WO2018126910A1 - 空调器以及空调器中运动部件的检测控制装置和方法 - Google Patents

空调器以及空调器中运动部件的检测控制装置和方法 Download PDF

Info

Publication number
WO2018126910A1
WO2018126910A1 PCT/CN2017/118021 CN2017118021W WO2018126910A1 WO 2018126910 A1 WO2018126910 A1 WO 2018126910A1 CN 2017118021 W CN2017118021 W CN 2017118021W WO 2018126910 A1 WO2018126910 A1 WO 2018126910A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
component
detecting
hall
magnetic poles
Prior art date
Application number
PCT/CN2017/118021
Other languages
English (en)
French (fr)
Inventor
袁光
苏立志
李洪涛
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710008091.7A external-priority patent/CN106679100B/zh
Priority claimed from CN201710400932.9A external-priority patent/CN107166656B/zh
Priority claimed from CN201710401704.3A external-priority patent/CN107015279B/zh
Priority claimed from CN201720625221.7U external-priority patent/CN207336773U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018126910A1 publication Critical patent/WO2018126910A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/04Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving

Definitions

  • the present invention relates to the field of air conditioner technology, and in particular, to a detection and control device for a moving component in an air conditioner, an air conditioner, a method for detecting and controlling a moving component in an air conditioner, and a non-transitory readable storage medium.
  • More and more sliding door or other rotary motion devices are used in related air conditioners, for example, the door panel is opened to the sides or one side after the air conditioner is started, or the rotating member is rotated to the grille to align the air outlet position, and the air conditioner is turned off.
  • the rear door panel is closed or the rotating member is rotated to the position of the shielding plate at the air outlet, so that the aesthetics of the product is greatly improved.
  • the power mechanism of such a door panel is usually an open-loop controlled stepping motor with a large torque. If the foreign object is stuck during the opening or closing of the door panel or the finger is inadvertently extended during the closing process, the control unit does not know and stops the motor. At this time, the power mechanism is in an interference state, so that not only the product but also the product Damage to the structural parts and electrical appliances, if it is caught in the fingers, it will also cause a great pain, which seriously reduces the feeling of use of the product.
  • the inductor-capacitor parallel resonant circuit detects the sticking of the door panel by the principle that the impedance value changes due to the change of the inductance value after clamping the obstacle, but the service life is limited and the detection function is likely to fail as the running time becomes longer.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • a first aspect of the present invention provides a detection and control device for a moving part in an air conditioner, comprising: a magnetic component, the magnetic component being fixed on the moving component, and a detecting surface of the magnetic component Having a plurality of N magnetic poles and/or a plurality of S magnetic poles spaced apart; at least one Hall detecting component, the at least one Hall detecting component matching the magnetic properties of the magnetic poles on the detecting surface of the magnetic component, the at least one The detection component is fixed on the air conditioner body, and the at least one Hall detection component is disposed adjacent to the detection surface of the magnetic component, and the at least one Hall detection component senses the magnetic component when the moving component moves The magnetic pole changes to generate at least one sensing signal correspondingly; the control unit is connected to the at least one Hall detecting component, and the control unit determines whether the moving component is stuck according to the at least one sensing signal.
  • the detecting and controlling device for the moving part in the air conditioner detects the magnetic pole change of the magnetic component through the at least one Hall detecting component when the moving component moves to correspondingly generate at least one sensing signal, and the control unit determines according to the at least one sensing signal.
  • the moving parts are stuck, so that it can effectively judge whether the moving parts are stuck, so as to take corresponding measures to adjust the movement of the moving parts in time, avoid damage to the driving parts of the driving moving parts, and pass the magnetic components and the multi-Hall detecting components. It can shorten the detection time and improve the detection sensitivity.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • the magnetic component is a strip of tape.
  • the connecting lines of the x Hall detecting components are parallel to the moving direction of the magnetic component.
  • the N magnetic poles and the S magnetic poles are spaced apart one by one; when the magnetic component is detected When a plurality of the N magnetic poles are spaced apart on the surface, a first blank area is distributed between two adjacent N magnetic poles; when a plurality of the S magnetic poles are spaced apart on the detecting surface of the magnetic component, A second blank area is distributed between two adjacent S magnetic poles.
  • any two adjacent Hall detecting components of the plurality of Hall detecting components are according to the N magnetic pole
  • the sum of the widths of the first blank areas is offset by a first predetermined distance; any two adjacent Hall detecting components of the plurality of Hall detecting components are according to the width of the S magnetic pole and the second blank area And staggering the second preset distance; any two adjacent Hall detecting components of the plurality of Hall detecting components are staggered by a third predetermined distance according to the width of the N magnetic pole or the S magnetic pole.
  • the first predetermined distance or the second predetermined distance is determined according to the following formula:
  • d is the first predetermined distance or the second preset distance or the third preset distance
  • s is the sum of the widths of the N magnetic pole and the first blank area on the magnetic component
  • One half, or s is half the sum of the widths of the S magnetic pole and the second blank area, or s is the width of the N magnetic pole or the S magnetic pole
  • x is the number of the Hall detecting components
  • n is an arbitrary integer.
  • each of the N magnetic poles when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the detecting surface of the magnetic component, each of the N magnetic poles has the same width and the width of each of the S magnetic poles is the same; When the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic component, the width of each of the N magnetic poles is the same; or, when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component, each The S poles have the same width and the same width.
  • the magnetic region width of the N magnetic pole or the S magnetic pole is obtained according to the following formula:
  • d1 is a magnetic region width of the N magnetic pole or the S magnetic pole
  • A is a maximum magnetic density of the N magnetic pole or the S magnetic pole
  • X is an operating point of the Hall detecting component
  • Y is the The release point of the Hall detecting component
  • D is the width of the magnetic component along the moving direction of the moving component
  • p is the number of the N magnetic poles or the S magnetic poles.
  • the width of the first blank area or the second blank area is obtained according to the following formula:
  • d2 is the width of the first blank area or the second blank area
  • d1 is the magnetic area width of the N magnetic pole or the S magnetic pole
  • D is the movement of the magnetic component along the moving part
  • p is the number of the N magnetic poles or the S magnetic poles.
  • each of the Hall detecting components when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the magnetic component, each of the Hall detecting components generates an active level when facing the N magnetic poles, and is facing The S magnetic pole generates an inactive level; when the plurality of N magnetic poles are spaced apart on the magnetic component, each of the Hall detecting components generates an active level when facing the N magnetic pole, and is positive Generating an inactive level for the first blank region; each of the Hall detecting components generates an active level when facing the S magnetic pole when the plurality of S magnetic poles are spaced apart on the magnetic component, And generating an invalid level while facing the second blank area.
  • control unit includes a timer and a control chip, and the control chip is coupled to the timer, wherein when the Hall detection component is one, the timer is used in the Timing is started when the active level is switched with the invalid level to time the duration of the active level and the duration of the invalid level; the control chip is used at the active level or When the duration of the invalid level is greater than the preset time threshold, it is determined that the moving component is stuck.
  • the x sense signals output by the x sense detection components respectively form a combination of y level states, y>x
  • the timer is configured to start timing when any one of the level state combinations of the y kinds of the level state combinations occurs, to combine each of the level states of the y kinds of the level state combinations
  • the duration of the timing is performed; the control chip is configured to determine that the moving component is stuck when the duration of any one of the level state combinations is greater than a preset time threshold.
  • the number y of combinations of level states is x times the number of level states of each sensed signal.
  • an embodiment of the second aspect of the present invention provides an air conditioner including the detection control device for a moving part in the air conditioner.
  • the detection and control device of the moving component can effectively determine whether the moving component is stuck, and has high detection sensitivity, small occupied space, low cost, easy installation, long service life, and stability. reliable.
  • a third aspect of the present invention provides a method for detecting and controlling a moving part in an air conditioner, the air conditioner including a magnetic component and at least one Hall detecting component, the magnetic component being fixed to the motion a plurality of N magnetic poles and/or a plurality of S magnetic poles are spaced apart from each other on the detecting surface of the magnetic component, and each of the Hall detecting components matches the magnetic properties of the magnetic poles on the detecting surface of the magnetic component.
  • At least one Hall detecting component is fixed on the air conditioner body, and the at least one Hall detecting component is disposed near a detecting surface of the magnetic component, the method comprising the steps of: passing at least one of the moving component when moving The Hall detecting component senses a magnetic pole change of the magnetic component to generate at least one sensing signal; and determines whether the moving component is stuck according to the at least one sensing signal.
  • the magnetic pole change of the magnetic component is induced by at least one Hall detecting component to generate at least one sensing signal, and then according to at least one sensing signal.
  • the moving parts are stuck, so that it can effectively judge whether the moving parts are stuck, so as to take corresponding measures to adjust the movement of the moving parts in time, avoid damage to the driving mechanism of the driving moving parts, and detect the magnetic components and multi-Hall Components reduce inspection time and increase detection sensitivity.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • each of the Huo The detection component when a plurality of N magnetic poles and a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component, the N magnetic poles and the S magnetic poles are spaced apart one by one, wherein each of the Huo The detection component generates an active level when facing the N magnetic poles, and generates an inactive level when facing the S magnetic poles; when a plurality of the N magnetic poles are spaced apart on the detecting surface of the magnetic component, a first blank area is disposed between two adjacent N magnetic poles, wherein each of the Hall detecting components generates an active level when facing the N magnetic poles, and faces the first blank area Generating an invalid level; when a plurality of the S magnetic poles are spaced apart on the detecting surface of the magnetic component, a second blank area is distributed between two adjacent S magnetic poles, wherein each of the Huo The detection component generates an active level when facing the S magnetic pole and generates an inactive level when facing the second blank area.
  • determining whether the moving component is stuck according to the at least one sensing signal comprises: performing at the active level and the invalid level Timing is started at the time of switching to time the duration of the active level and the duration of the invalid level; when the duration of the active level or the invalid level is greater than a preset time threshold, The moving parts are stuck.
  • the sensing signal when the number of the Hall detecting components is x, the x sensing signals respectively output by the x Hall detecting components construct a combination of y kinds of level states, according to at least one way Determining whether the moving component is stuck, the sensing signal includes: starting timing when any one of the level state combinations of the y kinds of the level state combinations occurs, to combine the y kinds of the level states The duration of each of the level state combinations is counted; when the duration of any of the level state combinations is greater than a preset time threshold, it is determined that the moving component is stuck.
  • the number y of combinations of level states is x times the number of level states of each sensed signal.
  • a fourth aspect of the present invention provides a non-transitory readable storage medium having an air conditioner control program stored thereon, which is executed by a processor to implement an embodiment of the third aspect of the present invention.
  • the method for detecting and controlling moving parts in an air conditioner is executed by a processor to implement an embodiment of the third aspect of the present invention.
  • FIG. 1a is a block schematic diagram of a detection control device for a moving part in an air conditioner according to an embodiment of the present invention
  • FIG. 1b is a block diagram showing a detection control device for a moving part in an air conditioner according to another embodiment of the present invention.
  • FIG. 2a is a schematic structural view of a magnetic component according to an embodiment of the present invention.
  • FIG. 2b is a schematic structural view of a magnetic component according to another embodiment of the present invention.
  • 3a is a schematic structural view of a detecting and controlling device for a moving part in an air conditioner according to an embodiment of the present invention
  • 3b is a schematic structural view of a detecting and controlling device for a moving part in an air conditioner according to another embodiment of the present invention.
  • 3c is a schematic structural view of a detecting and controlling device for a moving part in an air conditioner according to still another embodiment of the present invention.
  • FIG. 4 is a block diagram showing a detection control device for a moving part in an air conditioner according to an embodiment of the present invention
  • FIG. 5 is a waveform diagram of a sensing signal output by a Hall detecting component according to an embodiment of the present invention, in which a moving component is not stuck;
  • FIG. 6 is a waveform diagram of a sensing signal output by a Hall detecting component according to an embodiment of the present invention, wherein a moving component is stuck at time t1;
  • FIG. 7 is a circuit schematic diagram of a Hall detecting assembly in accordance with one embodiment of the present invention.
  • Figure 8 is a block diagram showing a detection control device for a moving part in an air conditioner according to another embodiment of the present invention.
  • Figure 9 is a block diagram showing a detection control device for a moving part in an air conditioner according to still another embodiment of the present invention.
  • FIG. 10 is a waveform diagram of a sensing signal output by a Hall detecting component according to another embodiment of the present invention, in which a moving component is not stuck;
  • FIG. 11 is a waveform diagram of a sensing signal output by a Hall detecting component according to another embodiment of the present invention, wherein a moving component is stuck at time t1;
  • FIG. 12 is a circuit schematic diagram of a Hall detecting assembly in accordance with another embodiment of the present invention.
  • Figure 13 is a schematic illustration of a door panel of an air conditioner in accordance with one embodiment of the present invention.
  • Figure 14 is a schematic view showing a mounting position of a driving member according to an embodiment of the present invention.
  • 15 is a flowchart of a method of detecting and controlling a moving part in an air conditioner according to an embodiment of the present invention.
  • 16 is a flowchart of a method of detecting and controlling a moving part in an air conditioner according to an embodiment of the present invention
  • Figure 17 is a flow chart showing a method of detecting and controlling a moving part in an air conditioner according to another embodiment of the present invention.
  • a sliding door detection and control device in which a grating strip is added on a door panel, and an illumination tube and a light-receiving tube are respectively installed on both sides of the grating strip.
  • the gap between the grating strips is high and low.
  • the flat pulse feedback signal monitors whether the door is stuck or not by detecting the duration of the high or low level.
  • the related art also proposes a sliding door detection control device, in which the principle that the impedance of the parallel circuit is changed by the change of the inductance value after the obstacle is clamped by the inductor and the capacitor parallel resonance circuit, and the impedance detection circuit detects whether the door panel is stuck.
  • the device is respectively provided with an illumination tube and a light-receiving tube on both sides of the grating, and the structure is complicated and difficult, and the grating and the door plate need a certain gap.
  • the photoelectric principle in order to avoid multiple factors such as ambient light interference, the light transmission and the light-shielding gap of the grating cannot be too narrow, so that the high-low level duration of the feedback pulse is lengthened, so that the detection time of the stuck time is lengthened, and the detection sensitivity is lowered. If you hold your fingers, the pain will last for a long time, making it difficult for users to accept.
  • the inductance used in the parallel circuit is a metal piece with copper foil traces, and the inductance value changes from the deformation of the metal sheet caused by the obstacle when stuck, but each time the door panel is closed At the same time, the metal piece will be severely squeezed. Although there is no obstacle at this time, the detection function is also turned off without causing false detection, but the metal piece will still be severely deformed. Over time, it will bring irreversible deformation to the metal piece. Or complete damage, resulting in a limited life of the device and the detection function is likely to fail as the operating time becomes longer. Moreover, the device is only suitable for single-side switch door devices, and cannot be used for double-side switch door devices, and is only suitable for jamming during shutdown, and cannot detect stuck during opening.
  • an embodiment of the present invention provides an apparatus and method for detecting and controlling a moving component in an air conditioner and an air conditioner.
  • the detecting and controlling means of the moving part is for detecting whether a moving part such as a door panel is stuck or not, or whether an obstacle is encountered, and the moving part can be moved by the driving part.
  • the detecting and controlling device for a moving part in an air conditioner includes: a magnetic component 10, at least one Hall detecting component 20, and a control unit 30.
  • the magnetic component 10 is fixed on the moving component, and a plurality of N magnetic poles and/or a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component; at least one Hall detecting component 20 and the magnetic component 10 detect the magnetic phase of the magnetic pole on the surface Matching, at least one Hall detecting component 20 is fixed on the air conditioner body, and at least one Hall detecting component 20 is disposed near the detecting surface of the magnetic component 10, and at least one Hall detecting component 20 senses the magnetic component 10 when the moving component moves.
  • the magnetic pole changes to generate at least one sensing signal correspondingly;
  • the control unit 30 is connected to the at least one Hall detecting component 20, and the control unit 30 determines whether the moving component is stuck according to the at least one sensing signal.
  • the N magnetic poles and the S magnetic poles are spaced apart one by one; when the detecting surface of the magnetic component 10 is spaced apart When the N magnetic poles are arranged, a first blank area is distributed between the adjacent two N magnetic poles; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10, a second blank is distributed between the adjacent two S magnetic poles region.
  • the width of each N magnetic pole is the same and the width of each S magnetic pole is the same; when the magnetic component 10 is When the plurality of N magnetic poles are spaced apart on the detecting surface, the width of each of the N magnetic poles is the same; or when the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10, the widths of the respective S magnetic poles are the same.
  • any two adjacent Hall detection components 20 of the x Hall detection components 20 are based on the N magnetic pole and the first blank.
  • the sum of the widths of the regions is staggered by a first predetermined distance; any two adjacent Hall detecting components 20 of the x Hall detecting components 20 are staggered by a second predetermined distance according to the sum of the widths of the S magnetic poles and the second blank regions; Any two adjacent Hall detecting components 20 in the Hall detecting component 20 are staggered by a third predetermined distance according to the width of the N magnetic pole or the S magnetic pole.
  • each Hall detecting component 20 when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the magnetic assembly 10, each Hall detecting component 20 generates an active level when facing the N magnetic poles and generates when facing the S magnetic poles. Invalid level; when a plurality of N magnetic poles are spaced apart on the magnetic component 10, each Hall detecting component 20 generates an active level when facing the N magnetic poles, and generates an inactive level when facing the first blank area; When a plurality of S magnetic poles are spaced apart on the magnetic assembly 10, each Hall detecting component 20 generates an active level when facing the S magnetic pole and generates an inactive level when facing the second blank region.
  • the control unit 30 includes a timer 301 and a control chip 302, and the control chip 302 is coupled to the timer 301, wherein, as shown in Figure 4, when the Hall detection component 20 For one time, the timer 301 is used to start timing when the active level and the inactive level are switched to time the duration of the active level and the duration of the inactive level; the control chip 302 is used at the active level. When the duration of the invalid level is greater than the preset time threshold, it is judged that the moving parts are stuck.
  • the x-channel sensing signals respectively output by the x Hall detecting components 20 construct a combination of y-level levels, y>x, wherein the timer 301 is used. Timing is started when any combination of level states of the y level state combinations occurs, to time the duration of each level state combination in the y level level combinations; the control chip 302 is used in either When the duration of the level state combination is greater than the preset time threshold, it is judged that the moving component is stuck.
  • the detection control device for the moving parts in the air conditioner of the embodiment of the present invention will be described in detail below by means of three embodiments.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the driving member may be a driving motor 100
  • the moving member may be a door panel 300 of the air conditioner
  • the door panel 300 is slidable.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control unit 30 of the air conditioner can drive the door panel 300 to be opened by the driving motor 100.
  • the control unit 30 of the air conditioner can be The door panel 300 is driven to be closed by the drive motor 100, thereby improving the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the driving motor 100 can be a stepping motor, the stepping motor adopts an open loop control, and the control unit 30 can detect whether the stepping motor is blocked by the structure of the magnetic component and the Hall detecting component, that is, It is said that the detection of the door panel 300 is stuck, thereby preventing the stepping motor from being continuously in an interference state, thereby preventing the stepping motor itself and the operation of the product from being adversely affected.
  • the detection control device for the moving parts in the air conditioner of the embodiment of the present invention includes: a magnetic assembly 10, a Hall detecting assembly 20, and a control unit 30.
  • the magnetic assembly 10 is fixed to a moving member of the air conditioner such as the door panel 300. More specifically, the magnetic assembly 10 can be fixed to a side of the moving member facing the inside of the air conditioner, and a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic assembly 10. Or S magnetic pole.
  • a first blank area is distributed between two adjacent N magnetic poles; and a plurality of intervals are distributed on the detecting surface of the magnetic component
  • a second blank area is distributed between the adjacent two S magnetic poles.
  • the magnetic component 10 when the magnetic component 10 is filled with N magnetic poles, the N magnetic poles are spaced apart from the first blank region on the magnetic component 10, that is, the arrangement rule on the magnetic component 10 is N magnetic pole - first blank region - N magnetic pole a first blank area; when the magnetic component 10 is spaced apart from the S magnetic pole, the S magnetic pole and the second blank area are spaced apart from each other on the magnetic component 10, that is, the arrangement of the magnetic component 10 is S magnetic pole - the second blank area - S Magnetic pole - a second blank area, wherein the blank area comprises a first blank area or a second blank area without any magnetic, ie non-magnetic area.
  • the magnetic component 10 can be a unipolar magnetic component.
  • the Hall detecting component 20 is matched with the magnetic properties of the magnetic poles on the detecting surface of the magnetic component 10, the Hall detecting component 20 is fixed on the air conditioner body, and the Hall detecting component 20 is disposed close to the detecting surface of the magnetic component 10, wherein the magnetic The assembly 10 moves relative to the Hall detection assembly 20 as the moving member moves such that the Hall detection assembly senses a magnetic pole change of the magnetic assembly to generate an inductive signal. It should be noted that the Hall detecting component 20 can be disposed relative to the detecting surface of the magnetic component 10, and the Hall detecting component 20 can be close to the magnetic component 10 but not in contact, and disposed within the magnetic field sensing range of the magnetic component 10.
  • the N magnetic pole and the first blank area may be spaced apart on the detecting surface of the magnetic component 10.
  • the magnetic component 10 moves synchronously with the moving component, and the N magnetic pole of the detecting surface of the magnetic component 10 is The first blank area can alternately pass through the Hall detection component 20, and the Hall detection component 20 will output a corresponding sensing signal based on the sensed magnetic pole change.
  • the magnetic component 10 may be spaced apart from the S magnetic pole and the second blank area.
  • the magnetic component 10 moves synchronously with the moving component, and the S magnetic pole and the second blank area on the magnetic component 10 may alternately pass through.
  • the detection component 20, the Hall detection component 20 will output a corresponding sensing signal based on the sensed magnetic pole changes.
  • the control unit 30 is connected to the Hall detecting unit 20, and the control unit 30 determines whether the moving member is stuck based on the sensing signal.
  • the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic component 10.
  • the magnetic component 10 moves with the moving component, and the Hall detecting component 20 is fixed, and the magnetic component is fixed.
  • the N magnetic pole and the first blank area on the detecting surface of 10 sequentially pass through the Hall detecting component 20, and the Hall detecting component 20 outputs an inductive signal such as a high and low level pulse signal by inducing the N magnetic pole of the magnetic component 10, when the driving component stops moving.
  • the control unit 30 determines the state of the driving component based on the sensing signal, for example, whether the driving component is blocked or not, and thus determines the driving component. Whether the driven moving parts are stuck.
  • the case where the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10 is similar to the case where the plurality of N magnetic poles are spaced apart as described above, except that the S magnetic pole and the second blank area on the detecting surface of the magnetic component 10 are different.
  • the Hall detection component 20 is sequentially passed through, and will not be described again here.
  • the magnetic component 10 may be a strip-shaped magnetic tape, but is not limited thereto.
  • the magnetic component 10 may also be a sheet-shaped magnetic component or a strip-shaped magnetic component or the like.
  • the magnetic assembly 10 can be secured to a moving component, such as the door panel 300, in a removable manner, such as by gluing, snapping a threaded connection, or the like. That is to say, the strip tape can be fixed to the moving part so that the strip tape can be moved synchronously as the moving part moves.
  • the magnetic component 10 is fixed to the moving component, and the Hall detecting component 20 can be fixed on the air conditioner body, thereby facilitating the overall installation and avoiding the problem of the wiring.
  • a plurality of N magnetic poles or a plurality of S magnetic poles of the magnetic assembly 10 are disposed along the moving direction of the moving member. That is, the magnetic assembly 10 can be fixed to the moving member in a direction parallel to the moving direction of the moving member. In other words, along the moving direction of the moving member such as the opening/closing direction of the door panel 300, the magnetic assembly 10 is sequentially spaced with a plurality of N magnetic poles or S magnetic poles.
  • the N magnetic poles (or S poles) and the blank regions on the magnetic assembly 10 alternately pass through the Hall detecting assembly 20, causing the Hall detecting assembly 20 to generate a corresponding sensing signal.
  • the magnetic assembly 10 can be mounted at any position of the moving member. Taking the door panel 300 as an example, the magnetic component 10 is preferably installed in the middle of the door panel 300. When the door panel 300 is two, that is, the double-switching door mechanism is adopted, the one-side installation or the double-side installation can be selected, and one of the door panels can be installed.
  • the magnetic assembly 10 can also be mounted with magnetic components 10 on both door panels.
  • a plurality of N magnetic poles or S magnetic poles are disposed in an equal width manner. That is, when the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic component 10, the width of each of the N magnetic poles is the same; or when the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10, each S magnetic pole The width is the same.
  • the width of the magnetic region may be approximately equal to the width of the first blank region, or the width of the magnetic region, that is, the width of the S magnetic pole region and the width of the second blank region may also be Approximately equal.
  • the width of the magnetic region and the blank region is as narrow as possible under the premise of ensuring the magnetic field strength, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the Hall sensing parameter of the Hall detecting component 20.
  • the magnetic region width of the N magnetic pole or the S magnetic pole is obtained according to the following formula:
  • d1 is the magnetic region width of the N magnetic pole or the S magnetic pole
  • A is the maximum magnetic density of the N magnetic pole or the S magnetic pole
  • X is the operating point of the Hall detecting component
  • Y is the release point of the Hall detecting component
  • D is the magnetic component
