WO2020113940A1 - 一种防磁计量检测装置 - Google Patents

一种防磁计量检测装置 Download PDF

Info

Publication number
WO2020113940A1
WO2020113940A1 PCT/CN2019/091850 CN2019091850W WO2020113940A1 WO 2020113940 A1 WO2020113940 A1 WO 2020113940A1 CN 2019091850 W CN2019091850 W CN 2019091850W WO 2020113940 A1 WO2020113940 A1 WO 2020113940A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
coil
measurement
charge
induction coil
Prior art date
Application number
PCT/CN2019/091850
Other languages
English (en)
French (fr)
Inventor
谢巍
Original Assignee
杭州为峰智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州为峰智能科技有限公司 filed Critical 杭州为峰智能科技有限公司
Publication of WO2020113940A1 publication Critical patent/WO2020113940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/586Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of coils, magnetic circuits, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure

Definitions

  • This application relates to the field of fluid measurement such as liquid measurement and gas measurement, and in particular to an anti-magnetic measurement detection device.
  • the most common way is to detect the flow rate or flow rate of a liquid or gas based on the flow of fluid or gas driving mechanical parts to rotate.
  • an anti-magnetic measurement detection device which is used to convert the flow into a digital signal.
  • the first one uses magnetic sensors, and small permanent magnets are usually placed on the side of the rotor.
  • the permanent magnets rotate around the axis, and magnetic sensors such as reed switches are placed above the rotation path of the permanent magnets to convert the magnetic field state changes into electrical signals. But because the external strong magnetic field easily interferes with the state of the magnetic sensor, this method has poor anti-interference ability.
  • the second kind such as the Chinese patent, discloses an invention patent with a patent number of ZL200680007522.8 and a patent name of an inductive angular position sensor.
  • This invention solves the problem that traditional magnetic sensors are easily interfered by permanent magnets.
  • the output signal of the secondary coil is directly output to the comparator. Since the output signal of the secondary coil is induced by the rotation of the induction metallized disc, the signal itself is relatively weak, so the method of directly outputting the information to the comparator will The distance between the metalized disc and the anti-magnetic measurement and detection module is greatly restricted. The two need to have a relatively close distance, and a little further away will greatly affect the detection result.
  • the purpose of the present application is to provide an antimagnetic measurement and detection device capable of amplifying the detection signal in view of the above problems.
  • An anti-magnetic measurement and detection device includes a tray rotating around an axis and a fixed anti-magnetic measurement and detection module located above the tray.
  • a high conductivity material usually a metal material, is installed on the surface of the tray.
  • the anti-magnetic measurement and detection module includes An excitation circuit, a PCB coil and a signal processing circuit connected in sequence, the PCB coil includes an excitation coil parallel to the plane on the tray and a circle center on the axis, and a plurality of induction coils circumferentially arranged at an equal angle inside the excitation coil,
  • the signal processing circuit includes a switching amplifying circuit and a sampling circuit connected to the sampling end of the switching amplifying circuit, the input ends of the switching amplifying circuit are respectively connected to corresponding induction coils, and one ends of the induction coils are connected to each other at the same point.
  • the number of coils is an odd number.
  • the sampling circuit includes a control circuit and a charge and discharge circuit connected to the control circuit, and the switching amplifier circuit is connected to the control circuit through the charge and discharge circuit.
  • the sampling circuit includes a plurality of the charging and discharging circuits
  • the switching amplifier circuit includes a plurality of amplifiers
  • each induction coil is connected to an input terminal of a different amplifier.
  • the sampling end is connected to the control circuit through the charge and discharge circuit, and the amplifier corresponding to the induction coil is connected to the control circuit through different charge and discharge circuits.
  • the amplifier corresponding to one induction coil is connected to the control circuit through the same charge and discharge circuit, and the other two induction coils share another charge and discharge circuit connected to the other end of the control circuit.
  • each charge-discharge circuit includes a resistor and a capacitor connected to each other, the common terminals of the capacitor and the resistor are respectively connected to the corresponding amplifier and the control circuit, and the other end of the capacitor is grounded.
