器902还可以包括上述种类的存储器的组合。
系统总线903可以包括数据总线、电源总线、控制总线和信号状态总线等。本实 施例中为了清楚说明,在图9中将各种总线都示意为系统总线903。
通信接口904具体可以是装置9上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是装置9的天线等。处理器901通过通信接口904与其他设备,例如与基站之间进行数据的收发。
在具体实现过程中,上文中提供的任意一种获取参考信号的方法流程中的各步骤均可以通过硬件形式的处理器901执行存储器902中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种配置参考信号的方法,其特征在于,所述方法包括:
    确定第一参考信号的配置信息;所述第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,所述传输过程中可使用的端口还包括第二端口,所述第二端口对应的参考信号的配置信息与所述第一参考信号的配置信息不同;
    根据所述第一参考信号的配置信息,配置所述第一参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参考信号的配置信息包括以下信息中的至少一种:
    所述第一参考信号所占的资源的密度,其中,所述第一参考信号所占的资源的密度是指所述第一参考信号所占的资源单元的个数与所述传输过程中所使用的资源单元的个数的比值;
    所述第一参考信号所承载的功能;
    所述第一参考信号所采用的传输波形;
    所述第一参考信号的序列的类型;
    所述第一参考信号的序列的生成方式;
    所述第一参考信号的资源复用方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示接收端确定所述第一参考信号的配置信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述确定第一参考信号的配置信息,包括:
    根据用户终端的当前状态从预设导频图集合中选择目标导频图;其中,所述用户终端的当前状态包括以下信息中的至少一种:所述用户终端传输信息所采用的帧结构,所述用户终端所处的场景,调度所述用户终端时所使用的载频,所述用户终端传输信息时所采用的子载波间隔;
    根据所述目标导频图,获取所述第一参考信号的配置信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息包括所述目标导频图的标识。
  6. 根据权利要求4或5所述的方法,其特征在于,所述目标导频图与所述第一参考信号的配置信息对应。
  7. 根据权利要求1至3任一项所述的方法,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号所占的资源的密度;所述确定第一参考信号的配置信息,包括:
    根据所述第一端口对应的信道的时频特性、所述第一端口对应的信道的相位噪声、用户终端的系统信息、用户终端的系统配置信息和所述用户终端的移动速度中的至少一种,确定所述第一参考信号所占的资源的密度;所述第一端口是为所述用户终端分配的任一端口。
  8. 根据权利要求1至3任一项所述的方法,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号所承载的功能;所述确定第一参考信号的配置信息,包括:
    根据所述第一端口对应的信道的时频特性和所述第一端口对应的信道的相位噪声中的至少一种,确定所述第一参考信号所承载的功能。
  9. 根据权利要求1至3任一项所述的方法,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号所采用的传输波形;所述确定第一参考信号的配置信息,包括:
    根据所述第一端口对应的信道的信道质量信息、用户终端的均峰比PAPR需求和用户终端的调度层数中的至少一种,确定所述第一参考信号所采用的传输波形;所述第一端口是为所述用户终端分配的任一端口。
  10. 根据权利要求1至3任一项所述的方法,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号的序列的类型;所述确定第一参考信号的配置信息,包括:
    根据所述第一参考信号所采用的传输波形、用户终端的PAPR需求和用户终端的调度灵活性需求中的至少一种,确定所述第一参考信号的序列的类型;所述第一端口是为所述用户终端分配的端口中的任一端口。