  • P is the number of N magnetic poles or S magnetic poles along the length of the moving direction of the moving member.
  • the magnetic region width of the N magnetic pole can be set according to the number of N magnetic poles, or the magnetic region width of the S magnetic pole can be set according to the number of S magnetic poles.
  • the width of the first blank area or the second blank area can be obtained according to the following formula:
  • d2 is the width of the first blank area or the second blank area
  • d1 is the magnetic area width of the N magnetic pole or the S magnetic pole
  • D is the width of the magnetic component 10 along the moving direction of the moving part
  • p is the N magnetic pole or the S magnetic pole The number.
  • the width of the first blank region may be set according to the number of N magnetic poles and the magnetic region width of the N magnetic pole, or the width of the second blank region may be set according to the number of S magnetic poles and the magnetic region width of the S magnetic pole.
  • the width of the N magnetic pole and the width of the first blank area may be equal, and the width of the S magnetic pole and the width of the second blank area may also be equal, thereby simplifying the design and manufacturing difficulty of the magnetic component.
  • the Hall detecting component 20 is a unipolar Hall element, and the unipolar Hall element 20 is matched with the magnetic polarity of the magnetic pole on the detecting surface of the magnetic component 10, wherein the detecting surface of the magnetic component 10
  • the unipolar Hall element is an N-pole Hall element; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10, the unipolar Hall element is S-pole type Element. That is to say, the selection of the unipolar Hall element is matched with the unipolar magnetic component.
  • the unipolar Hall also uses the N-pole type if the unipolar type.
  • the magnetic properties of the detection surface of the magnetic component are S-pole type, and the unipolar Hall also uses the S-pole type.
  • the Hall detecting component 20 such as the Hall sensor, may be in the form of a patch and a plug-in type.
  • the Hall detecting component 20 is fixed on the PCB board and fixed on the air conditioning body through the PCB board. Located on one side of the magnetic component 10, close to the magnetic component but not in contact, within the magnetic field sensible range.
  • a blank area is distributed between two adjacent N magnetic poles or S magnetic poles, and the Hall detecting component 20 can generate an induced signal according to whether the N magnetic pole or the S magnetic pole is sensed, that is, the Hall detecting component.
  • 10 generates an active level when facing the N magnetic pole or the S magnetic pole, and generates an inactive level when facing the first blank area or the second blank area, that is, the non-magnetic area, for example, the active level can be a high level and is ineffective.
  • the level can be low, or the active level can be low and the inactive level can be high, depending on the properties of the Hall detection component 10.
  • the Hall detecting component 20 when the N magnetic pole and the first blank region alternately pass through the Hall detecting component 20 or the S magnetic pole and the second blank region alternately pass through the Hall detecting component 20, the Hall detecting component 20 outputs a stable high and low level pulse sequence, and The high and low pulse sequences have a fixed period and a duty cycle of 50%.
  • the N magnetic pole or the S magnetic pole on the magnetic component 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, the detection time is shortened, and the detection sensitivity is improved. . Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • Hall detecting component 20 generates an active level when facing the N magnetic pole or S magnetic pole and generates an inactive level when facing the first blank area or the second blank area.
  • the control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to start timing when the active level and the invalid level are switched, to time the duration of the active level and the duration of the invalid level;
  • the control chip 302 is connected to the timer 301, and the control chip is controlled.
  • 302 is configured to determine that the moving component is stuck when the duration of the active level or the inactive level is greater than the preset time threshold.
  • the case of the N magnetic pole is described as an example, and the case of the S magnetic pole is similar to that of the N magnetic pole, and will not be described in detail.
  • the driving component drives the moving component to move
  • the magnetic component 10 moves synchronously with the moving component, and the Hall detecting component 20 is fixed, and the N magnetic pole and the first blank area on the magnetic component 10 alternately pass through the Hall detecting component 10, if When the detection component 10 is facing the N magnetic pole of the magnetic component 20, the Hall detection component 20 outputs an active level, at which time the timer 301 records the duration of the active level, denoted as T1; if the Hall detection component 20 is facing the magnetic In the first blank area of the component 10, the Hall detecting component 20 outputs an inactive level, at which time the timer 301 records the duration of the inactive level, denoted as T2.
  • the output of the Hall detecting component 20 jumps from the active level to the inactive level, and the timer 301 restarts counting, that is, the timer 301. Start recording the duration of the invalid level.
  • the output of the Hall detecting component 20 jumps from the inactive level to the active level, and the timer 301 restarts timing, that is, Timer 301 begins recording the duration of the active level.
  • the Hall detection component 10 can output a series of high and low level pulse sequences, and the duty cycle of the pulse sequence is 50%.
  • the control chip 50 can determine whether the drive motor is blocked or not by detecting the duration of the high level and the duration of the low level, that is, whether the duration of the low level exceeds the preset time threshold, thereby determining whether the door panel is stuck.
  • v is the moving speed of the magnetic component 10, that is, the moving speed of the moving member, and s is half of the sum of the widths of the N magnetic pole and the first blank area on the magnetic component 10, and is effective in the case where no jam occurs.
  • the area of the magnetic component 10 that the Hall detecting component 20 is facing does not change any more, and the output level of the Hall detecting component 20 continues to be at a high level or continues to a low level.
  • the moving component is stuck at time t1 and recovers at time t2
  • tn is the duration of the high level or low level when no jam occurs
  • td is the preset time threshold when the moving part occurs.
  • the current level state remains unchanged. If the duration of the current level, that is, the timer time of the timer 301 is greater than the preset time threshold td, it is determined that the moving component is stuck, in other words, if the level is high or low. If the level exceeds the preset time threshold td and no jump has occurred, it is determined that the moving part is stuck.
  • the process of detecting whether a moving component is stuck in the embodiment of the present invention is as follows:
  • the control chip 302 When the moving component moves, the control chip 302 turns on the detecting function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signal output by the Hall detecting component 20, and the control timer 301 clears when the sensing signal occurs high and low level transitions. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the moving component is stuck, and the control chip 302 outputs the stuck protection.
  • a signal to perform a moving part protection action such as controlling the moving part to stop moving or reversely moving; if the timing value of the timer 302 is less than or equal to the preset time threshold td, determining that the moving part is not stuck, the control chip 302 can control the movement The part continues to rotate in the forward direction.
  • the power terminal of the Hall detecting component 20 is connected to the preset power source VCC, for example, +5V through the first resistor R1, and the ground terminal of the Hall detecting component 20 is grounded.
  • the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the Hall detecting component 20, wherein the detecting end of the Hall detecting component 20 senses the magnetic pole of the magnetic component 10, and the output end of the Hall detecting component 20 outputs an sensing signal.
  • the motor stall detection device of the air conditioner further includes an output circuit 40 connected to the output end of the Hall detecting component 20, and the output circuit 40 includes: a second resistor R2 and a third resistor R3, the second resistor R2 and the third resistor R3 are connected in series, one end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC, and the other end of the second resistor R2 and the third resistor R3 connected in series is controlled
  • the unit 30, that is, the control chip 302 is connected, and has a node between the second resistor R2 and the third resistor R3 connected in series, and the node is connected to the output end of the Hall detecting component 20.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • the Hall detecting component 20 can supply 5V, so that the Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and the high-low pulse sequence is provided to the control unit 30 through the corresponding output circuit, and is controlled.
  • the unit 30 can time the high and low level durations of the high and low level pulse sequences, and judge whether the moving parts are stuck by comparing the timing time with the preset time threshold.
  • the drive motor 100 can drive the door panel 300.
  • the detecting and controlling device for the moving part of the embodiment of the present invention can judge whether or not the door panel 300 is stuck, for example, whether an obstacle is encountered. Specifically, when the door panel 300 moves in the door opening direction or the door closing direction, the magnetic assembly 10 moves synchronously with the door panel 300, and the N magnetic pole (or S magnetic pole) and the blank area on the magnetic assembly 10 alternately pass through the Hall detecting assembly 20, Hall.
  • the detection component 20 outputs a stable sequence of high and low pulse pulses with a duty cycle of 50%.
  • the control unit 30 can determine whether the door panel 300 is stuck, for example, whether an obstacle is encountered, by detecting whether the duration of the high and low levels exceeds the preset time threshold td.
  • the magnetic component moves relative to the Hall detecting component when the moving component moves, and the magnetic detecting component of the magnetic component is induced by the Hall detecting component to generate an inductive signal, thereby further
  • the control unit determines whether the moving component is stuck according to the received sensing signal, so that the state of the moving component such as the door panel can be detected in real time, and whether the moving component is stuck or not is quickly determined, so as to timely take corresponding measures to adjust the driving action of the driving component. Avoid damage to the drive components and improve the user experience.
  • the device has high detection sensitivity, small space occupation, low cost, convenient installation, long service life, stability and reliability.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the driving component may be a driving motor
  • the moving component may be a door panel 300 of the air conditioner
  • the door panel 300 is a slidable door panel.
  • the door panel 300 of the air conditioner can be driven by the drive motor 100.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control unit 30 of the air conditioner can drive the door panel 300 to be opened by the driving motor 100.
  • the control unit 30 of the air conditioner can be The door panel 300 is driven to be closed by the drive motor 100, thereby improving the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the driving motor can be a stepping motor
  • the stepping motor adopts an open loop control
  • the control unit 30 can detect whether the stepping motor is blocked by the structure of the magnetic component and the Hall detecting component, that is, It is detected whether the door panel 300 is stuck, thereby preventing the stepping motor from continuously being in an interference state, and preventing the stepping motor itself and the operation of the product from being adversely affected.
  • the detecting and controlling device for the moving part in the air conditioner of the embodiment of the present invention includes: a magnetic component 10, x Hall detecting components 20, and a control unit 30.
  • the magnetic component 10 is fixed on a moving component of the air conditioner such as the door panel 300. More specifically, the magnetic component 10 can be fixed on a side of the moving component facing the inside of the air conditioner, and a plurality of N are spaced apart on the detecting surface of the magnetic component 10. Magnetic pole or multiple S magnetic poles. According to a specific embodiment of the present invention, as shown in FIG. 2a, when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic component 10, a first blank area is distributed between two adjacent N magnetic poles; When a plurality of S magnetic poles are spaced apart on the detecting surface of 10, a second blank area is distributed between the adjacent two S magnetic poles.
  • the N magnetic poles are spaced apart from the first blank region on the magnetic component 10, that is, the arrangement rule on the magnetic component 10 is N magnetic pole - the first blank region -N magnetic pole - first blank area; when the magnetic component 10 is spaced apart from the S magnetic pole, the S magnetic pole and the second blank area are spaced apart from each other on the magnetic component 10, that is, the arrangement of the magnetic component 10 is S magnetic pole - the second blank Region-S magnetic pole - a second blank region, wherein the blank region includes the first blank region and the second blank region without any magnetic property, that is, a non-magnetic region.
  • the magnetic component 10 can be a unipolar magnetic component.
  • the x Hall detecting components 20 are matched with the magnetic properties of the magnetic poles on the magnetic component 10, the x Hall detecting components 20 are fixed on the air conditioner body, and the x Hall detecting components 20 are disposed close to the detecting surface of the magnetic component 10, x
  • the Hall detecting component 20 induces a magnetic pole change of the magnetic component 10 as the moving component moves to correspondingly generate an x-way sensing signal, x being an integer greater than one.
  • the detection ends of the x Hall detecting components 20 are disposed relative to the moving parts of the air conditioner, in other words, the x Hall detecting components 20 may be disposed corresponding to the detecting faces of the magnetic components 10, and the x Hall detecting components 20 It can be close to the magnetic component 10 but not in contact, and can be within the magnetic field sensing range of the magnetic component 10.
  • the magnetic component 10 may be spaced apart from the N magnetic pole and the first blank area.
  • the magnetic component 10 moves synchronously with the moving component, and the N magnetic pole on the magnetic component 10 and the first blank area may alternate.
  • each Hall detection component 20 will output a corresponding sensing signal based on the sensed magnetic pole changes.
  • the magnetic component 10 may be spaced apart from the S magnetic pole and the second blank area.
  • the magnetic component 10 moves synchronously with the moving component, and the S magnetic pole and the second blank area on the magnetic component 10 may alternately pass through each Each Hall detection component 20, each Hall detection component 20 will output a corresponding sensing signal based on the sensed magnetic pole changes.
  • the control unit 30 is connected to the x Hall detecting components 20, and the control unit 30 determines whether the moving components are stuck based on the x-channel sensing signals.
  • a plurality of N magnetic poles are distributed at intervals on the detecting surface of the magnetic component 10.
  • the magnetic component 10 moves with the moving component, and the x Hall detecting components 20 are fixed.
  • the N magnetic pole and the first blank area on the detecting surface of the magnetic component 10 sequentially pass through each of the Hall detecting components 20, and the x Hall detecting components 20 sense the magnetic pole changes of the magnetic component 10 to sequentially output x-channel sensing signals such as high and low levels.
  • the control unit 30 determines the state of the moving component based on the x-channel sensing signal, for example, whether the moving component is stuck.
  • the case where the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10 is similar to the case where the plurality of N magnetic poles are spaced apart as described above, except that the S magnetic pole and the second blank area on the detecting surface of the magnetic component 10 are different.
  • Each of the Hall detection components 20 is sequentially passed through, and will not be described in detail herein.
  • the connecting lines of the x Hall detecting assemblies 20 may be parallel to the direction of motion of the magnetic assembly 10.
  • the magnetic component 10 may be a strip-shaped magnetic tape, but is not limited thereto.
  • the magnetic component 10 may also be a sheet-shaped magnetic component or a strip-shaped magnetic component or the like.
  • the magnetic assembly 10 can be secured to a moving component, such as the door panel 300, in a removable manner, such as by gluing, snap-fitting. That is to say, the strip tape can be fixed to the moving part so that the strip tape can be moved synchronously as the moving part moves.
  • the magnetic component 10 is fixed to the door panel 300, and the x Hall detecting components 20 can be fixed on the air conditioner body, thereby facilitating the overall installation and avoiding the problem of the wiring.
  • a plurality of N magnetic poles or a plurality of S magnetic poles of the magnetic assembly 10 are disposed along the moving direction of the moving member. That is, the magnetic assembly 10 can be fixed to the moving member in a direction parallel to the moving direction of the moving member. In other words, along the moving direction of the moving member such as the opening/closing direction of the door panel 300, the magnetic assembly 10 is sequentially spaced with a plurality of N magnetic poles or S magnetic poles.
  • the N magnetic poles (or S magnetic poles) and the blank regions on the magnetic assembly 10 alternately pass through each of the Hall detecting assemblies 20, causing each Hall detecting component 20 to generate a corresponding sensing signal.
  • the magnetic assembly 10 can be mounted at any position of the moving member. Taking the door panel 300 as an example, the magnetic component 10 is preferably installed in the middle of the door panel 300. When the door panel 300 is two, that is, the double-switching door mechanism is adopted, the one-side installation or the double-side installation can be selected, and one of the door panels can be installed.
  • the magnetic assembly 10 can also be mounted with magnetic components 10 on both door panels.
  • a plurality of N magnetic poles or S magnetic poles are disposed in an equal width manner, that is, when a plurality of N are spaced apart on the detecting surface of the magnetic component 10.
  • the width of each of the N magnetic poles is the same; or when the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10, the widths of the respective S magnetic poles are the same.
  • the width of the magnetic region may be approximately equal to the width of the first blank region, or the width of the magnetic region, that is, the width of the S magnetic pole region and the width of the second blank region may also be Approximately equal.
  • the width of the magnetic region and the blank region is as narrow as possible under the premise of ensuring the magnetic field strength, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the Hall sensing parameter of the Hall detecting component 20.
  • the magnetic region width of the N magnetic pole or the S magnetic pole can be obtained according to the following formula:
  • d1 is the magnetic region width of the N magnetic pole or the S magnetic pole
  • A is the maximum magnetic density of the N magnetic pole or the S magnetic pole
  • X is the operating point of the Hall detecting component
  • Y is the release point of the Hall detecting component
  • D is the magnetic component 10 is the number of N magnetic poles or S magnetic poles along the width of the moving direction of the moving member.
  • the magnetic region width of the N magnetic pole can be set according to the number of N magnetic poles, or the magnetic region width of the S magnetic pole can be set according to the number of S magnetic poles.
  • the width of the first blank area or the second blank area can be obtained according to the following formula:
  • d2 is the width of the first blank area or the second blank area
  • d1 is the magnetic area width of the N magnetic pole or the S magnetic pole
  • D is the width of the magnetic component 10 along the moving direction of the moving part
  • p is the N magnetic pole or the S magnetic pole The number.
  • the width of the first blank region may be set according to the number of N magnetic poles and the magnetic region width of the N magnetic pole, or the width of the second blank region may be set according to the number of S magnetic poles and the magnetic region width of the S magnetic pole.
  • the width of the N magnetic pole and the width of the first blank area may be equal, and the width of the S magnetic pole and the width of the second blank area may also be equal, thereby simplifying the design and manufacturing difficulty of the magnetic component.
  • the x Hall detecting components 20 are all unipolar Hall elements, and the unipolar Hall element 20 matches the magnetic properties of the magnetic poles on the detecting surface of the magnetic component 10, wherein the magnetic component 10
  • the unipolar Hall element is an N-type Hall element; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component 10, the unipolar Hall element is S Polar Hall element. That is to say, the selection of the unipolar Hall element is matched with the unipolar magnetic component.
  • the unipolar Hall also uses the N-pole type if the unipolar type.
  • the magnetic properties of the detection surface of the magnetic component are S-pole type, and the unipolar Hall also uses the S-pole type.
  • x Hall detecting components 20 such as Hall elements may be in a package type and a plug-in type, and x Hall detecting components 20 are fixed on a PCB (Printed Circuit Board; printed circuit)
  • the board is fixed on the air conditioner body through the PCB board, and is located on one side of the magnetic component 10, close to the magnetic component 10 but not in contact, within the magnetic field sensing range.
  • a blank area is distributed between two adjacent N magnetic poles or S magnetic poles, and each Hall detecting component 20 can generate a corresponding sensing signal according to the sensed magnetic pole type, that is, each Hall
  • the detecting component 20 generates an active level when facing the N magnetic pole or the S magnetic pole, and generates an inactive level when facing the first blank area or the second blank area, that is, the non-magnetic area, for example, the active level may be a high level and The inactive level can be a low level, or the active level can be a low level and the inactive level can be a high level, and the level state can be specifically determined according to the type of Hall detecting component 20.
  • each Hall detecting component 20 will output a stable level.
  • the level pulse sequence whereby the x-channel high-low pulse sequence output by the x Hall detecting components 20 has a fixed and identical period and a duty ratio of 50%.
  • the N magnetic pole and the S magnetic pole on the magnetic component 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, the detection time is shortened, and the detection sensitivity is improved. . Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • any two adjacent Hall detecting components 20 of the x Hall detecting components 20 are staggered by a first preset distance according to the sum of the widths of the N magnetic poles and the first blank area, or Any two adjacent Hall detecting assemblies 20 of the x Hall detecting assemblies 20 are staggered by a second predetermined distance according to the sum of the widths of the S magnetic poles and the second blank regions.
  • the x Hall detecting components 20 may be staggered, and the x Hall detecting components 20 may match the N magnetic poles of the magnetic component 10 and the first blank area width by a first predetermined distance to make x Halls.
  • the x-channel sensing signals respectively output by the detecting component 20 are sequentially shifted by a preset phase angle, or the x Hall detecting components 20 can match the S magnetic poles of the magnetic component 10 and the second blanking area width by a second predetermined distance, so that x
  • the x-channel sensing signals respectively output by the Hall detecting components 20 are sequentially shifted by a preset phase angle, thereby multiplying the detection sensitivity. As shown in FIG.
  • the left Hall detecting component 20A and the middle Hall detecting component 20B are offset by a preset distance, and the middle Hall detecting component 20B and the right side are The Hall detecting component 20C is also offset by a predetermined distance, and the magnetic component 10 is moved to the opening direction shown by the arrow in FIG. 3b as an example.
  • the sensing signal outputted by the middle Hall detecting component 20B lags the Hall detection on the left side.
  • the component 20A presets the phase angle
  • the sensing signal output by the right Hall detecting component 20C lags the intermediate Hall detecting component 20B by a preset phase angle.
  • the first preset distance or the second preset distance may be determined according to the following formula:
  • d is a first preset distance or a second preset distance
  • d1 Is the width of the N magnetic pole
  • d3 is the width of the S magnetic pole
  • D4 is the width of the second blank area
  • x is the number of Hall detecting components 20
  • n is an arbitrary integer.
  • n is an arbitrary integer, and the specific numerical value is determined as long as the Hall detecting component 20 does not interfere with each other in the arrangement space.
  • n takes 1
  • d the first preset distance or the second preset distance
  • the middle Hall detecting component 20B is staggered with respect to the right Hall detecting component 20 (s/3+ 2s), that is, at the 1/3 position of the i+2th magnetic pole
  • the left Hall detecting component 20A is staggered (s/3+2s) with respect to the middle Hall detecting component 20B, that is, at the i+4th
  • the sensing signal output from the intermediate Hall detecting unit 20B is output with respect to the left Hall detecting unit 20A.
  • the induced signal is delayed by 60°
  • the sensing signal output from the right Hall detecting component 20C is delayed by 60° with respect to the sensing signal output from the middle Hall detecting component 20B.
  • each Hall detecting component generates an active level when facing the N magnetic pole or the S magnetic pole, and generates an inactive level when facing the first blank area or the second blank area, the x-channel sensing
  • the signal constructs a combination of y level levels, y>x.
  • control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to start timing when any one of the y kinds of level state combinations occurs, to time the duration of each level state combination in the y state level combination;
  • the chip 302 is connected to the timer 301.
  • the control chip 302 is also connected to the x Hall detecting components 20.
  • the control chip 302 is configured to determine that the moving parts are stuck when the duration of any combination of level states is greater than a preset time threshold. .
  • the x Hall detecting components 20 match the half of the sum of the N magnetic poles of the magnetic component 10 and the width of the first blank area by a predetermined distance or the half of the sum of the widths of the matching S magnetic pole and the second blank area.
  • the two preset distances that is, the x-channel sensing signals respectively output by the x Hall detecting components 20 are sequentially shifted by the preset phase angle, so that different level state combinations can be formed at the same time.
  • the control chip 302 can determine whether the driving motor is blocked or not by detecting whether the duration of each level state combination exceeds a preset time threshold, thereby determining whether the moving component is stuck. Therefore, by using the multi-Hall detection component distribution misalignment, the detection time can be further shortened, and the detection time can be doubled.
  • the case of the N magnetic pole is described as an example, and the case of the S magnetic pole is similar to that of the N magnetic pole, and will not be described in detail.
  • the magnetic component 10 moves synchronously with the moving component, and the x Hall detecting components 20 are fixed.
  • the N magnetic pole and the first blank area on the magnetic component 10 alternately pass through the x Hall detecting components 20, x.
  • the Hall detecting components 20 respectively generate high and low pulse sequences having a duty ratio of 50%.
  • one cycle of each waveform can be divided into 2x level state combinations, and the duration tn of each level state combination is the duration of the high state or low state of any signal.
  • tn s/v/x
  • v is the moving speed of the magnetic component 10
  • s is half the sum of the widths of the N magnetic pole and the first blank area on the magnetic component 10
  • x is the number of Hall detecting components 20.
  • the three Hall detecting components 20 can output three waveforms of each phase angle of 60° later, that is, the output waveform of the Hall detecting component 20B is relative to The output waveform of the Hall detecting component 20A is delayed by 60°, and the output sensing signal of the Hall detecting component 20C is delayed by 60° with respect to the output waveform of the Hall detecting component 20B.
  • each Hall detecting component 20 When the moving parts are stuck, the corresponding magnetic poles of each Hall detecting component 20 are no longer changed, so the output level of each Hall detecting component 20 continues to be at a high level or continues to a low level.
  • the moving component is stuck at time t1 and recovers at time t2
  • tn is the duration of each level state combination when no jam occurs
  • td is a preset time threshold
  • the three-way waveform maintains the current level state, and when the duration is longer than td, it is judged that the moving component is stuck.
  • the detection process of detecting whether the moving component is stuck in the embodiment of the present invention is as follows:
  • the control chip 302 When the moving component moves, the control chip 302 turns on the detecting function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signals output by the x Hall detecting components 20, and control when any one of the sensing signals generates a high-low level transition.
  • the control chip 302 can determine whether the timer value of the timer 301 is greater than the preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the moving component is stuck, and the control chip 302 outputs.
  • the protection signal is stuck to perform a protection action, for example, controlling the moving component to stop moving or reversely moving; if the timing value of the timer 301 is less than or equal to the preset time threshold td, it is determined that the moving component is not stuck, and the control chip 302 can control The moving parts continue to rotate in the forward direction.
  • control unit 30 and the x Hall detecting components 20 may also be connected to the exclusive OR gate circuit 50, wherein the exclusive OR gate circuit 50 is used for the x-way
  • the sensing signal is XORed to generate a detection signal
  • control unit 30 is configured to determine whether the moving component is stuck according to the detection signal.
  • the exclusive OR operation is a logical operation, and the operation rule is that the two signals are the same as 0, and the difference is 1. For example, the result of 1 or 0 is 1, 0 or 0, the result is 0, and the result of 1 or 1 is also 0.
  • the detection signal may be a high and low level pulse sequence.
  • the exclusive OR gate circuit 50 may convert the x high and low level pulse sequence into one high and low level pulse sequence.
  • the period of the detection signal outputted by the exclusive-OR gate circuit 50 is 1/x of the induced signal, that is, the duration of the high-level state or the low-level state of the detection signal output from the exclusive-OR gate circuit 50 and each level The duration tn of the state combinations is equal.
  • the Hall detecting component 20 is three
  • the exclusive OR gate circuit 50 is connected to the three Hall detecting components 20, respectively, to receive three waveforms of respective delayed 60° phase angles.
  • the exclusive OR gate circuit 50 may include a first exclusive OR gate and a second exclusive OR gate, the first input terminal and the second input terminal of the first exclusive OR gate being respectively associated with the Hall detecting component 20A and the Hall detecting component 20B, respectively. Connected, the first input of the second XOR gate is connected to the Hall detecting component 20C, the second input of the second XOR gate is connected to the output of the first XOR gate, and the second input of the second XOR gate The terminal is used to output a detection signal generated after the exclusive OR operation.
