WO2018126909A1 - 空调器及空调器中运动部件的检测控制装置和方法 - Google Patents

空调器及空调器中运动部件的检测控制装置和方法 Download PDF

Info

Publication number
WO2018126909A1
WO2018126909A1 PCT/CN2017/118012 CN2017118012W WO2018126909A1 WO 2018126909 A1 WO2018126909 A1 WO 2018126909A1 CN 2017118012 W CN2017118012 W CN 2017118012W WO 2018126909 A1 WO2018126909 A1 WO 2018126909A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
detecting
hall
component
magnetic ring
Prior art date
Application number
PCT/CN2017/118012
Other languages
English (en)
French (fr)
Inventor
袁光
李洪涛
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720014260.3U external-priority patent/CN206531937U/zh
Priority claimed from CN201720014258.6U external-priority patent/CN207073919U/zh
Priority claimed from CN201710008092.1A external-priority patent/CN106705392B/zh
Priority claimed from CN201720625261.1U external-priority patent/CN207074268U/zh
Priority claimed from CN201710401694.3A external-priority patent/CN107328016B/zh
Priority claimed from CN201720625264.5U external-priority patent/CN207301358U/zh
Priority claimed from CN201710401711.3A external-priority patent/CN107015280B/zh
Priority claimed from CN201710405381.5A external-priority patent/CN107045146B/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018126909A1 publication Critical patent/WO2018126909A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation

Definitions

  • the application is based on the Chinese patent application with the application numbers of 2017100080921, 2017200142586 and 2017200142603, the application date is January 5, 2017, and the application numbers are 2017104017113, 2017206252611, 2017104053815, 2017206252645 and 2017104016943, and the application date is May 31, 2017.
  • the priority of these Chinese patent applications is hereby incorporated by reference.
  • the present invention relates to the field of air conditioner technology, and in particular, to a detection and control device for a moving component in an air conditioner, an air conditioner, a method for detecting and controlling a moving component in an air conditioner, and a non-transitory readable storage medium.
  • More and more sliding door or other rotary motion devices are used in related air conditioners, for example, the door panel is opened to the sides or one side after the air conditioner is started, or the rotating member is rotated to the grille to align the air outlet position, and the air conditioner is turned off.
  • the rear door panel is closed or the rotating member is rotated to the position of the shielding plate at the air outlet, so that the aesthetics of the product is greatly improved.
  • the power mechanism of such a door panel is usually an open-loop controlled stepping motor with a large torque. If the foreign object is stuck during the opening or closing of the door panel or the finger is inadvertently extended during the closing process, the control unit does not know and stops the motor. At this time, the power mechanism is in an interference state, so that not only the product but also the product Damage to the structural parts and electrical appliances, if it is caught in the fingers, it will also cause a great pain, which seriously reduces the feeling of use of the product.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an embodiment of the first aspect of the present invention provides a detection and control device for a moving part in an air conditioner, comprising: a magnetic ring fixed to a driving part that drives the moving part, the magnetic Having a plurality of N magnetic poles and/or a plurality of S magnetic poles spaced apart on the detecting surface of the ring; at least one Hall detecting component matching the magnetic properties of the magnetic poles on the detecting surface of the magnetic ring.
  • the at least one Hall detecting component is fixedly disposed adjacent to the detecting surface of the magnetic ring, and the at least one Hall detecting component senses a magnetic pole change of the magnetic ring to generate at least when the driving component drives the moving component to move a sensing signal; a control unit, wherein the control unit is connected to the at least one Hall detecting component, and the control unit determines whether the moving component is stuck according to the at least one sensing signal.
  • the detecting and controlling device for the moving part in the air conditioner can sense the magnetic pole of the magnetic ring synchronously moving with the driving component by at least one Hall detecting component fixedly disposed near the magnetic ring to generate at least one sensing signal correspondingly, thereby controlling
  • the unit determines whether the moving component is stuck according to the received at least one sensing signal, so that the state of the moving component such as the door panel can be detected in real time, and whether the moving component is stuck or not is quickly determined, so as to timely take corresponding measures to adjust the driving action of the driving component.
  • the device has high detection sensitivity, small space occupation, low cost, convenient installation, long service life, stability and reliability.
  • the N magnetic poles and the S magnetic poles are spaced apart one by one; when the magnetic ring is detected When a plurality of the N magnetic poles are spaced apart on the surface, a first blank area is distributed between two adjacent N magnetic poles; when a plurality of the S magnetic poles are spaced apart on the detecting surface of the magnetic ring, A second blank area is distributed between two adjacent S magnetic poles.
  • each of the N magnetic poles when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the detecting surface of the magnetic ring, each of the N magnetic poles has the same width and the width of each of the S magnetic poles is the same; When the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring, the width of each of the N magnetic poles is the same; or, when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring, each The width of the S magnetic poles is the same.
  • the magnetic region angular width of the N magnetic pole or the S magnetic pole is obtained according to the following formula:
  • is the angular width of the magnetic region of the N magnetic pole or the S magnetic pole
  • A is the maximum magnetic density of the N magnetic pole or the S magnetic pole
  • X is the operating point of the Hall detecting component
  • Y is The release point of the Hall detecting component, where p is the number of the N magnetic poles or the S magnetic poles.
  • the angular width of the region of the first blank region or the second blank region is obtained according to the following formula:
  • is the angular width of the region of the first blank region or the second blank region
  • is the angular width of the magnetic region of the N magnetic pole or the S magnetic pole
  • p is the N magnetic pole or the S magnetic pole number.
  • the Hall detecting component when a plurality of N magnetic poles or S magnetic poles are spaced apart on the detecting surface of the magnetic ring, the Hall detecting component is a unipolar Hall element, and the unipolar Hall element
  • the magnetic poles of the magnetic poles on the magnetic ring are matched, wherein when the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring, the unipolar Hall element is an N-pole type Hall element;
  • the unipolar Hall element is an S pole type Hall element.
  • the x Hall detecting components when the number of Hall detecting components is x, the x Hall detecting components are staggered by a predetermined angle with respect to the magnetic ring, and the x Hall detecting components are in the driving The component drives the moving component to sense a magnetic pole change of the magnetic ring to generate an x-way sensing signal, wherein x is an integer greater than one.
  • the preset angle includes a first preset angle, a second preset angle, and a third preset angle, wherein when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring, Any two adjacent Hall detecting components of the x Hall detecting components are staggered by a first predetermined angle according to a sum of the number of the N magnetic poles and the first blank area; when the detecting surface of the magnetic ring When a plurality of S magnetic poles are spaced apart, any two adjacent Hall detecting components of the plurality of Hall detecting components are shifted by a third preset angle according to a sum of the number of the N magnetic poles and the S magnetic pole; When a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the detecting surface of the magnetic ring, any two adjacent Hall detecting components of the x Hall detecting components are according to the N magnetic poles and the S magnetic poles The sum of the numbers is staggered by the third preset angle.
  • the first preset angle, the second preset angle, and the third preset angle are determined according to the following formula:
  • d is the first preset angle, the second preset angle, and the third preset angle
  • x is the number of the Hall detecting components
  • n is an integer, and is spaced on the detecting surface of the magnetic ring
  • s is the sum of the number of the N magnetic poles and the plurality of S magnetic poles
  • s is a case where a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring.
  • a sum of the N magnetic poles and the number of the first blank regions, or s is a number of the S magnetic poles and the second blank regions when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring with.
  • the Hall detecting component when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the magnetic ring, the Hall detecting component generates a first level when facing the N magnetic poles, and is facing the opposite a second level is generated when the S magnetic pole is described; when the plurality of N magnetic poles are spaced apart on the magnetic ring, the Hall detecting component generates a first level when facing the N magnetic pole, and is facing Generating a second level when the first blank area is; when the plurality of S magnetic poles are spaced apart on the magnetic ring, the Hall detecting component generates a first level when facing the S magnetic pole, and A second level is generated while facing the second blank area.
  • control unit includes a timer and a control chip, and the control chip is coupled to the timer, wherein when the Hall detection component is one, the timer is used in the Timing is started when the first level is switched with the second level to time the duration of the first level and the duration of the second level; the control chip is used to When the duration of the second level or the second level is greater than the preset time threshold, it is determined that the moving component is stuck.
  • the x-channel sensing signals construct a combination of y-level levels, y>x, wherein the timer is used to combine in a level state Timing is started when a change occurs to time the duration of each level state combination in the y-level level state combination; the control chip judges when the duration of any kind of level state combination is greater than a preset time threshold The moving parts are stuck.
  • the number y of combinations of level states is x times the number of level states of each sensed signal.
  • the drive component includes a drive motor that is secured to a rotating component of the drive motor.
  • the rotating assembly of the drive motor is a drive gear or drive shaft.
  • the magnetic ring is provided with a fixing hole through which the magnetic ring is riveted to the driving member.
  • the detecting surface of the magnetic ring is a peripheral side of the magnetic ring or an inner end surface of the magnetic ring.
  • the at least one Hall detection component is secured to the air conditioner body.
  • x of the Hall detecting components are disposed on a circuit board of the air conditioner, and x x of the Hall detecting components are staggered on the circuit board according to the preset angle Straight line distance.
  • the x Hall detecting components when x is an even number, are symmetrically arranged on both sides of a vertical line between the circuit board and a center of the magnetic ring; when x is an odd number
  • the (x+1)/2 Hall detecting components are disposed with respect to a vertical line between the circuit board and the center of the magnetic ring, the remaining (x-1) Hall detecting components are symmetrically arranged. Two sides of a vertical line between the circuit board and the center of the magnetic ring.
  • the linear distance of the i-th Hall detection component from the (i+1)th Hall detection component on the circuit board is obtained according to the following formula:
  • L is the linear distance of the i-th Hall detecting component and the (i+1)th Hall detecting component on the circuit board
  • R a vertical distance between the circuit board and a center of the magnetic ring
  • d is the predetermined angle
  • the linear distance of the i-th Hall detection component from the (i+1)th Hall detection component on the circuit board is obtained according to the following formula:
  • L is the linear distance of the i-th Hall detecting component and the (i+1)th Hall detecting component on the circuit board
  • R a vertical distance between the circuit board and a center of the magnetic ring
  • d is the predetermined angle
  • an embodiment of the second aspect of the present invention provides an air conditioner including the detection control device for a moving part in the air conditioner.
  • the state of the moving component such as the door panel can be detected in real time by the detecting and controlling device of the moving component, and the moving component can be quickly judged to be stuck, so as to timely take corresponding measures to adjust the driving action of the driving component.
  • the detection sensitivity is high, the occupied space is small, the cost is low, the installation is convenient, the service life is long, and the system is stable and reliable.
  • a third aspect of the present invention provides a method for detecting and controlling a moving part in an air conditioner, the air conditioner including a magnetic ring and at least one Hall detecting component, the magnetic ring being fixed to drive the a plurality of N magnetic poles and/or a plurality of S magnetic poles are spaced apart from each other on the detecting surface of the moving member, and the at least one Hall detecting component is fixedly disposed adjacent to the detecting surface of the magnetic ring.
  • the method includes the steps of: sensing, by the at least one Hall detecting component, a magnetic pole change of the magnetic ring when the driving component drives the moving component to correspondingly generate at least one sensing signal; determining, according to the at least one sensing signal, the method Whether the moving parts are stuck.
  • At least one Hall detecting component fixedly disposed adjacent to the magnetic ring may sense a magnetic pole of a magnetic ring that moves synchronously with the driving component to generate at least one sensing signal. Further, it is determined whether the moving component is stuck according to the received at least one sensing signal, so that the state of the moving component such as the door panel can be detected in real time, and whether the moving component is stuck or not is quickly determined, so as to timely take corresponding measures to adjust the driving action of the driving component. To avoid damage to the drive components and improve the user experience. Moreover, the method has high detection sensitivity, small occupied space, low cost, convenient installation, long service life, stability and reliability.
  • the Hall detection The component when a plurality of N magnetic poles and a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring, the N magnetic poles and the S magnetic poles are spaced apart one by one, wherein the Hall detection The component generates a first level when facing the N magnetic poles and generates a second level when facing the S magnetic poles; when a plurality of the N magnetic poles are spaced apart on the detecting surface of the magnetic ring a first blank area is disposed between two adjacent N magnetic poles, wherein the Hall detecting component generates a first level when facing the N magnetic pole, and when facing the first blank area Generating a second level; when a plurality of the S magnetic poles are spaced apart on the detecting surface of the magnetic ring, a second blank area is distributed between two adjacent S magnetic poles, and the Hall detecting component is A first level is generated while facing the S magnetic pole, and a second level is generated when facing the second blank area.
  • the determining, according to the at least one sensing signal, whether the moving component is stuck includes: at the first level and the second Timing is started when switching is performed to time the duration of the first level and the duration of the second level; the duration of the second level or the second level is greater than a pre- When the time threshold is set, it is judged that the moving component is stuck.
  • the x Hall detecting components when the number of Hall detecting components is x, the x Hall detecting components are staggered by a predetermined angle with respect to the magnetic ring, and the x Hall detecting components are in the driving
  • the component drives the moving component to sense a magnetic pole change of the magnetic ring to generate an x-channel sensing signal, and the x-channel sensing signal constructs a y-level level state combination, where x is an integer greater than 1, y>x
  • the determining, according to the at least one sensing signal, whether the moving component is stuck includes: starting timing when a level state combination changes, to combine each level state of the y-level level state combinations The duration is timed; the motion component is judged to be stuck when the duration of any kind of level state combination is greater than the preset time threshold.
  • the number y of combinations of level states is x times the number of level states of each sensed signal.
  • a fourth aspect of the present invention provides a non-transitory readable storage medium having an air conditioner control program stored thereon, which is executed by a processor to implement an embodiment of the third aspect of the present invention.
  • the method for detecting and controlling moving parts in an air conditioner is executed by a processor to implement an embodiment of the third aspect of the present invention.
  • FIG. 1 is a block diagram showing a detection control device for a moving part in an air conditioner according to an embodiment of the present invention
  • FIG. 2a is a top plan view of a magnetic ring in which a magnetic ring is laterally magnetized, in accordance with one embodiment of the present invention
  • Figure 2b is a side view of Figure 2a, wherein the magnetic poles are distributed with N magnetic poles and a first blank area;
  • FIG. 3 is a schematic structural view of a magnetic ring according to an embodiment of the present invention, wherein the magnetic ring is magnetized with an end face and the N magnetic pole and the first blank region are distributed on the magnetic ring;
  • FIG. 4 is a schematic structural view of a detecting and controlling device for a moving part in an air conditioner according to an embodiment of the present invention, wherein the magnetic ring is magnetized on the side and the N magnetic pole and the first blank area are distributed on the magnetic ring;
  • FIG. 5 is a schematic structural view of a detecting and controlling device for a moving part in an air conditioner according to an embodiment of the present invention, wherein a magnetic ring is magnetized with an end surface and an N magnetic pole and a first blank area are distributed on the magnetic ring;
  • FIG. 6 is a block diagram showing a detection control device for a moving part in an air conditioner according to an embodiment of the present invention
  • FIG. 7 is a waveform diagram of a sensing signal output by a Hall detecting component according to an embodiment of the present invention, in which a moving component is not stuck;
  • FIG. 8 is a waveform diagram of a sensing signal output by a Hall detecting component according to an embodiment of the present invention, wherein a moving component is stuck at time t1;
  • FIG. 9 is a circuit schematic diagram of a Hall detecting assembly in accordance with one embodiment of the present invention.
  • Figure 10 is a schematic illustration of a door panel of an air conditioner in accordance with one embodiment of the present invention.
  • Figure 11 is a schematic view showing a mounting position of a driving member according to an embodiment of the present invention.
  • Figure 12 is a block diagram showing a detection control device for a moving part in an air conditioner according to an embodiment of the present invention
  • Figure 13a is a plan view of a magnetic ring of a detecting and controlling device for a moving part in an air conditioner according to another embodiment of the present invention, wherein the magnetic ring is magnetized on the side;
  • Figure 13b is a side view of Figure 13a, wherein the magnetic poles are distributed with N magnetic poles and a first blank area;
  • Figure 14a is a plan view of a magnetic ring of a detecting and controlling device for a moving part in an air conditioner according to another embodiment of the present invention, wherein the magnetic ring is magnetized with an end face;
  • Figure 14b is a side view of Figure 14a, wherein the magnetic poles are distributed with N magnetic poles and a first blank area;
  • Figure 15 is a block diagram showing a detection control device for a moving part in an air conditioner according to another embodiment of the present invention.
  • 16 is a waveform diagram of a sensing signal output by a Hall detecting component according to another embodiment of the present invention, in which a moving component is not stuck;
  • 17 is a waveform diagram of a sensing signal output by a Hall detecting component according to another embodiment of the present invention, wherein a moving component is stuck at time t1;
  • FIG. 18 is a circuit schematic diagram of a Hall detecting assembly in accordance with another embodiment of the present invention.
  • FIG. 19 is a schematic structural view of a magnetic ring according to another embodiment of the present invention, wherein the magnetic ring is magnetized with an end face and N magnetic poles and S magnetic poles are distributed on the magnetic ring;
  • Figure 20 is another side view of Figure 2a, wherein the magnetic poles are distributed with N magnetic poles and S magnetic poles;
  • Figure 21a is a plan view of a magnetic ring according to still another embodiment of the present invention, wherein the magnetic ring is magnetized with an end face and N magnetic poles and S magnetic poles are distributed on the magnetic ring;
  • Figure 21b is a side view of a magnetic ring according to still another embodiment of the present invention, wherein the magnetic ring is magnetized on the side and the N magnetic pole and the S magnetic pole are distributed on the magnetic ring;
  • FIG. 22 is a circuit schematic diagram of a Hall detecting assembly in accordance with still another embodiment of the present invention.
  • FIG. 23 is a block schematic diagram of an air conditioner in accordance with one embodiment of the present invention.
  • Figure 24 is a schematic view showing a mounting structure of an air conditioner according to an embodiment of the present invention.
  • Figure 25 is a schematic structural view of a motor stall detecting device of an air conditioner according to an embodiment of the present invention, wherein the magnetic ring is magnetized on the side;
  • 26 is a schematic structural view of a motor stall detection device of an air conditioner according to an embodiment of the present invention, wherein the magnetic ring is magnetized by an end surface;
  • Figure 27 is a block diagram showing a door panel control system of an air conditioner according to an embodiment of the present invention.
  • Figure 28 is a side elevational view of a magnetic ring in accordance with still another embodiment of the present invention, wherein the magnetic ring is magnetized on the side and the S magnetic pole and the second blank area are distributed on the magnetic ring;
  • 29 is a schematic structural diagram of a detection and control device for a moving part in an air conditioner according to an embodiment of the present invention, wherein the Hall detecting components are two;
  • FIG. 30 is a schematic structural diagram of a detecting and controlling device for a moving part in an air conditioner according to an embodiment of the present invention, wherein the Hall detecting components are three;
  • FIG. 31 is a schematic structural diagram of a detecting and controlling device for a moving part in an air conditioner according to an embodiment of the present invention, wherein the Hall detecting component is four;
  • Figure 32 is a side elevational view of Figures 29, 30, and 21 in the A direction, in accordance with one embodiment of the present invention.
  • Figure 33 is a side elevational view of Figure 29, Figure 30, and Figure 21 in the direction A, in accordance with another embodiment of the present invention.
  • Figure 34 is a side elevational view of Figure 29, Figure 30, and Figure 21 in the direction A, in accordance with yet another embodiment of the present invention.
  • 35 is a flow chart showing a method of detecting and controlling a moving part in an air conditioner according to an embodiment of the present invention.
  • 36 is a flow chart showing a method of detecting and controlling a moving part in an air conditioner according to an embodiment of the present invention
  • FIG. 37 is a flow chart showing a method of detecting and controlling a moving part in an air conditioner according to another embodiment of the present invention.
  • a sliding door detection and control device in which a grating strip is added on a door panel, and an illumination tube and a light-receiving tube are respectively installed on both sides of the grating strip.
  • the gap between the grating strips is high and low.
  • the flat pulse feedback signal monitors whether the door is stuck or not by detecting the duration of the high or low level.
  • the related art also proposes a sliding door detection control device, in which the principle that the impedance of the parallel circuit is changed by the change of the inductance value after the obstacle is clamped by the inductor and the capacitor parallel resonance circuit, and the impedance detection circuit detects whether the door panel is stuck.
  • the device is respectively provided with an illumination tube and a light-receiving tube on both sides of the grating, and the structure is complicated and difficult, and the grating and the door plate need a certain gap.
  • the photoelectric principle in order to avoid multiple factors such as ambient light interference, the light transmission and the light-shielding gap of the grating cannot be too narrow, so that the high-low level duration of the feedback pulse is lengthened, so that the detection time of the stuck time is lengthened, and the detection sensitivity is lowered. If you hold your fingers, the pain will last for a long time, making it difficult for users to accept.
  • the inductance used in the parallel circuit is a metal piece with copper foil traces, and the inductance value changes from the deformation of the metal sheet caused by the obstacle when stuck, but each time the door panel is closed At the same time, the metal piece will be severely squeezed. Although there is no obstacle at this time, the detection function is also turned off without causing false detection, but the metal piece will still be severely deformed. Over time, it will bring irreversible deformation to the metal piece. Or complete damage, resulting in a limited life of the device and the detection function is likely to fail as the operating time becomes longer. Moreover, the device is only applicable to the single-side switch door device, and cannot be used for the double-side switch door device, and is only suitable for the stuck in the closing process, and cannot detect the stuck in the opening process.
  • an embodiment of the present invention provides a detection and control device for a moving component in an air conditioner.
  • the detection control device for a moving part in an air conditioner is described below with reference to the accompanying drawings, wherein the detection control device of the moving part is for detecting whether a moving part such as a door panel is stuck or not, or whether it is encountered obstacle.
  • the detecting and controlling device for the moving part in the air conditioner of the embodiment of the present invention includes a magnetic ring 10, at least one Hall detecting unit 20, and a control unit 30.
  • the magnetic ring 10 is fixed on the driving component of the driving moving component, and a plurality of N magnetic poles and/or a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10; at least one Hall detecting component 20 and the detecting surface of the magnetic ring 10
  • the magnetic poles of the upper magnetic poles are matched, at least one Hall detecting component 20 is fixedly disposed near the detecting surface of the magnetic ring 10, and at least one Hall detecting component 20 induces a magnetic pole change of the magnetic ring 10 to generate at least a corresponding change when the driving component drives the moving component to move.
  • One way sensing signal; the control unit 30 is connected to at least one Hall detecting component 20, and the control unit 30 determines whether the moving component is stuck according to at least one sensing signal.
  • the N magnetic poles and the S magnetic poles are spaced one by one; when the detecting surface of the magnetic ring 10 is spaced apart In the case of N magnetic poles, a first blank area is distributed between two adjacent N magnetic poles; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, a second blank is distributed between two adjacent S magnetic poles region.
  • the width of each N magnetic pole is the same and the width of each S magnetic pole is the same; when the magnetic ring 10 is When the plurality of N magnetic poles are spaced apart on the detecting surface, the width of each of the N magnetic poles is the same; or when the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, the width of each of the S magnetic poles is the same.
  • the x Hall detecting assemblies 20 when the number of Hall detecting assemblies 20 is x, the x Hall detecting assemblies 20 are offset from the magnetic ring 10 by a predetermined angle, and the x Hall detecting assemblies 20 are driven when the driving member drives the moving members.
  • the magnetic pole of the magnetic ring 10 is induced to change to generate an x-way sensing signal, where x is an integer greater than one.
  • the preset angle includes a first preset angle, a second preset angle, and a third preset angle, wherein when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, x ho Any two adjacent Hall detecting components in the detecting component 20 are staggered by a first predetermined angle according to the sum of the number of N magnetic poles and the first blank area; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, Any two adjacent Hall detecting components of the x Hall detecting components 20 are staggered by a third predetermined angle according to the sum of the number of N magnetic poles and S magnetic poles; when the detecting surface of the magnetic ring 10 is distributed with a plurality of N magnetic poles and In the case of S magnetic poles, any two adjacent Hall detecting components of the x Hall detecting components 20 are staggered by a third predetermined angle according to the sum of the number of N magnetic poles and S magnetic poles.
  • each Hall detecting component 20 when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the magnetic ring 10, each Hall detecting component 20 generates a first level when facing the N magnetic poles, and when facing the S magnetic poles Generating a second level; each of the Hall detecting components 20 generates a first level when facing the N poles and a second when facing the first blank area when the plurality of N poles are spaced apart on the magnetic ring 10 Level; when a plurality of S poles are spaced apart on the magnetic ring 10, each Hall detecting component 20 generates a first level when facing the S magnetic pole and a second level when facing the second blank area.
  • the first level here is equivalent to the effective level in the later embodiment, and the second level is equivalent to the inactive level in the later embodiment.
  • the control unit 30 includes a timer 301 and a control chip 302, and the control chip 302 is coupled to the timer 301, wherein, as shown in Figure 6, the Hall detection component 20
  • the timer 301 is configured to start timing when the first level and the second level are switched to time the duration of the first level and the duration of the second level; the control chip 302 is used for When the duration of the second level or the second level is greater than the preset time threshold, it is judged that the moving part is stuck.
  • the x-channel sensing signals construct a combination of y-level levels, y>x, wherein the timer 301 is used for powering
  • the timing is started when the flat state combination changes, and the duration of each level state combination in the y type level state combination is counted; the control chip 302 judges when the duration of any kind of level state combination is greater than the preset time threshold.
  • the moving parts are stuck.
  • the number y of the level state combinations is x times the number of level states of each sense signal.
  • the detection and control device for the moving parts in the air conditioner of the embodiment of the present invention will be described in detail below by way of five embodiments.
  • a detection and control device for a moving part in an air conditioner includes a magnetic ring 10, a Hall detecting component 20, and a control unit 30.
  • the magnetic ring 10 is fixed to a driving member that drives the moving member, and a plurality of N magnetic poles or S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10.
  • a first blank area is distributed between two adjacent N magnetic poles; when the detecting surface of the magnetic ring 10 is spaced apart
  • a second blank area is distributed between two adjacent S magnetic poles.
  • the magnetic ring 10 when the magnetic ring 10 is filled with N magnetic poles, the N magnetic poles are spaced apart from the first blank area on the detecting surface of the magnetic ring 10, that is, the arrangement rule on the magnetic ring 10 is N magnetic pole - the first blank area -N magnetic pole - first blank area; when the magnetic ring 10 is spaced apart from the S magnetic pole, the S magnetic pole is spaced apart from the blank area on the detecting surface of the magnetic ring 10, that is, the arrangement of the magnetic ring 10 is S magnetic pole - second Blank area - S magnetic pole - second blank area, wherein the blank area comprises the first blank area or the second blank area without any magnetic, ie non-magnetic area.
  • the magnetic ring 10 can be a unipolar magnetic ring.
  • the Hall detecting component 20 is matched with the magnetic polarity of the magnetic pole on the detecting surface of the magnetic ring 10.
  • the Hall detecting component 20 is fixedly disposed near the detecting surface of the magnetic ring 10.
  • the Hall detecting component 20 senses the magnetic ring 10 when the driving component drives the moving component to move. N magnetic poles or S magnetic poles to generate an inductive signal. It should be noted that the Hall detecting component 20 can be disposed relative to the detecting surface of the magnetic ring 10, and the Hall detecting component 20 can be close to the magnetic ring 10 but not in contact, and is disposed within the magnetic field sensing range of the magnetic ring 10.
  • the N magnetic poles and the first blank area may be spaced apart on the circular magnetic ring 10.
  • the driving component drives the moving parts to move
  • the N magnetic pole and the first blank area may alternately pass through the Hall detecting component 20, Hall.
  • the sensing component 20 will output a corresponding sensing signal based on the sensed magnetic pole changes.
  • the circular magnetic ring 10 may be spaced apart from the S magnetic pole and the second blank area.
  • the driving component drives the moving component to move
  • the S magnetic pole and the second blank area may alternately pass through the Hall detecting component 20, and the Hall detecting component 20 will output a corresponding sensing signal according to the sensed magnetic pole change.
  • the control unit 30 is connected to the Hall detecting unit 20, and the control unit 30 determines whether the moving member is stuck based on the sensing signal.
  • a plurality of N magnetic poles are distributed at intervals on the detecting surface of the magnetic ring 10.
  • the driving member drives the moving member to move
  • the magnetic ring 10 moves with the driving member, and the Hall detecting assembly 20 is fixed.
  • the N magnetic pole and the first blank area on the detecting surface of the magnetic ring 10 sequentially pass through the Hall detecting component 20, and the Hall detecting component 20 passes the N magnetic pole of the magnetic ring 10 to output an inductive signal such as a high and low level pulse signal as a driving part.
  • the control unit 30 determines the state of the driving component according to the sensing signal, for example, whether the driving component is blocked or not, and then judges Whether the moving parts driven by the drive unit are stuck.
  • the case where the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10 is similar to the case where the plurality of N magnetic poles are spaced apart from each other, except that the S magnetic pole and the second blank area on the detecting surface of the magnetic ring 10 sequentially pass the Hall detection.
  • Component 20 will not be described here.
  • the drive member may comprise a drive motor and the magnetic ring 10 is fixed to the rotary assembly of the drive motor. That is, as the drive motor drives the moving member to move, the magnetic ring 10 rotates with the rotating assembly of the drive motor.
  • the driving motor can be a stepping motor, and the stepping motor adopts an open loop control, and the control unit 30 can detect whether the stepping motor is blocked or not by the structure of the magnetic ring and the Hall detecting component to prevent stepping.
  • the motor is continuously in an interference state to prevent adverse effects on the stepper motor itself and on the operation of the product.
  • the rotating assembly of the drive motor can be a drive gear or a drive shaft. That is, the magnetic ring 10 can be fixed to the drive gear or the drive shaft of the drive motor so that the magnetic ring 10 can rotate with the drive motor rotating.
  • the magnetic ring 10 is preferably fixed on the transmission gear close to the moving part.
  • the magnetic ring 10 is provided with a fixing hole 101.
  • the center of the magnetic ring 10 is provided with a fixing hole 101.
  • the magnetic ring 10 passes through the fixing hole 101 and a rotating component of a driving component such as a driving motor. Riveted so that it can rotate in synchronization with the drive unit. That is to say, the magnetic ring 10 can be riveted to the drive gear or the drive shaft of the drive motor through the fixing hole 101.
  • the magnetic ring 10 can also be made as a component directly with the transmission gear.
  • the Hall detecting assembly 20 can be fixed to the air conditioner body. As a result, the overall installation is convenient and avoids the problem of routing.
  • a plurality of N magnetic poles or S magnetic poles are disposed in an equal width manner. That is, when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, the width of each N magnetic pole is the same; or when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, each S magnetic pole The width is the same.
  • the width of the magnetic region that is, the N magnetic pole magnetic region
  • the width of the magnetic region may be approximately equal to the width of the first blank region, or the width of the magnetic region, that is, the S magnetic pole magnetic region and the width of the second blank region may be approximately equal. .
  • the width of the magnetic region and the blank region is as narrow as possible under the premise of ensuring the magnetic field strength, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the Hall sensing parameter of the Hall detecting component 20.
  • the angular width of the magnetic region of the N magnetic pole or the S magnetic pole can be obtained according to the following formula:
  • is the angular width of the magnetic region of the N magnetic pole or the S magnetic pole
  • A is the maximum magnetic density of the N magnetic pole or the S magnetic pole
  • X is the operating point of the Hall detecting component 20
  • Y is the releasing point of the Hall detecting component 20
  • p It is the number of N magnetic poles or S magnetic poles.
  • the angular width of the area of the first blank area or the second blank area can be obtained according to the following formula:
  • is the angular width of the region of the first blank region or the second blank region
  • is the angular width of the magnetic field of the N magnetic pole or the S magnetic pole
  • p is the number of the N magnetic poles or the S magnetic poles.
  • the width of the N magnetic pole and the width of the first blank area may be equal, and the width of the S magnetic pole and the width of the second blank area may also be equal, thereby simplifying the design and manufacturing difficulty of the magnetic ring.
  • the magnetic ring 10 has an N magnetic pole and a blank area or an S magnetic pole and a blank area.
  • the number of N magnetic poles or S magnetic poles is related to the size of the magnetic ring 10. The larger the size of the magnetic ring 10, the N magnetic pole or the S magnetic pole. The higher the total number, the higher the detection sensitivity.
  • the Hall detecting component 20 may be a unipolar Hall element, and the unipolar Hall element 20 Matching with the magnetic properties of the magnetic poles on the magnetic ring 10, wherein when the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, the unipolar Hall element is an N-pole type Hall element; when the magnetic ring 10 is When a plurality of S magnetic poles are distributed on the detection surface, the unipolar Hall element is an S pole type Hall element. That is to say, the selection of the unipolar Hall element is matched with the unipolar magnetic ring.
  • the unipolar Hall also uses the N-pole type if the unipolar type.
  • the magnetic field of the detection surface of the magnetic ring is of the S pole type, and the unipolar type Hall is also selected of the S pole type.
  • the detecting surface of the magnetic ring 10 may be a magnetic ring side or a magnetic ring end surface. That is to say, the magnetic ring 10 has two forms of side magnetization and end surface magnetization.
  • the N magnetic pole is used as an example.
  • the side magnetization can be performed, and the N magnetic pole and the first blank can be used.
  • the area is filled with the periphery of the magnetic ring 10, wherein, as shown in FIG. 2a, FIG. 2b and FIG. 4 are side views; as shown in FIG. 3 and FIG. 5, the end faces are magnetized to separate the N magnetic pole from the first blank area.
  • the end face of the magnetic ring 10 is filled.
  • the end face magnetization may be preferably performed, so that the magnetic ring 10 can be made thinner, material is saved, and cost is reduced.
  • the Hall detecting component 20 such as the Hall element may be in the form of a chip and a plug-in type, and the Hall detecting component 20 is fixed on a PCB (Printed Circuit Board) board. And fixed on the air conditioner body through the PCB board, located on one side of the magnetic ring 10, close to the magnetic ring but not in contact, within the range in which the magnetic field can be sensed.
  • PCB Print Circuit Board
  • the patch type Hall detecting component 20 can be matched with the magnetic ring 10 magnetized by the end face; as shown in FIG. 4, the plug type Hall detecting component 20 can be magnetized with the side magnetized.
  • the ring 10 is matched.
  • the patch type Hall detecting component 20 can be preferably used, because the patch type positioning is more accurate in the manufacturing process, thereby reducing the detection error, and the patch type can facilitate the automatic assembly and improvement. Assembly speed.
  • a blank area is distributed between two adjacent N magnetic poles or S magnetic poles, and the Hall detecting component 20 can generate an induced signal according to whether the N magnetic pole or the S magnetic pole is sensed, that is, the Hall detecting component.
  • An active level ie, a first level
  • an inactive level ie, a second level
  • the level can be high and the inactive level can be low, or the active level can be low and the inactive level can be high, depending on the nature of the Hall detection component 20 itself.
  • the Hall detecting component 20 when the N magnetic pole and the first blank region alternately pass through the Hall detecting component 20 or the S magnetic pole and the second blank region alternately pass through the Hall detecting component 20, the Hall detecting component 20 outputs a stable high and low level pulse sequence, and The high and low pulse sequences have a fixed period and a duty cycle of 50%.
  • the N magnetic pole or the S magnetic pole on the magnetic ring 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, thereby shortening the detection time and improving the detection sensitivity. . Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to start timing when the active level and the invalid level are switched, to time the duration of the active level and the duration of the invalid level;
  • the control chip 302 is connected to the timer 301, and the control chip is controlled.
  • 302 is configured to determine that the moving component is stuck when the duration of the active level or the inactive level is greater than the preset time threshold.
  • the case of the N magnetic pole is described as an example, and the case of the S magnetic pole is similar to that of the N magnetic pole, and will not be described in detail.
  • the driving component drives the moving component to move, for example, the driving motor rotates, the rotating component of the driving motor drives the magnetic ring 10 to rotate synchronously, and the Hall detecting component 20 is fixed, and the N magnetic pole and the first blank area on the magnetic ring 10 alternately pass through the Hall.
  • the detecting component 20 if the Hall detecting component 20 faces the N magnetic pole of the magnetic ring 10, the Hall detecting component 20 outputs an active level, at which time the timer 301 records the duration of the active level, which is recorded as T1; The detection component 20 is facing the first blank area of the magnetic ring 10, and the Hall detection component 20 outputs an inactive level, at which time the timer 301 records the duration of the inactive level, denoted as T2.
  • the output of the Hall detecting component 20 jumps from the active level to the inactive level, and the timer 301 restarts counting, that is, the timer 301. Start recording the duration of the invalid level.
  • the output of the Hall detecting component 20 jumps from the inactive level to the active level, and the timer 301 restarts timing, that is, Timer 301 begins recording the duration of the active level.
  • the Hall detecting component 20 outputs a series of high and low level pulse trains, and the duty cycle of the pulse train is 50%.
  • the control chip 302 can determine whether the driving motor is blocked or not by detecting whether the duration of the high level and the duration of the low level respectively exceed the preset time threshold, thereby determining whether the door panel is stuck.
  • the duration tn of the effective level or the inactive level is 1 in the case where no jam occurs.
  • the transmission gear of the driving member is stagnated, the area of the magnetic ring 10 facing the Hall detecting unit 20 is no longer changed, and the output level of the Hall detecting unit 20 continues to be high. Or continue to be low.
  • the moving component is stuck at time t1 and recovers at time t2
  • tn is the duration of the high level or low level when no jam occurs
  • td is the preset time threshold when the moving part occurs.
  • the current level state remains unchanged. If the duration of the current level, that is, the timer time of the timer 301 is greater than the preset time threshold td, it is determined that the moving component is stuck, in other words, if the level is high or low. If the level exceeds the preset time threshold td and no jump has occurred, it is determined that the moving part is stuck.
  • the process of detecting whether a moving component is stuck in the embodiment of the present invention is as follows:
  • the control chip 302 When the driving component drives the moving component, the control chip 302 turns on the detecting function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signal output by the Hall detecting component 20, and control the timer when the sensing signal generates a high-low level transition.
  • the control chip 302 can determine whether the timer value of the timer 301 is greater than the preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the driving motor is blocked, and then the moving component is determined to occur.
  • the control chip 302 outputs a stall protection signal to perform a protection action of the drive motor, for example, controlling the drive motor to stop rotating or reversely rotating; if the timer value of the timer 302 is less than or equal to the preset time threshold td, determining the drive motor No stalling occurs, and it is judged that the moving parts are not stuck, and the control chip 302 can control the driving motor to continue to rotate in the forward direction.
  • the power terminal of the Hall detecting component 20 is connected to the preset power source VCC, for example, +5V through the first resistor R1, and the ground terminal of the Hall detecting component 20 is grounded.
  • the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the Hall detecting component 20, wherein the detecting end of the Hall detecting component 20 senses the magnetic pole of the magnetic ring 10, and the output end of the Hall detecting component 20 outputs an sensing signal.
  • the detection control device of the moving part in the air conditioner further includes an output circuit 40 connected to the output end of the Hall detecting component 20, and the output circuit 40 includes: a second resistor R2 and a third The resistor R3, the second resistor R2 and the third resistor R3 are connected in series, and one end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC, and the other end of the second resistor R2 and the third resistor R3 connected in series
  • the control unit 30, that is, the control chip 302 is connected, and has a node between the second resistor R2 and the third resistor R3 connected in series, and the node is connected to the output end of the Hall detecting component 20.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • the Hall detecting component 20 can supply 5V, so that the Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and the high-low pulse sequence is provided to the control unit 30 through the corresponding output circuit, and is controlled.
  • the unit 30 can time the high and low level durations of the high and low level pulse sequences, and judge whether the driving motor is blocked by comparing the timing time with the preset time threshold, thereby determining whether the moving parts are stuck.
  • the moving member may be the door panel 300 of the air conditioner; for example, the driving member 100 may drive the door panel 300.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control device of the air conditioner can drive the door panel 300 to be opened by the driving component 100, and the control device of the air conditioner can be driven when the air conditioner is turned off.
  • the component 100 drives the door panel 300 to close, thereby enhancing the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the detecting and controlling device for the moving part of the embodiment of the present invention can detect whether the driving member 100 is blocked or not to determine whether the door panel 300 encounters an obstacle.
  • the driving component 100 for example, the rotating component of the driving motor drives the magnetic ring 10 to rotate synchronously, and the N magnetic pole and the blank area on the magnetic ring 10 alternately pass through the Hall detecting component 20,