  11. 根据权利要求1至3任一项所述的方法,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号的资源复用方式;所述确定第一参考信号的配置信息,包括:
    根据所述第一端口对应的信道的时频特性和所述第一端口对应的信道上所叠加的相位噪声中的至少一种,确定所述第一参考信号的资源复用方式。
  12. 根据权利要求3所述的方法,其特征在于,所述指示信息包括下行控制信息DCI或媒体接入控制MAC信令,用于指示所述第一参考信号的配置信息;在所述发送指示信息之前,所述方法还包括:
    发送系统配置信令;其中,所述系统配置信令包括无线资源控制RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一配置信息。
  13. 根据权利要求5所述的方法,其特征在于,所述指示信息包括DCI或MAC信令,用于指示所述目标导频图;在所述发送指示信息之前,所述方法还包括:
    发送系统配置信令;其中,所述系统配置信令包括RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一导频图的信息。
  14. 根据权利要求3或5所述的方法,其特征在于,所述指示信息包括以下其中一种:DCI或MAC信令或RRC信令。
  15. 一种配置参考信号的方法,其特征在于,所述方法包括:
    接收指示信息;
    根据所述指示信息,确定第一参考信号的配置信息;其中,所述第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,所述传输过程中可使用的端口还包括第二端口,所述第二端口对应的参考信号的配置信息与所述第一参考信号的配置信息不同。
  16. 根据权利要求15所述的方法,其特征在于,所述第一参考信号的配置信息包 括以下信息中的至少一种:
    所述第一参考信号所占的资源的密度,其中,所述第一参考信号所占的资源的密度是指所述第一参考信号所占的资源单元的个数与所述传输过程中所使用的资源单元的个数的比值;
    所述第一参考信号所承载的功能;
    所述第一参考信号所采用的传输波形;
    所述第一参考信号的序列的类型;
    所述第一参考信号的序列的生成方式;
    所述第一参考信号的资源复用方式。
  17. 根据权利要求15或16所述的方法,其特征在于,所述指示信息中包括目标导频图的标识;所述根据所述指示信息,确定第一参考信号的配置信息,包括:
    根据所述目标导频图,获取所述第一参考信号的配置信息。
  18. 根据权利要求17所述的方法,其特征在于,所述目标导频图与所述第一参考信号的配置信息对应。
  19. 根据权利要求15或16所述的方法,其特征在于,所述指示信息包括下行控制信息DCI或媒体接入控制MAC信令,用于指示所述第一参考信号的配置信息;在所述接收指示信息之前,所述方法还包括:
    接收系统配置信令;其中,所述系统配置信令包括无线资源控制RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一配置信息。
  20. 根据权利要求17或18所述的方法,其特征在于,所述指示信息包括DCI或MAC信令,用于指示所述目标导频图;在所述接收指示信息之前,所述方法还包括:
    接收系统配置信令;其中,所述系统配置信令包括无线资源控制RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一导频图的信息。
  21. 根据权利要求15至18任一项所述的方法,其特征在于,所述指示信息包括以下其中一种:DCI或MAC信令或RRC信令。
  22. 一种配置参考信号的装置,其特征在于,所述装置包括:
    确定单元,用于确定第一参考信号的配置信息;所述第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,所述传输过程中可使用的端口还包括第二端口,所述第二端口对应的参考信号的配置信息与所述第一参考信号的配置信息不同;
    配置单元,用于根据所述第一参考信号的配置信息,配置所述第一参考信号。
  23. 根据权利要求22所述的装置,其特征在于,所述第一参考信号的配置信息包括以下信息中的至少一种:
    所述第一参考信号所占的资源的密度,其中,所述第一参考信号所占的资源的密度是指所述第一参考信号所占的资源单元的个数与所述传输过程中所使用的资源单元的个数的比值;
    所述第一参考信号所承载的功能;
    所述第一参考信号所采用的传输波形;
    所述第一参考信号的序列的类型;