  • the sensing signal outputted by the Hall detecting component 20A is XORed with the detection signal output by the Hall detecting component 20B, and then the result is XORed with the sensing signal output by the Hall detecting component 20C. Then, the final calculation result, that is, the detection signal, can be obtained.
  • one cycle of each waveform is divided into six levels of state combinations, that is, six levels of state combinations are 100, 110, 111, 011, 001, 000, and the exclusive OR circuit 50
  • the level state is combined to 100
  • the high level is output
  • the exclusive OR gate circuit 50 outputs a low level when the level state is combined to 110
  • the exclusive OR gate circuit 50 outputs a high level when the level state is combined to 111.
  • the OR circuit 50 outputs a low level when the level state is combined to 011
  • the exclusive OR gate circuit 50 outputs a high level when the level state is combined to 001
  • the exclusive OR gate circuit 50 outputs a low level when the level state is combined to 000.
  • Three Hall detecting components 20 sequentially output 100, 110, 111, 011, 001, 000 six level states combined to the exclusive OR gate circuit 50, and the exclusive OR gate circuit 50 outputs one high and low level pulses. Sequence, the high or low duration of the high and low pulse sequence is 1/3 of each waveform of the input.
  • the moving part is stuck at time t1 and recovers at time t2
  • tn is the duration of the output level of the exclusive OR circuit 50 when no stuck occurs
  • td is a preset time threshold when it occurs.
  • the preset time threshold td k*tn, and the value of k ranges from 1-4, preferably 1.5.
  • the detection process of detecting whether the moving component is stuck in the embodiment of the present invention is as follows:
  • the control chip 302 When the moving component moves, the control chip 302 turns on the detecting function, and controls the timer 301 to start timing.
  • the XOR gate circuit 50 performs an exclusive OR operation on the x-channel sensing signals output by the x Hall detecting components 20 to generate a detecting signal.
  • the control chip 302 can collect the detection signal, and when the detection signal occurs high and low level transitions, the control timer 301 is cleared, and the control chip 302 can determine whether the timer value of the timer 301 is greater than a preset time threshold td, if the timer 301 If the timing value is greater than the preset time threshold td, it is determined that the moving component is stuck, and the control chip 302 outputs a stuck protection signal to perform a protection action, such as controlling the moving component to stop moving or reversely moving; if the timer 301 has a timing value less than Equal to the preset time threshold td, it is judged that the moving component is not stuck, and the control chip 302 can control the moving component to continue to rotate in the forward direction.
  • the power terminals of the x Hall detecting components 20 are connected to the preset power source VCC (for example, +5V) through the first resistor R1, and x Hall detections are performed.
  • VCC for example, +5V
  • the ground terminal of the component 20 is grounded, and the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the x Hall detecting components 20, wherein the detecting end of each Hall detecting component 20 induces a magnetic pole change of the magnetic component 10, and each The output of the Hall detecting component 20 outputs a corresponding sensing signal.
  • the detection control device of the moving part in the air conditioner further includes x output circuits 40, and the x output circuits 40 are respectively connected to the output ends of the x Hall detecting components 20, and each output circuit is connected.
  • 40 includes: a second resistor R2 and a third resistor R3, wherein the second resistor R2 and the third resistor R3 are connected in series, and one end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC, and the second resistor is connected in series
  • the other end of the R2 and the third resistor R3 is connected to the control unit 30, that is, the control chip 302.
  • the second resistor R2 and the third resistor R3 connected in series have a node, and the node is connected to the output of the corresponding Hall detecting component 20.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • each Hall detecting component 20 can supply 5V, so that each Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and each high-low pulse sequence is provided through a corresponding output circuit.
  • the control unit 30 can time the duration of the level state combination of the x-way high-low pulse sequence, and judge whether the moving component is stuck by comparing the timing time with the preset time threshold.
  • the drive motor 100 can drive the door panel 300.
  • the detection control device for the moving part in the air conditioner of the embodiment of the present invention can discard whether the door panel 300 is stuck, for example, whether an obstacle is encountered.
  • the magnetic assembly 10 moves synchronously with the door panel 300, the N magnetic poles and the first blank area on the magnetic assembly 10 alternately pass through the x Hall detecting assemblies 20 or the S magnetic poles and the second blank area alternately pass x Hall detections.
  • the component 20, x Hall detection components 20 respectively output a stable high and low level pulse sequence with a duty cycle of 50%.
  • the control unit 30 determines whether the door panel 300 is stuck, for example, encounters an obstacle by detecting whether the duration of each level state combination exceeds a preset time threshold.
  • the magnetic component and the multi-Hall detection component can shorten the detection time, improve the detection sensitivity, and prevent damage to the user, such as pinching the finger, thereby improving the user experience.
  • the detecting and controlling device for the moving part in the air conditioner detects the magnetic pole change of the magnetic component through the x Hall detecting components when the moving component moves to generate the x-channel sensing signal, and the control unit senses according to the x-channel.
  • the signal judges whether the moving component is stuck, so that it can effectively judge whether the moving component is stuck, so as to timely take corresponding measures to adjust the movement of the moving component, avoid damage to the driving component of the driving moving component, and pass the magnetic component with the multi-hall
  • the detection component can shorten the detection time and improve the detection sensitivity.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the door panel detecting device of the air conditioner is the detecting and controlling device for the moving component in the air conditioner
  • the first sensing signal is the effective level in the previous embodiment
  • the second sensing signal is
  • the inactive level is the third preset distance
  • the motor is the driving motor
  • the magnetizing surface of the magnetic component is the detecting surface.
  • the door panel 300 of the air conditioner can be driven by the motor 100.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control unit 30 of the air conditioner can drive the door panel 300 to be opened by the motor 100, and the control unit 30 of the air conditioner can pass when the air conditioner is turned off.
  • the motor 100 drives the door panel 300 to close, thereby enhancing the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the motor 100 can be a stepping motor, and the stepping motor can adopt an open loop control.
  • the control unit 30 can detect whether the door panel is blocked by the structure of the magnetic component and the plurality of Hall detecting components, and prevent the door panel from being blocked.
  • the stepper motor is continuously in an interference state when the block occurs, preventing adverse effects on the motor itself and the operation of the product.
  • the door panel detecting device of the air conditioner of the embodiment of the present invention includes a magnetic component 10, x Hall detecting components 20, and a control unit 30.
  • the magnetic component 10 is fixed on the door panel 300. More specifically, the magnetic component 10 can be fixed on the side of the door panel 300 facing the interior of the air conditioner.
  • the magnetic component 10 has P N magnetic poles and Q S magnetic poles, that is, the magnetic component 10.
  • a plurality of N magnetic poles and/or a plurality of S magnetic poles are arranged at intervals on the detecting surface, wherein P and Q are integers greater than 1; x Hall detecting components 20 are fixed on the air conditioner body, and x Hall detecting components 20 is close to the magnetic component 10 fixedly arranged, and the x Hall detecting components 20 sense the magnetic pole change of the magnetic component 10 when the door panel moves to correspondingly generate an x-way sensing signal, x is an integer greater than 1; the control unit 30 and x Hall detections The components 20 are connected, and the control unit 30 determines the state of the door panel based on the x sensing signals.
  • the x Hall detecting components 20 can be disposed corresponding to the magnetizing surface of the magnetic component 10, and the x Hall detecting components 20 can be close to the magnetic component 10 but not in contact, and within the magnetic field sensing range of the magnetic component 10 can.
  • the magnetic assembly 10 moves synchronously with the door panel 300, and the x Hall detecting assemblies 20 are fixed, and the N magnetic poles and the S magnetic poles on the magnetizing surface of the magnetic component 10 pass through each The Hall detecting component 20, the x Hall detecting components 20 sense the magnetic pole change of the magnetic ring 10 to output a x-channel sensing signal such as a high-low pulse sequence, and the x-channel sensing signal output when the door panel 300 moves according to the preset speed
  • a x-channel sensing signal such as a high-low pulse sequence
  • the x-channel sensing signal output when the door panel 300 moves according to the preset speed will Corresponding to the corresponding law, when the door panel 300 is blocked, for example, when a foreign object is stuck on the door panel 300 or a finger is inadvertently extended therein, the magnetic pole induced by the x Hall detecting components 20 will remain unchanged, and the x-channel sensing signal will be The corresponding rule cannot be met, whereby the control unit 30 determine
  • the magnetic assembly 10 can be a strip of tape.
  • the magnetic component 10 can be attached to the door panel 300 in a manner such as a sticker. That is, the strip tape can be fixed to the door panel 300 so that the strip tape can be moved synchronously as the door panel 300 moves.
  • the magnetic component 10 is fixed to the door panel 300, and the x Hall detecting components 20 can be fixed on the air conditioner body, thereby facilitating the overall installation and avoiding the problem of the wiring.
  • the P N magnetic poles and the Q S magnetic poles of the magnetic assembly 10 are disposed along the moving direction of the door panel 300. That is, the magnetic assembly 10 can be fixed to the door panel 300 in a direction parallel to the direction of movement of the door panel 300. In other words, along the moving direction of the door panel 300, for example, the opening/closing direction, the magnetic assembly 10 is covered with P N magnetic poles and Q S magnetic poles.
  • the magnetic poles on the magnetic assembly 10 can pass through each Hall detection assembly 20 one by one, causing each Hall detection assembly 20 to generate a corresponding sensing signal.
  • the magnetic assembly 10 can be mounted anywhere in the door panel 300, preferably in the middle of the door panel 300.
  • the door panel 300 is two, that is, the double-switch door mechanism is adopted, the single-sided installation or the double-side installation can be selected, and the magnetic component 10 can be mounted on one of the door panels, or the magnetic component 10 can be mounted on both the door panels.
  • the strip-shaped magnetic component 10 can be spaced apart from the N magnetic pole and the S magnetic pole.
  • the N magnetic pole and the S magnetic pole can alternately pass through each Hall detecting component 20, and each Hall detecting component 20
  • the corresponding sensing signal will be output according to the sensed magnetic pole change.
  • the P N magnetic poles and the Q S magnetic poles may be disposed in an equal width manner, that is, each N magnetic pole and each S magnetic pole on the magnetic assembly 10 are equal in width.
  • the width of the N magnetic pole and the S magnetic pole is as narrow as possible under the premise of ensuring the magnetic field strength, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the sensing parameter of the Hall detecting component 20.
  • the Hall detecting component 20 can generate a corresponding sensing signal according to the sensed magnetic pole type, that is, the Hall detecting component 20 generates the first sensing signal when facing the N magnetic pole, and is facing the S magnetic pole.
  • Generating a second sensing signal for example, the first sensing signal may be a high level and the second sensing signal may be a low level, the first sensing signal may be a low level and the second sensing signal may be a high level, first The level states of the sense signal and the second sense signal may be determined according to the type of Hall detection component 20.
  • the Hall detecting component 20 when the N magnetic pole and the S magnetic pole alternately pass through the Hall detecting component 20, the Hall detecting component 20 outputs a stable high and low level pulse sequence, and the period of the x high and low level pulse sequence is fixed and the same, and the duty ratio is 50%.
  • the N magnetic pole and the S magnetic pole on the magnetic component 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, the detection time is shortened, and the detection sensitivity is improved. . Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • the Hall detecting component 20 such as the Hall sensor, may be in the form of a patch and a plug-in type.
  • the Hall detecting component 20 is fixed on the PCB board and fixed on the air conditioning body through the PCB board. Located on one side of the magnetic component 10, close to the magnetic component but not in contact, within the magnetic field sensible range.
  • the x Hall detecting components 20 may be offset by a predetermined distance according to the width of the N magnetic poles or the S magnetic poles on the magnetic component 10, wherein the widths of the N magnetic poles or the S magnetic poles may be equal. That is to say, the adjacent two Hall detecting assemblies 20 can be staggered by a preset distance, that is, a third preset distance.
  • the x Hall detecting components 20 may be staggered and distributed, and the x Hall detecting components 20 match the width of each magnetic pole by a predetermined distance so that the x Hall sensing components 20 respectively output the x-channel sensing signals.
  • the preset phase angle is sequentially shifted, thereby multiplying the detection sensitivity.
  • the left Hall detecting component 20A and the middle Hall detecting component 20B are offset by a preset distance
  • the middle Hall detecting component 20B and the right side are
  • the Hall detecting component 20C is also offset by a predetermined distance, and the magnetic component 10 is moved to the opening direction shown by the arrow in FIG. 3c as an example.
  • the sensing signal outputted by the middle Hall detecting component 20B lags the Hall detection on the left side.
  • the component 20A presets the phase angle, and the sensing signal output by the right Hall detecting component 20C lags the intermediate Hall detecting component 20B by a preset phase angle.
  • the preset distance can be determined according to the following formula:
  • d is the preset distance
  • s is the width of the N magnetic pole or S magnetic pole
  • x is the number of Hall detecting components
  • n is any positive integer.
  • n is an arbitrary integer greater than or equal to 1, and the specific numerical value is determined as long as the Hall detecting component 20 does not interfere with each other in the arrangement space.
  • the middle Hall detecting component 20B is staggered with respect to the right Hall detecting component 20 (s/3+ 2s), that is, at the 1/3 position of the i+2th magnetic pole
  • the left Hall detecting component 20A is staggered (s/3+2s) with respect to the middle Hall detecting component 20B, that is, at the i+4th
  • the sensing signal output from the intermediate Hall detecting unit 20B is output with respect to the left Hall detecting unit 20A.
  • the induced signal is delayed by 60°
  • the sensing signal output from the right Hall detecting component 20C is delayed by 60° with respect to the sensing signal output from the middle Hall detecting component 20B.
  • the Hall detecting component 20 generates a first sensing signal when facing the N magnetic poles, and generates a second sensing signal when facing the S magnetic poles, and the x sensing signals construct a combination of the y kinds of level states. , y>x.
  • control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to time the duration of each level state combination in the y detection states, and re-time when the level state combination changes; the control chip 302 is connected to the timer 301, and the control chip 302 is further Connected to the x Hall detecting components 20, the control chip 302 determines that the motor is stalled when the duration of any combination of level states is greater than a preset time threshold.
  • the x Hall detecting components 20 match the width of the N magnetic pole or the S magnetic pole by a predetermined distance, that is, the x sensing signals respectively output by the x Hall detecting components 20 are sequentially shifted by the preset phase angle, so that the same moment can be Different levels of state combinations are formed.
  • the control chip 302 determines whether the motor is stalled by detecting whether the duration of each level state combination exceeds a preset time threshold.
  • the door panel 300 drives the magnetic assembly 10 to move synchronously, and the x Hall detecting assemblies 20 are fixed.
  • the N magnetic poles and the S magnetic poles on the magnetic component 10 alternately pass through the x Hall detecting components 20,
  • the x Hall detecting components 20 respectively generate high and low pulse sequences having a duty ratio of 50%.
  • one cycle of each waveform can be divided into 2x level state combinations, and the duration tn of each level state combination is the duration of the high state or low state of any signal.
  • the detection time can be further shortened, for example, how many Hall sensors can be used to reduce the detection time by several times.
  • the three Hall detecting components 20 can output three waveforms of each phase angle of 60° later, that is, the output of the Hall detecting component 20B.
  • the waveform is delayed by 60° with respect to the output waveform of the Hall detecting component 20A, and the output sensing signal of the Hall detecting component 20C is delayed by 60° with respect to the output waveform of the Hall detecting component 20B.
  • each Hall detecting component 20 When the gate panel 300 is blocked, the corresponding magnetic pole of each Hall detecting component 20 does not change, so the output level of each Hall detecting component 20 continues to be at a high level or continues to a low level.
  • the gate panel 300 is blocked at time t1 and recovered at time t2, tn is the duration of each level state combination, and td is a preset time threshold.
  • td When a block occurs, the three-way waveform is maintained. The current level state is unchanged, and it is determined that the door panel 300 is blocked when the duration is longer than td.
  • the method for detecting whether the door panel 300 is blocked by the embodiment of the present invention is as follows:
  • the control chip 302 When the door panel 300 moves, the control chip 302 turns on the detection function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signals output by the x Hall detecting components 20, and control when any one of the sensing signals occurs high and low level transitions.
  • the timer 301 is cleared, and the control chip 302 can determine whether the timer value of the timer 301 is greater than the preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the door panel 300 is blocked, and the control chip 302 is controlled.
  • the blocking protection signal is output to perform a protection action, for example, the control panel 300 stops moving or reversely moves; if the timing value of the timer 301 is less than or equal to the preset time threshold td, it is determined that the door panel 300 is not blocked, and the control chip 302 can The control motor continues to move in the direction of opening or closing the door.
  • the power terminals of the x Hall detecting components 20 are all connected to the preset power source VCC, for example, +5V through the first resistor R1, and the x Hall detecting components 20
  • the ground terminal is grounded, and the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the x Hall detecting components 20, wherein the detecting end of each Hall detecting component 20 senses the magnetic pole change of the magnetic component, and each Hall The output of the detection component 20 outputs a corresponding sensing signal.
  • the door panel detecting device of the air conditioner further includes x output circuits 40, and the x output circuits 40 are connected to the outputs of the x Hall detecting components 20, and each of the output circuits 40 includes: The resistor R2 and the third resistor R3, the second resistor R2 and the third resistor R3 are connected in series, and one end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC, and the second resistor R2 and the third resistor are connected in series The other end of R3 is connected to the control unit 30, that is, the control chip 302. There is a node between the second resistor R2 and the third resistor R3 connected in series, and the node is connected to the output of the corresponding Hall detecting component 20.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • each Hall detecting component 20 can supply 5V, so that each Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and each high-low pulse sequence is provided through a corresponding output circuit.
  • the control unit 30 can time the duration of the level state combination of the x-way high-low pulse sequence, and determine whether the gate plate 300 is blocked or not by comparing the timing time with the preset time threshold.
  • the door panel detecting device of the air conditioner detects the magnetic pole change of the magnetic component by the x Hall detecting components when the door panel moves to generate the x-channel sensing signal, and then the control unit according to the x sensing.
  • the signal judges the state of the door panel, so that it can effectively detect whether the door panel encounters an obstacle, so that the corresponding measures can be taken in time to adjust the movement of the door panel to avoid damage to the mechanism, and the detection time can be shortened by the magnetic component and the plurality of Hall detecting components.
  • Improve detection sensitivity the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • An embodiment of the second aspect of the present invention provides an air conditioner including the detection control device for a moving part in the air conditioner.
  • the detection and control device of the moving component can effectively determine whether the moving component is stuck, and has high detection sensitivity, small occupied space, low cost, easy installation, long service life, and stability. reliable.
  • a third aspect of the present invention provides a method for detecting and controlling a moving component in an air conditioner.
  • the air conditioner includes a magnetic component and at least one Hall detecting component, the magnetic component is fixed on the moving component, and a plurality of N magnetic poles and/or a plurality of S magnetic poles are spaced apart on a detecting surface of the magnetic component.
  • Each of the Hall detecting assemblies is matched to the magnetic properties of the magnetic poles on the detecting surface of the magnetic component, the at least one Hall detecting component is fixed on the air conditioner body, and the at least one Hall detecting component is close to the magnetic The detection surface of the component is set.
  • the method includes the following steps:
  • S1 sensing, when the moving component moves, sensing a magnetic pole change of the magnetic component by at least one of the Hall detecting components to generate at least one sensing signal correspondingly;
  • S2 Determine whether the moving component is stuck according to the at least one sensing signal.
  • each of the The Hall detecting component when a plurality of N magnetic poles and a plurality of S magnetic poles are spaced apart on a detecting surface of the magnetic component, the N magnetic poles and the S magnetic poles are spaced apart one by one, wherein each of the The Hall detecting component generates an active level when facing the N magnetic poles, and generates an inactive level when facing the S magnetic poles; when a plurality of the N magnetic poles are spaced apart on the detecting surface of the magnetic component, a first blank area is distributed between two adjacent N magnetic poles, wherein each of the Hall detecting components generates an active level when facing the N magnetic poles, and faces the first blank An inactive level is generated when the region is spaced; when a plurality of the S magnetic poles are spaced apart on the detecting surface of the magnetic component, a second blank region is distributed between two adjacent S magnetic poles, wherein each of the The Hall detecting component generates an active level when facing the S magnetic pole and generates an inactive level when facing the second blank area
  • determining whether the moving component is stuck according to the at least one sensing signal comprises: at the active level and the invalid level Timing is started when switching is performed to time the duration of the active level and the duration of the invalid level; when the duration of the active level or the inactive level is greater than a preset time threshold, It is judged that the moving parts are stuck.
  • the x sensing signals respectively output by the x Hall detecting components respectively construct a combination of y kinds of level states
  • Determining whether the moving component is stuck or not in the sensing signal includes: starting timing when any one of the level state combinations of the y kinds of the level state combinations occurs, to the y type of the level state The duration of each of the level state combinations in the combination is counted; when the duration of any of the level state combinations is greater than a preset time threshold, it is determined that the moving component is stuck.
  • the number y of the level state combinations is x times the number of level states of the sensing signals of each way.
  • the magnetic pole change of the magnetic component is induced by at least one Hall detecting component to generate at least one sensing signal, and then according to at least one sensing signal.
  • the moving parts are stuck, so that it can effectively judge whether the moving parts are stuck, so as to take corresponding measures to adjust the movement of the moving parts in time, avoid damage to the driving mechanism of the driving moving parts, and detect the magnetic components and multi-Hall Components reduce inspection time and increase detection sensitivity.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • an air conditioner includes a Hall detecting component and a magnetic component, and the magnetic component is fixed on a moving component of the air conditioner, and a plurality of N magnetic poles or S magnetic poles are spaced apart on the detecting surface of the magnetic component.
  • the detection component is matched with the magnetic property of the magnetic pole on the detecting surface of the magnetic component, the Hall detecting component is fixed on the air conditioner body, and the Hall detecting component is disposed close to the detecting surface on the magnetic component, and the magnetic component is relative to the Hall when the moving component moves. Detect component movement.
  • the method for detecting and controlling a moving part in the air conditioner includes the following steps:
  • S101 Inducing a magnetic pole change of the magnetic component through the Hall detecting component to generate an inductive signal when the moving component moves;
  • S102 Determine whether the moving component is stuck according to the sensing signal.
  • a first blank area is distributed between the adjacent two N magnetic poles, and a plurality of intervals are distributed on the detecting surface of the magnetic component.
  • a second blank area is distributed between two adjacent S magnetic poles, and the Hall detecting component generates an effective level when facing the N magnetic pole or the S magnetic pole, and faces the first blank area or the second blank.
  • the region generates an invalid level
  • determining whether the moving component is stuck according to the sensing signal includes: starting timing when the active level and the invalid level are switched, to time the duration of the active level and the duration of the invalid level; When the duration of the active level or the inactive level is greater than the preset time threshold, it is judged that the moving part is stuck.
  • the magnetic component moves relative to the Hall detecting component when the moving component moves, and the magnetic pole change of the magnetic component is induced by the Hall detecting component to generate an inductive signal, and then according to the receiving
  • the arriving sensing signal determines whether the moving component is stuck, so that the state of the moving component such as the door panel can be detected in real time, and whether the moving component is stuck or not is quickly determined, so that corresponding measures can be taken to adjust the movement of the door panel to avoid driving components for driving the moving component.
  • the method has high detection sensitivity, small occupied space, low cost, convenient installation, long service life, stability and reliability.
  • an air conditioner includes a magnetic component and x Hall detecting components, and the magnetic component is fixed on the moving component, and a plurality of N magnetic poles or a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic component
  • Each Hall detecting component is matched with the magnetic pole of the magnetic pole on the detecting surface of the magnetic component
  • x Hall detecting components are fixed on the air conditioner body
  • x Hall detecting components are disposed close to the detecting surface of the magnetic component, and x is greater than An integer of 1.
  • the method includes the following steps:
  • a first blank area is distributed between the adjacent two N magnetic poles, and a plurality of intervals are distributed on the detecting surface of the magnetic component.
  • a second blank area is distributed between two adjacent S magnetic poles, and the Hall detecting component generates an effective level when facing the N magnetic pole or the S magnetic pole, and faces the first blank area or the second blank.
  • the x-channel sensing signals respectively output by the x Hall detecting components construct a combination of the y-level level states, and determine whether the moving component is stuck according to the x-channel sensing signal, including: combining the y-level level states
  • the timing of any combination of level states occurs when timing occurs to time the duration of each level state combination in the y level level combination; the duration of any level state combination is greater than the preset time threshold When it is judged, the moving parts are stuck.
  • the number y of level state combinations is x times the number of level states of each sensed signal.
  • the method for detecting and controlling a moving component in an air conditioner when a moving component moves, a magnetic pole change of the magnetic component is induced by x Hall detecting components to generate an x-channel sensing signal, and then according to an x-way.
  • the sensing signal judges whether the moving component is stuck, so that it can effectively judge whether the moving component is stuck, so as to take corresponding measures to adjust the movement of the moving component in time, avoid damage to the driving mechanism of the driving moving component, and pass the magnetic component and Hall detection components reduce inspection time and improve detection sensitivity.
  • the method takes up less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • the fourth aspect of the present invention further provides a non-transitory readable storage medium, where an air conditioner control program is stored, and when the program is executed by the processor, the implementation of the third aspect of the present invention is implemented.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may expressly or implicitly include at least one of the features.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种空调器中运动部件的检测控制装置,包括:磁性组件(10),磁性组件(10)固定在运动部件上,磁性组件(10)的检测面上间隔分布有多个N磁极或者多个S磁极;至少一个与磁性组件(10)检测面上磁极的磁性相匹配的霍尔检测组件(20),至少一个霍尔检测组件(20)固定在空调器本体上,且至少一个霍尔检测组件(20)靠近磁性组件(10)上的检测面设置,至少一个霍尔检测组件(20)在运动部件移动时感应磁性组件(10)的磁极变化以对应生成至少一路感应信号;控制单元(30),控制单元(30)与至少一个霍尔检测组件(20)相连,控制单元(30)根据至少一路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,并且通过磁性组件(10)与多个霍尔检测组件(20)可缩短检测时间,提升检测灵敏度。还提供了一种空调器中运动部件的检测控制方法和空调器。