  • the detection component 20 outputs a stable sequence of high and low pulse pulses with a duty cycle of 50%.
  • the control unit 30 can determine whether the driving component 100 is blocked or not by detecting whether the duration of the high and low levels exceeds the preset time threshold td, thereby determining whether the door panel 300 encounters an obstacle. That is, a stuck condition occurs.
  • the detecting and controlling device for the moving part in the air conditioner can sense the magnetic pole of the magnetic ring that moves synchronously with the driving component by the Hall detecting component fixedly disposed near the magnetic ring to generate an sensing signal, thereby controlling
  • the unit judges whether the moving component is stuck according to the received sensing signal, thereby detecting the state of the moving component such as the door panel in real time, and quickly determining whether the moving component is stuck, so as to timely take corresponding measures to adjust the driving action of the driving component, thereby avoiding Damage to the drive components while improving the user experience.
  • the device has high detection sensitivity, small space occupation, low cost, convenient installation, long service life, stability and reliability.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the detecting and controlling device for the moving parts in the air conditioner of the embodiment of the present invention includes a magnetic ring 10, x Hall detecting assemblies 20, and a control unit 30.
  • the magnetic ring 10 is fixed to a driving member that drives the moving member, and a plurality of N magnetic poles or S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10. Similar to the first embodiment, when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, a first blank area is distributed between two adjacent N magnetic poles; and a plurality of intervals are distributed on the detecting surface of the magnetic ring 10 In the case of the S magnetic pole, a second blank area is distributed between the adjacent two S magnetic poles.
  • the magnetic ring 10 can be a unipolar magnetic ring.
  • the x Hall detecting assemblies 20 are matched with the magnetic properties of the magnetic poles on the detecting surface of the magnetic ring 10, the x Hall detecting assemblies 20 are fixedly disposed near the detecting surface of the magnetic ring 10, and the x Hall detecting assemblies 20 drive the moving parts at the driving members.
  • the magnetic pole of the magnetic ring 10 is changed to generate an x-channel sensing signal, and x is an integer greater than one.
  • the x Hall detecting components 20 can be disposed corresponding to the detecting surface of the magnetic ring 10, and the x Hall detecting components 20 can be close to the magnetic ring 10 but not in contact, and can be within the magnetic field sensing range of the magnetic ring 10. .
  • the control unit 30 is connected to the x Hall detecting components 20, and the control unit 30 determines whether the moving components are stuck based on the x-channel sensing signals.
  • a plurality of N magnetic poles are distributed at intervals on the detecting surface of the magnetic ring 10, and when the driving member drives the moving member to move, the magnetic ring 10 moves with the driving member, and the x Hall detecting assemblies 20 are not fixed.
  • the N magnetic pole and the first blank area on the detecting surface of the magnetic ring 10 sequentially pass through each Hall detecting component 20, and the x Hall detecting components 20 induce the magnetic pole change of the magnetic ring 10 to output an x-channel sensing signal such as high and low power.
  • the control unit 30 determines the state of the moving component based on the x-channel sensing signal, such as whether the moving component is stuck or whether the driving component is blocked.
  • the case where the plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10 is similar to the case where the plurality of N magnetic poles are intermittently distributed, except that the S magnetic pole and the second blank area on the detecting surface of the magnetic ring 10 are different.
  • the Hall detection component 20 is sequentially passed through, and will not be described again here.
  • the drive member may comprise a drive motor and the magnetic ring 10 is fixed to the rotary assembly of the drive motor. That is, as the drive motor drives the moving member to move, the magnetic ring 10 rotates with the rotating assembly of the drive motor.
  • the driving motor can be a stepping motor
  • the stepping motor can adopt an open loop control
  • the control unit 30 can detect whether the stepping motor is blocked by the structure of the magnetic ring and the multi-Hall detecting component, thereby preventing The stepper motor is continuously in an interference state to prevent adverse effects on the motor itself and the operation of the product.
  • the rotating assembly of the drive motor is a drive gear or drive shaft. That is, the magnetic ring 10 can be fixed to the drive gear or the drive shaft of the drive motor so that the magnetic ring 10 can rotate with the drive motor rotating.
  • the magnetic ring 10 is preferably fixed on the transmission gear close to the moving part.
  • the magnetic ring 10 is provided with a fixing hole 101.
  • the center of the magnetic ring 10 is provided with a fixing hole 101, and the magnetic ring 10 passes through the fixing hole 101.
  • the driving member is riveted with a rotating member such as a driving motor so as to be rotatable in synchronization with the driving member. That is to say, the magnetic ring 10 can be riveted to the drive gear or the drive shaft of the drive motor through the fixing hole 101.
  • the magnetic ring 10 can also be made as a component directly with the transmission gear.
  • the Hall detecting assembly 20 can be fixed to the air conditioner body. As a result, the overall installation is convenient and avoids the problem of routing.
  • a plurality of N magnetic poles or S magnetic poles are disposed in an equal width manner. That is, when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, the width of each N magnetic pole is the same; or when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, each S magnetic pole The width is the same.
  • the width of the magnetic region may be approximately equal to the width of the first blank region, or the width of the magnetic region, that is, the width of the S magnetic pole region and the width of the second blank region may also be Approximately equal.
  • the width of the magnetic region and the blank region is as narrow as possible under the premise of ensuring the magnetic field strength, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the Hall sensing parameter of the Hall detecting component 20.
  • the angular width of the magnetic region of the N magnetic pole or the S magnetic pole can be obtained according to the following formula:
  • is the angular width of the magnetic region of the N magnetic pole or the S magnetic pole
  • A is the maximum magnetic density of the N magnetic pole or the S magnetic pole
  • X is the operating point of the Hall detecting component 20
  • Y is the releasing point of the Hall detecting component 20
  • p It is the number of N magnetic poles or S magnetic poles.
  • the angular width of the area of the first blank area or the second blank area can be obtained according to the following formula:
  • is the angular width of the region of the first blank region or the second blank region
  • is the angular width of the magnetic field of the N magnetic pole or the S magnetic pole
  • p is the number of the N magnetic poles or the S magnetic poles.
  • the width of the N magnetic pole and the width of the first blank area may be equal, and the width of the S magnetic pole and the width of the second blank area may also be equal, thereby simplifying the design and manufacturing difficulty of the magnetic ring.
  • the magnetic ring 10 has an N magnetic pole and a blank area or an S magnetic pole and a blank area.
  • the number of N magnetic poles or S magnetic poles is related to the size of the magnetic ring 10. The larger the size of the magnetic ring 10, the N magnetic pole or the S magnetic pole. The higher the total number, the higher the detection sensitivity.
  • the x Hall detecting components 20 are all unipolar Hall elements, and the unipolar Hall element 20 matches the magnetic properties of the magnetic poles on the magnetic ring 10, wherein the magnetic ring 10
  • the unipolar Hall element is an N-type Hall element; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, the unipolar Hall element is S Polar Hall element. That is to say, the selection of the unipolar Hall element is matched with the unipolar magnetic ring.
  • the unipolar Hall also uses the N-pole type if the unipolar type.
  • the magnetic field of the detection surface of the magnetic ring is of the S pole type, and the unipolar type Hall is also selected of the S pole type.
  • the detecting surface of the magnetic ring 10 is a magnetic ring side surface or a magnetic ring end surface. That is to say, the magnetic ring 10 has two forms of side magnetization and end surface magnetization, and is illustrated by the N magnetic pole example. As shown in FIG. 2a, FIG. 2b, FIG. 13a and FIG. 13b, the side magnetization can be performed, and the N magnetic poles can be The first blank area is filled with the periphery of the magnetic ring 10, wherein FIGS. 2a and 13a are top views, and FIGS. 2b and 13b are side views; as shown in FIG. 3, FIG. 14a and FIG.
  • FIG. 14b the end faces are magnetized, and N can be The magnetic pole and the first blank area are spaced apart from the end surface of the magnetic ring 10, wherein FIG. 14a is a plan view and FIG. 14b is a side view.
  • the Hall detecting component 20 such as the Hall element may be in the form of a chip and a plug-in type, and the Hall detecting component 20 is fixed on a PCB (Printed Circuit Board) board. And fixed on the air conditioner body through the PCB board, located on one side of the magnetic ring 10, close to the magnetic ring but not in contact, within the range in which the magnetic field can be sensed.
  • PCB Print Circuit Board
  • the patch type Hall detecting component 20 can be matched with the end surface magnetized magnetic ring 10; as shown in FIG. 13a and FIG. 13b, the plug type Hall detecting component 20 can be combined with the side.
  • the magnetized magnetic rings 10 cooperate.
  • the patch type Hall detecting component 20 can be preferably used, because the patch type positioning is more accurate in the manufacturing process, thereby reducing the detection error, and the patch type can facilitate the automatic assembly and improvement. Assembly speed.
  • a blank area is distributed between two adjacent N magnetic poles or S magnetic poles, and the Hall detecting component 20 can generate a corresponding sensing signal according to the sensed magnetic pole type, that is, the Hall detecting component 20 is
  • An active level ie, a first level
  • an inactive level ie, a second level
  • the active level may be a high level and the inactive level may be a low level
  • the active level may be a low level and the inactive level may be a high level
  • the level state may be specifically according to the Hall detecting component 20 Type is determined.
  • each Hall detecting component 20 will output a stable level.
  • the level pulse sequence whereby the x-channel high-low pulse sequence output by the x Hall detecting components 20 has a fixed and identical period and a duty ratio of 50%.
  • the N magnetic pole and the S magnetic pole on the magnetic ring 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, the detection time is shortened, and the detection sensitivity is improved. . Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • the preset angle includes a first preset angle and a second preset angle
  • the x Hall detecting components 20 Disposing the first predetermined angle according to the sum of the N magnetic poles and the first blank area; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, a second blank is distributed between the adjacent two S magnetic poles In the region, the x Hall detecting components 20 are staggered by a second predetermined angle according to the sum of the number of S magnetic poles and the blank area.
  • the adjacent two Hall detecting assemblies 20 can be staggered by a predetermined angle.
  • the x Hall detecting components 20 can be staggered, and in the case of N magnetic poles, the x Hall detecting components 20 can match the total number of N magnetic poles of the magnetic ring 10 and the first blank area and each magnetic pole.
  • the width is shifted by the first preset angle, so that the x-channel sensing signals respectively output by the x Hall detecting components 20 are sequentially shifted by the preset phase angle, thereby multiplying the detection sensitivity.
  • the Hall detecting component 20A on the left side and the Hall detecting component 20B in the middle are offset by a first preset angle, and the Hall detecting component in the middle.
  • the first predetermined angle is also offset between 20B and the right Hall detecting component 20C, and taking the clockwise rotation of the magnetic ring 10 as an example, the sensing signal outputted by the middle Hall detecting component 20B lags the left Hall detecting component 20A.
  • the preset phase angle, the sensing signal outputted by the Hall detecting component 20C on the right side is delayed by the preset phase angle of the middle Hall detecting component 20B.
  • the first preset angle or the second preset angle may be determined according to the following formula:
  • d is a first preset angle or a second preset angle
  • s is the sum of the number of N magnetic poles and the first blank area, or the sum of the number of S magnetic poles and the second blank area
  • x is Hall detection
  • the number of components, n is an arbitrary integer.
  • n is an arbitrary integer, and the specific numerical value is determined as long as the Hall detecting component 20 does not interfere with each other in the arrangement space.
  • the sensing signal outputted by the middle Hall detecting unit 20B is delayed by 60° with respect to the sensing signal output from the Hall detecting unit 20A on the left side.
  • the sensing signal output from the detecting component 20C is delayed by 60° with respect to the sensing signal output from the intermediate Hall detecting component 20B.
  • the Hall detecting component 20 generates an active level when facing the N magnetic pole or the S magnetic pole, and generates an inactive level when facing the first blank area or the second blank area, the x-channel sensing signal Construct a combination of y level levels, y>x.
  • control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to start timing when the level state combination changes, to time the duration of each level state combination in the y level level combination; the control chip 302 is connected to the timer 301, and the control chip The 302 is also coupled to the x Hall detection components 20, and the control chip 302 determines that the moving component is stuck when the duration of any of the level state combinations is greater than the preset time threshold.
  • the x Hall detecting components 20 match the N magnetic poles of the magnetic ring 10 with the first blank area or the total number of S magnetic poles and the second blank area and the width of each magnetic pole staggered by a predetermined angle, that is, x ho
  • the x-channel sensing signals respectively output by the detecting component 20 are sequentially shifted by a preset phase angle, so that different levels of state combinations can be formed at the same time.
  • the control chip 302 can determine whether the driving motor is blocked or not by detecting whether the duration of each level state combination exceeds a preset time threshold, thereby determining whether the moving component is stuck. Therefore, by using the multi-Hall detection component distribution misalignment, the detection time can be further shortened, and the detection time can be doubled.
  • the case of the N magnetic pole is described as an example, and the case of the S magnetic pole is similar to that of the N magnetic pole, and will not be described in detail.
  • the driving component drives the moving component to move, for example, the driving motor rotates
  • the rotating component of the driving motor drives the magnetic ring 10 to rotate synchronously
  • the x Hall detecting components 20 are fixed, and the N magnetic pole and the first blank area on the magnetic ring 10 alternately pass.
  • the x Hall detecting components 20 and the x Hall detecting components 20 respectively generate high and low pulse sequences having a duty ratio of 50%.
  • the rotation speed of the magnetic ring 10 can be calculated according to the rotation speed of the driving motor and the gear transmission speed ratio.
  • the rotation speed of the magnetic ring 10 can be according to the step angle and the driving pulse period. Calculated.
  • the three Hall detecting components 20 can output three waveforms of each phase angle of 60° later, that is, the output waveform of the Hall detecting component 20B is relative to The output waveform of the Hall detecting component 20A is delayed by 60°, and the output sensing signal of the Hall detecting component 20C is delayed by 60° with respect to the output waveform of the Hall detecting component 20B.
  • the drive motor stalls at time t1 and recovers at time t2
  • tn is the duration of each level state combination when no stall occurs
  • td is the preset time threshold, when stall occurs
  • the three-way waveform maintains the current level state.
  • the detection process of detecting whether the moving component is stuck in the embodiment of the present invention is as follows:
  • the control chip 302 When the driving component drives the moving component to move, the control chip 302 turns on the detecting function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signals output by the x Hall detecting components 20, and when any one of the sensing signals occurs, the high-low level jump occurs.
  • the timing control timer 301 is cleared, and the control chip 302 can determine whether the timer value of the timer 301 is greater than a preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the driving motor is blocked.
  • control chip 302 outputs a stall protection signal to perform a motor protection action, such as controlling the driving motor to stop rotating or reversely rotating; if the timer value of the timer 301 is less than or equal to the preset time threshold td, then determining The motor does not stall, and it is judged that the moving parts are not stuck, and the control chip 302 can control the driving motor to continue to rotate in the forward direction.
  • a motor protection action such as controlling the driving motor to stop rotating or reversely rotating
  • the power terminals of the x Hall detecting components 20 are all connected to the preset power source VCC, for example, +5V through the first resistor R1, and the x Hall detecting components 20
  • the grounding end is grounded, and the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the x Hall detecting components 20, wherein the detecting end of each Hall detecting component 20 senses the magnetic pole change of the magnetic ring, and each Hall The output of the detection component 20 outputs a corresponding sensing signal.
  • the detection control device of the moving part in the air conditioner further includes x output circuits 40, and the x output circuits 40 are connected to the output ends of the x Hall detecting components 20 one by one, each output
  • the circuit 40 includes a second resistor R2 and a third resistor R3.
  • the second resistor R2 and the third resistor R3 are connected in series.
  • One end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC.
  • the other end of the second resistor R2 and the third resistor R3 are connected to the control unit 30, that is, the control chip 302.
  • the second resistor R2 and the third resistor R3 connected in series have a node between the node and the output of the corresponding Hall detecting component 20. Connected.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • each Hall detecting component 20 can supply 5V, so that each Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and each high-low pulse sequence is provided through a corresponding output circuit.
  • the control unit 30 can time the duration of the level state combination of the x-way high-low pulse sequence, and judge whether the moving component is stuck by comparing the timing time with the preset time threshold.
  • the moving member may be the door panel 300 of the air conditioner, the door panel 300 is a slidable door panel; and the driving member 100 such as a driving motor may drive the door panel 300.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control device of the air conditioner can be opened by the motor to drive the door panel 300.
  • the control device of the air conditioner can drive the door panel through the motor.
  • the 300 is closed to enhance the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the detecting and controlling device for the moving part in the air conditioner of the embodiment of the present invention can detect whether or not the driving member 100 is blocked, to determine whether the door panel 300 is stuck, for example, encounters an obstacle.
  • the driving component 100 for example, the rotating component of the driving motor drives the magnetic ring 10 to rotate synchronously, the N magnetic pole on the magnetic ring and the S magnetic pole on the first blank area or the magnetic ring.
  • the second blank area alternates through x Hall detection components, and the x Hall detection components respectively output stable high and low level pulse sequences with a duty ratio of 50%.
  • the control unit 30 determines whether the driving component 100 is blocked by detecting whether the duration of each level state combination exceeds a preset time threshold, thereby determining whether the door panel 300 is stuck, for example, encounters an obstacle.
  • the magnetic ring and the multi-Hall detection component can shorten the detection time, improve the detection sensitivity, and prevent damage to the user, such as pinching the finger, etc., thereby improving the user experience.
  • the detecting and controlling device for the moving part in the air conditioner detects the magnetic pole change of the magnetic ring by the x Hall detecting components when the driving component drives the moving component to correspondingly generate the x-channel sensing signal, and further The control unit judges whether the moving component is stuck according to the x-channel sensing signal, so that it can effectively judge whether the moving component is stuck, so as to timely take corresponding measures to adjust the rotation of the motor, avoid damage to the mechanism, and pass the magnetic ring with multiple Huo
  • the detection component can shorten the detection time and improve the detection sensitivity.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • the moving part of the air conditioner can be driven by a driving part such as a driving motor, and thus, the detecting control device of the moving part in the air conditioner of the embodiment of the invention can judge whether the moving part is by detecting whether the driving part is blocked or not The stuck, for example, encounters an obstacle.
  • the motor stall detection device is the detection control device for the moving parts in the air conditioner.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the motor stall detecting device may include a Hall detecting component 20, a magnetic ring 10, and a control unit 30.
  • the magnetic ring 10 is fixed on the rotating component of the motor (ie, the driving motor in the previous embodiment), and the detecting surface of the magnetic ring 10 is, for example, spaced apart from the magnetic surface, and a plurality of N magnetic poles and a plurality of S magnetic poles, that is, the magnetic ring 10
  • the magnetizing surface is filled with P N magnetic poles and Q S magnetic poles, wherein P and Q are integers greater than 1;
  • the Hall detecting component 20 is fixedly disposed near the magnetic ring 10, and the Hall detecting component 20 rotates when the rotating component of the motor rotates.
  • the magnetic pole of the magnetic ring 10 is induced to generate an inductive signal.
  • the Hall detecting component 20 is matched with the magnetic pole of the magnetic pole on the detecting surface of the magnetic ring 10.
  • the Hall detecting component 20 can be fixedly disposed near the detecting surface of the magnetic ring 10;
  • the control unit 30 is connected to the Hall detecting unit 20, and the control unit 30 determines the state of the motor based on the sensing signal.
  • the Hall detecting component 20 can be disposed opposite to the magnetizing surface of the magnetic ring 10 and close to the magnetic ring 10 but not in contact with each other and disposed within the magnetic field sensing range of the magnetic ring 10.
  • the magnetic ring 10 can be fixed on the rotating component of the motor.
  • the magnetic ring 10 rotates with the rotation of the motor, and the Hall detecting component 20 is fixed, and the magnetic ring 10 is fixed.
  • the N magnetic pole and the S magnetic pole on the magnetizing surface sequentially pass through each Hall detecting component 20, and the Hall detecting component 20 generates an induced signal according to the polarity of the magnetic pole of the opposite magnetic ring 10, which is an N pole or an S pole, and generates the induced sensing.
  • the signal is sent to the control unit 30.
  • the control unit 30 determines the state of the motor according to the sensing signal, thereby detecting the state of the motor in real time, and quickly determining whether the motor is blocked or not, so as to timely take corresponding measures to adjust the rotation of the motor.
  • the motor may be a stepping motor, and the stepping motor may adopt an open loop control, and the control unit 30 may detect whether the stepping motor is blocked or not by the structure of the magnetic ring 10 and the Hall detecting component 20, thereby preventing The stepper motor is continuously in an interference state to prevent adverse effects on the motor itself and the operation of the product.
  • the rotating component of the motor is a drive gear or a drive shaft. That is, the magnetic ring 10 can be fixed to the drive gear or the drive shaft of the motor so that the magnetic ring 10 can rotate with the motor rotating.
  • the magnetic ring 10 can be preferably fixed to the transmission gear near the door panel end.
  • a fixing hole 101 is opened in the middle of the magnetic ring 10 to be riveted with the rotating component of the motor through the fixing hole 101, so that the magnetic ring 10 can be With the motor rotating synchronously, the installation is simple and avoids the problem of wiring.
  • the magnetic ring 10 is fixed to the transmission gear or the drive shaft of the motor through the fixing hole, and the magnetic ring 10 can also be directly formed with the transmission gear as one component.
  • the Hall detecting assembly 20 can be fixed to the air conditioner body. As a result, the overall installation is convenient and avoids the problem of routing.
  • the magnetizing surface of the magnetic ring 10 is the peripheral side surface of the magnetic ring 10 or the inner end surface of the magnetic ring 10.
  • the magnetic ring 10 has two forms of side magnetization and end surface magnetization.
  • the end face of the magnetic ring 10 is magnetized.
  • the N magnetic pole and the S magnetic pole can be spaced apart from the end surface of the magnetic ring 10.
  • the side view of the magnetic ring 10 is magnetized, and the N magnetic pole and the S magnetic pole are spaced apart from the periphery of the magnetic ring 10.
  • the magnetic ring 10 can be made thinner, material is saved, and cost is reduced.
  • the Hall detecting component 20 can be in the form of a patch and a plug-in type.
  • the Hall detecting component 20 is fixed on the PCB board and fixed on the air conditioning body through the PCB board, and is located in the magnetic ring 10. One side, close to the magnetic ring but not in contact, within the magnetic field can be sensed.
  • the Hall detecting component 20 when the magnetic ring 10 is side magnetized, the Hall detecting component 20 may be of a plug-in type. As shown in FIG. 21a, when the magnetic ring 10 is magnetized for the end surface, the Hall detecting component 20 may It is a patch type. In the embodiment of the present invention, the S-type Hall detecting component 20 can be preferably used, because the positioning of the patch is more accurate in the manufacturing process, and the detection error is smaller, and the patch type can be automated and assembled faster.
  • the N magnetic pole and the S magnetic pole can be filled on the circular magnetic ring 10, and when the motor rotates, the N magnetic pole and the S magnetic pole can alternately pass through each of the Hall detecting components 20, so that the Hall detecting component 20 can be N according to The change in the magnetic pole and the S magnetic pole generates a different detection signal.
  • P N magnetic poles and Q S magnetic poles are disposed in an equal width manner.
  • the arrangement of the magnetic ring 10 in an equal width manner means that if the magnetic ring 10 is disposed in a side manner, it is disposed with the same arc length, and if the magnetic ring 10 is disposed in an end surface manner, the same sector area is set. .
  • the width of the N magnetic pole or the S magnetic pole on the magnetic ring 10 is as narrow as possible under the premise of ensuring the strength of the magnetic field.
  • the width of the N magnetic pole or the S magnetic pole can be set to 1-2 mm, and the magnetic field strength of the magnetic ring 10 is based on The sensing parameters of the Hall detection component 20 depend on it.
  • the magnetic pole on the magnetic ring 10 has N magnetic poles and S magnetic poles.
  • the total number of N magnetic poles and S magnetic poles is related to the size of the magnetic ring 10. The larger the size of the magnetic ring 10, the more the total number of N magnetic poles and S magnetic poles. The higher the detection sensitivity.
  • the magnetic pole of the magnetic ring 10 can be made very dense, thereby greatly increasing the frequency of the feedback pulse, shortening the detection time, and improving the detection sensitivity.
  • Hall sensing component 20 generates a first level sensing signal (i.e., a first level of the foregoing embodiment) when facing the N magnetic poles and a second level when facing the S magnetic poles.
  • the sensed signal i.e., the second level of the previous embodiment.
  • the magnetic ring 10 rotates synchronously with the motor, the N magnetic pole and the S magnetic pole alternately pass above the Hall detecting assembly 20, and the Hall detecting assembly 20 is fixed, according to the alternating magnetic poles and S of the magnetic ring 10.
  • the magnetic pole outputs an inductive signal.
  • the Hall detecting component 20 When facing the N magnetic pole of the magnetic ring 10, the Hall detecting component 20 generates a first level sensing signal, and when facing the S magnetic pole of the magnetic ring 10, the Hall detecting component 20 generates a second The level sensing signal, whereby the Hall detecting component 20 outputs a series of stable high and low level pulse sequences according to the magnetic pole change of the magnetic ring 10, and the period of the high and low level pulse sequence is fixed, and the duty ratio is 50%.
  • the detection based on the Hall effect is stable and reliable, the interference is low, the pulse waveform is stable, and the high and low levels jump rapidly.
  • the first level sensing signal may be a high level
  • the second level sensing signal may be a low level
  • the first level sensing signal may be a low level
  • the second level sensing signal may be a high level It depends on the properties of the Hall detection component 20 itself.
  • the control unit 30 includes a timer 301 and a control chip 302 for timing the duration of the first level sensing signal or the second level sensing signal, and generating a level jump.
  • the timing is re-timed; the control chip 302 is connected to the timer 301, and the control chip 302 determines that the motor is stalled when the duration of the first level sensing signal or the second level sensing signal is greater than a preset time threshold.
  • the rotating component of the motor drives the magnetic ring 10 to rotate synchronously, and the Hall detecting component 20 is fixed, and the N magnetic pole and the S magnetic pole on the magnetic ring 10 alternately pass through the Hall detecting component 20, if Hall detection
  • the Hall detecting component 20 outputs a first level sensing signal, at which time the timer 301 records the duration of the first level sensing signal, which is recorded as T1; if the Hall detecting component 20 is opposite to the S magnetic pole of the magnetic ring 10, then the Hall detecting component 20 outputs a second level sensing signal.
  • the timer 301 records the duration of the second level sensing signal, which is recorded as T2, due to the N of the magnetic ring 10.
  • the width of the magnetic pole and the S magnetic pole are the same, so T1 is the same as T2.
  • the Hall detecting component 20 detects that the magnetic ring 10 jumps from the N magnetic pole to the S magnetic pole, the output first level sensing signal jumps to the second level sensing signal, and restarts the timing, that is, the timer 301. Recording the duration of the second level sensing signal, and then, when the Hall detecting component 20 detects that the magnetic ring 10 jumps from the S magnetic pole back to the N magnetic pole, the output of the second level sensing signal jumps back to the first A level sense signal is re-started, i.e., the timer 301 again records the duration of the first level sensing signal.
  • the Hall detecting component 20 outputs a series of high and low level pulse trains, and the duty cycle of the pulse train is 50%.
  • the control chip 302 can determine whether the motor is blocked by detecting whether the duration of the first level sensing signal (eg, a high level) and the duration of the second level sensing signal (eg, a low level) respectively exceed a preset time threshold. turn.
  • r is the rotational speed of the magnetic ring 10
  • the motor stalls at time t1 and recovers at time t2
  • tn is the duration of high level or low level when no stall occurs
  • td is the preset time threshold.
  • the method for detecting whether the motor is blocked or not in the embodiment of the present invention is as follows:
  • the control chip 302 When the motor rotates, the control chip 302 turns on the detection function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signal output by the Hall detecting component 20, and the control timer 301 is cleared when the sensing signal occurs high and low level transitions.
  • the control chip 302 can determine whether the timer value of the timer 301 is greater than the preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the motor is blocked, and the control chip 302 outputs the stall protection signal.
  • To perform motor protection action for example, to control the motor to stop rotating or reverse rotation; if the timer value of the timer 301 is less than or equal to the preset time threshold td, it is determined that the motor does not stall, and the control chip 302 can control the motor to continue to rotate in the forward direction.
  • the Hall detecting component 20 includes a Hall element 201 and a first capacitor C1.
  • the power terminal of the Hall element 201 is connected to the preset power source VCC through the first resistor R1, the ground terminal of the Hall element 201 is grounded, and the detecting end of the Hall element 201 senses the magnetic pole change of the magnetic ring 10, and the Hall element 201 is The output terminal outputs an inductive signal; the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the Hall element 201.
  • the Hall detecting component 20 further includes: a second resistor R2 and a third resistor R3 connected in series, one end of the second resistor R2 and the third resistor R3 connected in series and a preset The power supply VDD is connected, and the other ends of the second resistor R2 and the third resistor R3 connected in series are connected to the control unit 30.
  • the second resistor R2 and the third resistor R3 connected in series have a node, and the node is connected to the output end of the Hall element 201. .
  • the Hall detecting component 20 can supply 5V, so that the Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and the high-low pulse sequence is divided by the second resistor R2 and the third resistor R3.
  • the control chip 50 can time the duration of the level state of the high and low level pulse sequence, and judge whether the motor is blocked by comparing the timing time with the preset time threshold.
  • the motor stall detection device can generate a sensing signal by sensing a magnetic pole change of a magnetic ring that is synchronously rotated with a rotating component of the motor by a Hall detecting component fixedly disposed near the magnetic ring, and then the control unit according to the control unit
  • the generated sensing signal judges the state of the motor, so that the state of the motor can be detected in real time, and whether the motor is blocked or not is quickly determined, so that the corresponding measures can be taken to adjust the rotation of the motor in time to avoid damage to the mechanism and improve the user experience.
  • the device has high detection sensitivity, small space occupation, low cost, convenient installation, long service life, stability and reliability.
  • FIG. 23 is a block schematic diagram of an air conditioner in accordance with an embodiment of the present invention.
  • the air conditioner 200 includes a motor stall detecting device 1000.
  • the air conditioner 200 may include a motor 1001 that can be used to construct the driving component 100 of the foregoing embodiment, wherein the motor 1001 is used for driving
  • the door panel 300 of the air conditioner Specifically, the cabinet of the air conditioner has a slidable door panel 300.
  • the control device of the air conditioner can be driven to open by the motor.
  • the control device of the air conditioner can pass the motor.
  • the 1001 drive door is closed to enhance the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the motor stall detection device 1000 of the air conditioner is used to detect whether the motor is blocked or not to determine whether the door panel encounters an obstacle.
  • the motor stall detection device 1000 may include a magnetic ring 10, a Hall detecting assembly 20, and a control unit 30.
  • the magnetic ring 10 is fixed on the rotating component of the motor 1001.
  • the magnetizing surface of the magnetic ring 10 is filled with P N magnetic poles and Q S magnetic poles, wherein P and Q are integers greater than 1; the Hall detecting component 20 is close to the magnetic ring.
  • the Hall detecting component 20 induces a magnetic pole change of the magnetic ring 10 to generate a sensing signal when the rotating component of the motor 1001 rotates; the control unit 30 determines the motor 1001 according to the sensing signal. status.
  • the rotating component of the motor 1001 drives the magnetic ring 10 to rotate synchronously, and the N magnetic pole and the S magnetic pole on the magnetic ring 10 alternately pass through the Hall detecting component 20, and the Hall detecting component 20 outputs a stable output. High and low pulse sequence with 50% duty cycle.
  • the motor 1001 stops rotating, the corresponding magnetic pole of the Hall detecting component 20 does not change, and the output level of the Hall detecting component 20 continues. Is high or continues low.
  • the control unit 30 determines whether the motor 1001 is blocked by detecting whether the duration of the level state exceeds the preset time threshold, so that the door panel 300 control system determines whether the door panel 300 encounters an obstacle.
  • the air conditioner according to the embodiment of the present invention can detect the state of the motor in real time through the motor stall detection device, and quickly determine whether the motor is blocked or not, so as to timely take corresponding measures to adjust the rotation of the motor to avoid
  • the mechanism is damaged, and the user experience is improved at the same time, and the detection sensitivity is high, the occupied space is small, the cost is low, the installation is convenient, the service life is long, and the system is stable and reliable.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the motor stall detection apparatus of the air conditioner of the embodiment of the present invention includes: a magnetic ring 10, x Hall detecting components 20, and a control unit 30. .
  • the magnetic ring 10 is fixed on the rotating component of the motor, and the detecting surface of the magnetic ring 10, that is, the magnetizing surface, is distributed with a plurality of N magnetic poles and a plurality of S magnetic poles, that is, the magnetic charging surface of the magnetic ring 10 is filled with P N magnetic poles.
  • Q S poles wherein P and Q are integers greater than 1;
  • x Hall detecting components 20 are fixedly disposed adjacent to the magnetic ring 10, and x Hall detecting components 20 sense the magnetic ring 10 when the rotating component of the motor rotates
  • the magnetic pole changes to generate an x-way sensing signal, and x is an integer greater than 1.
  • x Hall detecting components 20 match the magnetic properties of the magnetic poles on the detecting surface of the magnetic ring 10, and x Hall detecting components 20 are close to the magnetic
  • the detection surface of the ring 10 is fixedly disposed; the control unit 30 is connected to the x Hall detecting components 20, and the control unit 30 determines the state of the motor based on the x sensing signals.
  • the x Hall detecting components 20 may be disposed corresponding to the magnetizing surface of the magnetic ring 10, and the x Hall detecting components 20 may be close to the magnetic ring 10 but not in contact, and within the magnetic field sensing range of the magnetic ring 10 can.
  • the control unit 30 determines the state of the motor based on the x sensing signals. For example, if the motor is blocked.
  • the motor that is, the driving motor of the foregoing embodiment may be a stepping motor
  • the stepping motor may adopt an open loop control
  • the control unit 30 may detect the step by the structure of the magnetic ring and the plurality of Hall detecting components. Whether the motor is blocked or not, the stepping motor is prevented from being in an interference state, and the motor itself and the operation of the product are prevented from being adversely affected.
  • the rotating assembly of the electric machine is a drive gear or a drive shaft. That is, the magnetic ring 10 can be fixed to the drive gear or the drive shaft of the motor so that the magnetic ring 10 can rotate with the motor rotating.
  • the magnetic ring 10 can be preferably fixed to the transmission gear near the door panel end.
  • a fixing hole 101 is opened in the middle of the magnetic ring 10 to be riveted with the rotating component of the motor through the fixing hole 101, thereby being synchronized with the rotating component.
  • the magnetic ring 10 can be riveted to the drive gear or drive shaft of the motor through the fixing hole 101.
  • the magnetic ring 10 can also be made as a component directly with the transmission gear.
  • the Hall detecting assembly 20 can be fixed to the air conditioner body. As a result, the overall installation is convenient and avoids the problem of routing.
  • the N magnetic poles are spaced apart from the S magnetic poles one by one.
  • the N magnetic pole and the S magnetic pole can be filled on the circular magnetic ring 10, and when the motor rotates, the N magnetic pole and the S magnetic pole can alternately pass through each Hall detecting component 20, and each Hall detecting component 20 will be based on The sensed magnetic pole change outputs a corresponding sensing signal.
  • the P N magnetic poles and the Q S magnetic poles may be disposed in an equal width manner, that is, each N magnetic pole and each S magnetic pole on the magnetic ring 10 are equal in width.
  • the width of the N magnetic pole and the S magnetic pole is as narrow as possible under the premise of ensuring the magnetic field strength, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the sensing parameter of the Hall detecting component 20.
  • the magnetic pole on the magnetic ring 10 has N magnetic poles and S magnetic poles.
  • the total number of N magnetic poles and S magnetic poles is related to the size of the magnetic ring 10. The larger the size of the magnetic ring 10, the more the total number of N magnetic poles and S magnetic poles. The higher the detection sensitivity.
  • the Hall detecting component 20 can generate a corresponding sensing signal according to the sensed magnetic pole type, that is, the Hall detecting component 20 generates a first sensing signal when facing the N magnetic pole, that is, the first embodiment of the foregoing embodiment.
  • Level, and generating a second sensing signal when facing the S magnetic pole, that is, the second level of the foregoing embodiment for example, the first sensing signal may be a high level and the second sensing signal may be a low level, the first sensing signal It may be low level and the second sensing signal may be high level, and the level states of the first sensing signal and the second sensing signal may be determined according to the type of the Hall detecting component 20.
  • the Hall detecting component 20 when the N magnetic pole and the S magnetic pole alternately pass through the Hall detecting component 20, the Hall detecting component 20 outputs a stable high and low level pulse sequence, and the period of the x high and low level pulse sequence is fixed and the same, and the duty ratio is 50%.
  • the N magnetic pole and the S magnetic pole on the magnetic ring 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, the detection time is shortened, and the detection sensitivity is improved. . Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • the magnetizing surface of the magnetic ring 10 is a peripheral side surface of the magnetic ring or an inner end surface of the magnetic ring. That is to say, the magnetic ring 10 has two forms of side magnetization and end surface magnetization. As shown in FIG. 20 and FIG. 25, the side magnetization is performed, and the N magnetic pole and the S magnetic pole can be spaced apart from the periphery of the magnetic ring 10, wherein In Fig. 25-26, the left side is a top view, and the right side is a main view; as shown in Fig. 19 and Fig.
  • the end face is magnetized, and the N magnetic pole and the S magnetic pole are spaced apart from the end surface of the magnetic ring 10.
  • the Hall detecting component 20 such as the Hall sensor, may be in the form of a patch and a plug-in type.
  • the Hall detecting component 20 is fixed on the PCB board and fixed on the air conditioning body through the PCB board. Located on one side of the magnetic ring 10, close to the magnetic ring but not in contact, within the magnetic field sensing range.
  • the patch type Hall detecting component 20 can be matched with the magnetic ring 10 magnetized by the end face; as shown in FIG. 25, the plug type Hall detecting component 20 can be magnetized with the side magnetized.
  • the ring 10 is matched.
  • the patch type Hall detecting component 20 can be preferably used, because the patch type positioning is more accurate in the manufacturing process, thereby reducing the detection error, and the patch type can facilitate the automatic assembly and improvement. Assembly speed.
  • the x Hall detecting components 20 may be shifted by a preset angle according to the sum of the number of N magnetic poles and S magnetic poles. Specifically, the adjacent two Hall detecting assemblies 20 can be staggered by a predetermined angle.
  • the x Hall detecting components 20 can be staggered, and the x Hall detecting components 20 match the total number of magnetic poles of the magnetic ring 10 and the width of each magnetic pole staggered by a preset angle to enable x Hall detection.
  • the x-channel sensing signals respectively output by the component 20 are sequentially shifted by a preset phase angle, thereby multiplying the detection sensitivity. As shown in FIG.
  • the left Hall detecting component 20A and the middle Hall detecting component 20B are offset by a preset angle
  • the middle Hall detecting component 20B is
  • the right side Hall detecting component 20C is also offset by a predetermined angle, and taking the magnetic ring 10 clockwise rotation as an example, the sensing signal outputted by the middle Hall detecting component 20B lags behind the left Hall detecting component 20A by a preset phase angle.
  • the sensing signal outputted by the Hall detecting component 20C on the right side is delayed by the preset phase angle of the Hall detecting component 20B in the middle.
  • the preset angle can be determined according to the following formula:
  • d is the preset angle
  • P is the number of N poles
  • Q is the number of S poles
  • x is the number of Hall detection components
  • n is any positive integer.
  • n is an arbitrary integer greater than or equal to 1, and the specific numerical value is determined as long as the Hall detecting component 20 does not interfere with each other in the arrangement space.
  • the two Hall detection assemblies 20 are offset by 35°. More specifically, as shown in FIGS. 25-26, the left Hall detecting component 20A and the middle Hall detecting component 20B are shifted by 35°, and the middle Hall detecting component 20B and the right Hall detecting component 20C are The distance is also shifted by 35°.
  • the sensing signal outputted by the middle Hall detecting unit 20B is delayed by 60° with respect to the sensing signal output from the Hall detecting unit 20A on the left side.
  • the sensing signal output from the detecting component 20C is delayed by 60° with respect to the sensing signal output from the intermediate Hall detecting component 20B.
  • the Hall detecting component 20 generates a first sensing signal when facing the N magnetic poles, and generates a second sensing signal when facing the S magnetic poles, and the x sensing signals construct a combination of the y kinds of level states. , y>x.
  • control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to time the duration of each level state combination in the y-level level state combination, and re-time when the level state combination changes; the control chip 302 is connected to the timer 301, and the control chip The 302 is also coupled to the x Hall detection components 20, and the control chip 302 determines that the motor is stalled when the duration of any combination of level states is greater than a predetermined time threshold.
  • the x Hall detecting components 20 match the total number of magnetic poles of the magnetic ring 10 and the width of each magnetic pole staggered by a predetermined angle, that is, the x-channel sensing signals respectively output by the x Hall detecting components 20 are sequentially shifted by a preset. The phase angle, thus forming a different level state combination at the same time.
  • the control chip 302 determines whether the motor is stalled by detecting whether the duration of each level state combination exceeds a preset time threshold.