  • each amplifier is connected to the drive port of the single-chip microcomputer through a pulse generator, and each of the two single-chip amplifiers is controlled by the single-chip microcomputer to turn on each time, and the corresponding induction coil (6) corresponds to each The amplifier is turned on or off at the same time.
  • the amplifiers corresponding to the three induction coils are connected to the pulse generator, and different pulse generators are respectively connected to different drive ports of the single chip microcomputer.
  • the amplifier is a transistor, each induction coil is connected to the base of the corresponding transistor, the emitter of the transistor is connected to the corresponding pulse generator, and the collector is connected to the corresponding charge and discharge circuit .
  • the induction coils are three of equal size, which are a first induction coil A, a second induction coil B, and a third induction coil C in this order.
  • the control circuit includes the single-chip microcomputer, a comparator and a timer are integrated in the single-chip microcomputer, and a positive port and a comparator of the comparator connected to the comparator are led out of the single-chip microcomputer
  • the negative port, and the positive port of the comparator is connected to one charge and discharge circuit, the negative port of the comparator is connected to another charge and discharge circuit, and the corresponding charge and discharge circuits of the pair of induction coils are respectively connected to the positive comparator of the same comparator Port and comparator negative port.
  • a material with high conductivity is installed on the surface of the tray, and the conductive material may be any metal, such as iron sheet, stainless steel sheet, and the like.
  • a plurality of induction coils start from their respective center points, and after going around for many turns, they are connected to each other at the center of the excitation coil, and the center point of each induction coil is connected to their respective amplifiers;
  • the anti-magnetic measurement detection module is a multilayer printed circuit board, and includes a PCB coil and a shielding layer located above the PCB coil.
  • the excitation coil and the induction coil are both printed in the PCB coil layer.
  • the switching amplifier circuit can amplify the induction signal of the induction coil and increase the maximum distance between the upper plane of the tray and the plane of the PCB coil.
  • Adopt the working mode of time-sharing sampling, share a sampling circuit, and the comparator and timer in the sampling circuit can use the single-chip microcomputer which integrates the comparator and timer in the prior art, saving space and cost.
  • the sampling circuit is composed of a capacitor, a resistor, a comparator and a timer.
  • Figure 1 is a schematic diagram of the positional relationship between the antimagnetic measurement and detection device and the tray;
  • Figure 2 is a schematic diagram of the structure of the PCB coil printed on the printed circuit board
  • Fig. 3 is the detection principle diagram of the antimagnetic measurement detection device.
  • tray 1 tray 1; metal sheet 2; anti-magnetic measurement detection module 3; axis 4; excitation coil 5; induction coil 6; first induction coil A; second induction coil B; third induction coil C; capacitors C6, C7; Resistors R6, R7; MCU U1; excitation circuit 7; sampling circuit 8; control circuit 81; charge and discharge circuit 82; comparator 83; timer 84; switching amplifier circuit 9; pulse generator 91; transistor Q.
  • the mechanical transmission component will drive the tray 1 to rotate around its axis 4.
  • the tray 1 rotates clockwise or counterclockwise, and the tray 1 may be circular A tray or a non-circular tray, which is optionally a circular tray in this embodiment.
  • the upper surface of the tray 1 is inlaid or coated with a fan-shaped metal material.
  • the upper surface of the tray 1 is inlaid with a 120° fan-shaped metal sheet 2
  • it can also be a 240° metal sheet.
  • the three induction coils are divided into 360°, that is, each induction coil occupies an area of 120°.
  • the 120° fan-shaped metal sheet is optional. At a certain moment, only one induction coil is completely covered by the metal sheet.
  • the anti-magnetic measurement and detection module 3 is fixed directly above the tray 1. In actual use, non-metallic materials such as glass and plastic can be placed or filled between the tray 1 and the anti-magnetic measurement and detection module 3.
  • the anti-magnetic measurement and detection module 3 of this embodiment includes an excitation circuit 7, a PCB coil, and a signal processing circuit connected in sequence
  • the anti-magnetic measurement and detection module 3 here is a printed circuit board
  • the printed board may be a double-layer board or Multi-layer board, and at least include the PCB coil layer and the shield layer above the PCB coil layer.