Description

空调器以及空调器中运动部件的检测控制装置和方法
相关申请的交叉引用
本申请基于申请号为2017100080917,申请日为2017年1月5日,以及申请号为2017104017043、2017206252217和2017104009329,申请日为2017年5月31日的中国专利申请提出,并要求这些中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调器技术领域,特别涉及一种空调器中运动部件的检测控制装置、一种空调器、一种空调器中运动部件的检测控制方法以及一种非临时性可读存储介质。
背景技术
相关的空调器中越来越多的采用滑动开关门或其他旋转运动装置,例如空调器启动后门板向两侧或一侧打开,或者旋转部件旋转到格栅对准出风口位置,而且空调器关闭后门板闭合或者旋转部件旋转到遮挡板对准出风口位置,从而使产品的美观度大大提升。但是,此类门板的动力机构通常为开环控制的步进电机,力矩较大。如果在门板开启或关闭的过程中有异物卡住或者关闭过程中手指不慎伸于其中,控制单元并不会知晓而停转电机,此时动力机构处于过盈状态,从而不但会对产品的结构件与电器造成损害,如果是手指夹于其中还会产生很大的痛感,严重降低产品的使用感受。
相关技术中通常采用两种方式来应对前述情况,一种是相通过在门板上加装光栅条并在光栅条两侧分别加装发光管和受光管来监测门板是否卡滞,但是其结构复杂、检测时间长。另一种是
利用电感与电容并联谐振电路在夹住障碍物后由电感值变化导致并联电路阻抗变化的原理来检测门板是否卡滞,但是使用寿命有限且随着运行时间变长后检测功能很可能失效。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为实现上述目的,本发明第一方面实施例提出了一种空调器中运动部件的检测控制装置,包括:磁性组件,所述磁性组件固定在所述运动部件上,所述磁性组件的检测面上间隔分布 有多个N磁极和/或多个S磁极;至少一个霍尔检测组件,所述至少一个霍尔检测组件与所述磁性组件检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件固定在空调器本体上,且所述至少一个霍尔检测组件靠近所述磁性组件的检测面设置,所述至少一个霍尔检测组件在所述运动部件移动时感应所述磁性组件的磁极变化以对应生成至少一路感应信号;控制单元,所述控制单元与所述至少一个霍尔检测组件相连,所述控制单元根据至少一路所述感应信号判断所述运动部件是否卡滞。
根据本发明提出的空调器中运动部件的检测控制装置,在运动部件移动时通过至少一个霍尔检测组件感应磁性组件的磁极变化以对应生成至少一路感应信号,进而控制单元根据至少一路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对运动部件的移动进行调整,避免对驱动运动部件的驱动部件损坏,并且通过磁性组件与多霍尔检测组件可缩短检测时间,提升检测灵敏度。此外,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
在至少一个实施例中,所述磁性组件为条状磁带。
在至少一个实施例中,当所述霍尔检测组件为x个,x为大于1的整数时,x个所述霍尔检测组件的连接线与所述磁性组件的运动方向平行。
在至少一个实施例中,当所述磁性组件的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置;当所述磁性组件的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域;当所述磁性组件的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域。
在至少一个实施例中,当所述霍尔检测组件为x个,x为大于1的整数时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述第一空白区域的宽度之和错开第一预设距离;x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述S磁极与所述第二空白区域的宽度之和错开第二预设距离;x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极或者所述S磁极的宽度错开第三预设距离。
在至少一个实施例中,根据以下公式确定所述第一预设距离或第二预设距离:
d=s/x+n*2s
其中,d为所述第一预设距离或所述第二预设距离或所述第三预设距离,s为所述磁性组件上所述N磁极与所述第一空白区域的宽度之和的一半,或者s为所述S磁极与所述第二空白区域的宽度之和的一半,或者s为所述N磁极或者所述S磁极的宽度,x为所述霍尔检测组件的个数,n为任意整数。
在至少一个实施例中,当所述磁性组件的检测面上分布多个N磁极和多个S磁极时, 每个所述N磁极的宽度均相同且每个所述S磁极的宽度均相同;当所述磁性组件的检测面上间隔分布多个N磁极时,每个所述N磁极的宽度均相同;或者,当所述磁性组件的检测面上间隔分布多个S磁极时,每个所述S磁极的宽度均相同的宽度相同。
在至少一个实施例中,根据以下公式获取所述N磁极或所述S磁极的磁性区域宽度:
d1=(1+(arcsin(X/A)+arcsin(Y/A))/π)*D/p/2,
其中,d1为所述N磁极或所述S磁极的磁性区域宽度,A为所述N磁极或所述S磁极的最大磁密,X为所述霍尔检测组件的动作点,Y为所述霍尔检测组件的释放点,D为所述磁性组件沿着所述运动部件的移动方向的宽度,p为所述N磁极或所述S磁极的个数。
在至少一个实施例中,根据以下公式获取所述第一空白区域或所述第二空白区域的宽度:
d2=D/p–d1,
其中,d2为所述第一空白区域或所述第二空白区域的宽度,d1为所述N磁极或所述S磁极的磁性区域宽度,D为所述磁性组件沿着所述运动部件的移动方向的宽度,p为所述N磁极或所述S磁极的个数。
在至少一个实施例中,当所述磁性组件上分布多个N磁极和多个S磁极时,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述S磁极时生成无效电平;当所述磁性组件上间隔分布所述多个N磁极时,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述第一空白区域时生成无效电平;当所述磁性组件上间隔分布所述多个S磁极时,每个所述霍尔检测组件在正对所述S磁极时生成有效电平,并在正对所述第二空白区域时生成无效电平。
在至少一个实施例中,所述控制单元包括计时器和控制芯片,所述控制芯片与所述计时器相连,其中,当所述霍尔检测组件为一个时,所述计时器用于在所述有效电平与所述无效电平进行切换时开始计时,以对所述有效电平的持续时间和所述无效电平的持续时间进行计时;所述控制芯片用于在所述有效电平或所述无效电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
在至少一个实施例中,当所述霍尔检测组件为x个时,x个所述霍尔检测组件分别输出的x路所述感应信号构造出y种电平状态组合,y>x,其中,所述计时器用于在y种所述电平状态组合中的任一种所述电平状态组合出现时开始计时,以对y种所述电平状态组合中每种所述电平状态组合的持续时间进行计时;所述控制芯片用于在任一种所述电平状态组合的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
在至少一个实施例中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
为达到上述目的,本发明第二方面实施例提出了一种空调器,包括所述的空调器中运动部件的检测控制装置。
根据本发明实施例提出的空调器,通过上述的运动部件的检测控制装置,能够有效判断运动部件是否发生卡滞,且检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
为达到上述目的,本发明第三方面实施例提出了一种空调器中运动部件的检测控制方法,所述空调器包括磁性组件和至少一个霍尔检测组件,所述磁性组件固定在所述运动部件上,所述磁性组件的检测面上间隔分布有多个N磁极和/或多个S磁极,每个所述霍尔检测组件与所述磁性组件检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件固定在空调器本体上,且所述至少一个霍尔检测组件靠近所述磁性组件的检测面设置,所述方法包括以下步骤:在所述运动部件移动时,通过至少一个所述霍尔检测组件感应所述磁性组件的磁极变化以对应生成至少一路感应信号;根据至少一路所述感应信号判断所述运动部件是否卡滞。
根据本发明实施例提出的空调器中运动部件的检测控制方法,在运动部件移动时通过至少一个霍尔检测组件感应磁性组件的磁极变化以对应生成至少一路感应信号,进而根据至少一路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对运动部件的移动进行调整,避免对驱动运动部件的驱动机构造成损坏,并且通过磁性组件与多霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
在至少一个实施例中,当所述磁性组件的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置,其中,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述S磁极时生成无效电平;当所述磁性组件的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域,其中,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述第一空白区域时生成无效电平;当所述磁性组件的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域,其中,每个所述霍尔检测组件在正对所述S磁极时生成有效电平,并在正对所述第二空白区域时生成无效电平。
在至少一个实施例中,当所述霍尔检测组件为一个时,所述根据至少一路所述感应信号判断所述运动部件是否卡滞包括:在所述有效电平与所述无效电平进行切换时开始计时,以对所述有效电平的持续时间和所述无效电平的持续时间进行计时;当所述有效电平或所述无效电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
在至少一个实施例中,当所述霍尔检测组件为x个时,x个所述霍尔检测组件分别输出 的x路所述感应信号构造出y种电平状态组合,所述根据至少一路所述感应信号判断所述运动部件是否卡滞,包括:在y种所述电平状态组合中的任一种所述电平状态组合出现时开始计时,以对y种所述电平状态组合中每种所述电平状态组合的持续时间进行计时;在任一种所述电平状态组合的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
在至少一个实施例中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
为达到上述目的,本发明第四方面实施例提出了一种非临时性可读存储介质,其上存储有空调器控制程序,该程序被处理器执行时实现如本发明第三方面实施例所述的空调器中运动部件的检测控制方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1a是根据本发明一个实施例的空调器中运动部件的检测控制装置的方框示意图;
图1b是根据本发明另一个实施例的空调器中运动部件的检测控制装置的方框示意图;
图2a是根据本发明一个实施例的磁性组件的结构示意图;
图2b是根据本发明另一个实施例的磁性组件的结构示意图;
图3a是根据本发明一个实施例的空调器中运动部件的检测控制装置的结构示意图;
图3b是根据本发明另一个实施例的空调器中运动部件的检测控制装置的结构示意图;
图3c是根据本发明又一个实施例的空调器中运动部件的检测控制装置的结构示意图;
图4是根据本发明一个具体实施例的空调器中运动部件的检测控制装置的方框示意图;
图5是根据本发明一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运动部件未发生卡滞;
图6是根据本发明一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运动部件在t1时刻发生卡滞;
图7是根据本发明一个实施例的霍尔检测组件的电路原理图;
图8是根据本发明另一个具体实施例的空调器中运动部件的检测控制装置的方框示意图;
图9是根据本发明又一个具体实施例的空调器中运动部件的检测控制装置的方框示意图;
图10是根据本发明另一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中, 运动部件未发生卡滞;
图11是根据本发明另一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运动部件在t1时刻发生卡滞;
图12是根据本发明另一个实施例的霍尔检测组件的电路原理图;
图13是根据本发明一个实施例的空调器的门板的示意图;
图14是根据本发明一个实施例的驱动部件的安装位置的示意图;
图15是根据本发明实施例的空调器中运动部件的检测控制方法的流程图;
图16是根据本发明一个实施例的空调器中运动部件的检测控制方法的流程图;以及
图17是根据本发明另一个实施例的空调器中运动部件的检测控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在描述本发明实施例的空调器以及空调器中运动部件的检测控制装置和方法之前,先来简单介绍相关技术中的门板卡滞检测技术。
相关技术提出了一种滑动门检测控制装置,其中在门板上加装光栅条,光栅条两侧再分别加装发光管和受光管,门板正常运动时由光栅条的间隔透光性产生高低电平脉冲反馈信号,通过对高电平或低电平持续时间的检测即可监测门板是否卡滞。
相关技术还提出了一种滑动门检测控制装置,其中利用电感与电容并联谐振电路在夹住障碍物后由电感值变化导致并联电路阻抗变化的原理,通过阻抗检测电路检测门板是否卡滞。
对于上述第一个相关技术中的检测控制装置,此装置在光栅两侧分别加装发光管和受光管,结构复杂,难度较大,光栅与门板需要一定间隙。此外由于采用光电原理,为避免环境光干扰等多重因素,光栅的透光和遮光间隙不能过于狭小,这样导致反馈脉冲的高低电平持续时间加长,从而卡滞的检测时间加长,检测灵敏度降低,若夹住手指则痛感会持续很长时间,令用户难以接受。
对于上述第二个相关技术中的检测控制装置,并联电路所用电感为带有铜箔走线的金属片,电感值变化源自卡滞时障碍物导致的金属片变形,但是,每次门板关紧时都会使金属片严重挤压,虽然此时并无障碍物,检测功能也被关闭不会造成误检,但金属片依然会严重变形,长此反复,会给金属片带来不可恢复的形变或彻底损坏,导致该装置的使用寿命有限且随着运行时间变长后检测功能很可能失效。而且,该装置只适用于单侧开关门装置,不能用 于双侧开关门装置,且只适用于关闭过程中的卡滞,不能检测开启过程中的卡滞。
基于此,本发明实施例提出了一种空调器以及空调器中运动部件的检测控制装置和方法。
下面参考附图来描述本发明一方面实施例提出的空调器中运动部件的检测控制装置。其中,运动部件的检测控制装置用于检测运动部件例如门板等是否发生卡滞,或者是否遇到障碍物,运动部件可在驱动部件的驱动下移动。
如图1a和图1b所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁性组件10、至少一个霍尔检测组件20和控制单元30。
其中,磁性组件10固定在运动部件上,磁性组件的检测面上间隔分布有多个N磁极和/或多个S磁极;至少一个霍尔检测组件20与磁性组件10检测面上磁极的磁性相匹配,至少一个霍尔检测组件20固定在空调器本体上,且至少一个霍尔检测组件20靠近磁性组件10的检测面设置,至少一个霍尔检测组件20在运动部件移动时感应磁性组件10的磁极变化以对应生成至少一路感应信号;控制单元30与至少一个霍尔检测组件20相连,控制单元30根据至少一路感应信号判断运动部件是否卡滞。
在至少一个实施例中,当磁性组件10的检测面上间隔分布多个N磁极和多个S磁极时,N磁极和S磁极一一间隔设置;当磁性组件10的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域;当磁性组件10的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域。
在至少一个实施例中,当磁性组件10的检测面上分布多个N磁极和多个S磁极时,每个N磁极的宽度均相同且每个S磁极的宽度均相同;当磁性组件10的检测面上间隔分布多个N磁极时,每个N磁极的宽度均相同;或者当磁性组件10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同的宽度相同。
在至少一个实施例中,当霍尔检测组件20为x个,x为大于1的整数时,x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据N磁极与第一空白区域的宽度之和错开第一预设距离;x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据S磁极与第二空白区域的宽度之和错开第二预设距离;x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据N磁极或者S磁极的宽度错开第三预设距离。
在至少一个实施例中,当磁性组件10上分布多个N磁极和多个S磁极时,每个霍尔检测组件20在正对N磁极时生成有效电平,并在正对S磁极时生成无效电平;当磁性组件10上间隔分布多个N磁极时,每个霍尔检测组件20在正对N磁极时生成有效电平,并在正对第一空白区域时生成无效电平;当磁性组件10上间隔分布多个S磁极时,每个霍尔检测组件20在正对S磁极时生成有效电平,并在正对第二空白区域时生成无效电平。
在至少一个实施例中,如图4和8所示,控制单元30包括计时器301和控制芯片302,控制芯片302与计时器301相连,其中,如图4所示,当霍尔检测组件20为一个时,计时器301用于在有效电平与无效电平进行切换时开始计时,以对有效电平的持续时间和无效电平的持续时间进行计时;控制芯片302用于在有效电平或无效电平的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
如图8所示,当霍尔检测组件20为x个时,x个霍尔检测组件20分别输出的x路感应信号构造出y种电平状态组合,y>x,其中,计时器301用于在y种电平状态组合中的任一种电平状态组合出现时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;控制芯片302用于在任一种电平状态组合的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
下面通过三个实施例来详细描述本发明实施例的空调器中运动部件的检测控制装置。
实施例一:
根据本发明的一个具体实施例,如图1a、图2a、图3a以及图13和图14所示,驱动部件可为驱动电机100,运动部件可为空调器的门板300,门板300为可滑动门板,其中,可通过驱动电机100驱动空调器的门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制单元30可通过驱动电机100驱动门板300打开,当空调器关闭时空调器的控制单元30可通过驱动电机100驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
根据本发明的一个实施例,驱动电机100可为步进电机,步进电机采用开环控制,控制单元30可通过磁性组件和霍尔检测组件的结构检测步进电机是否发生堵转,也就是说检测门板300是否发生卡滞,从而防止步进电机持续处于过盈状态,防止对步进电机本身以及产品运行产生不利影响。
如图1a、图2a和图3a所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁性组件10、霍尔检测组件20和控制单元30。
磁性组件10固定在空调器的运动部件例如门板300上,更具体地,磁性组件10可固定于在运动部件朝向空调器内部的一侧,磁性组件10的检测面上间隔分布有多个N磁极或S磁极。根据本发明的一个实施例,当磁性组件的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域;当磁性组件的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域。也就是说,当磁性组件10上间隔充满N磁极时,N磁极与第一空白区域间隔分布在磁性组件10上,即磁性组件10上的排布规律为N磁极- 第一空白区域-N磁极-第一空白区域;当磁性组件10上间隔充满S磁极时,S磁极与第二空白区域间隔分布在磁性组件10上,即磁性组件10的排布规律为S磁极-第二空白区域-S磁极-第二空白区域,其中,空白区域包括第一空白区域或第二空白区域不带有任何磁性即无磁性区域。由此,在本实施例中,磁性组件10可为单极性磁性组件。
霍尔检测组件20与磁性组件10的检测面上磁极的磁性相匹配,霍尔检测组件20固定在空调器本体上,且霍尔检测组件20靠近磁性组件10上的检测面设置,其中,磁性组件10在运动部件移动时相对霍尔检测组件20移动,以使霍尔检测组件感应磁性组件的磁极变化以生成感应信号。需要说明的是,霍尔检测组件20可相对磁性组件10的检测面设置,并且霍尔检测组件20可靠近磁性组件10但并不接触,设置于磁性组件10的磁场感应范围内即可。
具体而言,在磁性组件10的检测面上可间隔充满N磁极与第一空白区域,当运动部件移动时,磁性组件10随着运动部件同步移动,磁性组件10的检测面上的N磁极与第一空白区域可交替经过霍尔检测组件20,霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。或者,在磁性组件10上可间隔充满S磁极与第二空白区域,当运动部件移动时,磁性组件10随着运动部件同步移动,磁性组件10上的S磁极与第二空白区域可交替经过霍尔检测组件20,霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。
控制单元30与霍尔检测组件20相连,控制单元30根据感应信号判断运动部件是否卡滞。
具体来说,以磁性组件10的检测面上间隔分布多个N磁极为例说明,在运动部件移动过程中,磁性组件10随着运动部件移动,而霍尔检测组件20固定不动,磁性组件10的检测面上的N磁极和第一空白区域依次通过霍尔检测组件20,霍尔检测组件20通过感应磁性组件10的N磁极以输出感应信号例如高低电平脉冲信号,当驱动部件停止运动时霍尔检测组件20感应到的磁极将会保持不变,感应信号将保持不变,由此,控制单元30根据感应信号判断驱动部件的状态,例如驱动部件是否发生堵转,进而判断驱动部件所驱动的运动部件是否发生卡滞。
应当理解的是,磁性组件10的检测面上间隔分布多个S磁极的情况与前述间隔分布多个N磁极的情况类似,区别在于,磁性组件10的检测面上的S磁极和第二空白区域依次通过霍尔检测组件20,这里不再赘述。
根据本发明的一个实施例,如图2所示,磁性组件10可为条状磁带,但不限于此,例如磁性组件10还可为片状磁性组件或条状磁性组件等。
根据本发明的一个实施例,磁性组件10可以可拆卸方式例如粘帖、卡接螺纹连接等方 式固定在运动部件例如门板300上。也就是说,条状磁带可固定在运动部件上,从而,在运动部件移动时条状磁带可随之同步移动。
由此,磁性组件10固定于运动部件,霍尔检测组件20可固定在空调器本体上,从而,整体安装便捷,避免带来走线问题。
根据本发明的一个实施例,如图2a和3a所示,磁性组件10的多个N磁极或多个S磁极沿着运动部件的移动方向设置。也就是说,磁性组件10可固定于运动部件上,且方向与运动部件的运动方向平行。换言之,沿着运动部件移动方向例如门板300的开门/关门方向,磁性组件10上依次间隔布满多个N磁极或S磁极。由此,在运动部件移动时,磁性组件10上的N磁极(或S磁极)和空白区域可交替通过霍尔检测组件20,使霍尔检测组件20产生相应的感应信号。
更具体地,磁性组件10可安装于运动部件的任意位置。以门板300为例,磁性组件10优选安装于门板300的中部,其中,当门板300为两个即采用双开关门机构时,可选择单侧安装或双侧安装,即可在其中一个门板上安装磁性组件10,也可在两个门板上均安装磁性组件10。
进一步地,根据本发明的一个实施例,如图2a和图3a所示,多个N磁极或S磁极以等宽方式设置。也就是说,当磁性组件10的检测面上间隔分布多个N磁极时,每个N磁极的宽度均相同;或者当磁性组件10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同。另外,根据本发明的一个具体示例,磁性区域即N磁极磁性区域的宽度与第一空白区域的宽度也可近似相等,或者磁性区域即S磁极磁性区域的宽度与第二空白区域的宽度也可近似相等。
需要说明的是,磁性区域与空白区域的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的霍尔感应参数而定。
具体地,根据以下公式获取N磁极或S磁极的磁性区域宽度:
d1=(1+(arcsin(X/A)+arcsin(Y/A))/π)*D/p/2,
其中,d1为N磁极或S磁极的磁性区域宽度,A为N磁极或S磁极的最大磁密,X为霍尔检测组件的动作点,Y为霍尔检测组件的释放点,D为磁性组件沿着运动部件的移动方向的长度,p为N磁极或S磁极的个数。
也就是说,可根据N磁极个数设置N磁极的磁性区域宽度,或者,可根据S磁极个数设置S磁极的磁性区域宽度。
相应地,可根据以下公式获取第一空白区域或第二空白区域的宽度:
d2=D/p–d1,
其中,d2为第一空白区域或第二空白区域的宽度,d1为N磁极或S磁极的磁性区域宽度,D为磁性组件10沿着运动部件的移动方向的宽度,p为N磁极或S磁极的个数。
也就是说,可根据N磁极的个数和N磁极的磁性区域宽度设置第一空白区域的宽度,或者可根据S磁极的个数和S磁极的磁性区域宽度设置第二空白区域的宽度。
当然,应当理解的是,N磁极的宽度和第一空白区域的宽度可相等,S磁极的宽度和第二空白区域的宽度也可相等,从而简化磁性组件的设计、制作难度。
在本实施例中,霍尔检测组件20为单极型霍尔元件,单极型霍尔元件20与磁性组件10的检测面上的磁极的磁性相匹配,其中,当磁性组件10的检测面上间隔分布多个N磁极时,单极型霍尔元件为N极型霍尔元件;当磁性组件10的检测面上间隔分布多个S磁极时,单极型霍尔元件为S极型霍尔元件。也就是说,单极型霍尔元件的选型与单极磁性组件配合,如果单极磁性组件的检测面的磁性为N极型,则单极型霍尔也选用N极型,如果单极磁性组件的检测面的磁性为S极型,则单极型霍尔也选用S极型。