  • the rotating component of the motor drives the magnetic ring 10 to rotate synchronously, and the x Hall detecting components 20 are fixed, and the N magnetic poles and the S magnetic poles on the magnetic ring 10 alternately pass through the x Hall detecting components 20
  • the x Hall detecting components 20 respectively generate high and low pulse sequences with a duty ratio of 50%.
  • the detection component 20 can obtain waveforms that differ by a phase angle of 180°/x.
  • one cycle of each waveform can be divided into 2x level state combinations, and the duration tn of each level state combination is the duration of the high state or low state of any signal.
  • the rotational speed of the magnetic ring 10 can be based on the speed of the motor and the gear speed ratio It is calculated that when the motor is a stepping motor and the magnetic ring is disposed on the driving shaft, the rotation speed of the magnetic ring 10 can be calculated according to the step angle and the driving pulse period.
  • the detection time can be further shortened, for example, how many Hall sensors can be used to reduce the detection time by several times.
  • the three Hall detecting components 20 can output three waveforms of each phase angle of 60° later, that is, the output waveform of the Hall detecting component 20B is relative to The output waveform of the Hall detecting component 20A is delayed by 60°, and the output sensing signal of the Hall detecting component 20C is delayed by 60° with respect to the output waveform of the Hall detecting component 20B.
  • each Hall detecting component 20 When the motor stalls and stops rotating, the corresponding magnetic pole of each Hall detecting component 20 does not change, so the output level of each Hall detecting component 20 continues to be at a high level or continues to a low level.
  • the motor stalls at time t1 and recovers at time t2
  • tn is the duration of each level state combination when no stall occurs
  • td is the preset time threshold.
  • the three-way waveform maintains the current level state, and when the duration is longer than td, it is determined that the motor is stalled.
  • the method for detecting whether the motor is blocked or not in the embodiment of the present invention is as follows:
  • the control chip 302 When the motor rotates, the control chip 302 turns on the detection function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signals output by the x Hall detecting components 20, and control the timing when any one of the sensing signals generates a high-low level transition. If the timer 301 is cleared, the control chip 302 can determine whether the timer value of the timer 301 is greater than the preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the motor is blocked, and the control chip 302 outputs the jam.
  • Turning the protection signal to perform motor protection action for example, controlling the motor to stop rotating or reverse rotation; if the timer value of the timer 301 is less than or equal to the preset time threshold td, it is determined that the motor is not blocked, and the control chip 302 can control the motor to continue. Rotate in the forward direction.
  • the power terminals of the x Hall detecting components 20 are all connected to the preset power source VCC, for example, +5V through the first resistor R1, and the x Hall detecting components 20
  • the grounding end is grounded, and the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the x Hall detecting components 20, wherein the detecting end of each Hall detecting component 20 senses the magnetic pole change of the magnetic ring, and each Hall The output of the detection component 20 outputs a corresponding sensing signal.
  • the motor stall detection device of the air conditioner further includes x output circuits 40, and the x output circuits 40 are connected to the outputs of the x Hall detecting components 20, and each of the output circuits 40 includes:
  • the second resistor R2 and the third resistor R3, the second resistor R2 and the third resistor R3 are connected in series, and one end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC, and the second resistor R2 and the series are connected in series.
  • the other end of the three resistor R3 is connected to the control unit 30, that is, the control chip 302.
  • the second resistor R2 and the third resistor R3 connected in series have a node, and the node is connected to the output end of the corresponding Hall detecting component 20.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • each Hall detecting component 20 can supply 5V, so that each Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and each high-low pulse sequence is provided through a corresponding output circuit.
  • the control unit 30 can time the duration of the level state combination of the x-way high and low-level pulse sequences, and determine whether the motor is stalled by comparing the timing time with the preset time threshold.
  • the motor stall detection device of the air conditioner detects the magnetic pole change of the magnetic ring by the x Hall detecting components when the rotating component of the motor rotates to generate the x-channel sensing signal, and then the control unit.
  • the state of the motor is judged, so that the motor can be effectively judged whether the motor is blocked or not, so that the corresponding measures can be taken to adjust the rotation of the motor in time to avoid damage to the mechanism, and the magnetic ring and the plurality of Hall detecting components can be used.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • FIG. 27 is a block schematic diagram of a door panel control system of an air conditioner in accordance with an embodiment of the present invention. As shown in FIGS. 27 and 10-11, the door panel control system of the air conditioner includes a motor 1001 and a motor stall detecting device 500 of the air conditioner.
  • the motor 1001 is used to drive the door panel 300 of the air conditioner.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control device of the air conditioner can drive the door panel 300 to be opened by the motor 1001.
  • the control device of the air conditioner can pass the motor 1001.
  • the drive door panel 300 is closed to enhance the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the motor 1001 may be a stepper motor.
  • the motor stall detection device 500 of the air conditioner is configured to detect whether the motor 1001 is blocked or not to determine whether the door panel 300 encounters an obstacle.
  • the motor stall detection device 500 may include a magnetic ring, x Hall detection components, and a control unit.
  • the magnetic ring is fixed on the rotating component of the motor 1001.
  • the magnetizing surface of the magnetic ring is filled with P N magnetic poles and Q S magnetic poles, wherein P and Q are integers greater than 1;
  • x Hall detecting components are fixed near the magnetic ring.
  • the setting is fixedly disposed on the air conditioner body, for example, the x Hall detecting components inducing a magnetic pole change of the magnetic ring when the rotating component of the motor 1001 rotates to generate an x-channel sensing signal, where x is an integer greater than 1; the control unit is based on x
  • the sensing signals determine the state of the motor 1001.
  • the rotating component of the motor 1001 drives the magnetic ring to rotate synchronously, and the N magnetic pole and the S magnetic pole on the magnetic ring alternately pass through the x Hall detecting components, and the x Hall detecting components.
  • a stable high-low pulse sequence is output, with a duty cycle of 50%.
  • the x Hall detection components match the total number of magnetic poles of the magnetic ring and the width of each magnetic pole is offset by a preset angle, that is, the x-channel sensing signals respectively output by the x Hall detecting components are sequentially shifted by the preset phase angle, so that the same moment can be Different levels of state combinations are formed.
  • the motor 1001 stops rotating, and the corresponding magnetic pole of each Hall detecting component does not change, and the output of each Hall detecting component is output.
  • the level will continue to be high or continue low.
  • the control unit determines whether the motor is blocked by detecting whether the duration of each level state combination exceeds a preset time threshold, so that the door panel control system determines whether the door panel 300 encounters an obstacle.
  • the motor stall detection device can determine whether the door panel encounters an obstacle, thereby effectively determining whether the door panel encounters an obstacle, so as to take corresponding measures in time.
  • the movement of the door panel is adjusted to avoid damage to the mechanism, and the detection time can be shortened by the magnetic ring and the plurality of Hall detecting components, the detection sensitivity is improved, the damage to the user is prevented, for example, the finger is clamped, and the user experience is improved.
  • the device occupies less space, is low in cost, is easy to install, has a long service life, and is stable and reliable.
  • the present invention further provides an air conditioner comprising the motor stall detecting device of the air conditioner of the above embodiment.
  • the motor stall detection device can effectively determine whether the motor is blocked or not, and has high detection sensitivity, small space occupation, low cost, convenient installation, long service life, stability and reliability.
  • the present invention further proposes an air conditioner comprising the door panel control system of the air conditioner of the above embodiment.
  • the door panel control system is used to effectively determine whether the door panel encounters an obstacle, and has high detection sensitivity, small occupied space, low cost, convenient installation, long service life, stability and reliability, and prevention of The user causes damage, such as pinching a finger, etc., to enhance the user's experience.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the detecting and controlling device for the moving part in the air conditioner of the embodiment of the present invention includes: a magnetic ring 10, x Hall detecting components 20, and a control unit. 30.
  • the magnetic ring 10 is fixed to a driving member that drives the moving member, and a plurality of N magnetic poles and/or a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10.
  • the N magnetic poles and the S magnetic poles are arranged one by one; when the detecting surface of the magnetic ring 10 is distributed In the case of a plurality of N magnetic poles, a first blank area is disposed between adjacent N magnetic poles; and when a plurality of S magnetic poles are distributed on the detecting surface of the magnetic ring 10, a second blank area is disposed between adjacent S magnetic poles.
  • the magnetic ring 10 when the magnetic ring 10 is filled with the N magnetic pole and the S magnetic pole, the N magnetic pole and the S magnetic pole are spaced apart from each other on the detecting surface of the magnetic ring 10, that is, the arrangement regularity on the magnetic ring 10 is N magnetic pole-S magnetic pole- N magnetic pole-S magnetic pole, when the magnetic ring 10 is a bipolar magnetic ring; when the magnetic ring 10 is filled with N magnetic poles, the N magnetic pole is spaced apart from the first blank area on the detecting surface of the magnetic ring 10, that is, the magnetic ring
  • the arrangement rule on 10 is N magnetic pole - first blank area - N magnetic pole - first blank area, at this time, the magnetic ring 10 is a unipolar magnetic ring; when the magnetic ring 10 is filled with S magnetic poles, the S magnetic pole and the The two blank areas are spaced apart on the detecting surface of the magnetic ring 10, that is, the arrangement rule on the magnetic ring 10 is S magnetic pole - second blank area - S magnetic pole -
  • x Hall detecting components 20 matching the magnetic properties of the magnetic poles on the detecting surface of the magnetic ring 10, the detecting faces of the x Hall detecting components 20 are fixedly arranged close to the magnetic ring 10, and it should be noted that x Hall detecting components 20 may be disposed corresponding to the detection surface of the magnetic ring 10, and the x Hall detecting assemblies 20 may be close to the magnetic ring 10 but not in contact, and may be within the magnetic field sensing range of the magnetic ring 10.
  • the x Hall detecting assemblies 20 are offset from the magnetic ring 10 by a predetermined angle, and the x Hall detecting assemblies 20 are disposed on the circuit board 60 of the air conditioner, and the x Hall detecting components 20 are disposed on the circuit board according to a preset angle.
  • each adjacent two can be set according to a preset angle.
  • the Hall detects the linear distance between the components 20 such that each adjacent two Hall detection assemblies 20 are offset from the magnetic ring 10 by a predetermined angle.
  • the x Hall detecting assemblies 20 induce a change in the magnetic pole of the magnetic ring 10 as the driving member drives the moving member to correspondingly generate an x-way sensing signal, x being an integer greater than one.
  • the control unit 30 is connected to the x Hall detecting components 20, and the control unit 30 determines whether the moving components are stuck based on the x-channel sensing signals.
  • a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the detecting surface of the magnetic ring 10 as an example.
  • the driving member drives the moving member to move
  • the magnetic ring 10 moves along with the driving member, and x Halls are used.
  • the detecting component 20 is fixed, and the N magnetic pole and the S magnetic pole on the detecting surface of the magnetic ring 10 sequentially pass through each of the Hall detecting components 20, and the x Hall detecting components 20 induce the magnetic pole change of the magnetic ring 10 to output the x-channel sensing signal.
  • the control unit 30 determines the state of the moving component based on the x-channel sensing signal, such as whether the moving component is stuck or whether the driving component is blocked. turn.
  • the detecting surface of the magnetic ring 10 is filled with the N magnetic pole and the first blank region or the detecting surface of the magnetic ring 10 is filled with the S magnetic pole and the second blank region is different from the detecting surface of the magnetic ring 10 described above.
  • the case where the upper N is filled with the N magnetic pole and the S magnetic pole is similar, and will not be described again here.
  • the drive member may comprise a drive motor and the magnetic ring 10 is fixed to the rotary assembly of the drive motor. That is, as the drive motor drives the moving member to move, the magnetic ring 10 rotates with the rotating assembly of the drive motor.
  • the driving motor can be a stepping motor
  • the stepping motor can adopt an open loop control
  • the control unit 30 can detect whether the stepping motor is blocked by the structure of the magnetic ring 10 and the plurality of Hall detecting components 20. Turn to prevent the stepper motor from being in an over-interrupted state, preventing adverse effects on the motor itself and product operation.
  • the rotating assembly of the drive motor is a drive gear or drive shaft. That is, the magnetic ring 10 can be fixed to the drive gear or the drive shaft of the drive motor so that the magnetic ring 10 can rotate as the drive motor rotates.
  • the magnetic ring 10 is preferably fixed on the transmission gear close to the moving part.
  • the magnetic ring 10 is provided with a fixing hole 101.
  • the center of the magnetic ring 10 is provided with a fixing hole 101.
  • the magnetic ring 10 is riveted to the driving component such as a rotating component of the driving motor through the fixing hole 101. So that it can rotate in synchronization with the drive unit. That is to say, the magnetic ring 10 can be riveted to the drive gear or the drive shaft of the drive motor through the fixing hole 101.
  • the magnetic ring 10 can also be directly formed with the transmission gear as a component, thereby saving material, space and cost, and simplifying the installation.
  • a circuit board 60 (e.g., PCB, Printed Circuit Board, printed circuit board) may be fixed to the air conditioner body. That is, the Hall detecting component 20 is fixed on the PCB board and fixed on the air conditioning body through the PCB board. The Hall detecting component 20 is located on one side of the magnetic ring 10, close to the detecting surface of the magnetic ring 10 but not in contact. Within the range where the magnetic field can be sensed. Thus, such a design makes the overall installation more convenient and avoids wiring problems.
  • PCB Printed Circuit Board, printed circuit board
  • a plurality of N magnetic poles and/or a plurality of S magnetic poles are disposed in an equal width manner. That is, when the detecting faces of the magnetic ring 10 are filled with N magnetic poles and S magnetic poles, the width of each N magnetic pole is equal and the width of each S magnetic pole is equal; when the detecting surface of the magnetic ring 10 is filled with N magnetic poles and In the first blank area, the width of each of the N magnetic poles is equal; when the detection surface of the magnetic ring 10 is filled with the S magnetic pole and the second blank area, the width of each S magnetic pole is equal.
  • the width of the N magnetic pole and/or the S magnetic pole is as narrow as possible under the premise of ensuring the strength of the magnetic field, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the Hall sensing parameter of the Hall detecting component 20. .
  • the angle of the magnetic region that is, the N magnetic pole magnetic region
  • the angle between the magnetic region, that is, the S magnetic pole magnetic region and the second blank region may be approximately equal.
  • the x Hall detecting assemblies 20 can match the magnetic poles on the detecting surface of the magnetic ring 10 for corresponding magnetic settings.
  • the x Hall detecting components 20 may be bipolar Hall elements, and the bipolar Hall elements may respectively sense N magnetic poles and S magnetic poles.
  • the component 20 can be a unipolar Hall element, and the unipolar Hall element can sense the matching magnetic pole to generate an induced signal when inductively matching the magnetic pole, that is, the selection and monopole of the unipolar Hall element.
  • the magnetic ring is matched. If the unipolar magnetic ring 10 is of the N pole type, the unipolar type Hall is also selected to have an N pole type. If the unipolar magnetic ring is of the S pole type, the unipolar type Hall is also selected to have an S pole type.
  • the number of N magnetic poles and/or S magnetic poles is related to the size of the magnetic ring 10, and the larger the size of the magnetic ring 10, the larger the total number of N magnetic poles or S magnetic poles, and the higher the detection sensitivity.
  • the detecting surface of the magnetic ring 10 may be a peripheral side of the magnetic ring. That is to say, the magnetic ring 10 can adopt a side magnetization form, as shown in FIG. 20, the N magnetic pole and the S magnetic pole can be spaced to fill the periphery of the magnetic ring 10; as shown in FIG. 2b, the N magnetic pole and the blank area can be filled.
  • the periphery of the magnetic ring 10; as shown in Fig. 28, the S magnetic pole and the blank area can be filled to fill the periphery of the magnetic ring 10.
  • 2b, 20, and 28 are front views of the magnetic ring 10.
  • the use of the side magnetization form ensures a strong magnetic field strength without the Hall detection component being in close proximity to the magnetic ring 10 and sensing the magnetic field.
  • the Hall detecting component 20 can be a patch type Hall detecting element, that is, the Hall detecting component 20 such as a Hall element can be in a chip type package.
  • the patch-type Hall sensing assembly 20 can cooperate with the side-magnetized magnetic ring 10. Therefore, the patch type Hall detecting component can realize precise positioning with high precision and small error, thereby reducing detection error, and the patch type can facilitate automatic assembly and increase assembly speed.
  • x Hall detecting assemblies 20 are symmetrically arranged in a vertical line between the circuit board 60 and the center of the magnetic ring 10. On both sides, that is, when the Hall detecting assembly 20 is an even number, the midpoint of the line connecting the two Hall detecting assemblies 20 at the two ends is located at the center of the magnetic ring 10 to the vertical point of the circuit board 60 such as the PCB board.
  • the (x+1)/2th Hall detecting component is disposed perpendicular to the vertical line between the circuit board 60 and the center of the magnetic ring 10, and the remaining (x-1) Huo
  • the detection components are symmetrically arranged on either side of the vertical line between the circuit board 60 and the center of the magnetic ring 10. That is, when the Hall detecting component 20 is an odd number, the most intermediate Hall detecting component 20 is located at the center of the magnetic ring 10 to the vertical point of the circuit board 60 such as the PCB board.
  • FIG. 32 is a side view of FIG. 29, FIG. 30, and FIG. 31 in the A direction when the magnetic ring 10 is filled with N magnetic poles and S magnetic poles
  • FIG. 33 is a view of the magnetic ring 10 being filled with N magnetic poles and blank areas.
  • Side view of the direction FIG. 34 is a side view of the magnetic ring 10 with the S magnetic pole and the blank area spaced apart from each other in FIGS. 29, 30, and 31 in the A direction.
  • the linear distance of the i-th Hall detecting component and the (i+1)th Hall detecting component on the circuit board 60 is obtained according to the following formula:
  • L is the linear distance between the i-th Hall detection component and the (i+1)th Hall detection component on the circuit board 60
  • R is the circuit board
  • the vertical distance between 60 and the center of the magnetic ring 10, d is a preset angle.
  • the linear distance of the i-th Hall detecting component and the (i+1)th Hall detecting component on the circuit board is obtained according to the following formula:
  • L is the linear distance between the i-th Hall detection component and the (i+1)th Hall detection component on the circuit board 60
  • R is the circuit board
  • the vertical distance between 60 and the center of the magnetic ring 10, d is a preset angle.
  • the order in which the x Hall detecting components 20 are arranged on the circuit board 60 can be selected from left to right or right to left for the first Hall detecting component 20 to the xth Hall.
  • the component 20 is detected.
  • the PCB board is a straight board and cannot match the curvature of the magnetic ring 10. Therefore, the preset angle can be converted into x ho according to the preset angle that the x Hall detecting components 20 are staggered and the number of Hall detecting components 20. The linear distance of the component 20 on the PCB is detected.
  • L1 is the distance that the two Hall detecting components are staggered
  • L2 is the distance that the two Hall detecting components on the two sides are offset from the adjacent intermediate Hall detecting component.
  • the preset angle includes a first preset angle, a second preset angle, and a third preset angle
  • any two adjacent Hall detecting components of the x Hall detecting components 20 20 is offset by a third predetermined angle according to the sum of the number of the N magnetic poles and the S magnetic poles, or the number of the N magnetic poles and the first blank area according to any two adjacent Hall detecting components 20 of the x Hall detecting components 20
  • the first preset angle is staggered, or any two adjacent Hall detecting components 20 of the x Hall detecting components 20 are staggered by a second predetermined angle according to the sum of the number of S magnetic poles and the second blank area.
  • the x Hall detecting components 20 are shifted by a third predetermined angle according to the sum of the number of N magnetic poles and S magnetic poles;
  • the x Hall detecting components 20 are shifted by a first predetermined angle according to the sum of the number of N magnetic poles and the first blank area;
  • the x Hall detecting components 20 are shifted by a second predetermined angle according to the sum of the number of S magnetic poles and the second blank area.
  • the adjacent two Hall detecting assemblies 20 can be staggered by a predetermined angle.
  • the x Hall detecting components 20 may be staggered and distributed, and a plurality of N magnetic poles and a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, and the x Hall detecting components 20 may match the magnetic ring 10
  • the total number of N magnetic poles and S magnetic poles and the width of each magnetic pole are staggered by a predetermined angle, so that the x sensing signals respectively output by the x Hall detecting components 20 are sequentially shifted by a preset phase angle, thereby multiplying the detection. Sensitivity. As shown in FIG.
  • the left Hall detecting component 20A and the middle Hall detecting component 20B are shifted by a preset angle, and the middle Hall detecting component 20B and the right side are
  • the Hall detecting component 20C is also offset from the preset angle, and taking the clockwise rotation of the magnetic ring 10 as an example, the sensing signal outputted by the middle Hall detecting component 20B lags behind the preset phase angle of the Hall detecting component 20A on the left side, and the right side.
  • the sensing signal output by the Hall detecting component 20C lags the middle Hall detecting component 20B by a preset phase angle.
  • the first preset angle, the second preset angle, and the third preset angle may be determined according to the following formula:
  • d is a first preset angle, a second preset angle, and a third preset angle
  • x is the number of Hall detection components
  • n is an integer
  • s is spaced apart from the detection surface of the magnetic ring 10 by a plurality of N
  • the magnetic pole and the plurality of S magnetic poles are the sum of the number of the N magnetic poles and the plurality of S magnetic poles
  • the plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring 10
  • the sum of the number of the N magnetic poles and the first blank area is When a plurality of S magnetic poles are spaced apart on the detection surface of the magnetic ring 10, the sum of the number of S magnetic poles and the second blank area is obtained.
  • s is the total number of magnetic poles on the magnetic ring 10, that is, the sum of the number of N magnetic poles and S magnetic poles, or the sum of the number of N magnetic poles and the first blank area, or the S magnetic pole and the second blank.
  • n is an arbitrary integer, and the specific numerical value is determined as long as the Hall detecting component 20 does not interfere with each other in the arrangement space.
  • the left Hall detecting component 20A and the middle Hall detecting component 20B are shifted by 35°, and the middle Hall detecting component 20B and the right Hall detecting component 20C are also Staggered by 35°, correspondingly, when the magnetic ring 10 rotates clockwise, the sensing signal outputted by the middle Hall detecting component 20B lags 60° with respect to the sensing signal output by the Hall detecting component 20A on the left side, and the Hall detecting component on the right side
  • the induced signal outputted by the 20C is delayed by 60° with respect to the induced signal output from the middle Hall detecting component 20B.
  • a plurality of N magnetic poles and/or a plurality of S magnetic poles on the magnetic ring 10 are disposed in an equal width manner. That is, when a plurality of N magnetic poles and a plurality of S magnetic poles are distributed on the detecting surface of the magnetic ring 10, the width of each N magnetic pole is the same and the width of each S magnetic pole is the same; or when the detecting surface of the magnetic ring 10 is When a plurality of N magnetic poles are spaced apart, the width of each N magnetic pole is the same; or when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring 10, the width of each S magnetic pole is the same.
  • the width of the N magnetic pole and/or the S magnetic pole is as narrow as possible under the premise of ensuring the strength of the magnetic field, for example, 1-2 mm can be achieved, and the magnetic field strength requirement is determined according to the Hall sensing parameter of the Hall detecting component 20. .
  • the angle of the magnetic region may be approximately equal to the angle of the first blank region, or the angle of the magnetic region, that is, the angle of the S magnetic pole region and the angle of the second blank region may also be Approximately equal.
  • N magnetic poles and/or S magnetic poles is related to the size of the magnetic ring 10, and the larger the size of the magnetic ring 10, the larger the total number of magnetic poles, and the higher the detection sensitivity.
  • each Hall detection component 20 can generate a corresponding sensing signal based on the sensed magnetic pole type.
  • each of the Hall detecting assemblies 20 when a plurality of N magnetic poles and a plurality of S magnetic poles are spaced apart on the magnetic ring 10, each of the Hall detecting assemblies 20 generates a first level when facing the N magnetic poles and generates a second electric power when facing the S magnetic poles. level.
  • the first level may be a high level and the second level may be a low level, or the first level may be a low level and the second level may be a high level, a level
  • the status may be determined based on the type of Hall detection component 20.
  • each Hall detecting component 20 will output a stable high and low level pulse sequence, whereby x Hall detecting components 20 output
  • the x-high-low pulse sequence has a fixed period and the same duty cycle of 50%.
  • each Hall detecting component 20 when a plurality of N magnetic poles and a first blank area are spaced apart on the magnetic ring 10, each Hall detecting component 20 generates a first level when facing the N magnetic poles, and generates when facing the first blank area. The second level.
  • each Hall detecting component 20 will output a stable high and low level pulse sequence, thereby, x Hall detections.
  • the period of the x-way high and low-level pulse sequence output by the component 20 is fixed and the same, and the duty ratio is 50%.
  • each Hall detecting component 20 when a plurality of S magnetic poles and a second blank area are spaced apart on the magnetic ring 10, each Hall detecting component 20 generates a first level when facing the S magnetic pole, and generates when facing the second blank area. The second level.
  • each Hall detecting component 20 will output a stable high and low level pulse sequence, thereby, x Hall detections.
  • the period of the x-way high and low-level pulse sequence output by the component 20 is fixed and the same, and the duty ratio is 50%.
  • the N magnetic pole and/or the S magnetic pole on the magnetic ring 10 can be very dense (the magnetic pole width can be 1-2 mm), the sensitivity is high, the frequency of the feedback pulse can be increased, thereby shortening the detection time and improving the detection time. Detection sensitivity. Moreover, based on the Hall effect, it is stable and reliable, with low interference, stable pulse waveform, and high and low level transition rapidly.
  • the x-way sense signal constructs a combination of y-level levels, y>x.
  • control unit 30 includes a timer 301 and a control chip 302.
  • the timer 301 is configured to start timing when any one of the y kinds of level state combinations occurs, to time the duration of each level state combination in the y state level combination;
  • the chip 302 is connected to the timer 301.
  • the control chip 302 is also connected to the x Hall detecting components 20.
  • the control chip 302 determines that the moving component is stuck when the duration of any kind of level state combination is greater than the preset time threshold.
  • the x Hall detecting components 20 match the total number of magnetic poles of the magnetic ring 10 and the width of each magnetic pole staggered by a predetermined angle, that is, the x-channel sensing signals respectively output by the x Hall detecting components 20 are sequentially shifted by a preset.
  • the phase angle thus forming a different level state combination at the same time.
  • the control chip 302 can determine whether the driving motor is blocked or not by detecting whether the duration of each level state combination exceeds a preset time threshold, thereby determining whether the moving component is stuck. Therefore, by using the multi-Hall detection component distribution misalignment, the detection time can be further shortened, and the detection time can be doubled.
  • the magnetic ring 10 is spaced apart from the plurality of N magnetic poles and the plurality of S magnetic poles.
  • the driving component drives the moving component to move, for example, the driving motor rotates
  • the rotating component of the driving motor drives the magnetic ring 10 to rotate synchronously.
  • the Hall detecting components 20 are fixed, and the N magnetic poles and the S magnetic poles on the magnetic ring 10 alternately pass through the x Hall detecting components 20, and the x Hall detecting components 20 respectively generate high and low frequency pulses with a duty ratio of 50%. sequence.
  • the rotation speed of the magnetic ring 10 can be calculated according to the rotation speed of the driving motor and the gear transmission speed ratio.
  • the rotation speed of the magnetic ring 10 can be according to the step angle and the driving pulse period. Calculated.
  • the three Hall detecting components 20 can output three waveforms of each phase angle of 60° later, that is, the output waveform of the Hall detecting component 20B is relative to The output waveform of the Hall detecting component 20A is delayed by 60°, and the output sensing signal of the Hall detecting component 20C is delayed by 60° with respect to the output waveform of the Hall detecting component 20B.
  • the drive motor stalls at time t1 and recovers at time t2
  • tn is the duration of each level state combination when no stall occurs
  • td is the preset time threshold, when stall occurs
  • the three-way waveform maintains the current level state.
  • the detection process of detecting whether the moving component is stuck in the embodiment of the present invention is as follows:
  • the control chip 302 When the driving component drives the moving component to move, the control chip 302 turns on the detecting function, and controls the timer 301 to start timing.
  • the control chip 302 can collect the sensing signals output by the x Hall detecting components 20, and when any one of the sensing signals occurs, the high-low level jump occurs.
  • the timing control timer 301 is cleared, and the control chip 302 can determine whether the timer value of the timer 301 is greater than a preset time threshold td. If the timer value of the timer 301 is greater than the preset time threshold td, it is determined that the driving motor is blocked.
  • control chip 302 outputs a stall protection signal to perform a motor protection action, such as controlling the driving motor to stop rotating or reversely rotating; if the timer value of the timer 301 is less than or equal to the preset time threshold td, then determining The motor does not stall, and it is judged that the moving parts are not stuck, and the control chip 302 can control the driving motor to continue to rotate in the forward direction.
  • a motor protection action such as controlling the driving motor to stop rotating or reversely rotating
  • the embodiment in which the detecting surface of the magnetic ring 10 is filled with the N magnetic pole and the first blank region and the detecting surface of the magnetic ring 10 is filled with the S magnetic pole and the first blank region is spaced apart from the detecting surface of the magnetic ring 10 described above.
  • the magnetic pole and the S magnetic pole are substantially the same, except that when the magnetic ring 10 is filled with the N magnetic pole and the first blank region, the N magnetic pole and the first blank region alternately pass through the corresponding Hall detecting assembly 20, and the magnetic ring 10 is spaced apart from the S magnetic pole and In the second blank area, the S magnetic pole and the second blank area alternately pass through the corresponding Hall detecting component 20, and will not be described in detail herein.
  • the power terminals of the x Hall detecting components 20 are all connected to the preset power source VCC, for example, +5V through the first resistor R1, and the x Hall detecting components 20
  • the grounding end is grounded, and the first capacitor C1 is connected in parallel between the power terminal and the ground terminal of the x Hall detecting components 20, wherein the detecting end of each Hall detecting component 20 senses the magnetic pole change of the magnetic ring, and each Hall The output of the detection component 20 outputs a corresponding sensing signal.
  • the detection control device of the moving part in the air conditioner further includes x output circuits 40, and the x output circuits 40 are connected to the output ends of the x Hall detecting components 20 one by one, each output
  • the circuit 40 includes a second resistor R2 and a third resistor R3.
  • the second resistor R2 and the third resistor R3 are connected in series.
  • One end of the second resistor R2 and the third resistor R3 connected in series is connected to the preset power source VCC.
  • the other end of the second resistor R2 and the third resistor R3 are connected to the control unit 30, that is, the control chip 302.
  • the second resistor R2 and the third resistor R3 connected in series have a node between the node and the output of the corresponding Hall detecting component 20. Connected.
  • the second resistor R2 is a pull-up resistor
  • the third resistor R3 is a current limiting resistor.
  • each Hall detecting component 20 can supply 5V, so that each Hall detecting component 20 can output a high-low pulse sequence with an amplitude of 5V, and each high-low pulse sequence is provided through a corresponding output circuit.
  • the control unit 30 can time the duration of the level state combination of the x-way high-low pulse sequence, and judge whether the moving component is stuck by comparing the timing time with the preset time threshold.
  • the moving member may be the door panel 300 of the air conditioner, the door panel 300 is a slidable door panel; and the driving member 100 such as a driving motor may drive the door panel 300.
  • the cabinet of the air conditioner has a slidable door panel 300.
  • the control device of the air conditioner can be opened by the motor to drive the door panel 300.
  • the control device of the air conditioner can drive the door panel through the motor.
  • the 300 is closed to enhance the aesthetics of the product.
  • the door panel 300 is one, the door panel 300 can be opened to one side; when the door panel 300 is two, the door panel 300 can be opened to both sides.
  • the detecting and controlling device for the moving part in the air conditioner of the embodiment of the present invention can detect whether or not the driving member 100 is blocked, to determine whether the door panel 300 is stuck, for example, encounters an obstacle.
  • the driving component 100 for example, the rotating component of the driving motor drives the magnetic ring 10 to rotate synchronously, and the N magnetic pole and the S magnetic pole on the magnetic ring alternately pass through the x Hall detecting components, x
  • the Hall detection components respectively output a stable high and low level pulse sequence with a duty ratio of 50%.
  • the control unit 30 determines whether the driving component 100 is blocked by detecting whether the duration of each level state combination exceeds a preset time threshold, thereby determining whether the door panel 300 is stuck, for example, encounters an obstacle.
  • the magnetic ring and the multi-Hall detection component can shorten the detection time, improve the detection sensitivity, and prevent damage to the user, such as pinching the finger, etc., thereby improving the user experience.
  • the detecting and controlling device for the moving part in the air conditioner detects the magnetic pole change of the magnetic ring by the x Hall detecting components when the driving component drives the moving component to correspondingly generate the x-channel sensing signal, and further The control unit judges whether the moving component is stuck according to the x-channel sensing signal, so that it can effectively judge whether the moving component is stuck, so as to timely take corresponding measures to adjust the rotation of the motor, avoid damage to the mechanism, and pass the magnetic ring with multiple Huo
  • the detection component can shorten the detection time and improve the detection sensitivity.
  • the Hall detecting component can be installed with high precision and small error, and the device takes up less space, is low in cost, is easy to install, and has a long service life. ,Stable and reliable.
  • the present invention also proposes an air conditioner including the detection control device for the moving parts in the air conditioner.
  • the state of the moving component such as the door panel can be detected in real time by the detecting and controlling device of the moving component, and the moving component can be quickly judged to be stuck, so as to timely take corresponding measures to adjust the driving action of the driving component.
  • the detection sensitivity is high, the occupied space is small, the cost is low, the installation is convenient, the service life is long, and the system is stable and reliable.
  • a third aspect of the present invention provides a method for detecting and controlling a moving component in an air conditioner.
  • FIG. 35 is a flowchart of a method of detecting and controlling a moving part in an air conditioner according to an embodiment of the present invention.
  • the air conditioner comprises a magnetic ring and at least one Hall detecting component, the magnetic ring is fixed on the driving component of the driving moving component, and the detecting surface of the magnetic ring is spaced apart from the plurality of N magnetic poles and/or the plurality of S magnetic poles, at least one Hall detecting
  • the component is fixedly disposed near the detection surface of the magnetic ring, as shown in FIG. 35, and the method includes the following steps:
  • S1 inducing a magnetic pole change of the magnetic ring by the at least one Hall detecting component to generate at least one sensing signal when the driving component drives the moving component to move;
  • S2 Determine whether the moving component is stuck according to at least one sensing signal.
  • the Hall detecting component when a plurality of N magnetic poles and a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring, the N magnetic poles and the S magnetic poles are spaced one by one, wherein the Hall detecting component is facing the N magnetic poles Generating a first level and generating a second level when facing the S magnetic pole; when a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring, a first blank area is distributed between the adjacent two N magnetic poles, Wherein, the Hall detecting component generates a first level when facing the N magnetic poles, and generates a second level when facing the first blank area; when a plurality of S magnetic poles are spaced apart on the detecting surface of the magnetic ring, adjacent A second blank area is distributed between the two S poles, and the Hall detecting component generates a first level when facing the S magnetic pole and a second level when facing the second blank area.
  • determining whether the moving component is stuck according to the at least one sensing signal comprises: starting timing when the first level and the second level are switched, to The duration of the level and the duration of the second level are counted; when the duration of the second level or the second level is greater than the preset time threshold, it is determined that the moving part is stuck.
  • the x Hall detecting components when the number of Hall detecting components is x, the x Hall detecting components are shifted by a predetermined angle with respect to the magnetic ring, and the x Hall detecting components sense the magnetic ring when the driving component drives the moving component to move.
  • the magnetic pole change is corresponding to generate an x-channel sensing signal
  • the x-channel sensing signal constructs a combination of y-level level states, where x is an integer greater than 1, y>x
  • determining whether the moving component is stuck according to the at least one sensing signal comprises: Timing is started when the level state combination changes, to count the duration of each level state combination in the y level level combination; to determine the motion when the duration of any type of level combination is greater than the preset time threshold Parts are stuck.
  • the number y of the level state combinations is x times the number of level states of each sense signal.
  • At least one Hall detecting component fixedly disposed adjacent to the magnetic ring may sense a magnetic pole of a magnetic ring that moves synchronously with the driving component to generate at least one sensing signal. Further, it is determined whether the moving component is stuck according to the received at least one sensing signal, so that the state of the moving component such as the door panel can be detected in real time, and whether the moving component is stuck or not is quickly determined, so as to timely take corresponding measures to adjust the driving action of the driving component. To avoid damage to the drive components and improve the user experience. Moreover, the method has high detection sensitivity, small occupied space, low cost, convenient installation, long service life, stability and reliability.
  • an air conditioner includes a magnetic ring and a Hall detecting component, and the magnetic ring is fixed on a driving component that drives the moving component, and a plurality of N magnetic poles or S magnetic poles are spaced apart on the detecting surface of the magnetic ring.
  • the Hall detection component is fixedly disposed close to the detection surface of the magnetic ring.
  • S101 inducing an N magnetic pole or an S magnetic pole of the magnetic ring through the Hall detecting component to generate an induction signal when the driving component drives the moving component to move;
  • S102 Determine whether the moving component is stuck according to the sensing signal.
  • a second blank area is respectively disposed between adjacent two N magnetic poles or between two adjacent S magnetic poles, and the Hall detecting component is facing the N magnetic pole or
  • An effective level is generated when the S magnetic pole is generated, and an invalid level is generated when facing the first blank area or the second blank area, and determining whether the moving part is stuck according to the sensing signal includes: at the active level and the invalid level
  • the timing is started when the switching is performed to count the duration of the active level and the duration of the inactive level; when the duration of the active level or the inactive level is greater than the preset time threshold, it is judged that the moving part is stuck.
  • a magnetic pole of a magnetic ring that is synchronously moved with a driving component is induced by a Hall detecting component fixedly disposed near a magnetic ring to generate an induced signal, and according to the received The sensing signal determines whether the moving component is stuck, so that the state of the moving component such as the door panel can be detected in real time, and the moving component is quickly judged to be stuck, so that the corresponding driving measures can be taken to adjust the driving action of the driving component in time to avoid damage to the driving component.
  • the method has high detection sensitivity, small occupied space, low cost, convenient installation, long service life, stability and reliability.
  • an air conditioner includes a magnetic ring and x Hall detecting assemblies, and the magnetic ring is fixed on a driving member that drives the moving member, and a plurality of N magnetic poles are spaced apart on the detecting surface of the magnetic ring or S magnetic pole, x Hall detection components are fixedly arranged close to the detection surface of the magnetic ring, and x is an integer greater than 1.
  • 37 is a flow chart showing a method of detecting and controlling a moving part in an air conditioner according to another embodiment of the present invention. As shown in FIG. 37, the method includes the following steps:
  • a first blank area is distributed between adjacent two N magnetic poles
  • a second blank area is distributed between two adjacent S magnetic poles
  • the Hall detecting component is facing the N magnetic pole or
  • An effective level is generated when the S magnetic pole is generated, and an invalid level is generated when facing the first blank area or the second blank area
  • the x-channel sensing signal constructs a combination of the y-type level states, y>x, which is determined according to the x-channel sensing signal.
  • Whether the moving component is stuck or not includes: counting when the level state combination changes to time the duration of each level state combination in the y detecting states; the duration of the combination of any kind of level states is greater than the preset time At the threshold, it is judged that the moving parts are stuck.
  • the number y of the level state combinations is x times the number of level states of the sense signals per channel.
  • the magnetic sensing changes of the magnetic ring are induced by the x Hall detecting components when the driving component drives the moving component to correspondingly generate an x-channel sensing signal, and then according to the x-way
  • the sensing signal determines whether the moving component is stuck, so that it can effectively judge whether the moving component is stuck, so that the corresponding measures can be taken to adjust the rotation of the motor in time to avoid damage to the mechanism, and the magnetic ring and the plurality of Hall detecting components can be shortened. Detection time increases detection sensitivity.
  • the method takes up less space, is low in cost, is easy to install, has long service life, and is stable and reliable.
  • the embodiment of the present invention further provides a non-transitory readable storage medium, where an air conditioner control program is stored, and when the program is executed by the processor, the air conditioner is implemented in the third embodiment of the present invention. Detection and control method for moving parts.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及空调器中运动部件的检测控制装置,装置包括:磁环(10),磁环(10)固定在驱动运动部件的驱动部件上,磁环(10)的检测面上间隔分布多个N磁极或S磁极;至少一个与磁环(10)检测面上磁极的磁性相匹配的霍尔检测组件(20),至少一个霍尔检测组件(20)靠近磁环的检测面固定设置,且至少一个霍尔检测组件(20)在驱动部件驱动运动部件移动时感应磁环(10)的磁极变化以对应生成至少一路感应信号,X为大于1的整数;控制单元(30),控制单元(30)与至少一个霍尔检测组件(20)相连,控制单元(30)根据X路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,避免对机构损坏,可缩短检测时间,提升检测灵敏度。还公开了空调器及空调器中运动部件的检测控制方法。