    所述第一参考信号的序列的生成方式;
    所述第一参考信号的资源复用方式。
  24. 根据权利要求22或23所述的装置,其特征在于,所述装置还包括:
    发送单元,用于发送指示信息,所述指示信息用于指示接收端确定所述第一参考信号的配置信息。
  25. 根据权利要求22或23所述的装置,其特征在于,所述确定单元具体用于:
    根据用户终端的当前状态从预设导频图集合中选择目标导频图;其中,所述用户终端的当前状态包括以下信息中的至少一种:所述用户终端传输信息所采用的帧结构,所述用户终端所处的场景,调度所述用户终端时所使用的载频,所述用户终端传输信息时所采用的子载波间隔;
    根据所述目标导频图,获取所述第一参考信号的配置信息。
  26. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    发送单元,用于发送指示信息,所述指示信息包括所述目标导频图的标识。
  27. 根据权利要求25或26所述的装置,其特征在于,所述目标导频图与所述第一参考信号的配置信息对应。
  28. 根据权利要求22至25任一项所述的装置,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号所占的资源的密度;所述确定具体用于:
    根据所述第一端口对应的信道的时频特性、所述第一端口对应的信道的相位噪声、用户终端的系统信息、用户终端的系统配置信息和所述用户终端的移动速度中的至少一种,确定所述第一参考信号所占的资源的密度;所述第一端口是为所述用户终端分配的任一端口。
  29. 根据权利要求22至25任一项所述的装置,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号所承载的功能;所述确定单元具体用于:
    根据所述第一端口对应的信道的时频特性和所述第一端口对应的信道的相位噪声中的至少一种,确定所述第一参考信号所承载的功能。
  30. 根据权利要求22至25任一项所述的装置,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号所采用的传输波形;所述确定单元具体用于:
    根据所述第一端口对应的信道的信道质量信息、用户终端的均峰比PAPR需求和用户终端的调度层数中的至少一种,确定所述第一参考信号所采用的传输波形;所述第一端口是为所述用户终端分配的任一端口。
  31. 根据权利要求22至25任一项所述的装置,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号的序列的类型;所述确定单元具体用于:
    根据所述第一参考信号所采用的传输波形、用户终端的PAPR需求和用户终端的调度灵活性需求中的至少一种,确定所述第一参考信号的序列的类型;所述第一端口是为所述用户终端分配的端口中的任一端口。
  32. 根据权利要求22至25任一项所述的装置,其特征在于,如果所述第一参考信号的配置信息包括所述第一参考信号的资源复用方式;所述确定单元具体用于:
    根据所述第一端口对应的信道的时频特性和所述第一端口对应的信道上所叠加的 相位噪声中的至少一种,确定所述第一参考信号的资源复用方式。
  33. 根据权利要求24所述的装置,其特征在于,所述指示信息包括下行控制信息DCI或媒体接入控制MAC信令,用于指示所述第一参考信号的配置信息;
    所述发送单元还用于:发送系统配置信令;其中,所述系统配置信令包括无线资源控制RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一配置信息。
  34. 根据权利要求26所述的装置,其特征在于,所述指示信息包括DCI或MAC信令,用于指示所述目标导频图;
    所述发送单元还用于:发送系统配置信令;其中,所述系统配置信令包括RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一导频图的信息。
  35. 根据权利要求24或26所述的装置,其特征在于,所述指示信息包括以下其中一种:DCI或MAC信令或RRC信令。
  36. 一种配置参考信号的装置,其特征在于,所述装置包括:
    接收单元,用于接收指示信息;
    确定单元,用于根据所述指示信息,确定第一参考信号的配置信息;其中,所述第一参考信号是一次传输过程中可使用的第一端口对应的参考信号,所述传输过程中可使用的端口还包括第二端口,所述第二端口对应的参考信号的配置信息与所述第一参考信号的配置信息不同。
  37. 根据权利要求36所述的装置,其特征在于,所述第一参考信号的配置信息包括以下信息中的至少一种:
    所述第一参考信号所占的资源的密度,其中,所述第一参考信号所占的资源的密度是指所述第一参考信号所占的资源单元的个数与所述传输过程中所使用的资源单元的个数的比值;
    所述第一参考信号所承载的功能;
    所述第一参考信号所采用的传输波形;
    所述第一参考信号的序列的类型;
    所述第一参考信号的序列的生成方式;
    所述第一参考信号的资源复用方式。
  38. 根据权利要求36或37所述的装置,其特征在于,所述指示信息中包括目标导频图的标识;所述确定单元具体用于:
    根据所述目标导频图,获取所述第一参考信号的配置信息。
  39. 根据权利要求38所述的装置,其特征在于,所述目标导频图与所述第一参考信号的配置信息对应。
  40. 根据权利要求36或37所述的装置,其特征在于,所述指示信息包括下行控制信息DCI或媒体接入控制MAC信令,用于指示所述第一参考信号的配置信息;
    所述接收单元还用于:接收系统配置信令;其中,所述系统配置信令包括无线资源控制RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一配置信息。
  41. 根据权利要求38或39所述的装置,其特征在于,所述指示信息包括DCI或MAC信令,用于指示所述目标导频图;
    所述接收单元还用于:接收系统配置信令;其中,所述系统配置信令包括无线资源控制RRC信令,且所述系统配置信令中包含至少一条信息条目,每一信息条目中记录有所述第一参考信号的一导频图的信息。
  42. 根据权利要求36至39任一项所述的装置,其特征在于,所述指示信息包括以下其中一种:DCI或MAC信令或RRC信令。
  43. 根据权利要求1至21任一项所述的方法,或权利要求22至42任一项所述的装置,其特征在于,所述第一参考信号和所述第二端口对应的参考信号均是解调参考信号DMRS,或者,所述第一参考信号和所述第二端口对应的参考信号均是信道状态信息参考信号CSI-RS。
  44. 一种配置参考信号的装置,其特征在于,所述装置包括:存储器和处理器,其中,所述存储器用于存储计算机程序,所述计算机程序被所述处理器执行时,使得如权利要求1至21任一项所述的方法,或权利要求43所述的方法被执行。
  45. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序在计算机上运行时,使得如权利要求1至21任一项所述的方法,或权利要求43所述的方法被执行。
PCT/CN2017/119357 2017-01-06 2017-12-28 一种配置参考信号的方法和装置 WO2018126979A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17890767.1A EP3562081A4 (en) 2017-01-06 2017-12-28 METHOD AND DEVICE FOR CONFIGURING A REFERENCE SIGNAL
BR112019014001-8A BR112019014001A2 (pt) 2017-01-06 2017-12-28 Método de configuração do sinal de referência, aparelho e midia de armazenamento decomputador
US16/505,251 US11405154B2 (en) 2017-01-06 2019-07-08 Reference signal configuration method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710011868 2017-01-06
CN201710011868.5 2017-01-06
CN201710313518.4 2017-05-05
CN201710313518.4A CN108282322A (zh) 2017-01-06 2017-05-05 一种配置参考信号的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/505,251 Continuation US11405154B2 (en) 2017-01-06 2019-07-08 Reference signal configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018126979A1 true WO2018126979A1 (zh) 2018-07-12