根据本发明的一个实施例,霍尔检测组件20例如霍尔传感器可采用贴片和插件型两种封装形式,霍尔检测组件20均固定在PCB板上并通过PCB板固定于空调本体上,位于磁性组件10的一侧,靠近磁性组件但非接触,在磁场可感应范围内。
根据本发明的一个实施例,相邻的两个N磁极或S磁极之间分布有空白区域,霍尔检测组件20可根据是否感应到的N磁极或S磁极生成感应信号,即霍尔检测组件10在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域即无磁性区域时生成无效电平,例如有效电平可为高电平且无效电平可为低电平,或者,有效电平可为低电平且无效电平可为高电平,具体根据霍尔检测组件10的自身属性而定。
这样,当N磁极和第一空白区域交替经过霍尔检测组件20或者S磁极和第二空白区域交替经过霍尔检测组件20时,霍尔检测组件20将输出稳定的高低电平脉冲序列,且高低电平脉冲序列的周期固定、占空比为50%。
由此,磁性组件10上的N磁极或者S磁极可做到十分密集(磁极宽度可做到1-2mm),灵敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
进一步地,根据本发明的一个实施例,霍尔检测组件20在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平。如图4所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于在有效电平与无效电平进行切换时开始计时,以对有效电平的持续时间和无效电平的持续时间进行计时;控制芯片302与计时器301相连,控制芯片302用 于在有效电平或无效电平的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
具体来说,以N磁极为例说明,S磁极的情况与N磁极相类似,不再详细赘述。在驱动部件驱动运动部件移动时,磁性组件10随着运动部件同步移动,霍尔检测组件20固定不动,磁性组件10上的N磁极和第一空白区域交替经过霍尔检测组件10,如果霍尔检测组件10正对磁性组件20的N磁极,则霍尔检测组件20输出有效电平,此时计时器301记录有效电平的持续时间,记为T1;如果霍尔检测组件20正对磁性组件10的第一空白区域,则霍尔检测组件20输出无效电平,此时计时器301记录无效电平的持续时间,记为T2。通过合理设置N磁极和第一空白区域的宽度,例如N磁极的宽度d1=(1+(arcsin(X/A)+arcsin(Y/A))/π)*D/p/2,且第一空白区域的宽度为d2=D/p–d1,可使T1和T2相同。
在霍尔检测组件20正对的区域从N磁极变到第一空白区域时,霍尔检测组件20的输出从有效电平跳变到无效电平,计时器301重新开始计时,即计时器301开始记录无效电平的持续时间。类似的,在霍尔检测组件20正对的区域从第一空白区域变到N磁极时,霍尔检测组件20的输出从无效电平跳变到有效电平,计时器301重新开始计时,即计时器301开始记录有效电平的持续时间。
由此,依此类推,如图5所示,霍尔检测组件10可输出一系列的高低电平脉冲序列,并且脉冲序列的占空比为50%。控制芯片50通过分别检测高电平的持续时间和低电平的持续时间即是否超过预设时间阈值即可判断驱动电机是否堵转,进而判断门板是否卡滞。
更具体地,假设v为磁性组件10的移动速度即运动部件的运动速度,s为磁性组件10上N磁极与第一空白区域的宽度之和的一半,则未发生卡滞的情况下,有效电平或无效电平的持续时间tn为s/v,即tn=s/v。可以理解的是,在磁性组件10的检测面上间隔分布多个S磁极时,s为磁性组件10上S磁极与第二空白区域的宽度之和的一半。
由此,如果运动部件发生卡滞,霍尔检测组件20正对的磁性组件10的区域不再发生变化,霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。
如图6所示,在t1时刻运动部件发生卡滞、且在t2时刻恢复,tn为未发生卡滞时高电平或低电平的持续时间,td为预设时间阈值,当运动部件发生卡滞时,当前电平状态维持不变,如果当前电平的持续时间即计时器301的计时时间大于预设时间阈值td,则判断为运动部件发生卡滞,换言之,如果高电平或低电平超出了预设时间阈值td还未发生跳变,则判断为运动部件发生卡滞。其中,预设时间阈值td=k*tn,k值的取值范围可为1-4,且优选1.5。
如上所述,本发明实施例检测运动部件是否发生卡滞的过程如下:
在运动部件移动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集霍尔检测组件20输出的感应信号,当感应信号发生高低电平跳变时控制计时器 301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断运动部件发生卡滞,控制芯片302输出卡滞保护信号,以执行运动部件保护动作,例如控制运动部件停止移动或反向移动;如果计时器302的计时值小于等于预设时间阈值td,则判断运动部件未发生卡滞,控制芯片302可控制运动部件继续正向转动。
另外,根据本发明的一个具体实施例,如图7所示,霍尔检测组件20的电源端通过第一电阻R1与预设电源VCC例如+5V相连,霍尔检测组件20的接地端接地,霍尔检测组件20的电源端与接地端之间并联第一电容C1,其中,霍尔检测组件20的检测端感应磁性组件10的磁极,霍尔检测组件20的输出端输出感应信号。
进一步地,如图7所示,空调器的电机堵转检测装置还包括输出电路40,输出电路40与霍尔检测组件20的输出端相连,输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,霍尔检测组件20可为5V供电,从而霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对高低电平脉冲序列的高低电平持续时间进行计时,并通过计时时间与预设时间阈值的比较判断判断运动部件是否发生卡滞。
此外,根据本发明的一个具体实施例,如图13和14所示,驱动电机100可驱动门板300。本发明实施例的运动部件的检测控制装置可判断门板300是否卡滞例如是否遇到障碍物。具体地,在门板300向开门方向或关门方向运动时,磁性组件10随着门板300同步移动,磁性组件10上的N磁极(或S磁极)和空白区域交替经过霍尔检测组件20,霍尔检测组件20输出稳定的高低电平脉冲序列,占空比为50%。
当门板300发生卡滞,例如有异物卡住门板300或者手指不慎伸于其中时,门板300停止不动,霍尔检测组件20对应的区域不再变化,霍尔检测组件20的输出电平会持续为高电平或者持续为低电平,控制单元30通过检测高低电平的持续时间是否超过预设时间阈值td即可判断门板300是否发生卡滞例如是否遇到障碍物。
由此,能够有效检测门板是否发生卡滞,缩短检测时间,快速获得门板的卡滞信息,从而及时采取相应策略对门板的运动进行调整,防止对用户造成伤害例如夹住手指等,避免对驱动部件造成损坏,同时提高了用户使用体验满意度。
综上,根据本发明实施例提出的空调器中运动部件的检测控制装置,磁性组件在运动部件移动时相对霍尔检测组件移动,通过霍尔检测组件感应磁性组件磁极变化以生成感应信号,进而控制单元根据接收到的感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,该装置检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
实施例二:
根据本发明的一个具体实施例,如图1b、图2a、3b以及图13和图14所示,驱动部件可为驱动电机,运动部件可为空调器的门板300,门板300为可滑动门板,其中,可通过驱动电机100驱动空调器的门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制单元30可通过驱动电机100驱动门板300打开,当空调器关闭时空调器的控制单元30可通过驱动电机100驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
根据本发明的一个实施例,驱动电机可为步进电机,步进电机采用开环控制,控制单元30可通过磁性组件和霍尔检测组件的结构检测步进电机是否发生堵转,也就是说检测门板300是否发生卡滞,从而防止步进电机持续处于过盈状态,防止对步进电机本身以及产品运行产生不利影响。
如图1b、图2a、3b所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁性组件10、x个霍尔检测组件20和控制单元30。
其中,磁性组件10固定在空调器的运动部件例如门板300上,更具体地,磁性组件10可固定于在运动部件朝向空调器内部的一侧,磁性组件10的检测面上间隔分布多个N磁极或多个S磁极。根据本发明的一个具体实施例,如图2a所示,当磁性组件10的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域;当磁性组件10的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域。也就是说,当磁性组件10的检测面上间隔充满N磁极时,N磁极与第一空白区域间隔分布在磁性组件10上,即磁性组件10上的排布规律为N磁极-第一空白区域-N磁极-第一空白区域;当磁性组件10上间隔充满S磁极时,S磁极与第二空白区域间隔分布在磁性组件10上,即磁性组件10的排布规律为S磁极-第二空白区域-S磁极-第二空白区域,其中,空白区域包括第一空白区域和第二空白区域不带有任何磁性即指无磁性区域。由此,在本实施例中,磁性组件10可为单极性磁性组件。
x个霍尔检测组件20与磁性组件10上磁极的磁性相匹配,x个霍尔检测组件20固定在空调器本体上,且x个霍尔检测组件20靠近磁性组件10的检测面设置,x个霍尔检测组件20在运动部件移动时感应磁性组件10的磁极变化以对应生成x路感应信号,x为大于1的整数。需要说明的是,x个霍尔检测组件20的检测端相对空调器的运动部件设置,换言之,x个霍尔检测组件20可对应磁性组件10的检测面设置,并且x个霍尔检测组件20可靠近磁性组件10但不接触,在磁性组件10的磁场感应范围内即可。
具体而言,在磁性组件10上可间隔充满N磁极与第一空白区域,当运动部件移动时,磁性组件10随着运动部件同步移动,磁性组件10上的N磁极与第一空白区域可交替经过每个霍尔检测组件20,每个霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。或者,在磁性组件10上可间隔充满S磁极与第二空白区域,当运动部件移动时,磁性组件10随着运动部件同步移动,磁性组件10上的S磁极与第二空白区域可交替经过每个霍尔检测组件20,每个霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。
控制单元30与x个霍尔检测组件20相连,控制单元30根据x路感应信号判断运动部件是否卡滞。
具体来说,以磁性组件10的检测面上间隔分布多个N磁极为例说明,在运动部件移动过程中,磁性组件10随着运动部件移动,而x个霍尔检测组件20固定不动,磁性组件10的检测面上的N磁极和第一空白区域依次通过每个霍尔检测组件20,x个霍尔检测组件20感应磁性组件10的磁极变化从而依次输出x路感应信号例如高低电平脉冲序列,当运动部件按照预设速度移动时x个霍尔检测组件20输出的x路感应信号将符合相应的规律,而当运动部件停止不动时x个霍尔检测组件20感应的磁极将会保持不变,x路感应信号将无法符合相应的规律,由此,控制单元30根据x路感应信号判断运动部件的状态,例如运动部件是否卡滞。
应当理解的是,磁性组件10的检测面上间隔分布多个S磁极的情况与前述间隔分布多个N磁极的情况类似,区别在于,磁性组件10的检测面上的S磁极和第二空白区域依次通过每个霍尔检测组件20,这里不再详细赘述。
根据本发明的一个具体实施例,x个霍尔检测组件20的连接线可与磁性组件10的运动方向平行。
根据本发明的一个实施例,如图2a所示,磁性组件10可为条状磁带,但不限于此,例如磁性组件10还可为片状磁性组件或条状磁性组件等。
根据本发明的一个实施例,磁性组件10可以可拆卸方式例如粘帖、卡接螺纹连接方式固定在运动部件例如门板300上。也就是说,条状磁带可固定在运动部件上,从而,在运动 部件移动时条状磁带可随之同步移动。
由此,磁性组件10固定于门板300,x个霍尔检测组件20可固定在空调器本体上,从而,整体安装便捷,避免带来走线问题。
根据本发明的一个实施例,如图2a和图3b所示,磁性组件10的多个N磁极或多个S磁极沿着运动部件的移动方向设置。也就是说,磁性组件10可固定于运动部件上,且方向与运动部件的运动方向平行。换言之,沿着运动部件移动方向例如门板300的开门/关门方向,磁性组件10上依次间隔布满多个N磁极或S磁极。由此,在运动部件移动时,磁性组件10上的N磁极(或S磁极)和空白区域可交替通过每个霍尔检测组件20,使每个霍尔检测组件20产生相应的感应信号。
更具体地,磁性组件10可安装于运动部件的任意位置。以门板300为例,磁性组件10优选安装于门板300的中部,其中,当门板300为两个即采用双开关门机构时,可选择单侧安装或双侧安装,即可在其中一个门板上安装磁性组件10,也可在两个门板上均安装磁性组件10。
进一步地,根据本发明的一个实施例,如图2a和图3b所示,多个N磁极或S磁极以等宽方式设置,也就是说,当磁性组件10的检测面上间隔分布多个N磁极时,每个N磁极的宽度均相同;或者当磁性组件10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同的宽度相同。另外,根据本发明的一个具体示例,磁性区域即N磁极磁性区域的宽度与第一空白区域的宽度也可近似相等,或者磁性区域即S磁极磁性区域的宽度与第二空白区域的宽度也可近似相等。
需要说明的是,磁性区域与空白区域的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的霍尔感应参数而定。
具体地,可根据以下公式获取N磁极或S磁极的磁性区域宽度:
d1=(1+(arcsin(X/A)+arcsin(Y/A))/π)*D/p/2,
其中,d1为N磁极或S磁极的磁性区域宽度,A为N磁极或S磁极的最大磁密,X为霍尔检测组件的动作点,Y为霍尔检测组件的释放点,D为磁性组件10沿着运动部件的移动方向的宽度,p为N磁极或S磁极的个数。
也就是说,可根据N磁极个数设置N磁极的磁性区域宽度,或者,可根据S磁极个数设置S磁极的磁性区域宽度。
相应地,可根据以下公式获取第一空白区域或第二空白区域的宽度:
d2=D/p–d1,
其中,d2为第一空白区域或第二空白区域的宽度,d1为N磁极或S磁极的磁性区域宽 度,D为磁性组件10沿着运动部件的移动方向的宽度,p为N磁极或S磁极的个数。
也就是,可根据N磁极的个数和N磁极的磁性区域宽度设置第一空白区域的宽度,或者可根据S磁极的个数和S磁极的磁性区域宽度设置第二空白区域的宽度。
当然,应当理解的是,N磁极的宽度和第一空白区域的宽度可相等,S磁极的宽度和第二空白区域的宽度也可相等,从而简化磁性组件的设计、制作难度。
在本实施例中,x个霍尔检测组件20均为单极型霍尔元件,单极型霍尔元件20与磁性组件10的检测面上的磁极的磁性相匹配,其中,当磁性组件10的检测面上间隔分布多个N磁极时,单极型霍尔元件为N极型霍尔元件;当磁性组件10的检测面上间隔分布多个S磁极时,单极型霍尔元件为S极型霍尔元件。也就是说,单极型霍尔元件的选型与单极磁性组件配合,如果单极磁性组件的检测面的磁性为N极型,则单极型霍尔也选用N极型,如果单极磁性组件的检测面的磁性为S极型,则单极型霍尔也选用S极型。
根据本发明的一个实施例,x个霍尔检测组件20例如霍尔元件可采用贴片和插件型两种封装形式,x个霍尔检测组件20均固定在PCB(Printed Circuit Board;印制电路板)板上并通过PCB板固定于空调本体上,位于磁性组件10的一侧,靠近磁性组件10但非接触,在磁场可感应范围内。
根据本发明的一个实施例,相邻的两个N磁极或S磁极之间分布有空白区域,每个霍尔检测组件20可根据感应到的磁极类型生成相应的感应信号,即每个霍尔检测组件20在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域即无磁性区域时生成无效电平,例如有效电平可为高电平且无效电平可为低电平,或者有效电平可为低电平且无效电平可为高电平,电平状态具体可根据霍尔检测组件20的类型确定。
这样,当N磁极和第一空白区域交替经过每个霍尔检测组件20或者S磁极和第二空白区域交替经过每个霍尔检测组件20时,每个霍尔检测组件20将输出稳定的高低电平脉冲序列,由此,x个霍尔检测组件20输出的x路高低电平脉冲序列的周期固定且相同、占空比为50%。
由此,磁性组件10上的N磁极和S磁极可做到十分密集(磁极宽度可做到1-2mm),灵敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
进一步地,根据本发明的一个实施例,x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据N磁极与第一空白区域的宽度之和错开第一预设距离,或者,x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据S磁极与第二空白区域的宽度之和错开第二预设距离。
也就是说,x个霍尔检测组件20可错列分布,x个霍尔检测组件20可匹配磁性组件10的N磁极与第一空白区域宽度错开第一预设距离,以使x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,或者,x个霍尔检测组件20可匹配磁性组件10的S磁极与第二空白区域宽度错开第二预设距离,以使x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,从而,成倍提升检测灵敏度。如图3b所示,以三个霍尔检测组件20为例,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开预设距离,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开预设距离,并且,以磁性组件10向图3b中箭头所示的开门方向移动为例,中间的霍尔检测组件20B输出的感应信号滞后左边的霍尔检测组件20A预设相位角,右边的霍尔检测组件20C输出的感应信号滞后中间的霍尔检测组件20B预设相位角。
具体地,可根据以下公式确定第一预设距离或第二预设距离:
d=s/x+n*2s
其中,d为第一预设距离或第二预设距离,s为磁性组件10上N磁极与第一空白区域的宽度之和的一半,即言,s=(d1+d2)/2,d1为N磁极的宽度,d2为第一空白区域的宽度,或者S磁极与第二空白区域的宽度之和的一半,即言,s=(d3+d4)/2,d3为S磁极的宽度,d4为第二空白区域的宽度,x为霍尔检测组件20的个数,n为任意整数。
需要说明的是,n为任意整数,具体数值的确定只要满足霍尔检测组件20在排布空间上不会相互干扰即可。
具体地,以霍尔检测组件20的个数x=3为例,n取1,计算第一预设距离或第二预设距离可得d=s/3+2s,即任意相邻的两个霍尔检测组件20之间错开s/3+2s。更具体地,如图3b所示,假设右边的霍尔检测组件20A位于第i个磁极的起始位置,中间的霍尔检测组件20B相对于右边的霍尔检测组件20错开(s/3+2s),即位于第i+2个磁极的1/3位置处,左边的霍尔检测组件20A相对于中间的霍尔检测组件20B错开(s/3+2s),即位于第i+4个磁极的2/3位置处,相应地,在磁性组件10向图3b中箭头所示的开门方向移动时,中间的霍尔检测组件20B输出的感应信号相对于左边的霍尔检测组件20A输出的感应信号滞后60°,右边的霍尔检测组件20C输出的感应信号相对于中间的霍尔检测组件20B输出的感应信号滞后60°。
根据本发明的一个实施例,每个霍尔检测组件在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平,x路感应信号构造出y种电平状态组合,y>x。其中,电平状态组合的数量y为每一路感应信号的电平状态数量的x倍,即y=2x。
如图8所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于在y种电平状态组合中的任一种电平状态组合出现时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;控制芯片302与计时器301相连,控制芯片302还与x个霍尔检测组件20相连,控制芯片302用于在任一种电平状态组合的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
也就是说,x个霍尔检测组件20匹配磁性组件10的N磁极与第一空白区域的宽度之和的一半错开预设距离或者匹配S磁极与第二空白区域的宽度之和的一半错开第二预设距离,即x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,因而同一时刻可形成不同的电平状态组合。控制芯片302通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断驱动电机是否堵转,进而判断运动部件是否发生卡滞。由此,采用多霍尔检测组件分布错列,可进一步成倍缩短检测时间,可达到成倍降低检测时间的效果。
具体来说,以N磁极为例说明,S磁极的情况与N磁极相类似,不再详细赘述。在运动部件移动时,磁性组件10随着运动部件同步移动,x个霍尔检测组件20固定不动,磁性组件10上的N磁极和第一空白区域交替经过x个霍尔检测组件20,x个霍尔检测组件20分别产生占空比为50%的高低电平脉冲序列。
相邻两个霍尔检测组件20依据上述公式d=s/x+n*2s错开预设距离,其中,预设距离包括第一预设距离和第二预设距离,相应地,相邻两个霍尔检测组件20可得到相差180°/x相位角的波形。由此,可以把每路波形中一个周期均分成2x种电平状态组合,并且,每种电平状态组合的持续时间tn是任一路信号的高电平状态或低电平状态的持续时间的1/x,即tn=s/v/x,其中,v为磁性组件10的移动速度即运动部件的运动速度,s为磁性组件10上N磁极与第一空白区域的宽度之和的一半,x为霍尔检测组件20的个数。由此,采用多霍尔检测组件分布错列,可进一步成倍缩短检测时间,例如采用多少个霍尔传感器即可把检测时间降低多少倍。
可以理解的是,在磁性组件的检测面上间隔分布多个S磁极时,s为磁性组件10上S磁极与第二空白区域的宽度之和的一半。
如图10所示,以x=3,d=35°为例,三个霍尔检测组件20可输出各迟后60°相位角的三路波形,即霍尔检测组件20B的输出波形相对于霍尔检测组件20A的输出波形滞后60°,霍尔检测组件20C的输出感应信号相对于霍尔检测组件20B的输出波形滞后60°。由此,可以把每路波形中一个周期均分成六种电平状态组合,即六种电平状态组合分别为100、110、111、011、001、000,其中,1代表高电平,0代表低电平,并且,每种电平状态组合的持续时间tn是任一路信号的高电平或低电平状态的持续时间的1/3,tn=s/v/3,从而检测灵敏度提高了三倍。
当运动部件发生卡滞时,每个霍尔检测组件20对应的磁极不再变化,所以每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。如图11所示,运动部件在t1时刻发生卡滞、且在t2时刻恢复,tn为未发生卡滞时每种电平状态组合的持续时间,td为预设时间阈值,当发生卡滞时,三路波形维持当前的电平状态不变,当持续时间大于td时即判断运动部件卡滞。其中,预设时间阈值td=k*tn,k的取值范围为1-4,优选为1.5。
如上所述,本发明实施例检测运动部件是否卡滞的检测过程如下:
在运动部件移动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集x个霍尔检测组件20输出的感应信号,当任意一路感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断运动部件卡滞,控制芯片302输出卡滞保护信号,以执行保护动作,例如控制运动部件停止移动或反向移动;如果计时器301的计时值小于等于预设时间阈值td,则判断运动部件未发生卡滞,控制芯片302可控制运动部件继续正向转动。
由此,能够有效检测运动部件是否遇到障碍物,并缩短检测时间,可快速获得门板的阻滞信息,做到轻微触碰即可检测阻滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。
进一步地,根据本发明的一个具体实施例,如图9所示,控制单元30与x个霍尔检测组件20还可连接异或门电路50,其中,异或门电路50用于对x路感应信号进行异或运算以生成检测信号,控制单元30用于根据检测信号判断运动部件是否卡滞。其中,异或运算为逻辑运算,运算规则为两个信号相同为0,不同为1。例如1异或0结果为1,0异或0结果为0,1异或1结果也为0。
具体地,检测信号可为一路高低电平脉冲序列,换言之,异或门电路50可将x路高低电平脉冲序列转换为一路高低电平脉冲序列。异或门电路50输出的检测信号的周期为感应信号的1/x,也就是说,异或门电路50输出的检测信号的高电平状态或低电平状态的持续时间与每种电平状态组合的持续时间tn相等。当霍尔检测组件20为三个时,异或门电路50分别与三个霍尔检测组件20相连以对应接收各迟后60°相位角的三路波形。例如,异或门电路50可包括第一异或门和第二异或门,第一异或门的第一输入端和第二输入端分别与霍尔检测组件20A和霍尔检测组件20B分别相连,第二异或门的第一输入端与霍尔检测组件20C相连,第二异或门的第二输入端与第一异或门的输出端相连,第二异或门的第二输入端用于输出异或运算后生成的检测信号。也就是说,先将霍尔检测组件20A输出的感应信号跟霍尔检测组件20B输出的检测信号进行异或运算,然后得出的结果再与霍尔检测组件20C 输出的感应信号进行异或运算,就可以得出最后的运算结果即检测信号。
如图10和11所示,把每路波形中一个周期均分成六种电平状态组合,即六种电平状态组合分别为100、110、111、011、001、000,异或门电路50在电平状态组合为100时输出高电平,异或门电路50在电平状态组合为110时输出低电平,异或门电路50在电平状态组合为111时输出高电平,异或门电路50在电平状态组合为011时输出低电平,异或门电路50在电平状态组合为001时输出高电平,异或门电路50在电平状态组合为000时输出低电平,由此,三个霍尔检测组件20依次输出100、110、111、011、001、000六种电平状态组合至异或门电路50,异或门电路50输出一路高低电平脉冲序列,该高低电平脉冲序列中高电平或低电平持续时间为输入的每路波形的1/3。