Description

空调器及空调器中运动部件的检测控制装置和方法
相关申请的交叉引用
本申请基于申请号为2017100080921、2017200142586和2017200142603,申请日为2017年1月5日,以及申请号为2017104017113、2017206252611、2017104053815、2017206252645和2017104016943,申请日为2017年5月31日的中国专利申请提出,并要求这些中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调器技术领域,特别涉及一种空调器中运动部件的检测控制装置、一种空调器、一种空调器中运动部件的检测控制方法以及一种非临时性可读存储介质。
背景技术
相关的空调器中越来越多的采用滑动开关门或其他旋转运动装置,例如空调器启动后门板向两侧或一侧打开,或者旋转部件旋转到格栅对准出风口位置,而且空调器关闭后门板闭合或者旋转部件旋转到遮挡板对准出风口位置,从而使产品的美观度大大提升。
但是,此类门板的动力机构通常为开环控制的步进电机,力矩较大。如果在门板开启或关闭的过程中有异物卡住或者关闭过程中手指不慎伸于其中,控制单元并不会知晓而停转电机,此时动力机构处于过盈状态,从而不但会对产品的结构件与电器造成损害,如果是手指夹于其中还会产生很大的痛感,严重降低产品的使用感受。
相关技术中通常采用两种方式来应对前述情况,一种是相通过在门板上加装光栅条并在光栅条两侧分别加装发光管和受光管来监测门板是否卡滞,但是其结构复杂、检测时间长,另一种是利用电感与电容并联谐振电路在夹住障碍物后由电感值变化导致并联电路阻抗变化的原理来检测门板是否卡滞,但是使用寿命有限且随着运行时间变长后检测功能很可能失效。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为实现上述目的,本发明第一方面实施例提出了一种空调器中运动部件的检测控制装置,包括:磁环,所述磁环固定在驱动所述运动部件的驱动部件上,所述磁环的检测面上间隔分 布多个N磁极和/或多个S磁极;至少一个霍尔检测组件,所述至少一个霍尔检测组件与所述磁环的检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件靠近所述磁环的检测面固定设置,所述至少一个霍尔检测组件在所述驱动部件驱动所述运动部件移动时感应所述磁环的磁极变化以对应生成至少一路感应信号;控制单元,所述控制单元与所述至少一个霍尔检测组件相连,所述控制单元根据所述至少一路感应信号判断所述运动部件是否卡滞。
根据本发明提出的空调器中运动部件的检测控制装置,可通过靠近磁环固定设置的至少一个霍尔检测组件感应与驱动部件同步运动的磁环的磁极以对应生成至少一路感应信号,进而控制单元根据接收到的至少一路感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,该装置检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
在至少一个实施例中,当所述磁环的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置;当所述磁环的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域;当所述磁环的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域。
在至少一个实施例中,当所述磁环的检测面上分布多个N磁极和多个S磁极时,每个所述N磁极的宽度均相同且每个所述S磁极的宽度均相同;当所述磁环的检测面上间隔分布多个N磁极时,每个所述N磁极的宽度均相同;或者,当所述磁环的检测面上间隔分布多个S磁极时,每个所述S磁极的宽度均相同。
在至少一个实施例中,根据以下公式获取所述N磁极或所述S磁极的磁性区域角宽度:
λ=(π+arcsin(X/A)+arcsin(Y/A))/p,
其中,λ为所述N磁极或所述S磁极的磁性区域角宽度,A为所述N磁极或所述S磁极的最大磁密,X为所述霍尔检测组件的动作点,Y为所述霍尔检测组件的释放点,p为所述N磁极或所述S磁极的个数。
在至少一个实施例中,根据以下公式获取所述第一空白区域或第二空白区域的区域角宽度:
θ=2π/p–λ
其中,θ为所述第一空白区域或第二空白区域的区域角宽度,λ为所述N磁极或所述S磁极的磁性区域角宽度,p为所述N磁极或所述S磁极的个数。
在至少一个实施例中,当所述磁环的检测面上间隔分布多个N磁极或S磁极时,所述霍尔检测组件为单极型霍尔元件,所述单极型霍尔元件与所述磁环上的磁极的磁性相匹配, 其中,当所述磁环的检测面上间隔分布多个N磁极时,所述单极型霍尔元件为N极型霍尔元件;当所述磁环的检测面上间隔分布多个S磁极时,所述单极型霍尔元件为S极型霍尔元件。
在至少一个实施例中,当所述霍尔检测组件为x个时,所述x个霍尔检测组件相对于所述磁环错开预设角度,所述x个霍尔检测组件在所述驱动部件驱动所述运动部件移动时感应所述磁环的磁极变化以对应生成x路感应信号,其中,x为大于1的整数。
在至少一个实施例中,所述预设角度包括第一预设角度、第二预设角度和第三预设角度,其中,当所述磁环的检测面上间隔分布多个N磁极时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述第一空白区域的个数之和错开第一预设角度;当所述磁环的检测面上间隔分布多个S磁极时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述S磁极的个数之和错开第三预设角度;当所述磁环的检测面上分布多个N磁极和多个S磁极时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述S磁极的个数之和错开第三预设角度。
在至少一个实施例中,根据以下公式确定所述第一预设角度、第二预设角度和第三预设角度:
d=360°/s/x+n*2*360°/s
其中,d为所述第一预设角度、第二预设角度和第三预设角度,x为所述霍尔检测组件的个数,n为整数,在所述磁环的检测面上间隔分布多个N磁极和多个S磁极时s为所述N磁极与所述多个S磁极的个数之和,或在所述磁环的检测面上间隔分布多个N磁极时s为所述N磁极与所述第一空白区域的个数之和,或在所述磁环的检测面上间隔分布多个S磁极时s为所述S磁极与所述第二空白区域的个数之和。
在至少一个实施例中,当所述磁环上分布多个N磁极和多个S磁极时,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述S磁极时生成第二电平;当所述磁环上间隔分布所述多个N磁极时,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述第一空白区域时生成第二电平;当所述磁环上间隔分布所述多个S磁极时,所述霍尔检测组件在正对所述S磁极时生成第一电平,并在正对所述第二空白区域时生成第二电平。
在至少一个实施例中,所述控制单元包括计时器和控制芯片,所述控制芯片与所述计时器相连,其中,当所述霍尔检测组件为一个时,所述计时器用于在所述第一电平与所述第二电平进行切换时开始计时,以对所述第一电平的持续时间和所述第二电平的持续时间进行计时;所述控制芯片用于在所述第二电平或所述第二电平的持续时间大于预设时间阈值时,判 断所述运动部件发生卡滞。
在至少一个实施例中,当所述霍尔检测组件为x个时,所述x路感应信号构造出y种电平状态组合,y>x,其中,所述计时器用于在电平状态组合发生变化时开始计时,以对所述y种电平状态组合中每种电平状态组合的持续时间进行计时;所述控制芯片在任意种电平状态组合的持续时间大于预设时间阈值时判断所述运动部件发生卡滞。
在至少一个实施例中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
在至少一个实施例中,所述驱动部件包括驱动电机,所述磁环固定在所述驱动电机的转动组件上。
在至少一个实施例中,所述驱动电机的转动组件为传动齿轮或驱动轴。
在至少一个实施例中,所述磁环上开有固定孔,所述磁环通过所述固定孔与所述驱动部件铆合。
在至少一个实施例中,所述磁环的检测面为磁环周边侧面或磁环内部端面。
在至少一个实施例中,所述至少一个霍尔检测组件固定在空调器本体上。
在至少一个实施例中,x个所述霍尔检测组件设置在所述空调器的电路板上,并根据所述预设角度设置x个所述霍尔检测组件在所述电路板上错开的直线距离。
在至少一个实施例中,当x为偶数时,所述x个霍尔检测组件对称地排布在所述电路板与所述磁环的圆心之间的垂直线的两侧;当x为奇数时,第(x+1)/2个霍尔检测组件相对所述电路板与所述磁环的圆心之间的垂直线设置,其余(x-1)个霍尔检测组件对称地排布在所述电路板与所述磁环的圆心之间的垂直线的两侧。
在至少一个实施例中,当x为偶数时,第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离根据以下公式获取:
当i小于x/2时,L=R×tan((x/2-i)×d+d/2)-R×tan((x/2-i-1)×d+d/2);
当i等于x/2时,L=2R×tan(d/2);
当i大于x/2时,L=R×tan((i-x/2)×d+d/2)-R×tan((i-x/2-1)×d+d/2);
其中,i为1、2、…、(x-1),L为所述第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离,R为所述电路板与所述磁环的圆心之间的垂直距离,d为所述预设角度。
在至少一个实施例中,当x为奇数时,第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离根据以下公式获取:
当i小于(x+1)/2时,L=R×tan(((x+1)/2-i)×d)-R×tan(((x+1)/2-i-1)×d);
当i大于等于(x+1)/2时,L=R×tan((i-(x+1)/2+1)×d)-R×tan((i-(x+1)/2)×d);
其中,i为1、2、…、(x-1),L为所述第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离,R为所述电路板与所述磁环的圆心之间的垂直距离,d为所述预设角度。
为达到上述目的,本发明第二方面实施例提出了一种空调器,包括所述的空调器中运动部件的检测控制装置。
根据本发明实施例提出的空调器,可通过运动部件的检测控制装置实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
为达到上述目的,本发明第三方面实施例提出了一种空调器中运动部件的检测控制方法,所述空调器包括磁环和至少一个霍尔检测组件,所述磁环固定在驱动所述运动部件的驱动部件上,所述磁环的检测面上间隔分布多个N磁极和/或多个S磁极,所述至少一个霍尔检测组件靠近所述磁环的检测面固定设置,所述方法包括以下步骤:在所述驱动部件驱动所述运动部件移动时通过至少一个霍尔检测组件感应所述磁环的磁极变化以对应生成至少一路感应信号;根据所述至少一路感应信号判断所述运动部件是否卡滞。
根据本发明实施例提出的空调器中运动部件的检测控制方法,可通过靠近磁环固定设置的至少一个霍尔检测组件感应与驱动部件同步运动的磁环的磁极以对应生成至少一路感应信号,进而根据接收到的至少一路感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,该方法检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
在至少一个实施例中,当所述磁环的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置,其中,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述S磁极时生成第二电平;当所述磁环的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域,其中,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述第一空白区域时生成第二电平;当所述磁环的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域,所述霍尔检测组件在正对所述S磁极时生成第一电平,并在正对所述第二空白区域时生成第二电平。
在至少一个实施例中,当所述霍尔检测组件为一个时,所述根据所述至少一路感应信号判断所述运动部件是否卡滞包括:在所述第一电平与所述第二电平进行切换时开始计时,以对所述第一电平的持续时间和所述第二电平的持续时间进行计时;在所述第二电平或所述第二电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
在至少一个实施例中,当所述霍尔检测组件为x个时,所述x个霍尔检测组件相对于所述磁环错开预设角度,所述x个霍尔检测组件在所述驱动部件驱动所述运动部件移动时感应所述磁环的磁极变化以对应生成x路感应信号,所述x路感应信号构造出y种电平状态组合,x为大于1的整数,y>x,其中,所述根据所述至少一路感应信号判断所述运动部件是否卡滞包括:在电平状态组合发生变化时开始计时,以对所述y种电平状态组合中每种电平状态组合的持续时间进行计时;在任意种电平状态组合的持续时间大于预设时间阈值时判断所述运动部件发生卡滞。
在至少一个实施例中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
为达到上述目的,本发明第四方面实施例提出了一种非临时性可读存储介质,其上存储有空调器控制程序,该程序被处理器执行时实现如本发明第三方面实施例所述的空调器中运动部件的检测控制方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明一个实施例的空调器中运动部件的检测控制装置的方框示意图;
图2a是根据本发明一个实施例的磁环的俯视图,其中,磁环采用侧面充磁;
图2b是图2a的侧视图,其中,磁环上分布N磁极和第一空白区域;
图3是根据本发明一个实施例的磁环的结构示意图,其中,磁环采用端面充磁且磁环上分布N磁极和第一空白区域;
图4是根据本发明一个实施例的空调器中运动部件的检测控制装置的结构示意图,其中,磁环采用侧面充磁且磁环上分布N磁极和第一空白区域;
图5是根据本发明一个实施例的空调器中运动部件的检测控制装置的结构示意图,其中,磁环采用端面充磁且磁环上分布N磁极和第一空白区域;
图6是根据本发明一个具体实施例的空调器中运动部件的检测控制装置的方框示意图;
图7是根据本发明一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运 动部件未发生卡滞;
图8是根据本发明一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运动部件在t1时刻发生卡滞;
图9是根据本发明一个实施例的霍尔检测组件的电路原理图;
图10是根据本发明一个实施例的空调器的门板的示意图;
图11是根据本发明一个实施例的驱动部件的安装位置的示意图;
图12是根据本发明一个实施例的空调器中运动部件的检测控制装置的方框示意图;
图13a是根据本发明另一个实施例的空调器中运动部件的检测控制装置的磁环的俯视图,其中,磁环采用侧面充磁;
图13b是图13a的侧视图,其中,磁环上分布N磁极和第一空白区域;
图14a是根据本发明另一个实施例的空调器中运动部件的检测控制装置的磁环的俯视图,其中,磁环采用端面充磁;
图14b是图14a的侧视图,其中,磁环上分布N磁极和第一空白区域;
图15是根据本发明另一个具体实施例的空调器中运动部件的检测控制装置的方框示意图;
图16是根据本发明另一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运动部件未发生卡滞;
图17是根据本发明另一个实施例的霍尔检测组件输出的感应信号的波形示意图,其中,运动部件在t1时刻发生卡滞;
图18是根据本发明另一个实施例的霍尔检测组件的电路原理图;
图19是根据本发明另一个实施例的磁环的结构示意图,其中,磁环采用端面充磁且磁环上分布N磁极和S磁极;
图20是图2a的另一个侧视图,其中,磁环上分布N磁极和S磁极;
图21a是根据本发明又一个实施例的磁环的俯视图,其中,磁环采用端面充磁且磁环上分布N磁极和S磁极;
图21b是根据本发明又一个实施例的磁环的侧视图,其中,磁环采用侧面充磁且磁环上分布N磁极和S磁极;
图22是根据本发明又一个实施例的霍尔检测组件的电路原理图;
图23是根据本发明一个实施例的空调器的方框示意图;
图24是根据本发明一个实施例的空调器的安装结构的示意图;
图25是根据本发明一个实施例的空调器的电机堵转检测装置的结构示意图,其中,磁 环采用侧面充磁;
图26是根据本发明一个实施例的空调器的电机堵转检测装置的结构示意图,其中,磁环采用端面充磁;
图27是根据本发明实施例的空调器的门板控制系统的方框示意图;
图28是根据本发明再一个实施例的磁环的侧视图,其中,磁环采用侧面充磁且磁环上分布S磁极和第二空白区域;
图29是根据本发明一个实施例的空调器中运动部件的检测控制装置的结构示意图,其中,霍尔检测组件为两个;
图30是根据本发明一个实施例的空调器中运动部件的检测控制装置的结构示意图,其中,霍尔检测组件为三个;
图31是根据本发明一个实施例的空调器中运动部件的检测控制装置的结构示意图,其中,霍尔检测组件为四个;
图32是根据本发明一个实施例的图29、图30以及图21在A方向上的侧视图;
图33是根据本发明另一个实施例的图29、图30以及图21在A方向上的侧视图;
图34是根据本发明又一个实施例的图29、图30以及图21在A方向上的侧视图;
图35是根据本发明实施例的空调器中运动部件的检测控制方法的流程图;
图36是根据本发明一个实施例的空调器中运动部件的检测控制方法的流程图;以及
图37是根据本发明另一个实施例的空调器中运动部件的检测控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在描述本发明实施例的空调器以及空调器中运动部件的检测控制装置和方法之前,先来简单介绍相关技术中的门板卡滞检测技术。
相关技术提出了一种滑动门检测控制装置,其中在门板上加装光栅条,光栅条两侧再分别加装发光管和受光管,门板正常运动时由光栅条的间隔透光性产生高低电平脉冲反馈信号,通过对高电平或低电平持续时间的检测即可监测门板是否卡滞。
相关技术还提出了一种滑动门检测控制装置,其中利用电感与电容并联谐振电路在夹住障碍物后由电感值变化导致并联电路阻抗变化的原理,通过阻抗检测电路检测门板是否卡滞。
对于上述第一个相关技术中的检测控制装置,此装置在光栅两侧分别加装发光管和受光 管,结构复杂,难度较大,光栅与门板需要一定间隙。此外由于采用光电原理,为避免环境光干扰等多重因素,光栅的透光和遮光间隙不能过于狭小,这样导致反馈脉冲的高低电平持续时间加长,从而卡滞的检测时间加长,检测灵敏度降低,若夹住手指则痛感会持续很长时间,令用户难以接受。
对于上述第二个相关技术中的检测控制装置,并联电路所用电感为带有铜箔走线的金属片,电感值变化源自卡滞时障碍物导致的金属片变形,但是,每次门板关紧时都会使金属片严重挤压,虽然此时并无障碍物,检测功能也被关闭不会造成误检,但金属片依然会严重变形,长此反复,会给金属片带来不可恢复的形变或彻底损坏,导致该装置的使用寿命有限且随着运行时间变长后检测功能很可能失效。而且,该装置只适用于单侧开关门装置,不能用于双侧开关门装置,且只适用于关闭过程中的卡滞,不能检测开启过程中的卡滞。
基于此,本发明实施例提出了一种空调器中运动部件的检测控制装置。
下面参考附图来描述本发明第一方面实施例提出的空调器中运动部件的检测控制装置,其中,运动部件的检测控制装置用于检测运动部件例如门板等是否发生卡滞,或者是否遇到障碍物。
如图1和图12所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁环10、至少一个霍尔检测组件20和控制单元30。
其中,磁环10固定在驱动运动部件的驱动部件上,磁环10的检测面上间隔分布多个N磁极和/或多个S磁极;至少一个霍尔检测组件20与磁环10的检测面上磁极的磁性相匹配,至少一个霍尔检测组件20靠近磁环10的检测面固定设置,至少一个霍尔检测组件20在驱动部件驱动运动部件移动时感应磁环10的磁极变化以对应生成至少一路感应信号;控制单元30与至少一个霍尔检测组件20相连,控制单元30根据至少一路感应信号判断运动部件是否卡滞。
在至少一个实施例中,当磁环10的检测面上间隔分布多个N磁极和多个S磁极时,N磁极和S磁极一一间隔设置;当磁环10的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域;当磁环10的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域。
在至少一个实施例中,当磁环10的检测面上分布多个N磁极和多个S磁极时,每个N磁极的宽度均相同且每个S磁极的宽度均相同;当磁环10的检测面上间隔分布多个N磁极时,每个N磁极的宽度均相同;或者,当磁环10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同。
在至少一个实施例中,当霍尔检测组件20为x个时,x个霍尔检测组件20相对于磁环 10错开预设角度,x个霍尔检测组件20在驱动部件驱动运动部件移动时感应磁环10的磁极变化以对应生成x路感应信号,其中,x为大于1的整数。
在至少一个实施例中,预设角度包括第一预设角度、第二预设角度和第三预设角度,其中,当磁环10的检测面上间隔分布多个N磁极时,x个霍尔检测组件20中任意相邻两个霍尔检测组件根据N磁极与第一空白区域的个数之和错开第一预设角度;当磁环10的检测面上间隔分布多个S磁极时,x个霍尔检测组件20中任意相邻两个霍尔检测组件根据N磁极与S磁极的个数之和错开第三预设角度;当磁环10的检测面上分布多个N磁极和多个S磁极时,x个霍尔检测组件20中任意相邻两个霍尔检测组件根据N磁极与S磁极的个数之和错开第三预设角度。
在至少一个实施例中,当磁环10上分布多个N磁极和多个S磁极时,每个霍尔检测组件20在正对N磁极时生成第一电平,并在正对S磁极时生成第二电平;当磁环10上间隔分布多个N磁极时,每个霍尔检测组件20在正对N磁极时生成第一电平,并在正对第一空白区域时生成第二电平;当磁环10上间隔分布多个S磁极时,每个霍尔检测组件20在正对S磁极时生成第一电平,并在正对第二空白区域时生成第二电平。需要说明的是,这里的第一电平与后面实施例中有效电平相当,第二电平与后面实施例中无效电平相当。
在至少一个实施例中,如图6和15所示,控制单元30包括计时器301和控制芯片302,控制芯片302与计时器301相连,其中,如图6所示,当霍尔检测组件20为一个时,计时器301用于在第一电平与第二电平进行切换时开始计时,以对第一电平的持续时间和第二电平的持续时间进行计时;控制芯片302用于在第二电平或第二电平的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
在至少一个实施例中,如图15所示,当霍尔检测组件20为x个时,x路感应信号构造出y种电平状态组合,y>x,其中,计时器301用于在电平状态组合发生变化时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;控制芯片302在任意种电平状态组合的持续时间大于预设时间阈值时判断运动部件发生卡滞。其中,电平状态组合的数量y为每一路感应信号的电平状态数量的x倍。
下面通过五方面实施例来详细描述本发明实施例的空调器中运动部件的检测控制装置。
实施例一:如图1-5所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁环10、霍尔检测组件20和控制单元30。
磁环10固定在驱动运动部件的驱动部件上,磁环10的检测面上间隔分布多个N磁极或S磁极。根据本发明的一个实施例,当磁环10的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域;当磁环10的检测面上间隔分布多个S磁极时,相 邻的两个S磁极之间分布有第二空白区域。也就是说,当磁环10上间隔充满N磁极时,N磁极与第一空白区域间隔分布在磁环10的检测面上,即磁环10上的排布规律为N磁极-第一空白区域-N磁极-第一空白区域;当磁环10上间隔充满S磁极时,S磁极与空白区域间隔分布在磁环10的检测面上,即磁环10的排布规律为S磁极-第二空白区域-S磁极-第二空白区域,其中,空白区域包括第一空白区域或第二空白区域不带有任何磁性即无磁性区域。由此,在本实施例中,磁环10可为单极性磁环。
霍尔检测组件20与磁环10检测面上磁极的磁性相匹配,霍尔检测组件20靠近磁环10的检测面固定设置,霍尔检测组件20在驱动部件驱动运动部件移动时感应磁环10的N磁极或S磁极以生成感应信号。需要说明的是,霍尔检测组件20可相对磁环10的检测面设置,并且霍尔检测组件20可靠近磁环10但并不接触,设置于磁环10的磁场感应范围内即可。
具体而言,在圆形的磁环10上可间隔充满N磁极与第一空白区域,当驱动部件驱动运动部件移动时,N磁极与第一空白区域可交替经过霍尔检测组件20,霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。或者,在圆形的磁环10上可间隔充满S磁极与第二空白区域,当驱动部件驱动运动部件移动时,S磁极与第二空白区域可交替经过霍尔检测组件20,霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。
控制单元30与霍尔检测组件20相连,控制单元30根据感应信号判断运动部件是否卡滞。
具体来说,以磁环10的检测面上间隔分布多个N磁极为例说明,在驱动部件驱动运动部件移动时,磁环10随着驱动部件运动,而霍尔检测组件20固定不动,磁环10的检测面上的N磁极和第一空白区域依次通过霍尔检测组件20,霍尔检测组件20通过感应磁环10的N磁极以输出感应信号例如高低电平脉冲信号,当驱动部件停止运动时霍尔检测组件20感应到的磁极将会保持不变,感应信号将保持不变,由此,控制单元30根据感应信号判断驱动部件的状态,例如驱动部件是否发生堵转,进而判断驱动部件所驱动的运动部件是否发生卡滞。
磁环10的检测面上间隔分布多个S磁极的情况与前述间隔分布多个N磁极的情况类似,区别在于,磁环10的检测面上的S磁极和第二空白区域依次通过霍尔检测组件20,这里不再赘述。
根据本发明的一个实施例,驱动部件可包括驱动电机,磁环10固定在驱动电机的转动组件上。也就是说,在驱动电机驱动运动部件移动时,磁环10随着驱动电机的转动组件转动。
根据本发明的一个实施例,驱动电机可为步进电机,步进电机采用开环控制,控制单元 30可通过磁环和霍尔检测组件的结构检测步进电机是否发生堵转,防止步进电机持续处于过盈状态,防止对步进电机本身以及产品运行产生不利影响。
根据本发明的一个实施例,驱动电机的转动组件可为传动齿轮或驱动轴。也就是说,磁环10可固定在驱动电机的传动齿轮或驱动轴上,从而,在驱动电机转动时磁环10可随之转动。
需要说明的是,当驱动电机驱动运动部件时,如果驱动电机与运动部件间经多个传动齿轮,则优选地将磁环10固定在靠近运动部件的传动齿轮上。
具体地,如图2-5所示,磁环10上开有固定孔101,例如,磁环10的中心开有固定孔101,磁环10通过固定孔101与驱动部件例如驱动电机的转动组件铆合,从而可与驱动部件同步转动。也就是说,磁环10可通过固定孔101与驱动电机的传动齿轮或驱动轴铆合。另外,磁环10也可直接与传动齿轮做成一个部件。
并且,根据本发明的一个实施例,霍尔检测组件20可固定在空调器本体上。由此,整体安装便捷,避免带来走线问题。
进一步地,根据本发明的一个实施例,如图2-5所示,多个N磁极或S磁极以等宽方式设置。也就是说,当磁环10的检测面上间隔分布多个N磁极时,每个N磁极的宽度均相同;或者当磁环10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同。根据本发明的一个具体示例,磁性区域即N磁极磁性区域的宽度与第一空白区域的宽度也可近似相等,或者磁性区域即S磁极磁性区域的宽度与第二空白区域的宽度也可近似相等。
需要说明的是,磁性区域与空白区域的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的霍尔感应参数而定。
具体地,可根据以下公式获取N磁极或S磁极的磁性区域角宽度:
λ=(π+arcsin(X/A)+arcsin(Y/A))/p,
其中,λ为N磁极或S磁极的磁性区域角宽度,A为N磁极或S磁极的最大磁密,X为霍尔检测组件20的动作点,Y为霍尔检测组件20的释放点,p为N磁极或S磁极的个数。
相应地,可根据以下公式获取第一空白区域或第二空白区域的区域角宽度:
θ=2π/p–λ
其中,θ为第一空白区域或第二空白区域的区域角宽度,λ为N磁极或所述S磁极的磁性区域角宽度,p为N磁极或所述S磁极的个数。
当然,应当理解的是,N磁极的宽度和第一空白区域的宽度可相等,S磁极的宽度和第二空白区域的宽度也可相等,从而简化磁环的设计、制作难度。
另外,磁环10为N磁极与空白区域相间或者S磁极与空白区域相间,N磁极或者S磁 极的个数与磁环10的尺寸相关,磁环10的尺寸越大,N磁极或S磁极的总个数越多,检测灵敏度越高。
根据本发明的一个实施例,当磁环10的检测面上间隔分布多个N磁极或多个S磁极时,霍尔检测组件20可为单极型霍尔元件,单极型霍尔元件20与磁环10上间的磁极的磁性相匹配,其中,当磁环10的检测面上间隔分布多个N磁极时,单极型霍尔元件为N极型霍尔元件;当磁环10的检测面上间隔分布多个S磁极时,单极型霍尔元件为S极型霍尔元件。也就是说,单极型霍尔元件的选型与单极磁环配合,如果单极磁环的检测面的磁性为N极型,则单极型霍尔也选用N极型,如果单极磁环的检测面的磁性为S极型,则单极型霍尔也选用S极型。
根据本发明的一个具体实施例,如图2-5所示,磁环10的检测面可为磁环侧面或磁环端面。也就是说,磁环10有侧面充磁和端面充磁两种形式,以N磁极为例说明,如图2a、图2b和图4所示为侧面充磁,可将N磁极和第一空白区域间隔充满磁环10的周边,其中,如图2a为俯视图,如图2b和图4为侧视图;如图3和图5所示为端面充磁,可将N磁极和第一空白区域间隔充满磁环10的端面。在本发明实施例中,可优选端面充磁,从可将磁环10做的更薄,节省材料,降低成本。
根据本发明的一个实施例,霍尔检测组件20例如霍尔元件可采用贴片和插件型两种封装形式,霍尔检测组件20均固定在PCB(Printed Circuit Board;印制电路板)板上并通过PCB板固定于空调本体上,位于磁环10的一侧,靠近磁环但非接触,在磁场可感应范围内。
其中,如图5所示,贴片型的霍尔检测组件20可与端面充磁的磁环10相配合;如图4所示,插件型的霍尔检测组件20可与侧面充磁的磁环10相配合。在本发明实施例中,可优选贴片型的霍尔检测组件20,因在制作工艺上,贴片型定位更准确,从而可减小检测误差,且采用贴片型可便于自动化装配,提升装配速度。
根据本发明的一个实施例,相邻的两个N磁极或S磁极之间分布有空白区域,霍尔检测组件20可根据是否感应到的N磁极或S磁极生成感应信号,即霍尔检测组件在正对N磁极或S磁极时生成有效电平(即第一电平),并在正对第一空白区域或第二空白区域时生成无效电平(即第二电平),例如有效电平可为高电平且无效电平可为低电平,或者,有效电平可为低电平且无效电平可为高电平,具体根据霍尔检测组件20的自身属性而定。
这样,当N磁极和第一空白区域交替经过霍尔检测组件20或者S磁极和第二空白区域交替经过霍尔检测组件20时,霍尔检测组件20将输出稳定的高低电平脉冲序列,且高低电平脉冲序列的周期固定、占空比为50%。
由此,磁环10上的N磁极或者S磁极可做到十分密集(磁极宽度可做到1-2mm),灵 敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
进一步地,根据本发明的一个实施例,如图6所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于在有效电平与无效电平进行切换时开始计时,以对有效电平的持续时间和无效电平的持续时间进行计时;控制芯片302与计时器301相连,控制芯片302用于在有效电平或无效电平的持续时间大于预设时间阈值时判断运动部件发生卡滞。
具体来说,以N磁极为例说明,S磁极的情况与N磁极相类似,不再详细赘述。在驱动部件驱动运动部件移动例如驱动电机转动时,驱动电机的转动组件带动磁环10同步转动,霍尔检测组件20固定不动,磁环10上的N磁极和第一空白区域交替经过霍尔检测组件20,如果霍尔检测组件20正对磁环10的N磁极,则霍尔检测组件20输出有效电平,此时计时器301记录有效电平的持续时间,记为T1;如果霍尔检测组件20正对磁环10的第一空白区域,则霍尔检测组件20输出无效电平,此时计时器301记录无效电平的持续时间,记为T2。应当理解的是,通过合理设置磁环10的N磁极和第一空白区域的宽度例如,N磁极的磁性区域角宽度为λ=(π+arcsin(X/A)+arcsin(Y/A))/p,且第一空白区域的区域角宽度为θ=2π/p–λ,可使T1与T2相同。
在霍尔检测组件20正对的区域从N磁极变到第一空白区域时,霍尔检测组件20的输出从有效电平跳变到无效电平,计时器301重新开始计时,即计时器301开始记录无效电平的持续时间。类似的,在霍尔检测组件20正对的区域从第一空白区域变到N磁极时,霍尔检测组件20的输出从无效电平跳变到有效电平,计时器301重新开始计时,即计时器301开始记录有效电平的持续时间。
由此,依此类推,如图7所示,霍尔检测组件20输出一系列的高低电平脉冲序列,并且脉冲序列的占空比为50%。控制芯片302通过分别检测高电平的持续时间和低电平的持续时间即是否超过预设时间阈值即可判断驱动电机是否堵转,进而判断门板是否卡滞。
更具体地,假设r为磁环10的转速,p为磁环10的N磁极或S磁极的个数,则未发生卡滞的情况下,有效电平或无效电平的持续时间tn为1/r/p/2,即tn=1/r/p/2,其中,磁环10的转速r可根据驱动电机的转速和齿轮传速比计算。
由此,如果运动部件发生卡滞,驱动部件的传动齿轮停滞,霍尔检测组件20正对的磁环10的区域不再发生变化,霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。
如图8所示,在t1时刻运动部件发生卡滞、且在t2时刻恢复,tn为未发生卡滞时高电平或低电平的持续时间,td为预设时间阈值,当运动部件发生卡滞时,当前电平状态维持不 变,如果当前电平的持续时间即计时器301的计时时间大于预设时间阈值td,则判断为运动部件发生卡滞,换言之,如果高电平或低电平超出了预设时间阈值td还未发生跳变,则判断为运动部件发生卡滞。其中,预设时间阈值td=k*tn,k值的取值范围可为1-4,且优选1.5。
如上所述,本发明实施例检测运动部件是否发生卡滞的过程如下:
在驱动部件驱动运动部件时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集霍尔检测组件20输出的感应信号,当感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断驱动电机发生堵转,进而判断运动部件发生卡滞,控制芯片302输出堵转保护信号,以执行驱动电机的保护动作,例如控制驱动电机停止转动或反向转动;如果计时器302的计时值小于等于预设时间阈值td,则判断驱动电机未发生堵转,进而判断运动部件未发生卡滞,控制芯片302可控制驱动电机继续正向转动。
另外,根据本发明的一个具体实施例,如图9所示,霍尔检测组件20的电源端通过第一电阻R1与预设电源VCC例如+5V相连,霍尔检测组件20的接地端接地,霍尔检测组件20的电源端与接地端之间并联第一电容C1,其中,霍尔检测组件20的检测端感应磁环10的磁极,霍尔检测组件20的输出端输出感应信号。
进一步地,如图9所示,空调器中运动部件的检测控制装置还包括输出电路40,输出电路40与霍尔检测组件20的输出端相连,输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,霍尔检测组件20可为5V供电,从而霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对高低电平脉冲序列的高低电平持续时间进行计时,并通过计时时间与预设时间阈值的比较判断驱动电机是否发生堵转,进而判断运动部件是否发生卡滞。
此外,根据本发明的一个具体实施例,如图10和11所示,运动部件可为空调器的门板300;驱动部件100例如驱动电机可驱动门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制装置可通过驱动部件100驱动门板300打开,当空调器关闭时空调器的控制装置可通过驱动部件100驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300 可向两侧打开。
本发明实施例的运动部件的检测控制装置可检测驱动部件100是否堵转,以判断门板300是否遇到障碍物。具体地,在门板300向开门方向或关门方向运动时,驱动部件100例如驱动电机的转动组件带动磁环10同步转动,磁环10上的N磁极和空白区域交替经过霍尔检测组件20,霍尔检测组件20输出稳定的高低电平脉冲序列,占空比为50%。
当门板300发生阻滞,例如有异物卡住门板300或者手指不慎伸于其中时,驱动部件100停止转动,霍尔检测组件20对应的区域不再变化,霍尔检测组件20的输出电平会持续为高电平或者持续为低电平,控制单元30通过检测高低电平的持续时间是否超过预设时间阈值td即可判断驱动部件100是否堵转,进而判断门板300是否遇到障碍物即发生卡滞。
由此,能够有效检测门板是否发生卡滞,缩短检测时间,快速获得门板的卡滞信息,做到轻微触碰即可检测卡滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,防止对用户造成伤害例如夹住手指等,同时提高了用户使用体验满意度。
综上,根据本发明实施例提出的空调器中运动部件的检测控制装置,可通过靠近磁环固定设置的霍尔检测组件感应与驱动部件同步运动的磁环的磁极以生成感应信号,进而控制单元根据接收到的感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,该装置检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
实施例二:
如图12-14以及图2a、图2b、图3所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁环10、x个霍尔检测组件20和控制单元30。
其中,磁环10固定在驱动运动部件的驱动部件上,磁环10的检测面上间隔分布多个N磁极或S磁极。与实施例一相似,当磁环10的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域;当磁环10的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域。由此,在本实施例中,磁环10可为单极性磁环。
x个霍尔检测组件20与磁环10检测面上磁极的磁性相匹配,x个霍尔检测组件20靠近磁环10的检测面固定设置,x个霍尔检测组件20在驱动部件驱动运动部件移动时感应磁环10的磁极变化以对应生成x路感应信号,x为大于1的整数。需要说明的是,x个霍尔检测组件20可对应磁环10的检测面设置,并且x个霍尔检测组件20可靠近磁环10但不接触,在磁环10的磁场感应范围内即可。
控制单元30与x个霍尔检测组件20相连,控制单元30根据x路感应信号判断运动部件是否卡滞。
具体来说,以磁环10的检测面上间隔分布多个N磁极为例说明,在驱动部件驱动运动部件移动时,磁环10随着驱动部件运动,而x个霍尔检测组件20固定不动,磁环10的检测面上的N磁极和第一空白区域依次通过每个霍尔检测组件20,x个霍尔检测组件20感应磁环10的磁极变化从而输出x路感应信号例如高低电平脉冲序列,当驱动部件按照预设速度运动时x个霍尔检测组件20输出的x路感应信号将符合相应的规律,而当驱动部件停止不动时x个霍尔检测组件20感应的磁极将会保持不变,x路感应信号将无法符合相应的规律,由此,控制单元30根据x路感应信号判断运动部件的状态,例如运动部件是否卡滞,或者驱动部件是否发生堵转。
应当理解的是,磁环10的检测面上间隔分布多个S磁极的情况与前述间隔分布多个N磁极的情况类似,区别在于,磁环10的检测面上的S磁极和第二空白区域依次通过霍尔检测组件20,这里不再赘述。
根据本发明的一个实施例,驱动部件可包括驱动电机,磁环10固定在驱动电机的转动组件上。也就是说,在驱动电机驱动运动部件移动时,磁环10随着驱动电机的转动组件转动。
根据本发明的一个实施例,驱动电机可为步进电机,步进电机可采用开环控制,控制单元30可通过磁环和多霍尔检测组件的结构检测步进电机是否发生堵转,防止步进电机持续处于过盈状态,防止对电机本身以及产品运行产生不利影响。
根据本发明的一个实施例,驱动电机的转动组件为传动齿轮或驱动轴。也就是说,磁环10可固定在驱动电机的传动齿轮或驱动轴上,从而,在驱动电机转动时磁环10可随之转动。
需要说明的是,当驱动电机驱动运动部件时,如果驱动电机与运动部件间经多个传动齿轮,则优选地将磁环10固定在靠近运动部件的传动齿轮上。
具体地,如图13-14以及图2a、图2b、图3所示,磁环10上开有固定孔101,例如,磁环10的中心开有固定孔101,磁环10通过固定孔101与驱动部件例如驱动电机的转动组件铆合,从而可与驱动部件同步转动。也就是说,磁环10可通过固定孔101与驱动电机的传动齿轮或驱动轴铆合。另外,磁环10也可直接与传动齿轮做成一个部件。
并且,根据本发明的一个实施例,霍尔检测组件20可固定在空调器本体上。由此,整体安装便捷,避免带来走线问题。
进一步地,根据本发明的一个实施例,如图13-14以及图2a、图2b、图3所示,多个N磁极或S磁极以等宽方式设置。也就是说,当磁环10的检测面上间隔分布多个N磁极时, 每个N磁极的宽度均相同;或者当磁环10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同。另外,根据本发明的一个具体示例,磁性区域即N磁极磁性区域的宽度与第一空白区域的宽度也可近似相等,或者磁性区域即S磁极磁性区域的宽度与第二空白区域的宽度也可近似相等。
需要说明的是,磁性区域与空白区域的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的霍尔感应参数而定。
具体地,可根据以下公式获取N磁极或S磁极的磁性区域角宽度:
λ=(π+arcsin(X/A)+arcsin(Y/A))/p,
其中,λ为N磁极或S磁极的磁性区域角宽度,A为N磁极或S磁极的最大磁密,X为霍尔检测组件20的动作点,Y为霍尔检测组件20的释放点,p为N磁极或S磁极的个数。
相应地,可根据以下公式获取第一空白区域或第二空白区域的区域角宽度:
θ=2π/p–λ
其中,θ为第一空白区域或第二空白区域的区域角宽度,λ为N磁极或所述S磁极的磁性区域角宽度,p为N磁极或所述S磁极的个数。当然,应当理解的是,N磁极的宽度和第一空白区域的宽度可相等,S磁极的宽度和第二空白区域的宽度也可相等,从而简化磁环的设计、制作难度。
另外,磁环10为N磁极与空白区域相间或者S磁极与空白区域相间,N磁极或者S磁极的个数与磁环10的尺寸相关,磁环10的尺寸越大,N磁极或S磁极的总个数越多,检测灵敏度越高。
根据本发明的一个实施例,x个霍尔检测组件20均为单极型霍尔元件,单极型霍尔元件20与磁环10上间的磁极的磁性相匹配,其中,当磁环10的检测面上间隔分布多个N磁极时,单极型霍尔元件为N极型霍尔元件;当磁环10的检测面上间隔分布多个S磁极时,单极型霍尔元件为S极型霍尔元件。也就是说,单极型霍尔元件的选型与单极磁环配合,如果单极磁环的检测面的磁性为N极型,则单极型霍尔也选用N极型,如果单极磁环的检测面的磁性为S极型,则单极型霍尔也选用S极型。
根据本发明的一个具体实施例,如图13-14以及图2a、图2b、图3所示,磁环10的检测面为磁环侧面或磁环端面。也就是说,磁环10有侧面充磁和端面充磁两种形式,以N磁极为例说明,如图2a、图2b、图13a和图13b所示为侧面充磁,可将N磁极和第一空白区域间隔充满磁环10的周边,其中,图2a和图13a为俯视图,图2b和图13b为侧视图;如图3、图14a和图14b所示为端面充磁,可将N磁极和第一空白区域间隔充满磁环10的端面,其中,图14a为俯视图,图14b为侧视图。在本实施例中,可优选端面充磁,从可将磁 环10做的更薄,节省材料,降低成本。
根据本发明的一个实施例,霍尔检测组件20例如霍尔元件可采用贴片和插件型两种封装形式,霍尔检测组件20均固定在PCB(Printed Circuit Board;印制电路板)板上并通过PCB板固定于空调本体上,位于磁环10的一侧,靠近磁环但非接触,在磁场可感应范围内。
其中,如图14a和14b所示,贴片型的霍尔检测组件20可与端面充磁的磁环10相配合;如图13a图13b所示,插件型的霍尔检测组件20可与侧面充磁的磁环10相配合。在本发明实施例中,可优选贴片型的霍尔检测组件20,因在制作工艺上,贴片型定位更准确,从而可减小检测误差,且采用贴片型可便于自动化装配,提升装配速度。
根据本发明的一个实施例,相邻的两个N磁极或S磁极之间分布有空白区域,霍尔检测组件20可根据感应到的磁极类型生成相应的感应信号,即霍尔检测组件20在正对N磁极或S磁极时生成有效电平(即第一电平),并在正对第一空白区域或第二空白区域即无磁性区域时生成无效电平(即第二电平),例如有效电平可为高电平且无效电平可为低电平,或者有效电平可为低电平且无效电平可为高电平,电平状态具体可根据霍尔检测组件20的类型确定。
这样,当N磁极和第一空白区域交替经过每个霍尔检测组件20或者S磁极和第一空白区域交替经过每个霍尔检测组件20时,每个霍尔检测组件20将输出稳定的高低电平脉冲序列,由此,x个霍尔检测组件20输出的x路高低电平脉冲序列的周期固定且相同、占空比为50%。
由此,磁环10上的N磁极和S磁极可做到十分密集(磁极宽度可做到1-2mm),灵敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
进一步地,根据本发明的一个实施例,预设角度包括第一预设角度和第二预设角度,当磁环10的检测面上间隔分布多个N磁极时,x个霍尔检测组件20根据N磁极与第一空白区域的个数之和错开第一预设角度;当磁环10的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域,x个霍尔检测组件20根据S磁极与空白区域的个数之和错开第二预设角度。具体地,可使相邻的两个霍尔检测组件20之间错开预设角度。
也就是说,x个霍尔检测组件20可错列分布,以N磁极为例,x个霍尔检测组件20可匹配磁环10的N磁极与第一空白区域的总个数及每个磁极的宽度错开第一预设角度,以使x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,从而,成倍提升检测灵敏度。如图13-14所示,以三个霍尔检测组件20为例,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开第一预设角度,且中间的霍尔检测组件20B与右边的霍尔检 测组件20C之间也错开第一预设角度,并且,以磁环10顺时针转动为例,中间的霍尔检测组件20B输出的感应信号滞后左边的霍尔检测组件20A预设相位角,右边的霍尔检测组件20C输出的感应信号滞后中间的霍尔检测组件20B预设相位角。
具体地,可根据以下公式确定第一预设角度或第二预设角度:
d=360°/s/x+n*2*360°/s
其中,d为第一预设角度或第二预设角度,s为N磁极与第一空白区域的个数之和,或者S磁极与第二空白区域的个数之和,x为霍尔检测组件的个数,n为任意整数。
需要说明的是,n为任意整数,具体数值的确定只要满足霍尔检测组件20在排布空间上不会相互干扰即可。
具体地,以磁环10的N磁极与第一空白区域总个数s=24,霍尔检测组件20的个数x=3为例,n取1,计算预设角度可得d=35°,即相邻两个霍尔检测组件20之间错开35°。更具体地,如图4-5所示,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开35°,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开35°,相应地,在磁环10顺时针转动时,中间的霍尔检测组件20B输出的感应信号相对于左边的霍尔检测组件20A输出的感应信号滞后60°,右边的霍尔检测组件20C输出的感应信号相对于中间的霍尔检测组件20B输出的感应信号滞后60°。
根据本发明的一个实施例,霍尔检测组件20在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平,x路感应信号构造出y种电平状态组合,y>x。其中,根据本发明的一个实施例,电平状态组合的数量y为每一路感应信号的电平状态数量的x倍,即y=2x。
如图15所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于在电平状态组合发生变化时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;控制芯片302与计时器301相连,控制芯片302还与x个霍尔检测组件20相连,控制芯片302在任一种电平状态组合的持续时间大于预设时间阈值时判断运动部件发生卡滞。
也就是说,x个霍尔检测组件20匹配磁环10的N磁极与第一空白区域或S磁极与第二空白区域的总个数及每个磁极的宽度错开预设角度,即x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,因而同一时刻可形成不同的电平状态组合。控制芯片302通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断驱动电机是否堵转,进而判断运动部件是否发生卡滞。由此,采用多霍尔检测组件分布错列,可进一步成倍缩短检测时间,可达到成倍降低检测时间的效果。
具体来说,以N磁极为例说明,S磁极的情况与N磁极相类似,不再详细赘述。在驱动部件驱动运动部件移动例如驱动电机转动时,驱动电机的转动组件带动磁环10同步转动,x个霍尔检测组件20固定不动,磁环10上的N磁极和第一空白区域交替经过x个霍尔检测组件20,x个霍尔检测组件20分别产生占空比为50%的高低电平脉冲序列。
相邻两个霍尔检测组件20依据上述公式d=360°/s/x+n*2*360°/s错开预设角度,相应地,相邻两个霍尔检测组件20可得到相差180°/x相位角的波形。由此,可以把每路波形中一个周期均分成2x种电平状态组合,并且,每种电平状态组合的持续时间tn是任一路信号的高电平状态或低电平状态的持续时间的1/x,即tn=1/r/p/2/x,其中,r为磁环10的转速,p为所述N磁极或S磁极的个数,当磁环10设置在传动齿轮上时,磁环10的转速可根据驱动电机的转速与齿轮传速比计算得到,当驱动电机为步进电机且磁环设置在驱动轴时,磁环10的转速可根据步距角和驱动脉冲周期计算得到。由此,采用多霍尔检测组件分布错列,可进一步成倍缩短检测时间,例如采用多少个霍尔传感器即可把检测时间降低多少倍。
如图16所示,以x=3,d=35°为例,三个霍尔检测组件20可输出各迟后60°相位角的三路波形,即霍尔检测组件20B的输出波形相对于霍尔检测组件20A的输出波形滞后60°,霍尔检测组件20C的输出感应信号相对于霍尔检测组件20B的输出波形滞后60°。由此,可以把每路波形中一个周期均分成六种电平状态组合,即六种电平状态组合分别为100、110、111、011、001、000,其中,1代表高电平,0代表低电平,并且,每种电平状态组合的持续时间tn是任一路信号的高电平或低电平状态的持续时间的1/3,tn=1/r/p/2/3,其中r为磁环10的转速,从而检测灵敏度提高了三倍。
当驱动电机发生堵转而停止转动即运动部件发生卡滞时,每个霍尔检测组件20对应的磁极不再变化,所以每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。如图17所示,驱动电机在t1时刻发生堵转、且在t2时刻恢复,tn为未发生堵转时每种电平状态组合的持续时间,td为预设时间阈值,当发生堵转时,三路波形维持当前的电平状态不变,当持续时间大于td时即判断为电机发生堵转,进而判断运动部件卡滞。其中,预设时间阈值td=k*tn,k的取值范围为1-4,优选为1.5。
如上所述,本发明实施例检测运动部件是否卡滞的检测过程如下:
在驱动部件驱动运动部件移动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集x个霍尔检测组件20输出的感应信号,当任意一路感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断驱动电机发生堵转,进而判断运动部件卡滞,控制芯片302输出堵转保护信号,以执行电机保护动作,例如控制 驱动电机停止转动或反向转动;如果计时器301的计时值小于等于预设时间阈值td,则判断电机未发生堵转,进而判断运动部件未发生卡滞,控制芯片302可控制驱动电机继续正向转动。
另外,根据本发明的一个具体实施例,如图18所示,x个霍尔检测组件20的电源端均通过第一电阻R1与预设电源VCC例如+5V相连,x个霍尔检测组件20的接地端接地,x个霍尔检测组件20的电源端与接地端之间均并联第一电容C1,其中,每个霍尔检测组件20的检测端感应磁环的磁极变化,每个霍尔检测组件20的输出端输出对应的感应信号。
进一步地,如图18所示,空调器中运动部件的检测控制装置还包括x个输出电路40,x个输出电路40与x个霍尔检测组件20的输出端一一对应相连,每个输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联后的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联后的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与对应的霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,每个霍尔检测组件20可为5V供电,从而每个霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,每个高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对x路高低电平脉冲序列的电平状态组合的持续时间进行计时,并通过计时时间与预设时间阈值的比较判断运动部件是否发生卡滞。
此外,根据本发明的一个具体实施例,如图10和11所示,运动部件可为空调器的门板300,门板300为可滑动的门板;驱动部件100例如驱动电机可驱动门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制装置可通过电机驱动门板300打开,当空调器关闭时空调器的控制装置可通过电机驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
本发明实施例的空调器中运动部件的检测控制装置可检测驱动部件100是否堵转,以判断门板300是否卡滞例如遇到障碍物。具体地,在门板300向开门方向或关门方向运动时,驱动部件100例如驱动电机的转动组件带动磁环10同步转动,磁环上的N磁极和第一空白区域或者磁环上的S磁极和第二空白区域交替经过x个霍尔检测组件,x个霍尔检测组件分别输出稳定的高低电平脉冲序列,占空比为50%。
当门板300发生卡滞,例如有异物卡住门板300或者手指不慎伸于其中时,驱动部件100停止运动,每个霍尔检测组件对应的磁极不再变化,每个霍尔检测组件的输出电平会持 续为高电平或者持续为低电平。控制单元30通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断驱动部件100是否堵转,进而判断门板300是否发生卡滞例如遇到障碍物。
由此,能够有效检测门板300是否遇到障碍物,并缩短检测时间,可快速获得门板的卡滞信息,做到轻微触碰即可检测卡滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。并且通过磁环与多霍尔检测组件可缩短检测时间,提升检测灵敏度,防止对用户造成伤害例如夹住手指等,提升用户的体验。
综上,根据本发明实施例提出的空调器中运动部件的检测控制装置,通过x个霍尔检测组件在驱动部件驱动运动部件移动时感应磁环的磁极变化以对应生成x路感应信号,进而控制单元根据x路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对电机的转动进行调整,避免对机构损坏,并且通过磁环与多个霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
可以理解的是,空调器的运动部件可为由驱动部件例如驱动电机驱动,由此,本发明实施例的空调器中运动部件的检测控制装置可通过检测驱动部件是否堵转以判断运动部件是否卡滞例如遇到障碍物。由此,在下面实施例三和实施例中电机堵转检测装置即为空调器中运动部件的检测控制装置。
实施例三:
如图1所示,电机堵转检测装置可包括:霍尔检测组件20、磁环10和控制单元30。
其中,磁环10固定在电机(即前面实施例中驱动电机)的转动组件上,磁环10的检测面例如充磁面上间隔分布多个N磁极和多个S磁极,即磁环10的充磁面上充满P个N磁极和Q个S磁极,其中,P、Q为大于1的整数;霍尔检测组件20靠近磁环10固定设置,霍尔检测组件20在电机的转动组件转动时感应磁环10的磁极变化以生成感应信号,具体地,霍尔检测组件20与磁环10的检测面上磁极的磁性相匹配,霍尔检测组件20可靠近磁环10的检测面固定设置;控制单元30与霍尔检测组件20相连,控制单元30根据感应信号判断电机的状态。
需要说明的是,霍尔检测组件20可相对磁环10的充磁面设置,并且靠近磁环10但并不接触,设置于磁环10的磁场感应范围内即可。
具体地,磁环10可固定在电机的转动组件上,当电机逆时针或者顺时针移动时,磁环 10随着电机的转动而转动,而霍尔检测组件20固定不动,磁环10的充磁面上的N磁极和S磁极依次通过每个霍尔检测组件20,霍尔检测组件20根据相对磁环10的磁极极性是N极或者是S极生成感应信号,并且将生成的感应信号发送至控制单元30,控制单元30根据感应信号判断电机的状态,从而实时检测电机的状态,快速判断电机是否发生堵转,以便于及时采取相应的措施对电机的转动进行调整。
根据本发明的一个实施例,电机可为步进电机,步进电机可采用开环控制,控制单元30可通过磁环10和霍尔检测组件20的结构检测步进电机是否发生堵转,防止步进电机持续处于过盈状态,防止对电机本身以及产品运行产生不利影响。
根据本发明的一个实施例,其中,电机的转动组件为传动齿轮或驱动轴。也就是说,磁环10可固定在电机的传动齿轮或驱动轴上,从而,在电机转动时磁环10可随之转动。
需要说明的是,当电机驱动空调器的门板时,如果电机与门板间经多个传动齿轮,可将磁环10优选地固定在靠近门板端的传动齿轮。
根据本发明的一个实施例,如图19、图2a和图21a所示,磁环10的中间开有固定孔101,以通过固定孔101与电机的转动组件铆合,从而使得磁环10可随电机同步转动,安装简单,避免走线问题。
也就是说,磁环10通过固定孔固定在电机的传动齿轮或驱动轴上,另外,磁环10也可直接与传动齿轮做成一个部件。
并且,根据本发明的一个实施例,霍尔检测组件20可固定在空调器本体上。由此,整体安装便捷,避免带来走线问题。
根据本发明的一个实施例,如图19、图2a、图20所示,磁环10的充磁面为磁环10周边侧面或磁环10内部端面。