Family

ID=62789192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119357 WO2018126979A1 (zh) 2017-01-06 2017-12-28 一种配置参考信号的方法和装置

Country Status (1)

Country Link
WO (1) WO2018126979A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067622A (zh) * 2021-02-25 2021-07-02 上海卫星工程研究所 复合场景多源信号发生自主校偏装置及方法
CN114500184A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 一种信道估计方法和装置及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754237A (zh) * 2008-12-19 2010-06-23 大唐移动通信设备有限公司 Lte-a系统中天线增强型技术的处理方法和基站
CN101771443A (zh) * 2009-01-05 2010-07-07 大唐移动通信设备有限公司 控制lte-a系统中参考符号开销的方法和基站
CN101841828A (zh) * 2009-03-18 2010-09-22 中兴通讯股份有限公司 Lte-a系统中信道测量导频的发送方法
CN101848017A (zh) * 2009-03-24 2010-09-29 中兴通讯股份有限公司 基于lte-a用户专用资源的信道测量导频配置方法
CN101873625A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种中继链路中的信道估计方法、系统及设备
CN101677306B (zh) * 2008-09-19 2012-08-08 电信科学技术研究院 一种导频配置方法和装置
US20140341114A1 (en) * 2011-11-13 2014-11-20 Lg Electronics Inc. Method and device for transmitting reference signal in wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677306B (zh) * 2008-09-19 2012-08-08 电信科学技术研究院 一种导频配置方法和装置
CN101754237A (zh) * 2008-12-19 2010-06-23 大唐移动通信设备有限公司 Lte-a系统中天线增强型技术的处理方法和基站
CN101771443A (zh) * 2009-01-05 2010-07-07 大唐移动通信设备有限公司 控制lte-a系统中参考符号开销的方法和基站
CN101841828A (zh) * 2009-03-18 2010-09-22 中兴通讯股份有限公司 Lte-a系统中信道测量导频的发送方法
CN101848017A (zh) * 2009-03-24 2010-09-29 中兴通讯股份有限公司 基于lte-a用户专用资源的信道测量导频配置方法
CN101873625A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种中继链路中的信道估计方法、系统及设备
US20140341114A1 (en) * 2011-11-13 2014-11-20 Lg Electronics Inc. Method and device for transmitting reference signal in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "RS Design for DL Higher Order MIMO in LTE-A", 3GPP TSG RAN WG1 MEETING #55BIS, R1-090190, 16 January 2009 (2009-01-16), XP050318123 *
FUJITSU: "DL Reference Signal Design for 8 × 8 MIMO in LTE-Advanced", 3GPP TSG-RAN1 #56, R1-090706, 13 February 2009 (2009-02-13), XP050318576 *
See also references of EP3562081A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500184A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 一种信道估计方法和装置及设备
CN114500184B (zh) * 2020-10-23 2023-08-01 大唐移动通信设备有限公司 一种信道估计方法和装置及设备
CN113067622A (zh) * 2021-02-25 2021-07-02 上海卫星工程研究所 复合场景多源信号发生自主校偏装置及方法

Similar Documents

Publication Publication Date Title
US11405154B2 (en) Reference signal configuration method and apparatus
US11489709B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US11323917B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
JP6725497B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018126926A1 (zh) 信号传输方法和装置
WO2019029378A1 (zh) 参考信号配置信息的指示方法、基站及终端
JP6121124B2 (ja) 無線通信システム、無線通信方法、ユーザ端末及び無線基地局
JPWO2018199243A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP6962197B2 (ja) 装置及び方法
JPWO2018199162A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
JPWO2018199074A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
KR101690851B1 (ko) 기지국 장치, 단말 장치, 통신 방법, 집적 회로 및 통신 시스템
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
WO2018018628A1 (zh) 参考信号序列的映射方法、配置方法、基站和用户设备
KR20130122572A (ko) 단말 대 단말 통신을 위한 송수신 방법
KR20180068677A (ko) 무선 통신 시스템에서 하향링크 제어채널의 송수신 방법 및 장치
JP2012054711A (ja) 無線通信システム、無線基地局装置及び移動端末装置
WO2018059157A1 (zh) 参考信号传输方法、设备及系统、存储介质
TW201534164A (zh) 用於頻寬聚合之多載波連接管理
JPWO2018008459A1 (ja) 基地局装置、端末装置および通信方法
WO2019242028A1 (en) Method, apparatus and computer readable media for control signal transmission and reception
US10177938B2 (en) Device and method for adaptive channel estimation
WO2015007152A1 (zh) Dm-rs图样指示方法和装置
WO2018059550A1 (zh) 参考信号的处理方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014001

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017890767

Country of ref document: EP

Effective date: 20190723

ENP Entry into the national phase

Ref document number: 112019014001

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190705