当运动部件发生卡滞时,每个霍尔检测组件20对应的磁极不再变化,所以每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平,进而异或门电路50的输出电平持续为高电平或者持续为低电平。如图11所示,运动部件在t1时刻发生卡滞、且在t2时刻恢复,tn为未发生卡滞时异或门电路50的输出电平的持续时间,td为预设时间阈值,当发生卡滞时,异或门电路50的输出电平保持不变,当持续时间大于td时即判断运动部件卡滞。其中,预设时间阈值td=k*tn,k的取值范围为1-4,优选为1.5。
如上所述,本发明实施例检测运动部件是否卡滞的检测过程如下:
在运动部件移动时控制芯片302开启检测功能,并控制计时器301开始计时,异或门电路50对x个霍尔检测组件20输出的x路感应信号进行异或逻辑运算以生成一路检测信号,控制芯片302可采集该检测信号,当该检测信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断运动部件卡滞,控制芯片302输出卡滞保护信号,以执行保护动作,例如控制运动部件停止移动或反向移动;如果计时器301的计时值小于等于预设时间阈值td,则判断运动部件未发生卡滞,控制芯片302可控制运动部件继续正向转动。
由此,能够有效检测运动部件是否遇到障碍物,并缩短检测时间,可快速获得门板的阻滞信息,做到轻微触碰即可检测阻滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。
另外,根据本发明的一个具体实施例,如图12所示,x个霍尔检测组件20的电源端均通过第一电阻R1与预设电源VCC(例如+5V)相连,x个霍尔检测组件20的接地端接地,x个霍尔检测组件20的电源端与接地端之间均并联第一电容C1,其中,每个霍尔检测组件20的检测端感应磁性组件10的磁极变化,每个霍尔检测组件20的输出端输出对应的感应信号。
进一步地,如图12所示,空调器中运动部件的检测控制装置还包括x个输出电路40,x个输出电路40分别与x个霍尔检测组件20的输出端对应相连,每个输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与对应的霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,每个霍尔检测组件20可为5V供电,从而每个霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,每个高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对x路高低电平脉冲序列的电平状态组合的持续时间进行计时,并通过计时时间与预设时间阈值的比较判断运动部件是否发生卡滞。
此外,根据本发明的一个具体实施例,如图13和14所示,驱动电机100可驱动门板300。本发明实施例的空调器中运动部件的检测控制装置可门板300是否卡滞例如是否遇到障碍物。具体地,在磁性组件10随着门板300同步移动,磁性组件10上的N磁极和第一空白区域交替经过x个霍尔检测组件20或者S磁极和第二空白区域交替经过x个霍尔检测组件20,x个霍尔检测组件20分别输出稳定的高低电平脉冲序列,占空比为50%。
当门板300发生卡滞,例如有异物卡住门板300或者手指不慎伸于其中时,门板300停止不动,每个霍尔检测组件20对应的磁极不再变化,每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。控制单元30通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断门板300是否发生卡滞例如遇到障碍物。
由此,能够有效检测门板300是否遇到障碍物,并缩短检测时间,可快速获得门板的卡滞信息,做到轻微触碰即可检测卡滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。并且通过磁性组件与多霍尔检测组件可缩短检测时间,提升检测灵敏度,防止对用户造成伤害例如夹住手指等,提升用户的体验。
根据本发明实施例提出的空调器中运动部件的检测控制装置,在运动部件移动时通过x个霍尔检测组件感应磁性组件的磁极变化以对应生成x路感应信号,进而控制单元根据x路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对运动部件的移动进行调整,避免对驱动运动部件的驱动部件损坏,并且通过磁性组件与多霍尔检测组件可缩短检测时间,提升检测灵敏度。此外,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
实施例三:
需要说明的是,在实施例三中,空调器的门板检测装置即为空调器中运动部件的检测控制装置,第一感应信号即为前面实施例中的有效电平,第二感应信号即为前面实施例中的无效电平,预设距离即为第三预设距离,电机即为驱动电机,磁性组件的充磁面即为检测面。
根据本发明的一个实施例,如图1b、2b、3c以及图13和图14所示,可通过电机100驱动空调器的门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制单元30可通过电机100驱动门板300打开,当空调器关闭时空调器的控制单元30可通过电机100驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
根据本发明的一个实施例,电机100可为步进电机,步进电机可采用开环控制,控制单元30可通过磁性组件和多个霍尔检测组件的结构检测门板是否发生阻滞,防止门板发生阻滞时步进电机持续处于过盈状态,防止对电机本身以及产品运行产生不利影响。
如图1b、2b、3c以及图13和图14所示,本发明实施例的空调器的门板检测装置包括:磁性组件10、x个霍尔检测组件20和控制单元30。
其中,磁性组件10固定在门板300上,更具体地,磁性组件10可固定于在门板300朝向空调器内部的一侧,磁性组件10具有P个N磁极和Q个S磁极即磁性组件10的检测面上间隔分布有多个N磁极和/或多个S磁极,其中,P、Q为大于1的整数;x个霍尔检测组件20固定在空调器本体上,且x个霍尔检测组件20靠近磁性组件10固定设置,x个霍尔检测组件20在门板移动时感应磁性组件10的磁极变化以对应生成x路感应信号,x为大于1的整数;控制单元30与x个霍尔检测组件20相连,控制单元30根据x个感应信号判断门板的状态。
需要说明的是,x个霍尔检测组件20可对应磁性组件10的充磁面设置,并且x个霍尔检测组件20可靠近磁性组件10但不接触,在磁性组件10的磁场感应范围内即可。
具体来说,在门板300运动过程中,磁性组件10随着门板300同步移动,而x个霍尔检测组件20固定不动,磁性组件10的充磁面上的N磁极和S磁极依次通过每个霍尔检测组件20,x个霍尔检测组件20感应磁环10的磁极变化从而输出x路感应信号例如高低电平脉冲序列,当门板300按照预设速度移动时输出的x路感应信号将符合相应的规律,而当门板300发生阻滞,例如有异物卡住门板300或者手指不慎伸于其中时,x个霍尔检测组件20感应的磁极将会保持不变,x路感应信号将无法符合相应的规律,由此,控制单元30根据x个感应信号判断门板的状态,例如门板是否发生阻滞。
根据本发明的一个实施例,如图2b所示,磁性组件10可为条状磁带。
根据本发明的一个实施例,磁性组件10可以粘帖等方式固定在门板300上。也就是说,条状磁带可固定在门板300上,从而,在门板300移动时条状磁带可随之同步移动。
由此,磁性组件10固定于门板300,x个霍尔检测组件20可固定在空调器本体上,从而,整体安装便捷,避免带来走线问题。
根据本发明的一个实施例,如图2b和3c所示,磁性组件10的P个N磁极和Q个S磁极沿着门板300的移动方向设置。也就是说,磁性组件10可固定于门板300上,且方向与门板300的运动方向平行。换言之,沿着门板300移动方向例如开门/关门方向,磁性组件10上布满P个N磁极和Q个S磁极。由此,在门板300移动时,磁性组件10上的磁极可一一通过每个霍尔检测组件20,使每个霍尔检测组件20产生相应的感应信号。
更具体地,磁性组件10可安装于门板300的任意位置,优选门板300的中部。当门板300为两个即采用双开关门机构时,可选择单侧安装或双侧安装,即可在其中一个门板上安装磁性组件10,也可在两个门板上均安装磁性组件10。
进一步地,根据本发明的一个实施例,如图2b和3c所示,磁性组件10上N磁极和S磁极的数量可相等,即P=Q,且N磁极与S磁极可一一间隔设置。
也就是说,在条状的磁性组件10上可间隔充满N磁极与S磁极,当门板300移动时,N磁极与S磁极可交替经过每个霍尔检测组件20,每个霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。
并且,根据本发明的一个实施例,P个N磁极和Q个S磁极可以等宽方式设置,也就是说,磁性组件10上的每个N磁极和每个S磁极的宽度均相等。
需要说明的是,N磁极和S磁极的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的感应参数而定。
根据本发明的一个实施例,霍尔检测组件20可根据感应到的磁极类型生成相应的感应信号,即霍尔检测组件20在正对N磁极时生成第一感应信号,并在正对S磁极时生成第二感应信号,例如第一感应信号可为高电平且第二感应信号可为低电平,第一感应信号可为低电平且第二感应信号可为高电平,第一感应信号和第二感应信号的电平状态可根据霍尔检测组件20的类型确定。
这样,当N磁极和S磁极交替经过霍尔检测组件20时,霍尔检测组件20将输出稳定的高低电平脉冲序列,且x路高低电平脉冲序列的周期固定且相同、占空比为50%。
由此,磁性组件10上的N磁极和S磁极可做到十分密集(磁极宽度可做到1-2mm),灵敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
根据本发明的一个实施例,霍尔检测组件20例如霍尔传感器可采用贴片和插件型两种封装形式,霍尔检测组件20均固定在PCB板上并通过PCB板固定于空调本体上,位于磁性组件10的一侧,靠近磁性组件但非接触,在磁场可感应范围内。
根据本发明的一个实施例,x个霍尔检测组件20可根据磁性组件10上N磁极或者S磁极的宽度错开预设距离,其中,N磁极或者S磁极的宽度可相等。即言,可使相邻的两个霍尔检测组件20之间错开预设距离即第三预设距离。
也就是说,x个霍尔检测组件20可错列分布,x个霍尔检测组件20匹配每个磁极的宽度错开预设距离,以使x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,从而,成倍提升检测灵敏度。如图3c所示,以三个霍尔检测组件20为例,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开预设距离,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开预设距离,并且,以磁性组件10向图3c中箭头所示的开门方向移动为例,中间的霍尔检测组件20B输出的感应信号滞后左边的霍尔检测组件20A预设相位角,右边的霍尔检测组件20C输出的感应信号滞后中间的霍尔检测组件20B预设相位角。
具体地,可根据以下公式确定预设距离:
d=s/x+n*2s
其中,d为预设距离,s为N磁极或者S磁极的宽度,x为霍尔检测组件的个数,n为任意正整数。
需要说明的是,n为大于等于1的任意整数,具体数值的确定只要满足霍尔检测组件20在排布空间上不会相互干扰即可。
具体地,以霍尔检测组件20的个数x=3为例,n取1,计算预设距离可得d=s/3+2s,即相邻两个霍尔检测组件20之间错开s/3+2s。更具体地,如图3c所示,假设右边的霍尔检测组件20A位于第i个磁极的起始位置,中间的霍尔检测组件20B相对于右边的霍尔检测组件20错开(s/3+2s),即位于第i+2个磁极的1/3位置处,左边的霍尔检测组件20A相对于中间的霍尔检测组件20B错开(s/3+2s),即位于第i+4个磁极的2/3位置处,相应地,在磁性组件10向图3c中箭头所示的开门方向移动时,中间的霍尔检测组件20B输出的感应信号相对于左边的霍尔检测组件20A输出的感应信号滞后60°,右边的霍尔检测组件20C输出的感应信号相对于中间的霍尔检测组件20B输出的感应信号滞后60°。
根据本发明的一个实施例,霍尔检测组件20在正对N磁极时生成第一感应信号,并在正对S磁极时生成第二感应信号,x路感应信号构造出y种电平状态组合,y>x。其中,根据本发明的一个实施例,电平状态组合的数量y可为感应信号的数量x的2倍,即y=2x。
如图8所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于对y种检测状态中每种电平状态组合的持续时间进行计时,并在电平状态组合发生变化时重新计时;控制芯片302与计时器301相连,控制芯片302还与x个霍尔检测组件20相连,控制芯片302在任意种电平状态组合的持续时间大于预设时间阈值时判断电机堵转。
也就是说,x个霍尔检测组件20匹配N磁极或S磁极的宽度错开预设距离,即x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,因而同一时刻可形成不同的电平状态组合。控制芯片302通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断电机是否堵转。由此,采用多个霍尔检测组件分布错列,可进一步成倍缩短检测时间,可达到成倍降低检测时间的效果。
具体来说,在门板300移动时,门板300带动磁性组件10同步移动,x个霍尔检测组件20固定不动,磁性组件10上的N磁极和S磁极交替经过x个霍尔检测组件20,x个霍尔检测组件20分别产生占空比为50%的高低电平脉冲序列。
相邻两个霍尔检测组件20依据上述公式d=s/x+n*2s错开预设预设,相应地,相邻两个霍尔检测组件20可得到相差180°/x相位角的波形。由此,可以把每路波形中一个周期均分成2x种电平状态组合,并且,每种电平状态组合的持续时间tn是任一路信号的高电平状态或低电平状态的持续时间的1/x,即tn=s/v/x,其中,s为N磁极或S磁极的宽度,v为门板300的移动速度,x为霍尔检测组件20的个数。由此,采用多个霍尔检测组件分布错列,可进一步成倍缩短检测时间,例如采用多少个霍尔传感器即可把检测时间降低多少倍。
如图10所示,以x=3,d=s/3+2s为例,三个霍尔检测组件20可输出各迟后60°相位角的三路波形,即霍尔检测组件20B的输出波形相对于霍尔检测组件20A的输出波形滞后60°,霍尔检测组件20C的输出感应信号相对于霍尔检测组件20B的输出波形滞后60°。由此,可以把每路波形中一个周期均分成六种电平状态组合,即六种电平状态组合分别为100、110、111、011、001、000,其中,1代表高电平,0代表低电平,并且,每种电平状态组合的持续时间tn是任一路信号的高电平或低电平状态的持续时间的1/3,tn=s/v/3,其从而检测灵敏度提高了三倍。
当门板300发生阻滞时,每个霍尔检测组件20对应的磁极不再变化,所以每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。如图11所示,门板300在t1时刻发生阻滞、且在t2时刻恢复,tn为每种电平状态组合的持续时间,td为预设时间阈值,当发生阻滞时,三路波形维持当前的电平状态不变,当持续时间大于td时即判定为门板300发生阻滞。其中,预设时间阈值td=k*tn,k的取值范围为1-4,优选为1.5。
如上所述,本发明实施例检测门板300是否阻滞的方法如下:
在门板300移动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集x个霍尔检测组件20输出的感应信号,当任意一路感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断门板300发生阻滞,控制芯片302输出阻滞保护信号,以执行保护动作,例如控制门板300停止移动或反向移动;如果计时器301的计时值小于等于预设时间阈值td,则判断门板300未发生阻滞,控制芯片302可控制电机继续向开门或关门方向移动。
由此,能够有效检测门板300是否遇到障碍物,并缩短检测时间,可快速获得门板的阻滞信息,做到轻微触碰即可检测阻滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。
另外,根据本发明的一个具体实施例,如图12所示,x个霍尔检测组件20的电源端均通过第一电阻R1与预设电源VCC例如+5V相连,x个霍尔检测组件20的接地端接地,x个霍尔检测组件20的电源端与接地端之间均并联第一电容C1,其中,每个霍尔检测组件20的检测端感应磁性组件的磁极变化,每个霍尔检测组件20的输出端输出对应的感应信号。
进一步地,如图12所示,空调器的门板检测装置还包括x个输出电路40,x个输出电路40与x个霍尔检测组件20的输出端相连,每个输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与对应的霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,每个霍尔检测组件20可为5V供电,从而每个霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,每个高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对x路高低电平脉冲序列的电平状态组合的持续时间进行计时,并通过计时时间与预设时间阈值的比较判断门板300是否发生阻滞堵转。
综上,根据本发明实施例提出的空调器的门板检测装置,通过x个霍尔检测组件在在门板移动时感应磁性组件的磁极变化以对应生成x路感应信号,进而控制单元根据x个感应信号判断门板的状态,从而能够有效检测门板是否遇到障碍物,以便于及时采取相应措施对门板的移动进行调整,避免对机构损坏,并且通过磁性组件与多个霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定 可靠。
本发明第二方面实施例提出了一种空调器,该空调器包括所述的空调器中运动部件的检测控制装置。
根据本发明实施例提出的空调器,通过上述的运动部件的检测控制装置,能够有效判断运动部件是否发生卡滞,且检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
本发明第三方面实施例提出了一种空调器中运动部件的检测控制方法。
图15是根据本发明实施例的空调器中运动部件的检测控制方法的流程图。所述空调器包括磁性组件和至少一个霍尔检测组件,所述磁性组件固定在所述运动部件上,所述磁性组件的检测面上间隔分布有多个N磁极和/或多个S磁极,每个所述霍尔检测组件与所述磁性组件检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件固定在空调器本体上,且所述至少一个霍尔检测组件靠近所述磁性组件的检测面设置。如图15所示,方法包括以下步骤:
S1:在所述运动部件移动时,通过至少一个所述霍尔检测组件感应所述磁性组件的磁极变化以对应生成至少一路感应信号;
S2:根据至少一路所述感应信号判断所述运动部件是否卡滞。
根据本发明的一个实施例,当所述磁性组件的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置,其中,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述S磁极时生成无效电平;当所述磁性组件的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域,其中,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述第一空白区域时生成无效电平;当所述磁性组件的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域,其中,每个所述霍尔检测组件在正对所述S磁极时生成有效电平,并在正对所述第二空白区域时生成无效电平。
根据本发明的一个实施例,当所述霍尔检测组件为一个时,所述根据至少一路所述感应信号判断所述运动部件是否卡滞包括:在所述有效电平与所述无效电平进行切换时开始计时,以对所述有效电平的持续时间和所述无效电平的持续时间进行计时;当所述有效电平或所述无效电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
根据本发明的一个实施例,当所述霍尔检测组件为x个时,x个所述霍尔检测组件分别输出的x路所述感应信号构造出y种电平状态组合,所述根据至少一路所述感应信号判断所述运动部件是否卡滞,包括:在y种所述电平状态组合中的任一种所述电平状态组合出现时开始计时,以对y种所述电平状态组合中每种所述电平状态组合的持续时间进行计时;在任 一种所述电平状态组合的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。其中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
根据本发明实施例提出的空调器中运动部件的检测控制方法,在运动部件移动时通过至少一个霍尔检测组件感应磁性组件的磁极变化以对应生成至少一路感应信号,进而根据至少一路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对运动部件的移动进行调整,避免对驱动运动部件的驱动机构造成损坏,并且通过磁性组件与多霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
具体地,根据本发明的一个实施例,空调器包括霍尔检测组件和磁性组件,磁性组件固定在空调器的运动部件上,磁性组件的检测面上间隔分布多个N磁极或S磁极,霍尔检测组件与磁性组件检测面上磁极的磁性相匹配,霍尔检测组件固定在空调器本体上,且霍尔检测组件靠近磁性组件上的检测面设置,磁性组件在运动部件移动时相对霍尔检测组件移动。如图16所示,该空调器中运动部件的检测控制方法包括以下步骤:
S101:在运动部件移动时通过霍尔检测组件感应磁性组件的磁极变化以生成感应信号;
S102:根据感应信号判断运动部件是否卡滞。
根据本发明的一个实施例,当磁性组件的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域,当磁性组件的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域,霍尔检测组件在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平,根据感应信号判断运动部件是否卡滞包括:在有效电平与无效电平进行切换时开始计时,以对有效电平的持续时间和无效电平的持续时间进行计时;当有效电平或无效电平的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
根据本发明实施例提出的空调器中运动部件的检测控制方法,磁性组件在运动部件移动时相对霍尔检测组件移动,通过霍尔检测组件感应磁性组件的磁极变化以生成感应信号,进而根据接收到的感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于采取相应措施对门板运动进行调整,避免对驱动运动部件的驱动部件造成损坏,同时提高了用户体验。并且,该方法检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
具体地,根据本发明的一个实施例,空调器包括磁性组件和x个霍尔检测组件,磁性组件固定在运动部件上,磁性组件的检测面上间隔分布有多个N磁极或者多个S磁极,每个霍尔检测组件与磁性组件检测面上磁极的磁性相匹配,x个霍尔检测组件固定在空调器本体 上,且x个霍尔检测组件靠近磁性组件的检测面设置,x为大于1的整数。如图17所示,方法包括以下步骤:
S201:在运动部件移动时通过x个霍尔检测组件感应磁性组件的磁极变化以对应生成x路感应信号;
S202:根据x路感应信号判断运动部件是否卡滞。
根据本发明的一个实施例,当磁性组件的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域,当磁性组件的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域,霍尔检测组件在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平,x个霍尔检测组件分别输出的x路感应信号构造出y种电平状态组合,根据x路感应信号判断运动部件是否卡滞,包括:在y种电平状态组合中的任一种电平状态组合出现时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;在任一种电平状态组合的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
根据本发明的一个实施例,电平状态组合的数量y为每一路感应信号的电平状态数量的x倍。
综上,根据本发明实施例提出的空调器中运动部件的检测控制方法,在运动部件移动时通过x个霍尔检测组件感应磁性组件的磁极变化以对应生成x路感应信号,进而根据x路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对运动部件的移动进行调整,避免对驱动运动部件的驱动机构造成损坏,并且通过磁性组件与多霍尔检测组件可缩短检测时间,提升检测灵敏度。此外,该方法占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
此外,本发明第四方面实施例还提出了一种非临时性可读存储介质,其上存储有空调器控制程序,该程序被处理器执行时实现如本发明第三方面实施例所述的空调器中运动部件的检测控制方法。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者 隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (20)