也就是说,磁环10有侧面充磁和端面充磁两种形式,如图19所示为磁环10的端面充磁的结构示意图,可将N磁极和S磁极间隔充满磁环10的端面,如图2a和图20所示为磁环10的侧面充磁的结构图,可将N磁极和S磁极间隔充满磁环10的周边。在本发明实施例中,可优选端面充磁,如图19、图21a所示,从可将磁环10做的更薄,节省材料,降低成本。
根据本发明的一个实施例,霍尔检测组件20可采用贴片和插件型两种封装形式,霍尔检测组件20均固定在PCB板上并通过PCB板固定于空调本体上,位于磁环10的一侧,靠近磁环但非接触,在磁场可感应范围内。
其中,如图21b所示,当磁环10为侧面充磁时,霍尔检测组件20可以为插件型,如图21a所示,当磁环10为端面充磁时,霍尔检测组件20可以为贴片型。在本发明实施例中, 可优选贴片型的霍尔检测组件20,因在制作工艺上,贴片定位更准确,进而可检测误差更小,且贴片型可自动化,装配更快。
根据本发明的一个实施例,N磁极和S磁极的数量相等,即P=Q,且数量相等的N磁极与S磁极一一间隔设置。
也就是说,在圆形磁环10上可间隔充满N磁极与S磁极,当电机转动时,N磁极与S磁极可交替经过每个霍尔检测组件20,从而霍尔检测组件20可根据N磁极与S磁极的变化生成不同的检测信号。
根据本发明的一个实施例,如图19、图2a、图20和图21a、图21b所示,P个N磁极和Q个S磁极以等宽方式设置。
应当理解的是,磁环10以等宽方式设置是说,如果磁环10以侧面方式设置,则以相同的圆弧长度设置,如果磁环10以端面方式设置,则以相同的扇形面积设置。
需要说明的是,磁环10上的N磁极或S磁极的宽度在保证磁场强度的前提下越窄越好,例如N磁极或S磁极的宽度可以设置为1-2mm,磁环10的磁场强度依据霍尔检测组件20的感应参数而定。磁环10上的磁极为N磁极与S磁极相间,N磁极与S磁极的总个数与磁环10的尺寸相关,磁环10的尺寸越大,N磁极与S磁极的总个数越多,检测灵敏度越高。由此,磁环10的磁极可做到十分密集,从而大大提高了反馈脉冲的频率,缩短了检测时间,提高了检测灵敏度。
根据本发明的一个实施例,霍尔检测组件20在正对N磁极时生成第一电平感应信号(即前述实施例的第一电平),并在正对S磁极时生成第二电平感应信号(即前述实施例的第二电平)。
具体地,当电机转动时,磁环10随电机同步转动,N磁极和S磁极交替经过霍尔检测组件20的上方,霍尔检测组件20固定不动,根据磁环10交替的N磁极和S磁极输出感应信号,当正对磁环10的N磁极时,霍尔检测组件20生成第一电平感应信号,并且,当正对磁环10的S磁极时,霍尔检测组件20生成第二电平感应信号,由此,霍尔检测组件20根据磁环10的磁极变化输出一系列稳定的高低电平脉冲序列,且该高低电平脉冲序列的周期固定、占空比为50%。
由此,基于霍尔效应进行检测,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
其中,第一电平感应信号可以为高电平,第二电平感应信号可以为低电平,或者第一电平感应信号可以为低电平,第二电平感应信号可以为高电平,其根据霍尔检测组件20自身属性而定。
如图6所示,控制单元30包括:计时器301和控制芯片302,计时器301用于对第一电平感应信号或第二电平感应信号的持续时间进行计时,并在发生电平跳变时重新计时;控制芯片302与计时器301相连,控制芯片302在第一电平感应信号或第二电平感应信号的持续时间大于预设时间阈值时判断电机堵转。
具体来说,电机转动时,电机的转动组件带动磁环10同步转动,霍尔检测组件20固定不动,磁环10上的N磁极和S磁极交替经过霍尔检测组件20,如果霍尔检测组件20正对磁环10的N磁极,则霍尔检测组件20输出第一电平感应信号,此时计时器301记录第一电平感应信号持续的时间,记为T1;如果霍尔检测组件20正对磁环10的S磁极,则霍尔检测组件20输出第二电平感应信号,此时计时器301记录第二电平感应信号持续的时间,记为T2,由于磁环10的N磁极和S磁极的宽度相同,故T1与T2相同。
并且在霍尔检测组件20检测到磁环10从N磁极跳变到S磁极时,其输出的第一电平感应信号跳变到第二电平感应信号,并重新开始计时,即计时器301记录第二电平感应信号的持续时间,随之,在霍尔检测组件20检测到磁环10从S磁极跳变回到N磁极时,其输出的第二电平感应信号跳变回到第一电平感应信号,并重新开始计时,即计时器301再次记录第一电平感应信号的持续时间。
由此,依此类推,如图7所示,霍尔检测组件20输出一系列的高低电平脉冲序列,并且脉冲序列的占空比为50%。控制芯片302通过分别检测第一电平感应信号(例如高电平)的持续时间和第二电平感应信号(例如低电平)的持续时间即是否超过预设时间阈值即可判断电机是否堵转。
具体来说,假设r为磁环10的转速,p1为磁环10的N磁极与S磁极的总和即p1=P+Q,则第一电平感应信号或第二电平感应信号的持续时间tn为1/r/p1,即tn=1/r/p1,其中,磁环10的转速r可以根据步距角与驱动脉冲周期计算。
举例来说,如果电机发生堵转,传动齿轮停滞,霍尔检测组件20正对的磁环10的磁极不再发生变化,霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。如图8所示,电机在t1时刻发生堵转、且在t2时刻恢复,tn为未发生堵转时高电平或低电平的持续时间,td为预设时间阈值,当发生堵转时,维持当前的电平状态不变,当持续时间即计时器301的计时时间大于td时,判定为电机发生堵转,即言,如果高电平或低电平超出了预设时间阈值td还未发生跳变,则判定为电机发生堵转。其中,预设时间阈值td=k*tn,k值的取值范围可为1-4,且优选1.5。
如上所述,本发明实施例检测电机是否堵转的方法如下:
在电机转动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302 可采集霍尔检测组件20输出的感应信号,当感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断电机发生堵转,控制芯片302输出堵转保护信号,以执行电机保护动作,例如控制电机停止转动或反向转动;如果计时器301的计时值小于等于预设时间阈值td,则判断电机未发生堵转,控制芯片302可控制电机继续正向转动。
根据本发明的一个实施例,如图22所示,霍尔检测组件20包括:霍尔元件201和第一电容C1。
其中,霍尔元件201的电源端通过第一电阻R1与预设电源VCC相连,霍尔元件201的接地端接地,霍尔元件201的检测端感应磁环10的磁极变化,霍尔元件201的输出端输出感应信号;第一电容C1并联在霍尔元件201的电源端与接地端之间。
根据本发明的一个实施例,如图22所示,霍尔检测组件20还包括:串联的第二电阻R2和第三电阻R3,串联的第二电阻R2和第三电阻R3的一端与预设电源VDD相连,串联的第二电阻R2和第三电阻R3的另一端与控制单元30相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与霍尔元件201的输出端相连。
也就是说,霍尔检测组件20可为5V供电,从而霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,高低电平脉冲序列通过第二电阻R2和第三电阻R3分压后提供给控制芯片50,控制芯片50即可对高低电平脉冲序列的电平状态的持续时间进行计时,并通过计时时间与预设时间阈值的比较判断电机是否发生堵转。
由此,根据本发明实施例提出的电机堵转检测装置,可通过靠近磁环固定设置的霍尔检测组件感应与电机的转动组件同步转动的磁环的磁极变化生成感应信号,进而控制单元根据生成的感应信号判断电机的状态,从而可实时检测电机的状态,快速判断电机是否发生堵转,以便于及时采取相应措施对电机的转动进行调整,避免对机构损坏,同时提高了用户体验。并且,该装置检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
图23是根据本发明实施例的空调器的方框示意图。如图23所示,该空调器200包括电机堵转检测装置1000。根据本发明的一个实施例,如图10、图11和图23-24所示,空调器200可包括电机1001,电机1001可用于构造前述实施例的驱动部件100,其中,电机1001用于驱动空调器的门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器200启动时,空调器的控制装置可通过电机驱动门板打开,当空调器200关闭时,空调器的控制装置可通过电机1001驱动门板关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
基于此,空调器的电机堵转检测装置1000用于检测电机是否堵转,以判断门板是否遇 到障碍物。具体地,电机堵转检测装置1000可包括磁环10、霍尔检测组件20和控制单元30。磁环10固定在电机1001的转动组件上,磁环10的充磁面上充满P个N磁极和Q个S磁极,其中,P、Q为大于1的整数;霍尔检测组件20靠近磁环10固定设置,例如固定设置在空调器200本体上,霍尔检测组件20在电机1001的转动组件转动时感应磁环10的磁极变化以对应生成感应信号;控制单元30根据感应信号判断电机1001的状态。
在门板300向开门方向或关门方向运动时,电机1001的转动组件带动磁环10同步转动,磁环10上的N磁极和S磁极交替经过霍尔检测组件20,霍尔检测组件20输出稳定的高低电平脉冲序列,占空比为50%。
当门板300发生阻滞,例如有异物卡住门板或者手指不慎伸于其中时,电机1001停止转动,霍尔检测组件20对应的磁极不再变化,霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。控制单元30通过检测电平状态的持续时间是否超过预设时间阈值即可判断电机1001是否堵转,以使门板300控制系统判断门板300是否遇到障碍物。
由此,能够有效检测门板是否遇到障碍物,并可快速获得门板的阻滞信息,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。
综上所述,根据本发明实施例提出的空调器,可通过电机堵转检测装置实时检测电机的状态,快速判断电机是否发生堵转,以便于及时采取相应措施对电机的转动进行调整,避免对机构损坏,同时提高了用户体验,且检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
实施例四:
如图12、图2a、图19-20、以及图25-26所示,本发明实施例的空调器的电机堵转检测装置包括:磁环10、x个霍尔检测组件20和控制单元30。
其中,磁环10固定在电机的转动组件上,磁环10的检测面即充磁面上间隔分布多个N磁极和多个S磁极,即磁环10的充磁面上充满P个N磁极和Q个S磁极,其中,P、Q为大于1的整数;x个霍尔检测组件20靠近磁环10固定设置,x个霍尔检测组件20在电机的转动组件转动时感应磁环10的磁极变化以对应生成x路感应信号,x为大于1的整数,具体地,x个霍尔检测组件20与磁环10的检测面上磁极的磁性相匹配,x个霍尔检测组件20靠近磁环10的检测面固定设置;控制单元30与x个霍尔检测组件20相连,控制单元30根据x个感应信号判断电机的状态。
需要说明的是,x个霍尔检测组件20可对应磁环10的充磁面设置,并且x个霍尔检测组件20可靠近磁环10但不接触,在磁环10的磁场感应范围内即可。
具体来说,在电机转动时,磁环10随着电机转动,而x个霍尔检测组件20固定不动,磁环10的充磁面上的N磁极和S磁极依次通过每个霍尔检测组件20,x个霍尔检测组件20感应磁环10的磁极变化从而输出x路感应信号例如高低电平脉冲序列,当电机按照预设转速转动时输出的x路感应信号将符合相应的规律,而当电机停住转动时x个霍尔检测组件20感应的磁极将会保持不变,x路感应信号将无法符合相应的规律,由此,控制单元30根据x个感应信号判断电机的状态,例如电机是否发生堵转。
根据本发明的一个实施例,电机即前述实施例的驱动电机可为步进电机,步进电机可采用开环控制,控制单元30可通过磁环和多个霍尔检测组件的结构检测步进电机是否发生堵转,防止步进电机持续处于过盈状态,防止对电机本身以及产品运行产生不利影响。
根据本发明的一个实施例,电机的转动组件为传动齿轮或驱动轴。也就是说,磁环10可固定在电机的传动齿轮或驱动轴上,从而,在电机转动时磁环10可随之转动。
需要说明的是,当电机驱动空调器的门板时,如果电机与门板间经多个传动齿轮,可将磁环10优选地固定在靠近门板端的传动齿轮。
具体地,如图2a、图19-20、以及图25-26所示,磁环10的中间开有固定孔101,以通过固定孔101与电机的转动组件铆合,从而可与转动组件同步转动。也就是说,磁环10可通过固定孔101与电机的传动齿轮或驱动轴铆合。另外,磁环10也可直接与传动齿轮做成一个部件。
并且,根据本发明的一个实施例,霍尔检测组件20可固定在空调器本体上。由此,整体安装便捷,避免带来走线问题。
进一步地,根据本发明的一个实施例,如图2a、图19-20、以及图25-26所示,磁环10上N磁极和S磁极的数量相等,即P=Q,且数量相等的N磁极与S磁极一一间隔设置。
也就是说,在圆形磁环10上可间隔充满N磁极与S磁极,当电机转动时,N磁极与S磁极可交替经过每个霍尔检测组件20,每个霍尔检测组件20将根据感应到的磁极变化输出对应的感应信号。
并且,根据本发明的一个实施例,P个N磁极和Q个S磁极可以等宽方式设置,也就是说,磁环10上的每个N磁极和每个S磁极的宽度均相等。
需要说明的是,N磁极和S磁极的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的感应参数而定。磁环10上的磁极为N磁极与S磁极相间,N磁极与S磁极的总个数与磁环10的尺寸相关,磁环10的尺寸越大,N磁极与S磁极的总个数越多,检测灵敏度越高。
根据本发明的一个实施例,霍尔检测组件20可根据感应到的磁极类型生成相应的感应 信号,即霍尔检测组件20在正对N磁极时生成第一感应信号即前述实施例的第一电平,并在正对S磁极时生成第二感应信号即前述实施例的第二电平,例如第一感应信号可为高电平且第二感应信号可为低电平,第一感应信号可为低电平且第二感应信号可为高电平,第一感应信号和第二感应信号的电平状态可根据霍尔检测组件20的类型确定。
这样,当N磁极和S磁极交替经过霍尔检测组件20时,霍尔检测组件20将输出稳定的高低电平脉冲序列,且x路高低电平脉冲序列的周期固定且相同、占空比为50%。
由此,磁环10上的N磁极和S磁极可做到十分密集(磁极宽度可做到1-2mm),灵敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
根据本发明的一个具体实施例,如图2a、图19-20、以及图25-26所示,磁环10的充磁面为磁环周边侧面或磁环内部端面。也就是说,磁环10有侧面充磁和端面充磁两种形式,如图20和图25所示为侧面充磁,可将N磁极和S磁极间隔充满磁环10的周边,其中,在图25-26中,左侧为俯视图,右侧为主视图;如图19和图26所示为端面充磁,可将N磁极和S磁极间隔充满磁环10的端面。在实施例中,可优选端面充磁,从可将磁环10做的更薄,节省材料,降低成本。
根据本发明的一个实施例,霍尔检测组件20例如霍尔传感器可采用贴片和插件型两种封装形式,霍尔检测组件20均固定在PCB板上并通过PCB板固定于空调本体上,位于磁环10的一侧,靠近磁环但非接触,在磁场可感应范围内。
其中,如图26所示,贴片型的霍尔检测组件20可与端面充磁的磁环10相配合;如图25所示,插件型的霍尔检测组件20可与侧面充磁的磁环10相配合。在本发明实施例中,可优选贴片型的霍尔检测组件20,因在制作工艺上,贴片型定位更准确,从而可减小检测误差,且采用贴片型可便于自动化装配,提升装配速度。
根据本发明的一个实施例,x个霍尔检测组件20可根据N磁极和S磁极的个数之和错开预设角度。具体地,可使相邻的两个霍尔检测组件20之间错开预设角度。
也就是说,x个霍尔检测组件20可错列分布,x个霍尔检测组件20匹配磁环10的磁极总个数及每个磁极的宽度错开预设角度,以使x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,从而,成倍提升检测灵敏度。如图25-26所示,以三个霍尔检测组件20为例,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开预设角度,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开预设角度,并且,以磁环10顺时针转动为例,中间的霍尔检测组件20B输出的感应信号滞后左边的霍尔检测组件20A预设相位角,右边的霍尔检测组件20C输出的感应信号滞后中间的霍尔检测组件20B预设 相位角。
具体地,由于s=P+Q,可根据以下公式确定预设角度:
d=360°/(P+Q)/x+n*2*360°/(P+Q)
其中,d为预设角度,P为N磁极的个数,Q为S磁极的个数,x为霍尔检测组件的个数,n为任意正整数。
需要说明的是,n为大于等于1的任意整数,具体数值的确定只要满足霍尔检测组件20在排布空间上不会相互干扰即可。
具体地,以磁环10的磁极总个数P+Q=24,霍尔检测组件20的个数x=3为例,n取1,计算预设角度可得d=35°,即相邻两个霍尔检测组件20之间错开35°。更具体地,如图25-26所示,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开35°,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开35°,相应地,在磁环10顺时针转动时,中间的霍尔检测组件20B输出的感应信号相对于左边的霍尔检测组件20A输出的感应信号滞后60°,右边的霍尔检测组件20C输出的感应信号相对于中间的霍尔检测组件20B输出的感应信号滞后60°。
根据本发明的一个实施例,霍尔检测组件20在正对N磁极时生成第一感应信号,并在正对S磁极时生成第二感应信号,x路感应信号构造出y种电平状态组合,y>x。其中,根据本发明的一个实施例,电平状态组合的数量y可为感应信号的数量x的2倍,即y=2x。
如图15所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于对y种电平状态组合中每种电平状态组合的持续时间进行计时,并在电平状态组合发生变化时重新计时;控制芯片302与计时器301相连,控制芯片302还与x个霍尔检测组件20相连,控制芯片302在任意种电平状态组合的持续时间大于预设时间阈值时判断电机堵转。
也就是说,x个霍尔检测组件20匹配磁环10的磁极总个数及每个磁极的宽度错开预设角度,即x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,因而同一时刻可形成不同的电平状态组合。控制芯片302通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断电机是否堵转。由此,采用多个霍尔检测组件分布错列,可进一步成倍缩短检测时间,可达到成倍降低检测时间的效果。
具体来说,在电机转动时,电机的转动组件带动磁环10同步转动,x个霍尔检测组件20固定不动,磁环10上的N磁极和S磁极交替经过x个霍尔检测组件20,x个霍尔检测组件20分别产生占空比为50%的高低电平脉冲序列。
相邻两个霍尔检测组件20依据上述公式d=360°/(P+Q)/x+n*2*360°/(P+Q)错开 预设角度,相应地,相邻两个霍尔检测组件20可得到相差180°/x相位角的波形。由此,可以把每路波形中一个周期均分成2x种电平状态组合,并且,每种电平状态组合的持续时间tn是任一路信号的高电平状态或低电平状态的持续时间的1/x,即tn=1/r/p/x,其中,r为磁环10的转速,当磁环设置在传动齿轮上时,磁环10的转速可根据电机的转速与齿轮传速比计算得到,当电机为步进电机且磁环设置在驱动轴时,磁环10的转速可根据步距角和驱动脉冲周期计算得到。由此,采用多个霍尔检测组件分布错列,可进一步成倍缩短检测时间,例如采用多少个霍尔传感器即可把检测时间降低多少倍。
如图17所示,以x=3,d=35°为例,三个霍尔检测组件20可输出各迟后60°相位角的三路波形,即霍尔检测组件20B的输出波形相对于霍尔检测组件20A的输出波形滞后60°,霍尔检测组件20C的输出感应信号相对于霍尔检测组件20B的输出波形滞后60°。由此,可以把每路波形中一个周期均分成六种电平状态组合,即六种电平状态组合分别为100、110、111、011、001、000,其中,1代表高电平,0代表低电平,并且,每种电平状态组合的持续时间tn是任一路信号的高电平或低电平状态的持续时间的1/3,tn=1/r/p/3,其中r为磁环10的转速,从而检测灵敏度提高了三倍。
当电机发生堵转而停止转动时,每个霍尔检测组件20对应的磁极不再变化,所以每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。如图17所示,电机在t1时刻发生堵转、且在t2时刻恢复,tn为未发生堵转时每种电平状态组合的持续时间,td为预设时间阈值,当发生堵转时,三路波形维持当前的电平状态不变,当持续时间大于td时即判定为电机发生堵转。其中,预设时间阈值td=k*tn,k的取值范围为1-4,优选为1.5。
如上所述,本发明实施例检测电机是否堵转的方法如下:
在电机转动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集x个霍尔检测组件20输出的感应信号,当任意一路感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断电机发生堵转,控制芯片302输出堵转保护信号,以执行电机保护动作,例如控制电机停止转动或反向转动;如果计时器301的计时值小于等于预设时间阈值td,则判断电机未发生堵转,控制芯片302可控制电机继续正向转动。
另外,根据本发明的一个具体实施例,如图18所示,x个霍尔检测组件20的电源端均通过第一电阻R1与预设电源VCC例如+5V相连,x个霍尔检测组件20的接地端接地,x个霍尔检测组件20的电源端与接地端之间均并联第一电容C1,其中,每个霍尔检测组件20的检测端感应磁环的磁极变化,每个霍尔检测组件20的输出端输出对应的感应信号。
进一步地,如图18所示,空调器的电机堵转检测装置还包括x个输出电路40,x个输出电路40与x个霍尔检测组件20的输出端相连,每个输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与对应的霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,每个霍尔检测组件20可为5V供电,从而每个霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,每个高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对x路高低电平脉冲序列的电平状态组合的持续时间进行计时,并通过计时时间与预设时间阈值的比较判断电机是否发生堵转。
综上,根据本发明实施例提出的空调器的电机堵转检测装置,通过x个霍尔检测组件在电机的转动组件转动时感应磁环的磁极变化以对应生成x路感应信号,进而控制单元根据x个感应信号判断电机的状态,从而能够有效判断电机是否发生堵转,以便于及时采取相应措施对电机的转动进行调整,避免对机构损坏,并且通过磁环与多个霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
下面结合图27以及图10-11描述本发明实施例的空调器的门板控制系统。
图27是根据本发明实施例的空调器的门板控制系统的方框示意图。如图27以及图10-11所示,空调器的门板控制系统包括;电机1001和空调器的电机堵转检测装置500。
其中,电机1001用于驱动空调器的门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制装置可通过电机1001驱动门板300打开,当空调器关闭时空调器的控制装置可通过电机1001驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
根据本发明的一个具体示例,电机1001可为步进电机。
空调器的电机堵转检测装置500用于检测电机1001是否堵转,以判断门板300是否遇到障碍物。
具体地,电机堵转检测装置500可包括磁环、x个霍尔检测组件和控制单元。磁环固定在电机1001的转动组件上,磁环的充磁面上充满P个N磁极和Q个S磁极,其中,P、Q为大于1的整数;x个霍尔检测组件靠近磁环固定设置,例如固定设置在空调器本体上,x 个霍尔检测组件在电机1001的转动组件转动时感应磁环的磁极变化以对应生成x路感应信号,x为大于1的整数;控制单元根据x个感应信号判断电机1001的状态。
基于此,在门板300向开门方向或关门方向运动时,电机1001的转动组件带动磁环同步转动,磁环上的N磁极和S磁极交替经过x个霍尔检测组件,x个霍尔检测组件分别输出稳定的高低电平脉冲序列,占空比为50%。
x个霍尔检测组件匹配磁环的磁极总个数及每个磁极的宽度错开预设角度,即x个霍尔检测组件分别输出的x路感应信号依次错开预设相位角,因而同一时刻可形成不同的电平状态组合。
当门板300发生阻滞,例如有异物卡住门板300或者手指不慎伸于其中时,电机1001停止转动,每个霍尔检测组件对应的磁极不再变化,每个霍尔检测组件的输出电平会持续为高电平或者持续为低电平。控制单元通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断电机是否堵转,以使门板控制系统判断门板300是否遇到障碍物。
由此,能够有效检测门板300是否遇到障碍物,并缩短检测时间,可快速获得门板的阻滞信息,做到轻微触碰即可检测阻滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。
综上,根据本发明实施例提出的空调器的门板控制系统,通过上述电机堵转检测装置可判断门板是否遇到障碍物,从而能够有效判断门板是否遇到障碍物,以便于及时采取相应措施对门板的移动进行调整,避免对机构损坏,并且通过磁环与多个霍尔检测组件可缩短检测时间,提升检测灵敏度,防止对用户造成伤害例如夹住手指等,提升用户的体验。并且,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
本发明又提出了一种空调器,包括上述实施例的空调器的电机堵转检测装置。
根据本发明实施例提出的空调器,通过上述的电机堵转检测装置,能够有效判断电机是否发生堵转,且检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
本发明再提出了一种空调器,包括上述实施例的空调器的门板控制系统。
根据本发明实施例提出的空调器,通过上述的门板控制系统,有效判断门板是否遇到障碍物,且检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠,防止对用户造成伤害例如夹住手指等,提升用户的体验。
实施例五:
如图12、图2a、图2b、图20以及图28-34所示,本发明实施例的空调器中运动部件的检测控制装置包括:磁环10、x个霍尔检测组件20和控制单元30。
其中,磁环10固定在驱动运动部件的驱动部件上,磁环10的检测面上间隔分布多个N磁极和/或多个S磁极。根据本发明的一个具体实施例,当磁环10的检测面上分布有多个N磁极和多个S磁极时,N磁极和S磁极一一间隔设置;当磁环10的检测面上分布有多个N磁极时,相邻的N磁极之间设置有第一空白区域;当磁环10的检测面上分布有多个S磁极时,相邻的S磁极之间设置有第二空白区域。也就是说,当磁环10上间隔充满N磁极和S磁极时,N磁极与S磁极间隔分布在磁环10的检测面上,即磁环10上的排布规律为N磁极-S磁极-N磁极-S磁极,此时磁环10为双极性磁环;当磁环10上间隔充满N磁极时,N磁极与第一空白区域间隔分布在磁环10的检测面上,即磁环10上的排布规律为N磁极-第一空白区域-N磁极-第一空白区域,此时磁环10为单极性磁环;当磁环10上间隔充满S磁极时,S磁极与第二空白区域间隔分布在磁环10的检测面上,即磁环10上的排布规律为S磁极-第二空白区域-S磁极-第二空白区域,此时磁环10为单极性磁环。其中,空白区域包括第一空白区域或第二空白区域不带有任何磁性即为无磁性区域。
x个与磁环10的检测面上磁极的磁性相匹配的霍尔检测组件20,x个霍尔检测组件20的检测面靠近磁环10固定设置,需要说明的是,x个霍尔检测组件20可对应磁环10的检测面设置,并且x个霍尔检测组件20可靠近磁环10但不接触,在磁环10的磁场感应范围内即可。
x个霍尔检测组件20相对于磁环10错开预设角度,且x个霍尔检测组件20设置在空调器的电路板60上,根据预设角度设置x个霍尔检测组件20在电路板60上错开的直线距离。也就是说,每相邻的两个霍尔检测组件20均错开预设角度,当将x个霍尔检测组件20设置在电路板60上时,可根据预设角度设置每相邻的两个霍尔检测组件20之间的直线距离,以使每相邻的两个霍尔检测组件20相对于磁环10错开预设角度。
x个霍尔检测组件20在驱动部件驱动运动部件移动时感应磁环10的磁极变化以对应生成x路感应信号,x为大于1的整数。控制单元30与x个霍尔检测组件20相连,控制单元30根据x路感应信号判断运动部件是否卡滞。
具体来说,以磁环10的检测面上间隔分布多个N磁极和多个S磁极为例说明,在驱动部件驱动运动部件移动时,磁环10随着驱动部件运动,而x个霍尔检测组件20固定不动,磁环10的检测面上的N磁极和S磁极依次通过每个霍尔检测组件20,x个霍尔检测组件20感应磁环10的磁极变化从而输出x路感应信号例如高低电平脉冲序列,当驱动部件按照预设速度运动时x个霍尔检测组件20输出的x路感应信号将符合相应的规律,而当驱动部件停止不动时x个霍尔检测组件20感应的磁极将会保持不变,x路感应信号将无法符合相应的规律,由此,控制单元30根据x路感应信号判断运动部件的状态,例如运动部件是否卡 滞,或者驱动部件是否发生堵转。
应当理解的是,磁环10的检测面上间隔充满N磁极和第一空白区域的情况或者磁环10的检测面上间隔充满S磁极和第二空白区域的情况与前述磁环10的检测面上间隔充满N磁极和S磁极的情况类似,这里不再赘述。
根据本发明的一个实施例,驱动部件可包括驱动电机,磁环10固定在驱动电机的转动组件上。也就是说,在驱动电机驱动运动部件移动时,磁环10随着驱动电机的转动组件转动。
根据本发明的一个实施例,驱动电机可为步进电机,步进电机可采用开环控制,控制单元30可通过磁环10和多个霍尔检测组件20的结构检测步进电机是否发生堵转,防止步进电机持续处于过盈状态,防止对电机本身以及产品运行产生不利影响。
根据本发明的一个实施例,驱动电机的转动组件为传动齿轮或驱动轴。也就是说,磁环10可固定在驱动电机的传动齿轮或驱动轴上,从而,在驱动电机转动时,磁环10可随之转动。
需要说明的是,当驱动电机驱动运动部件时,如果驱动电机与运动部件间经多个传动齿轮,则优选地将磁环10固定在靠近运动部件的传动齿轮上。
具体地,如图2a所示,磁环10上开有固定孔101,例如,磁环10的中心设有固定孔101,磁环10通过固定孔101与驱动部件例如驱动电机的转动组件铆合,从而可与驱动部件同步转动。也就是说,磁环10可通过固定孔101与驱动电机的传动齿轮或驱动轴铆合。另外,磁环10也可直接与传动齿轮做成一个部件,从而能够节约材料、空间与成本,并能够简化安装。
并且,根据本发明的一个实施例,电路板60(例如PCB,Printed Circuit Board,印制电路板)可固定在空调器本体上。也就是说,霍尔检测组件20均固定在PCB板上,并通过PCB板固定于空调本体上,霍尔检测组件20位于磁环10的一侧,靠近磁环10的检测面但非接触,在磁场可感应范围内。由此,这样的设计使得整体的安装更为便捷,并且能避免走线问题。
进一步地,根据本发明的一个实施例,如图2a、图2b、图20以及图28所示,多个N磁极和/或多个S磁极以等宽方式设置。也就是说,当磁环10的检测面间隔充满N磁极和S磁极时,每个N磁极的宽度均相等且每个S磁极的宽度均相等;当磁环10的检测面间隔充满N磁极和第一空白区域时,每个N磁极的宽度均相等;当磁环10的检测面间隔充满S磁极和第二空白区域时,每个S磁极的宽度均相等。
需要说明的是,N磁极和/或S磁极的宽度在保证磁场强度的前提下越窄越好,例如可 做到1-2毫米,磁场强度要求依据霍尔检测组件20的霍尔感应参数而定。
具体地,当磁环10的检测面上间隔充满N磁极和第一空白区域(或S磁极和第二空白区域)时,N磁极或S磁极的磁性区域角度可根据公式λ=(π+arcsin(X/A)+arcsin(Y/A))/p,其中,λ为N磁极或S磁极的磁性区域角度,A为N磁极或S磁极的最大磁密,X为霍尔检测组件的动作点,Y为霍尔检测组件的释放点,p为N磁极或S磁极的个数,相应地,第一空白区域或第二空白区域的区域角度θ可根据公式θ=2π/p–λ设置。另外,在其他实施例中,磁性区域即N磁极磁性区域的角度与第一空白区域的角度也可近似相等,或者磁性区域即S磁极磁性区域的角度与第二空白区域的角度也可近似相等。
根据本发明的一个实施例,x个霍尔检测组件20可匹配磁环10的检测面上的磁极进行相应的磁性设置。例如,当磁环10的检测面上间隔充满N磁极和S磁极时,x个霍尔检测组件20可为双极型霍尔元件,双极型霍尔元件可分别感应N磁极和S磁极,以在感应到不同的磁极时生成不同的信号;又如,当磁环10的检测面上间隔充满N磁极和第一空白区域或者间隔充满S磁极和第二空白区域时,x个霍尔检测组件20可为单极型霍尔元件,单极型霍尔元件可感应匹配的磁极,以在感应匹配的磁极时生成感应信号,也就是说,单极型霍尔元件的选型与单极磁环配合,如果单极磁环10为N极型,则单极型霍尔也选用N极型,如果单极磁环为S极型,则单极型霍尔也选用S极型。
另外,N磁极和/或S磁极的个数与磁环10的尺寸相关,磁环10的尺寸越大,N磁极或S磁极的总个数越多,检测灵敏度越高。
根据本发明的一个实施例,如图2a、图2b、图20以及图28所示,磁环10的检测面可为磁环周边侧面。也就是说,磁环10可采用侧面充磁形式,如图20所示,可将N磁极和S磁极间隔充满磁环10的周边;如图2b所示,可将N磁极和空白区域间隔充满磁环10的周边;如图28所示,可将S磁极和空白区域间隔充满磁环10的周边。其中,图2b、图20以及图28为磁环10的主视图。由此,采用侧面充磁形式可确保较强的磁场强度,无需使得霍尔检测组件离磁环10极近也可感应到磁场。
根据本发明的一个实施例,如图29-34所示,霍尔检测组件20可为贴片型霍尔检测元件,也就是说,霍尔检测组件20例如霍尔元件可采用贴片型封装形式,其中,如图29-34所示,贴片型的霍尔检测组件20可与侧面充磁的磁环10相配合。由此,采用贴片型霍尔检测组件,可实现高精度、小误差地精确定位,从而可减小检测误差,且采用贴片型可便于自动化装配,提升装配速度。
根据本发明的一个实施例,如图29和图31所示,当x为偶数时,x个霍尔检测组件20对称地排布在电路板60与磁环10的圆心之间的垂直线的两侧,也就是说,当霍尔检测组件 20为偶数个时,最两端的两个霍尔检测组件20的连线的中点位于磁环10圆心到电路板60例如PCB板的垂点。
如图30所示,当x为奇数时,第(x+1)/2个霍尔检测组件相对电路板60与磁环10的圆心之间的垂直线设置,其余(x-1)个霍尔检测组件对称地排布在电路板60与磁环10的圆心之间的垂直线的两侧。也就是说,当霍尔检测组件20为奇数个时,最中间的霍尔检测组件20位于磁环10圆心到电路板60例如PCB板的垂点。
其中,图32为磁环10上间隔充满N磁极和S磁极时图29、图30以及图31在A方向的侧视图,图33为磁环10上间隔充满N磁极和空白区域时图在A方向的侧视图,图34为磁环10上间隔充满S磁极和空白区域时图29、图30以及图31在A方向的侧视图。
根据本发明的一个具体实施例,当x为偶数时,第i个霍尔检测组件与第(i+1)个霍尔检测组件在电路板60上的直线距离根据以下公式获取:
当i小于x/2时,L=R×tan((x/2-i)×d+d/2)-R×tan((x/2-i-1)×d+d/2);
当i等于x/2时,L=2R×tan(d/2);
当i大于x/2时,L=R×tan((i-x/2)×d+d/2)-R×tan((i-x/2-1)×d+d/2);
其中,i为1、2、…、(x-1),L为第i个霍尔检测组件与第(i+1)个霍尔检测组件在电路板60上的直线距离,R为电路板60与磁环10的圆心之间的垂直距离,d为预设角度。
并且,当x为奇数时,第i个霍尔检测组件与第(i+1)个霍尔检测组件在电路板上的直线距离根据以下公式获取:
当i小于(x+1)/2时,L=R×tan(((x+1)/2-i)×d)-R×tan(((x+1)/2-i-1)×d);
当i大于等于(x+1)/2时,L=R×tan((i-(x+1)/2+1)×d)-R×tan((i-(x+1)/2)×d);
其中,i为1、2、…、(x-1),L为第i个霍尔检测组件与第(i+1)个霍尔检测组件在电路板60上的直线距离,R为电路板60与磁环10的圆心之间的垂直距离,d为预设角度。
需要说明的是,x个霍尔检测组件20在电路板60上排布的顺序,可选定从左到右或者从右到左依次为第1个霍尔检测组件20到第x个霍尔检测组件20。
具体来说,PCB板为直板,无法配合磁环10的弧度,因此可根据x个霍尔检测组件20错开的预设角度和霍尔检测组件20的个数将预设角度转化为x个霍尔检测组件20在PCB板上的直线距离。
例如,如图29所示,霍尔检测组件20可为两个,两个霍尔检测组件20转化后在PCB板上的直线距离为L=2R×tan(d/2),其中,L为两个霍尔检测组件20在PCB板上错开的直线距离,R为PCB板距磁环10圆心的垂直距离。
又如,如图30所示,霍尔检测组件20可为三个,三个霍尔检测组件20转化后在PCB板上的直线距离为L=R×tan(d),也就是说,左起第一个霍尔检测组件20A与中间第二个霍尔检测组件20B之间错开的距离为L=R×tan(d),中间第二个霍尔检测组件20B与右边第三个霍尔检测组件20C之间错开的距离为L=R×tan(d)。
再如,如图31所示,霍尔检测组件20可为四个,四个霍尔检测组件20转化后在PCB板上的直线距离为L1=2R×tan(d/2),L2=R×tan(d×3/2)-L1/2。其中,L1为中间两个霍尔检测组件错开的距离,L2为两侧两个霍尔检测组件距离临近的中间霍尔检测组件错开的距离。也就是说,左起第一个霍尔检测组件与中间第二个霍尔检测组件之间错开的距离为L2=R×tan(d×3/2)-R×tan(d/2),中间第二个霍尔检测组件与中间第三个霍尔检测组件之间错开的距离为L1=2R×tan(d/2),中间第三个霍尔检测组件与右边第四个霍尔检测组件之间错开的距离为L2=R×tan(d×3/2)-R×tan(d/2)。
进一步地,根据本发明的一个实施例,预设角度包括第一预设角度、第二预设角度和第三预设角度,x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据N磁极与S磁极的个数之和错开第三预设角度,或者,x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据N磁极与第一空白区域的个数之和错开第一预设角度,或者,x个霍尔检测组件20中任意相邻两个霍尔检测组件20根据S磁极与第二空白区域的个数之和错开第二预设角度。也就是说,当磁环10的检测面上间隔分布多个N磁极和多个S磁极时,x个霍尔检测组件20根据N磁极与S磁极的个数之和错开第三预设角度;当磁环10的检测面上间隔分布多个N磁极时,x个霍尔检测组件20根据N磁极与第一空白区域的个数之和错开第一预设角度;当磁环10的检测面上间隔分布多个S磁极时,x个霍尔检测组件20根据S磁极与第二空白区域的个数之和错开第二预设角度。具体地,可使相邻的两个霍尔检测组件20之间错开预设角度。
也就是说,x个霍尔检测组件20可错列分布,以磁环10的检测面上间隔分布多个N磁极和多个S磁极为例,x个霍尔检测组件20可匹配磁环10的N磁极与S磁极的总个数及每个磁极的宽度错开预设角度,以使x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,从而,成倍提升检测灵敏度。如图30所示,以三个霍尔检测组件20为例,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开预设角度,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开预设角度,并且,以磁环10顺时针转动为例,中间的霍尔检测组件20B输出的感应信号滞后左边的霍尔检测组件20A预设相位角,右边的霍尔检测组件20C输出的感应信号滞后中间的霍尔检测组件20B预设相位角。
具体地,可根据以下公式确定第一预设角度、第二预设角度和第三预设角度:
d=360°/s/x+n*2*360°/s
其中,d为第一预设角度、第二预设角度和第三预设角度,x为霍尔检测组件的个数,n为整数,s在磁环10的检测面上间隔分布多个N磁极和多个S磁极时为N磁极与多个S磁极的个数之和,在磁环10的检测面上间隔分布多个N磁极时为N磁极与第一空白区域的个数之和,在磁环10的检测面上间隔分布多个S磁极时为S磁极与第二空白区域的个数之和。
需要说明的是,s为磁环10上的磁极总个数,即N磁极与S磁极的个数之和,或N磁极与第一空白区域的个数之和,或S磁极与第二空白区域的个数之和。n为任意整数,具体数值的确定只要满足霍尔检测组件20在排布空间上不会相互干扰即可。
具体地,以磁环10的N磁极与S磁极总个数s=24,霍尔检测组件20的个数x=3为例,n取1,计算预设角度可得d=35°,即相邻两个霍尔检测组件20之间错开35°。更具体地,如图30所示,左边的霍尔检测组件20A与中间的霍尔检测组件20B之间错开35°,且中间的霍尔检测组件20B与右边的霍尔检测组件20C之间也错开35°,相应地,在磁环10顺时针转动时,中间的霍尔检测组件20B输出的感应信号相对于左边的霍尔检测组件20A输出的感应信号滞后60°,右边的霍尔检测组件20C输出的感应信号相对于中间的霍尔检测组件20B输出的感应信号滞后60°。
进一步地,根据本发明的一个实施例,如图2a、图2b、图20以及图28所示,磁环10上的多个N磁极和/或多个S磁极以等宽方式设置。也就是说,当磁环10的检测面上分布多个N磁极和多个S磁极时,每个N磁极的宽度均相同且每个S磁极的宽度均相同;或者当磁环10的检测面上间隔分布多个N磁极时,每个N磁极的宽度均相同;或者当磁环10的检测面上间隔分布多个S磁极时,每个S磁极的宽度均相同。
需要说明的是,N磁极和/或S磁极的宽度在保证磁场强度的前提下越窄越好,例如可做到1-2毫米,磁场强度要求依据霍尔检测组件20的霍尔感应参数而定。
具体地,当磁环10上间隔充满N磁极和第一空白区域(或S磁极和第二空白区域)时,N磁极或S磁极的磁性区域角度可根据公式λ=(π+arcsin(X/A)+arcsin(Y/A))/p设置,其中,λ为N磁极或S磁极的磁性区域角度,A为N磁极或S磁极的最大磁密,X为霍尔检测组件的动作点,Y为霍尔检测组件的释放点,D为磁环10沿着运动部件的移动方向的长度,p为N磁极或S磁极的个数即N磁极与第一空白区域的对数或者S磁极与第二空白区域的对数,相应地,空白区域的区域角度d2可根据公式θ=2π/p–λ设置。另外,根据本发明的一个具体示例,磁性区域即N磁极磁性区域的角度与第一空白区域的角度也可近似相等,或者磁性区域即S磁极磁性区域的角度与第二空白区域的角度也可近似相等。
另外,应当理解的是,N磁极和/或S磁极的个数与磁环10的尺寸相关,磁环10的尺寸越大,磁极的总个数越多,检测灵敏度越高。
根据本发明的一个实施例,每个霍尔检测组件20可根据感应到的磁极类型生成相应的感应信号。
例如,当磁环10上间隔分布多个N磁极和多个S磁极时,每个霍尔检测组件20在正对N磁极时生成第一电平,并在正对S磁极时生成第二电平。其中,需要说明的是,第一电平可为高电平且第二电平可为低电平,或者第一电平可为低电平且第二电平可为高电平,电平状态具体可根据霍尔检测组件20的类型确定。这样,当磁环上N磁极和S磁极交替经过每个霍尔检测组件20时,每个霍尔检测组件20将输出稳定的高低电平脉冲序列,由此,x个霍尔检测组件20输出的x路高低电平脉冲序列的周期固定且相同、占空比为50%。
又如,当磁环10上间隔分布多个N磁极和第一空白区域时,每个霍尔检测组件20在正对N磁极时生成第一电平,并在正对第一空白区域时生成第二电平。这样,当磁环10上N磁极和第一空白区域交替经过每个霍尔检测组件20时,每个霍尔检测组件20将输出稳定的高低电平脉冲序列,由此,x个霍尔检测组件20输出的x路高低电平脉冲序列的周期固定且相同、占空比为50%。
再如,当磁环10上间隔分布多个S磁极和第二空白区域时,每个霍尔检测组件20在正对S磁极时生成第一电平,并在正对第二空白区域时生成第二电平。这样,当磁环10上S磁极和第二空白区域交替经过每个霍尔检测组件20时,每个霍尔检测组件20将输出稳定的高低电平脉冲序列,由此,x个霍尔检测组件20输出的x路高低电平脉冲序列的周期固定且相同、占空比为50%。
由此,磁环10上的N磁极和/或S磁极可做到十分密集(磁极宽度可做到1-2mm),灵敏度高,可提高了反馈脉冲的频率,从而缩短了检测时间,提高了检测灵敏度。而且,基于霍尔效应,稳定可靠,受干扰低,脉冲波形稳定,高低电平跳变迅速。
根据本发明的一个实施例,x路感应信号构造出y种电平状态组合,y>x。其中,根据本发明的一个实施例,电平状态组合的数量y为每一路感应信号的电平状态数量的x倍,即y=2x。
如图15所示,控制单元30包括:计时器301和控制芯片302。
其中,计时器301用于在y种电平状态组合中的任一种电平状态组合出现时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;控制芯片302与计时器301相连,控制芯片302还与x个霍尔检测组件20相连,控制芯片302在任意种电平状态组合的持续时间大于预设时间阈值时判断运动部件发生卡滞。
也就是说,x个霍尔检测组件20匹配磁环10的磁极总个数及每个磁极的宽度错开预设角度,即x个霍尔检测组件20分别输出的x路感应信号依次错开预设相位角,因而同一时刻可形成不同的电平状态组合。控制芯片302通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断驱动电机是否堵转,进而判断运动部件是否发生卡滞。由此,采用多霍尔检测组件分布错列,可进一步成倍缩短检测时间,可达到成倍降低检测时间的效果。
具体来说,以磁环10上间隔分布多个N磁极和多个S磁极为例说明,在驱动部件驱动运动部件移动例如驱动电机转动时,驱动电机的转动组件带动磁环10同步转动,x个霍尔检测组件20固定不动,磁环10上的N磁极和S磁极交替经过x个霍尔检测组件20,x个霍尔检测组件20分别产生占空比为50%的高低电平脉冲序列。
相邻两个霍尔检测组件20依据上述公式d=360°/s/x+n*2*360°/s错开预设角度,相应地,相邻两个霍尔检测组件20可得到相差180°/x相位角的波形。由此,可以把每路波形中一个周期均分成2x种电平状态组合,并且,每种电平状态组合的持续时间tn是任一路信号的高电平状态或低电平状态的持续时间的1/x,即tn=1/r/p/2/x,其中,r为磁环10的转速,p为所述N磁极或S磁极的个数,当磁环10设置在传动齿轮上时,磁环10的转速可根据驱动电机的转速与齿轮传速比计算得到,当驱动电机为步进电机且磁环设置在驱动轴时,磁环10的转速可根据步距角和驱动脉冲周期计算得到。由此,采用多霍尔检测组件分布错列,可进一步成倍缩短检测时间,例如采用多少个霍尔传感器即可把检测时间降低多少倍。
如图16所示,以x=3,d=35°为例,三个霍尔检测组件20可输出各迟后60°相位角的三路波形,即霍尔检测组件20B的输出波形相对于霍尔检测组件20A的输出波形滞后60°,霍尔检测组件20C的输出感应信号相对于霍尔检测组件20B的输出波形滞后60°。由此,可以把每路波形中一个周期均分成六种电平状态组合,即六种电平状态组合分别为100、110、111、011、001、000,其中,1代表高电平,0代表低电平,并且,每种电平状态组合的持续时间tn是任一路信号的高电平或低电平状态的持续时间的1/3,tn=1/r/p/3,其中r为磁环10的转速,从而检测灵敏度提高了三倍。
当驱动电机发生堵转而停止转动即运动部件发生卡滞时,每个霍尔检测组件20对应的磁极不再变化,所以每个霍尔检测组件20的输出电平会持续为高电平或者持续为低电平。如图17所示,驱动电机在t1时刻发生堵转、且在t2时刻恢复,tn为未发生堵转时每种电平状态组合的持续时间,td为预设时间阈值,当发生堵转时,三路波形维持当前的电平状态不变,当持续时间大于td时即判断为电机发生堵转,进而判断运动部件卡滞。其中,预设时间阈值td=k*tn,k的取值范围为1-4,优选为1.5。
如上所述,本发明实施例检测运动部件是否卡滞的检测过程如下:
在驱动部件驱动运动部件移动时控制芯片302开启检测功能,并控制计时器301开始计时,控制芯片302可采集x个霍尔检测组件20输出的感应信号,当任意一路感应信号发生高低电平跳变时控制计时器301清零,控制芯片302可判断计时器301的计时值是否大于预设时间阈值td,如果计时器301的计时值大于预设时间阈值td,则判断驱动电机发生堵转,进而判断运动部件卡滞,控制芯片302输出堵转保护信号,以执行电机保护动作,例如控制驱动电机停止转动或反向转动;如果计时器301的计时值小于等于预设时间阈值td,则判断电机未发生堵转,进而判断运动部件未发生卡滞,控制芯片302可控制驱动电机继续正向转动。
应当理解的是,磁环10的检测面间隔充满N磁极和第一空白区域以及磁环10的检测面间隔充满S磁极和第一空白区域的实施例与前述磁环10的检测面间隔充满N磁极和S磁极基本相同,区别在于,磁环10间隔充满N磁极和第一空白区域时,N磁极和第一空白区域交替经过相应的霍尔检测组件20,以及磁环10间隔充满S磁极和第二空白区域时,S磁极和第二空白区域交替经过相应的霍尔检测组件20,这里不再详细赘述。
另外,根据本发明的一个具体实施例,如图18所示,x个霍尔检测组件20的电源端均通过第一电阻R1与预设电源VCC例如+5V相连,x个霍尔检测组件20的接地端接地,x个霍尔检测组件20的电源端与接地端之间均并联第一电容C1,其中,每个霍尔检测组件20的检测端感应磁环的磁极变化,每个霍尔检测组件20的输出端输出对应的感应信号。
进一步地,如图18所示,空调器中运动部件的检测控制装置还包括x个输出电路40,x个输出电路40与x个霍尔检测组件20的输出端一一对应相连,每个输出电路40包括:第二电阻R2和第三电阻R3,第二电阻R2和第三电阻R3串联连接,串联后的第二电阻R2和第三电阻R3的一端与预设电源VCC相连,串联后的第二电阻R2和第三电阻R3的另一端与控制单元30即控制芯片302相连,串联的第二电阻R2和第三电阻R3之间具有节点,节点与对应的霍尔检测组件20的输出端相连。
其中,第二电阻R2为上拉电阻,第三电阻R3为限流电阻。
也就是说,每个霍尔检测组件20可为5V供电,从而每个霍尔检测组件20可输出幅值为5V的高低电平脉冲序列,每个高低电平脉冲序列通过相应的输出电路提供给控制单元30,控制单元30即可对x路高低电平脉冲序列的电平状态组合的持续时间进行计时,并通过计时时间与预设时间阈值的比较判断运动部件是否发生卡滞。
此外,根据本发明的一个具体实施例,如图10和11所示,运动部件可为空调器的门板300,门板300为可滑动的门板;驱动部件100例如驱动电机可驱动门板300。具体来说,空调器的柜机上具有可滑动的门板300,当空调器启动时,空调器的控制装置可通过电机驱 动门板300打开,当空调器关闭时空调器的控制装置可通过电机驱动门板300关闭,从而提升产品的美观度。其中,门板300为一个时,门板300可向一侧打开;门板300为两个时,门板300可向两侧打开。
本发明实施例的空调器中运动部件的检测控制装置可检测驱动部件100是否堵转,以判断门板300是否卡滞例如遇到障碍物。具体地,在门板300向开门方向或关门方向运动时,驱动部件100例如驱动电机的转动组件带动磁环10同步转动,磁环上的N磁极和S磁极交替经过x个霍尔检测组件,x个霍尔检测组件分别输出稳定的高低电平脉冲序列,占空比为50%。
当门板300发生卡滞,例如有异物卡住门板300或者手指不慎伸于其中时,驱动部件100停止运动,每个霍尔检测组件对应的磁极不再变化,每个霍尔检测组件的输出电平会持续为高电平或者持续为低电平。控制单元30通过检测每个电平状态组合的持续时间是否超过预设时间阈值即可判断驱动部件100是否堵转,进而判断门板300是否发生卡滞例如遇到障碍物。
由此,能够有效检测门板300是否遇到障碍物,并缩短检测时间,可快速获得门板的卡滞信息,做到轻微触碰即可检测卡滞的效果,从而及时采取相应策略对门板的运动进行调整,避免对机构造成损坏,同时提高了用户使用体验满意度。并且通过磁环与多霍尔检测组件可缩短检测时间,提升检测灵敏度,防止对用户造成伤害例如夹住手指等,提升用户的体验。
综上,根据本发明实施例提出的空调器中运动部件的检测控制装置,通过x个霍尔检测组件在驱动部件驱动运动部件移动时感应磁环的磁极变化以对应生成x路感应信号,进而控制单元根据x路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对电机的转动进行调整,避免对机构损坏,并且通过磁环与多个霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,通过预设角度设置x个霍尔检测组件在电路板上错开的直线距离,能够高精度、小误差的安装霍尔检测组件,该装置占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
基于上述实施例,本发明还提出了一种空调器,该空调器包括所述的空调器中运动部件的检测控制装置。
根据本发明实施例提出的空调器,可通过运动部件的检测控制装置实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
本发明第三方面实施例提出了一种空调器中运动部件的检测控制方法。
图35是根据本发明实施例的空调器中运动部件的检测控制方法的流程图。空调器包括磁环和至少一个霍尔检测组件,磁环固定在驱动运动部件的驱动部件上,磁环的检测面上间隔分布多个N磁极和/或多个S磁极,至少一个霍尔检测组件靠近磁环的检测面固定设置,如图35所示,方法包括以下步骤:
S1:在驱动部件驱动运动部件移动时通过至少一个霍尔检测组件感应磁环的磁极变化以对应生成至少一路感应信号;
S2:根据至少一路感应信号判断运动部件是否卡滞。
根据本发明的一个实施例,当磁环的检测面上间隔分布多个N磁极和多个S磁极时,N磁极和S磁极一一间隔设置,其中,霍尔检测组件在正对N磁极时生成第一电平,并在正对S磁极时生成第二电平;当磁环的检测面上间隔分布多个N磁极时,相邻的两个N磁极之间分布有第一空白区域,其中,霍尔检测组件在正对N磁极时生成第一电平,并在正对第一空白区域时生成第二电平;当磁环的检测面上间隔分布多个S磁极时,相邻的两个S磁极之间分布有第二空白区域,霍尔检测组件在正对S磁极时生成第一电平,并在正对第二空白区域时生成第二电平。
根据本发明的一个实施例,当霍尔检测组件为一个时,根据至少一路感应信号判断运动部件是否卡滞包括:在第一电平与第二电平进行切换时开始计时,以对第一电平的持续时间和第二电平的持续时间进行计时;在第二电平或第二电平的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
根据本发明的一个实施例,当霍尔检测组件为x个时,x个霍尔检测组件相对于磁环错开预设角度,x个霍尔检测组件在驱动部件驱动运动部件移动时感应磁环的磁极变化以对应生成x路感应信号,x路感应信号构造出y种电平状态组合,x为大于1的整数,y>x,其中,根据至少一路感应信号判断运动部件是否卡滞包括:在电平状态组合发生变化时开始计时,以对y种电平状态组合中每种电平状态组合的持续时间进行计时;在任意种电平状态组合的持续时间大于预设时间阈值时判断运动部件发生卡滞。其中,电平状态组合的数量y为每一路感应信号的电平状态数量的x倍。
根据本发明实施例提出的空调器中运动部件的检测控制方法,可通过靠近磁环固定设置的至少一个霍尔检测组件感应与驱动部件同步运动的磁环的磁极以对应生成至少一路感应信号,进而根据接收到的至少一路感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,该方法检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
具体地,根据本发明的一个实施例,空调器包括磁环和霍尔检测组件,磁环固定在驱动运动部件的驱动部件上,磁环的检测面上间隔分布多个N磁极或S磁极,霍尔检测组件靠近磁环的检测面固定设置。图36是根据本发明一个实施例的空调器中运动部件的检测控制方法的流程图,如图36所示,该空调器中运动部件的检测控制方法包括以下步骤:
S101:在驱动部件驱动运动部件移动时通过霍尔检测组件感应磁环的N磁极或S磁极以生成感应信号;
S102:根据感应信号判断运动部件是否卡滞。
根据本发明的一个实施例,相邻的两个N磁极之间分别有第一空白区域或相邻的两个S磁极之间分布有第二空白区域,霍尔检测组件在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平,根据感应信号判断运动部件是否卡滞包括:在所述有效电平与所述无效电平进行切换时开始计时,以对有效电平的持续时间和无效电平的持续时间进行计时;当有效电平或无效电平的持续时间大于预设时间阈值时,判断运动部件发生卡滞。
根据本发明实施例提出的空调器中运动部件的检测控制方法,可通过靠近磁环固定设置的霍尔检测组件感应与驱动部件同步运动的磁环的磁极以生成感应信号,进而根据接收到的感应信号判断运动部件是否卡滞,从而可实时检测运动部件例如门板等的状态,快速判断运动部件是否卡滞,以便于及时采取相应措施对驱动部件的驱动动作进行调整,避免对驱动部件造成损坏,同时提高了用户体验。并且,该方法检测灵敏度高、占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
具体地,根据本发明的另一个实施例,空调器包括磁环和x个霍尔检测组件,磁环固定在驱动运动部件的驱动部件上,磁环的检测面上间隔分布多个N磁极或S磁极,x个霍尔检测组件靠近磁环的检测面固定设置,x为大于1的整数。图37是根据本发明另一个实施例的空调器中运动部件的检测控制方法的流程图,如图37所示,方法包括以下步骤:
S201:在驱动部件驱动运动部件移动时通过x个霍尔检测组件感应磁环的磁极变化以对应生成x路感应信号;
S202:根据x路感应信号判断运动部件是否卡滞。
根据本发明的一个实施例,相邻的两个N磁极之间分布有第一空白区域,相邻的两个S磁极之间分布有第二空白区域,霍尔检测组件在正对N磁极或S磁极时生成有效电平,并在正对第一空白区域或第二空白区域时生成无效电平,x路感应信号构造出y种电平状态组合,y>x,根据x路感应信号判断运动部件是否卡滞包括:在电平状态组合发生变化时开始计时以对y种检测状态中每种电平状态组合的持续时间进行计时;在任意种电平状态组合的 持续时间大于预设时间阈值时判断运动部件发生卡滞。
根据本发明的一个实施例,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
根据本发明实施例提出的空调器中运动部件的检测控制方法,通过x个霍尔检测组件在驱动部件驱动运动部件移动时感应磁环的磁极变化以对应生成x路感应信号,进而根据x路感应信号判断运动部件是否卡滞,从而能够有效判断运动部件是否卡滞,以便于及时采取相应措施对电机的转动进行调整,避免对机构损坏,并且通过磁环与多个霍尔检测组件可缩短检测时间,提升检测灵敏度。并且,该方法占用空间少、成本低廉、便于安装、使用寿命长、稳定可靠。
此外,本发明实施例还提出了一种非临时性可读存储介质,其上存储有空调器控制程序,该程序被处理器执行时实现如本发明第三方面实施例所述的空调器中运动部件的检测控制方法。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (29)

  1. 一种空调器中运动部件的检测控制装置,其特征在于,包括:
    磁环,所述磁环固定在驱动所述运动部件的驱动部件上,所述磁环的检测面上间隔分布多个N磁极和/或多个S磁极;
    至少一个霍尔检测组件,所述至少一个霍尔检测组件与所述磁环的检测面上磁极的磁性相匹配,所述至少一个霍尔检测组件靠近所述磁环的检测面固定设置,所述至少一个霍尔检测组件在所述驱动部件驱动所述运动部件移动时感应所述磁环的磁极变化以对应生成至少一路感应信号;
    控制单元,所述控制单元与所述至少一个霍尔检测组件相连,所述控制单元根据所述至少一路感应信号判断所述运动部件是否卡滞。
  2. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,
    当所述磁环的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置;
    当所述磁环的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域;
    当所述磁环的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域。
  3. 根据权利要求2所述的空调器中运动部件的检测控制装置,其特征在于,
    当所述磁环的检测面上分布多个N磁极和多个S磁极时,每个所述N磁极的宽度均相同且每个所述S磁极的宽度均相同;
    当所述磁环的检测面上间隔分布多个N磁极时,每个所述N磁极的宽度均相同;或者
    当所述磁环的检测面上间隔分布多个S磁极时,每个所述S磁极的宽度均相同。
  4. 根据权利要求3所述的空调器中运动部件的检测控制装置,其特征在于,根据以下公式获取所述N磁极或所述S磁极的磁性区域角宽度:
    λ=(π+arcsin(X/A)+arcsin(Y/A))/p,
    其中,λ为所述N磁极或所述S磁极的磁性区域角宽度,A为所述N磁极或所述S磁极的最大磁密,X为所述霍尔检测组件的动作点,Y为所述霍尔检测组件的释放点,p为所述N磁极或所述S磁极的个数。
  5. 根据权利要求4所述的空调器中运动部件的检测控制装置,其特征在于,根据以下 公式获取所述第一空白区域或第二空白区域的区域角宽度:
    θ=2π/p–λ
    其中,θ为所述第一空白区域或第二空白区域的区域角宽度,λ为所述N磁极或所述S磁极的磁性区域角宽度,p为所述N磁极或所述S磁极的个数。
  6. 根据权利要求1-5中任一项所述的空调器中运动部件的检测控制装置,其特征在于,当所述磁环的检测面上间隔分布多个N磁极或S磁极时,所述霍尔检测组件为单极型霍尔元件,所述单极型霍尔元件与所述磁环上的磁极的磁性相匹配,其中,
    当所述磁环的检测面上间隔分布多个N磁极时,所述单极型霍尔元件为N极型霍尔元件;
    当所述磁环的检测面上间隔分布多个S磁极时,所述单极型霍尔元件为S极型霍尔元件。
  7. 根据权利要求2所述的空调器中运动部件的检测控制装置,其特征在于,当所述霍尔检测组件为x个时,所述x个霍尔检测组件相对于所述磁环错开预设角度,所述x个霍尔检测组件在所述驱动部件驱动所述运动部件移动时感应所述磁环的磁极变化以对应生成x路感应信号,其中,x为大于1的整数。
  8. 根据权利要求7所述的空调器中运动部件的检测控制装置,其特征在于,所述预设角度包括第一预设角度、第二预设角度和第三预设角度,其中,
    当所述磁环的检测面上间隔分布多个N磁极时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述第一空白区域的个数之和错开第一预设角度;
    当所述磁环的检测面上间隔分布多个S磁极时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述S磁极的个数之和错开第三预设角度;
    当所述磁环的检测面上分布多个N磁极和多个S磁极时,x个所述霍尔检测组件中任意相邻两个霍尔检测组件根据所述N磁极与所述S磁极的个数之和错开第三预设角度。
  9. 根据权利要求8所述的空调器中运动部件的检测控制装置,其特征在于,根据以下公式确定所述第一预设角度、第二预设角度和第三预设角度:
    d=360°/s/x+n*2*360°/s
    其中,d为所述第一预设角度、第二预设角度和第三预设角度,x为所述霍尔检测组件的个数,n为整数,在所述磁环的检测面上间隔分布多个N磁极和多个S磁极时s为所述N磁极与所述多个S磁极的个数之和,或在所述磁环的检测面上间隔分布多个N磁极时s为所述N磁极与所述第一空白区域的个数之和,或在所述磁环的检测面上间隔分布多个S磁极时s为所述S磁极与所述第二空白区域的个数之和。
  10. 根据权利要求7-9中任一项所述的空调器中运动部件的检测控制装置,其特征在于,
    当所述磁环上分布多个N磁极和多个S磁极时,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述S磁极时生成第二电平;
    当所述磁环上间隔分布所述多个N磁极时,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述第一空白区域时生成第二电平;
    当所述磁环上间隔分布所述多个S磁极时,所述霍尔检测组件在正对所述S磁极时生成第一电平,并在正对所述第二空白区域时生成第二电平。
  11. 根据权利要求10所述的空调器中运动部件的检测控制装置,其特征在于,所述控制单元包括计时器和控制芯片,所述控制芯片与所述计时器相连,其中,当所述霍尔检测组件为一个时,
    所述计时器用于在所述第一电平与所述第二电平进行切换时开始计时,以对所述第一电平的持续时间和所述第二电平的持续时间进行计时;
    所述控制芯片用于在所述第二电平或所述第二电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
  12. 根据权利要求11所述的空调器中运动部件的检测控制装置,其特征在于,当所述霍尔检测组件为x个时,所述x路感应信号构造出y种电平状态组合,y>x,其中,
    所述计时器用于在电平状态组合发生变化时开始计时,以对所述y种电平状态组合中每种电平状态组合的持续时间进行计时;
    所述控制芯片在任意种电平状态组合的持续时间大于预设时间阈值时判断所述运动部件发生卡滞。
  13. 根据权利要求12所述的空调器中运动部件的检测控制装置,其特征在于,其中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
  14. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,其中,所述驱动部件包括驱动电机,所述磁环固定在所述驱动电机的转动组件上。
  15. 根据权利要求14所述的空调器中运动部件的检测控制装置,其特征在于,其中,所述驱动电机的转动组件为传动齿轮或驱动轴。
  16. 根据权利要求14所述的空调器中运动部件的检测控制装置,其特征在于,其中,所述磁环上开有固定孔,所述磁环通过所述固定孔与所述驱动部件铆合。
  17. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,所述磁环的检测面为磁环周边侧面或磁环内部端面。
  18. 根据权利要求1所述的空调器中运动部件的检测控制装置,其特征在于,所述至少一个霍尔检测组件固定在空调器本体上。
  19. 根据权利要求7-9中任一项所述的空调器中运动部件的检测控制装置,其特征在于,x个所述霍尔检测组件设置在所述空调器的电路板上,并根据所述预设角度设置x个所述霍尔检测组件在所述电路板上错开的直线距离。
  20. 根据权利要求19所述的空调器中运动部件的检测控制装置,其特征在于,
    当x为偶数时,所述x个霍尔检测组件对称地排布在所述电路板与所述磁环的圆心之间的垂直线的两侧;
    当x为奇数时,第(x+1)/2个霍尔检测组件相对所述电路板与所述磁环的圆心之间的垂直线设置,其余(x-1)个霍尔检测组件对称地排布在所述电路板与所述磁环的圆心之间的垂直线的两侧。
  21. 根据权利要求20所述的空调器中运动部件的检测控制装置,其特征在于,当x为偶数时,第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离根据以下公式获取:
    当i小于x/2时,L=R×tan((x/2-i)×d+d/2)-R×tan((x/2-i-1)×d+d/2);
    当i等于x/2时,L=2R×tan(d/2);
    当i大于x/2时,L=R×tan((i-x/2)×d+d/2)-R×tan((i-x/2-1)×d+d/2);
    其中,i为1、2、…、(x-1),L为所述第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离,R为所述电路板与所述磁环的圆心之间的垂直距离,d为所述预设角度。
  22. 根据权利要求20所述的空调器中运动部件的检测控制装置,其特征在于,当x为奇数时,第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离根据以下公式获取:
    当i小于(x+1)/2时,L=R×tan(((x+1)/2-i)×d)-R×tan(((x+1)/2-i-1)×d);
    当i大于等于(x+1)/2时,L=R×tan((i-(x+1)/2+1)×d)-R×tan((i-(x+1)/2)×d);
    其中,i为1、2、…、(x-1),L为所述第i个霍尔检测组件与第(i+1)个霍尔检测组件在所述电路板上的直线距离,R为所述电路板与所述磁环的圆心之间的垂直距离,d为所述预设角度。
  23. 一种空调器,其特征在于,包括根据权利要求1-22中任一项所述的空调器中运动部件的检测控制装置。
  24. 一种空调器中运动部件的检测控制方法,其特征在于,所述空调器包括磁环和至少一个霍尔检测组件,所述磁环固定在驱动所述运动部件的驱动部件上,所述磁环的检测面上 间隔分布多个N磁极和/或多个S磁极,所述至少一个霍尔检测组件靠近所述磁环的检测面固定设置,所述方法包括以下步骤:
    在所述驱动部件驱动所述运动部件移动时通过至少一个霍尔检测组件感应所述磁环的磁极变化以对应生成至少一路感应信号;
    根据所述至少一路感应信号判断所述运动部件是否卡滞。
  25. 根据权利要求24所述的空调器中运动部件的检测控制方法,其特征在于,
    当所述磁环的检测面上间隔分布多个N磁极和多个S磁极时,所述N磁极和所述S磁极一一间隔设置,其中,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述S磁极时生成第二电平;
    当所述磁环的检测面上间隔分布多个所述N磁极时,相邻的两个所述N磁极之间分布有第一空白区域,其中,所述霍尔检测组件在正对所述N磁极时生成第一电平,并在正对所述第一空白区域时生成第二电平;
    当所述磁环的检测面上间隔分布多个所述S磁极时,相邻的两个所述S磁极之间分布有第二空白区域,所述霍尔检测组件在正对所述S磁极时生成第一电平,并在正对所述第二空白区域时生成第二电平。
  26. 根据权利要求25所述的空调器中运动部件的检测控制方法,其特征在于,当所述霍尔检测组件为一个时,所述根据所述至少一路感应信号判断所述运动部件是否卡滞包括:
    在所述第一电平与所述第二电平进行切换时开始计时,以对所述第一电平的持续时间和所述第二电平的持续时间进行计时;
    在所述第二电平或所述第二电平的持续时间大于预设时间阈值时,判断所述运动部件发生卡滞。
  27. 根据权利要求25所述的空调器中运动部件的检测控制方法,其特征在于,当所述霍尔检测组件为x个时,所述x个霍尔检测组件相对于所述磁环错开预设角度,所述x个霍尔检测组件在所述驱动部件驱动所述运动部件移动时感应所述磁环的磁极变化以对应生成x路感应信号,所述x路感应信号构造出y种电平状态组合,x为大于1的整数,y>x,其中,所述根据所述至少一路感应信号判断所述运动部件是否卡滞包括:
    在电平状态组合发生变化时开始计时,以对所述y种电平状态组合中每种电平状态组合的持续时间进行计时;
    在任意种电平状态组合的持续时间大于预设时间阈值时判断所述运动部件发生卡滞。
  28. 根据权利要求27所述的空调器中运动部件的检测控制方法,其特征在于,其中,所述电平状态组合的数量y为每一路所述感应信号的电平状态数量的x倍。
  29. 一种非临时性可读存储介质,其特征在于,其上存储有空调器控制程序,该程序被处理器执行时实现如权利要求24-28中任一所述的空调器中运动部件的检测控制方法。
PCT/CN2017/118012 2017-01-05 2017-12-22 空调器及空调器中运动部件的检测控制装置和方法 WO2018126909A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201720014260.3U CN206531937U (zh) 2017-01-05 2017-01-05 电机堵转检测装置和具有其的空调器
CN201720014258.6U CN207073919U (zh) 2017-01-05 2017-01-05 空调器及其电机堵转检测装置和门板控制系统
CN201710008092.1A CN106705392B (zh) 2017-01-05 2017-01-05 空调器及其电机堵转检测装置和门板控制系统
CN201720014260.3 2017-01-05
CN201720014258.6 2017-01-05
CN201710008092.1 2017-01-05
CN201720625261.1U CN207074268U (zh) 2017-05-31 2017-05-31 空调器及空调器中运动部件的检测控制装置
CN201710405381.5 2017-05-31
CN201710401694.3A CN107328016B (zh) 2017-05-31 2017-05-31 空调器以及空调器中运动部件的检测控制装置和方法
CN201720625264.5U CN207301358U (zh) 2017-05-31 2017-05-31 空调器及空调器中运动部件的检测控制装置
CN201710401694.3 2017-05-31
CN201720625264.5 2017-05-31
CN201710401711.3 2017-05-31
CN201710401711.3A CN107015280B (zh) 2017-05-31 2017-05-31 空调器及空调器中运动部件的检测控制装置和方法
CN201710405381.5A CN107045146B (zh) 2017-05-31 2017-05-31 空调器及空调器中运动部件的检测控制装置
CN201720625261.1 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018126909A1 true WO2018126909A1 (zh) 2018-07-12