  1. 一种空调器中运动部件的检测控制装置,其特征在于,包括:
    磁性组件,所述磁性组件固定在所述运动部件上,所述磁性组件的检测面上间隔分布有多个N磁极和/或多个S磁极;
    至少一个霍尔检测组件,所述至少一个霍尔检测组件与所述磁性组件检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件固定在空调器本体上,且所述至少一个霍尔检测组件靠近所述磁性组件的检测面设置,所述至少一个霍尔检测组件在所述运动部件移动时感应所述磁性组件的磁极变化以对应生成至少一路感应信号;
    控制单元,所述控制单元与所述至少一个霍尔检测组件相连,所述控制单元根据至少一路所述感应信号判断所述运动部件是否卡滞。
  2. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,所述磁性组件为条状磁带。
  3. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,当所述霍尔检测组件为x个,x为大于1的整数时,x个所述霍尔检测组件的连接线与所述磁性组件的运动方向平行。
  4. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,
    当所述磁性组件的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置;
    当所述磁性组件的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域;
    当所述磁性组件的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域。
  5. 根据权利要求4所述的空调器中运动部件的检测控制装置,其特征在于,当所述霍尔检测组件为x个,x为大于1的整数时,
    x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述第一空白区域的宽度之和错开第一预设距离;
    x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述S磁极与所述第二空白区域的宽度之和错开第二预设距离;
    x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极或者所述S磁极的 宽度错开第三预设距离。
  6. 根据权利要求5所述的空调器中运动部件的检测控制装置,其特征在于,根据以下公式确定所述第一预设距离或第二预设距离:
    d=s/x+n*2s
    其中,d为所述第一预设距离或所述第二预设距离或所述第三预设距离,s为所述磁性组件上所述N磁极与所述第一空白区域的宽度之和的一半,或者s为所述S磁极与所述第二空白区域的宽度之和的一半,或者s为所述N磁极或者所述S磁极的宽度,x为所述霍尔检测组件的个数,n为任意整数。
  7. 根据权利要求4所述的空调器中运动部件的检测控制装置,其特征在于,
    当所述磁性组件的检测面上分布多个N磁极和多个S磁极时,每个所述N磁极的宽度均相同且每个所述S磁极的宽度均相同;
    当所述磁性组件的检测面上间隔分布多个N磁极时,每个所述N磁极的宽度均相同;或者
    当所述磁性组件的检测面上间隔分布多个S磁极时,每个所述S磁极的宽度均相同的宽度相同。
  8. 根据权利要求7所述的空调器中运动部件的检测控制装置,其特征在于,根据以下公式获取所述N磁极或所述S磁极的磁性区域宽度:
    d1=(1+(arcsin(X/A)+arcsin(Y/A))/π)*D/p/2,
    其中,d1为所述N磁极或所述S磁极的磁性区域宽度,A为所述N磁极或所述S磁极的最大磁密,X为所述霍尔检测组件的动作点,Y为所述霍尔检测组件的释放点,D为所述磁性组件沿着所述运动部件的移动方向的宽度,p为所述N磁极或所述S磁极的个数。
  9. 根据权利要求8所述的空调器中运动部件的检测控制装置,其特征在于,根据以下公式获取所述第一空白区域或所述第二空白区域的宽度:
    d2=D/p–d1,
    其中,d2为所述第一空白区域或所述第二空白区域的宽度,d1为所述N磁极或所述S磁极的磁性区域宽度,D为所述磁性组件沿着所述运动部件的移动方向的宽度,p为所述N磁极或所述S磁极的个数。
  10. 根据权利要求2或5所述的空调器中运动部件的检测控制装置,其特征在于,
    当所述磁性组件上分布多个N磁极和多个S磁极时,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述S磁极时生成无效电平;
    当所述磁性组件上间隔分布所述多个N磁极时,每个所述霍尔检测组件在正对所述N 磁极时生成有效电平,并在正对所述第一空白区域时生成无效电平;
    当所述磁性组件上间隔分布所述多个S磁极时,每个所述霍尔检测组件在正对所述S磁极时生成有效电平,并在正对所述第二空白区域时生成无效电平。
  11. 根据权利要求10所述的空调器中运动部件的检测控制装置,其特征在于,所述控制单元包括计时器和控制芯片,所述控制芯片与所述计时器相连,其中,当所述霍尔检测组件为一个时,
    所述计时器用于在所述有效电平与所述无效电平进行切换时开始计时,以对所述有效电平的持续时间和所述无效电平的持续时间进行计时;
    所述控制芯片用于在所述有效电平或所述无效电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
  12. 根据权利要求10所述的空调器中运动部件的检测控制装置,其特征在于,当所述霍尔检测组件为x个时,x个所述霍尔检测组件分别输出的x路所述感应信号构造出y种电平状态组合,y>x,其中,
    所述计时器用于在y种所述电平状态组合中的任一种所述电平状态组合出现时开始计时,以对y种所述电平状态组合中每种所述电平状态组合的持续时间进行计时;
    所述控制芯片用于在任一种所述电平状态组合的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
  13. 根据权利要求12所述的空调器中运动部件的检测控制装置,其特征在于,其中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
  14. 一种空调器,其特征在于,包括根据权利要求1-13中任一项所述的空调器中运动部件的检测控制装置。
  15. 一种空调器中运动部件的检测控制方法,其特征在于,所述空调器包括磁性组件和至少一个霍尔检测组件,所述磁性组件固定在所述运动部件上,所述磁性组件的检测面上间隔分布有多个N磁极和/或多个S磁极,每个所述霍尔检测组件与所述磁性组件检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件固定在空调器本体上,且所述至少一个霍尔检测组件靠近所述磁性组件的检测面设置,所述方法包括以下步骤:
    在所述运动部件移动时,通过至少一个所述霍尔检测组件感应所述磁性组件的磁极变化以对应生成至少一路感应信号;
    根据至少一路所述感应信号判断所述运动部件是否卡滞。
  16. 根据权利要求15所述的空调器中运动部件的检测控制方法,其特征在于,
    当所述磁性组件的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述 S磁极一一间隔设置,其中,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述S磁极时生成无效电平;
    当所述磁性组件的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域,其中,每个所述霍尔检测组件在正对所述N磁极时生成有效电平,并在正对所述第一空白区域时生成无效电平;
    当所述磁性组件的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域,其中,每个所述霍尔检测组件在正对所述S磁极时生成有效电平,并在正对所述第二空白区域时生成无效电平。
  17. 根据权利要求16所述的空调器中运动部件的检测控制方法,其特征在于,当所述霍尔检测组件为一个时,所述根据至少一路所述感应信号判断所述运动部件是否卡滞包括:
    在所述有效电平与所述无效电平进行切换时开始计时,以对所述有效电平的持续时间和所述无效电平的持续时间进行计时;
    当所述有效电平或所述无效电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
  18. 根据权利要求16所述的空调器中运动部件的检测控制方法,其特征在于,当所述霍尔检测组件为x个时,x个所述霍尔检测组件分别输出的x路所述感应信号构造出y种电平状态组合,所述根据至少一路所述感应信号判断所述运动部件是否卡滞,包括:
    在y种所述电平状态组合中的任一种所述电平状态组合出现时开始计时,以对y种所述电平状态组合中每种所述电平状态组合的持续时间进行计时;
    在任一种所述电平状态组合的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
  19. 根据权利要求18所述的空调器中运动部件的检测控制方法,其特征在于,其中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
  20. 一种非临时性可读存储介质,其特征在于,其上存储有空调器控制程序,该程序被处理器执行时实现如权利要求15-19中任一所述的空调器中运动部件的检测控制方法。
PCT/CN2017/118021 2017-01-05 2017-12-22 空调器以及空调器中运动部件的检测控制装置和方法 WO2018126910A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN2017100080917 2017-01-05
CN201710008091.7A CN106679100B (zh) 2017-01-05 2017-01-05 空调器及空调器的门板检测装置
CN2017104017043 2017-05-31
CN2017206252217 2017-05-31
CN2017104009329 2017-05-31
CN201710400932.9A CN107166656B (zh) 2017-05-31 2017-05-31 空调器以及空调器中运动部件的检测控制装置和方法
CN201710401704.3A CN107015279B (zh) 2017-05-31 2017-05-31 空调器及空调器中运动部件的检测控制装置和方法
CN201720625221.7U CN207336773U (zh) 2017-05-31 2017-05-31 空调器及空调器中运动部件的检测控制装置