Family

ID=62790963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118012 WO2018126909A1 (zh) 2017-01-05 2017-12-22 空调器及空调器中运动部件的检测控制装置和方法

Country Status (1)

Country Link
WO (1) WO2018126909A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351951A (zh) * 2018-12-24 2020-06-30 深圳迈瑞生物医疗电子股份有限公司 样本传输检测方法
CN113472337A (zh) * 2021-06-29 2021-10-01 歌尔科技有限公司 开关组件、眼镜腿及眼镜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123241A (zh) * 1994-09-07 1996-05-29 本田技研工业株式会社 带有助推马达的自行车上的踏力检测装置
JPH08297059A (ja) * 1995-04-27 1996-11-12 Bridgestone Cycle Co 自転車用トルク検出装置
JPH09105686A (ja) * 1995-08-09 1997-04-22 Koyo Electron Ind Co Ltd トルク検出装置
CN1459620A (zh) * 2002-05-20 2003-12-03 本田技研工业株式会社 电动辅助自行车的踏力检测装置
CN2827840Y (zh) * 2005-05-23 2006-10-18 西南师范大学 摩托车霍尔差动式自适应传动传感装置
CN101876556A (zh) * 2009-04-30 2010-11-03 浙江关西电机有限公司 位置检测装置及其信号处理装置
CN103085931A (zh) * 2013-02-01 2013-05-08 苏州盛亿电机有限公司 电动自行车中轴扭力传感装置
CN103381875A (zh) * 2013-08-08 2013-11-06 苏州捷诚科技有限公司 中轴式力矩传感器
CN203544279U (zh) * 2013-08-08 2014-04-16 苏州捷诚科技有限公司 中轴式力矩传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123241A (zh) * 1994-09-07 1996-05-29 本田技研工业株式会社 带有助推马达的自行车上的踏力检测装置
JPH08297059A (ja) * 1995-04-27 1996-11-12 Bridgestone Cycle Co 自転車用トルク検出装置
JPH09105686A (ja) * 1995-08-09 1997-04-22 Koyo Electron Ind Co Ltd トルク検出装置
CN1459620A (zh) * 2002-05-20 2003-12-03 本田技研工业株式会社 电动辅助自行车的踏力检测装置
CN2827840Y (zh) * 2005-05-23 2006-10-18 西南师范大学 摩托车霍尔差动式自适应传动传感装置
CN101876556A (zh) * 2009-04-30 2010-11-03 浙江关西电机有限公司 位置检测装置及其信号处理装置
CN103085931A (zh) * 2013-02-01 2013-05-08 苏州盛亿电机有限公司 电动自行车中轴扭力传感装置
CN103381875A (zh) * 2013-08-08 2013-11-06 苏州捷诚科技有限公司 中轴式力矩传感器
CN203544279U (zh) * 2013-08-08 2014-04-16 苏州捷诚科技有限公司 中轴式力矩传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351951A (zh) * 2018-12-24 2020-06-30 深圳迈瑞生物医疗电子股份有限公司 样本传输检测方法
CN111351951B (zh) * 2018-12-24 2024-04-30 深圳迈瑞生物医疗电子股份有限公司 样本传输检测方法
CN113472337A (zh) * 2021-06-29 2021-10-01 歌尔科技有限公司 开关组件、眼镜腿及眼镜
CN113472337B (zh) * 2021-06-29 2024-06-04 歌尔科技有限公司 开关组件、眼镜腿及眼镜

Similar Documents

Publication Publication Date Title
CN106705392B (zh) 空调器及其电机堵转检测装置和门板控制系统
CN107015280B (zh) 空调器及空调器中运动部件的检测控制装置和方法
CN107045146B (zh) 空调器及空调器中运动部件的检测控制装置
CN107015279B (zh) 空调器及空调器中运动部件的检测控制装置和方法
US6194862B1 (en) Control device for stepper motor, control method for the same, and timing device
WO2018126909A1 (zh) 空调器及空调器中运动部件的检测控制装置和方法
KR100397031B1 (ko) 고주파수클럭을이용한스위치된자기저항드라이브용각도제어장치
CN101124719A (zh) 双相无刷直流电机的无传感器控制
JP4859903B2 (ja) 移動方向検出装置
CN107328016B (zh) 空调器以及空调器中运动部件的检测控制装置和方法
CN106255889A (zh) 采用感应传感器和旋转轴向目标表面的旋转感测
WO2020113940A1 (zh) 一种防磁计量检测装置
CN102148599B (zh) 开关磁阻电机的角度位置检测器与检测方法
KR100757997B1 (ko) 자기모터
CN106679100A (zh) 空调器及空调器的门板检测装置
CN108027585B (zh) 双线圈步进电机用驱动电路
WO2018126910A1 (zh) 空调器以及空调器中运动部件的检测控制装置和方法
US9897468B2 (en) Position detection device
CN101325392A (zh) 控制无刷电机的装置及方法
CN107166656B (zh) 空调器以及空调器中运动部件的检测控制装置和方法
CN207301358U (zh) 空调器及空调器中运动部件的检测控制装置
KR20110093586A (ko) 자기 커플링 제어 장치
CN107015281B (zh) 空调器及空调器中运动部件的检测控制装置和方法
CN107015278B (zh) 空调器及空调器中运动部件的检测控制装置和方法
CN103782508B (zh) 电动机控制装置、无刷电动机以及电动机控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17890020

Country of ref document: EP

Kind code of ref document: A1