Publications (1)

Publication Number Publication Date
WO2018126910A1 true WO2018126910A1 (zh) 2018-07-12

Family

ID=62790945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118021 WO2018126910A1 (zh) 2017-01-05 2017-12-22 空调器以及空调器中运动部件的检测控制装置和方法

Country Status (1)

Country Link
WO (1) WO2018126910A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328016A (zh) * 2017-05-31 2017-11-07 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法
WO2022247777A1 (zh) * 2021-05-24 2022-12-01 浙江盾安人工环境股份有限公司 控制方法及控制装置、电子膨胀阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348722A (ja) * 1989-07-18 1991-03-01 Nippon Soken Inc 位置検出装置
JPH0359416A (ja) * 1989-07-28 1991-03-14 Nissan Motor Co Ltd 磁気式回転センサ
US20110248709A1 (en) * 2010-04-12 2011-10-13 Murata Machinery, Ltd. Magnetic Pole Detection System and Magnetic Pole Detection Method
WO2014174586A1 (ja) * 2013-04-23 2014-10-30 三菱電機株式会社 磁気式位置検出装置及び磁気式位置検出方法
CN105492872A (zh) * 2013-07-23 2016-04-13 巴鲁夫公司 用于来自磁条长度测量系统的传感器信号的动态线性化的方法
CN106679100A (zh) * 2017-01-05 2017-05-17 广东美的制冷设备有限公司 空调器及空调器的门板检测装置
CN107015279A (zh) * 2017-05-31 2017-08-04 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置和方法
CN107166656A (zh) * 2017-05-31 2017-09-15 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348722A (ja) * 1989-07-18 1991-03-01 Nippon Soken Inc 位置検出装置
JPH0359416A (ja) * 1989-07-28 1991-03-14 Nissan Motor Co Ltd 磁気式回転センサ
US20110248709A1 (en) * 2010-04-12 2011-10-13 Murata Machinery, Ltd. Magnetic Pole Detection System and Magnetic Pole Detection Method
WO2014174586A1 (ja) * 2013-04-23 2014-10-30 三菱電機株式会社 磁気式位置検出装置及び磁気式位置検出方法
CN105492872A (zh) * 2013-07-23 2016-04-13 巴鲁夫公司 用于来自磁条长度测量系统的传感器信号的动态线性化的方法
CN106679100A (zh) * 2017-01-05 2017-05-17 广东美的制冷设备有限公司 空调器及空调器的门板检测装置
CN107015279A (zh) * 2017-05-31 2017-08-04 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置和方法
CN107166656A (zh) * 2017-05-31 2017-09-15 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328016A (zh) * 2017-05-31 2017-11-07 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法
CN107328016B (zh) * 2017-05-31 2020-05-05 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法
WO2022247777A1 (zh) * 2021-05-24 2022-12-01 浙江盾安人工环境股份有限公司 控制方法及控制装置、电子膨胀阀

Similar Documents

Publication Publication Date Title
CN106679100B (zh) 空调器及空调器的门板检测装置
CN106705392B (zh) 空调器及其电机堵转检测装置和门板控制系统
CN107015279B (zh) 空调器及空调器中运动部件的检测控制装置和方法
CN107015280B (zh) 空调器及空调器中运动部件的检测控制装置和方法
CN107045146B (zh) 空调器及空调器中运动部件的检测控制装置
CN100420146C (zh) 马达驱动装置
US7242323B2 (en) Electronic device having touch sensor
WO2018126910A1 (zh) 空调器以及空调器中运动部件的检测控制装置和方法
CN107328016B (zh) 空调器以及空调器中运动部件的检测控制装置和方法
RU2009107021A (ru) Устройство для предотвращения перегрузки двигателя постоянного тока с возбуждением от постоянных магнитов
US8125202B2 (en) Protection circuit for protecting a half-bridge circuit
US11088641B2 (en) Motor driving device having lock protection mode
CN101412427A (zh) 用于电动自行车电动机驱动器的反向踏板检测电路
WO2018126909A1 (zh) 空调器及空调器中运动部件的检测控制装置和方法
US8653741B2 (en) Multiple capacitive (button) sensor with reduced pinout
CN107166656B (zh) 空调器以及空调器中运动部件的检测控制装置和方法
US9897468B2 (en) Position detection device
CN107015278B (zh) 空调器及空调器中运动部件的检测控制装置和方法
CN107015281B (zh) 空调器及空调器中运动部件的检测控制装置和方法
JP2013094042A (ja) モータ駆動装置
RU2006131579A (ru) Энергосберегающий выключатель
US20080218245A1 (en) Solid-state switch
CN207301358U (zh) 空调器及空调器中运动部件的检测控制装置
CN203869417U (zh) 一种冰箱电磁门控制系统
US8289128B2 (en) Monitoring system and input/output device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17890502

Country of ref document: EP

Kind code of ref document: A1