  • a four-layer structure is selected, from top to bottom: the first layer is the component layer, and the second layer is the shield layer.
  • the third layer is the vacant layer, and the fourth layer is the PCB coil layer; when the module is in operation, the shielding layer isolates the interference of the PCB coil layer to the component layer, and also isolates the electromagnetic coil from the PCB coil layer. Interference.
  • the PCB coil includes an excitation coil 5 printed on the side of the printed circuit board close to the tray 1 and three induction coils 6, the excitation coil 5 is circular and surrounds the three induction coils 6 in its circle.
  • the three induction coils are arranged at 6 equal angles in the circumferential direction, and the size of each coil is the same, forming a circle together.
  • the side of the antimagnetic measurement detection module 3 near the tray 1 is parallel to the upper surface of the tray 1, and the center of the circle of the excitation coil 5 and the circle surrounded by the three induction coils 6 are all located on the axis 4 of rotation of the tray 1.
  • At least one pair of induction coils 6 is required to detect the number of rotations, and at least two pairs of induction coils 6 are required to determine the direction of rotation.
  • three induction coils are used to form two pairs of induction coils, and the three induction coils are referred to as a first induction coil A, a second induction coil B, and a third induction coil C, respectively.
  • the excitation coil 5 is connected to the excitation circuit 7, the excitation circuit 7 may use an RC differential circuit, and the excitation circuit 7 is connected to the single-chip U1 to cause the excitation circuit 7 to generate periodic excitation pulses through the single-chip U1.
  • the pulse width of the pulse signal is set to 5-20 ns, such as 10 ns, which can effectively reduce power consumption and reduce external interference.
  • the signal processing circuit of this embodiment includes a switching amplifier circuit 9 and a sampling circuit 8 connected to the sampling end of the switching amplifier circuit 9, and one end of each induction coil 6 is respectively connected to the switching amplifier
  • the input terminal of the circuit 9 is used to amplify the induction signal of the induction coil 6 and transmit the amplified induction signal to the sampling circuit 8 for comparison and output;
  • the sampling circuit 8 includes a control circuit 81 and a plurality of control circuits connected to the control circuit 81
  • the charge and discharge circuit 82 and the switching amplifier circuit 9 are connected to the control circuit 81 through a plurality of charge and discharge circuits 82.
  • the switching amplifier circuit 9 includes a plurality of amplifiers, each induction coil is connected to the input end of a different amplifier, the sampling end of each amplifier is connected to the control circuit 81 through the charge and discharge circuit 82, and the two pairs of induction coils 6 correspond to two The two amplifiers are connected to the control circuit 81 through different charge and discharge circuits 82.
  • each induction coil is connected to the input end of a different amplifier
  • the sampling end of each amplifier is connected to the control circuit 81 through the charge and discharge circuit 82
  • the two pairs of induction coils 6 correspond to two
  • the two amplifiers are connected to the control circuit 81 through different charge and discharge circuits 82.
  • the amplifiers corresponding to the first induction coil A and the second induction coil B are connected to the same charge and discharge circuit 82 at Control circuit 81
  • the amplifier corresponding to the third induction coil C is connected to the control circuit 81 through another charge and discharge circuit 82, where the two induction coils 6 share a charge and discharge circuit 82, which can save raw materials, reduce costs, simplify the circuit, and Will not have any impact on the purpose of testing.
  • the three induction coils 6 of this embodiment respectively start from their respective center points and are wound outwards for multiple turns, and then are connected to each other at the center of the excitation coil 5.
  • the center point is connected to the corresponding amplifier.
  • each charge and discharge circuit 82 includes capacitors C6 and C7 and resistors R6 and R7 connected to each other, and the common terminals of the capacitors C6 and C7 and resistors R6 and R7 in each charge and discharge circuit 82 are respectively Connected to the corresponding amplifier and control circuit 81, the other ends of the capacitors C6 and C7 are grounded, and the other ends of the resistors R6 and R7 are connected to the microcontroller U1; the control circuit 81 includes the aforementioned microcontroller U1, and the comparator 83 and the timer 84 are integrated in the microcontroller U1 , The positive port of the comparator connected to the comparator 83 and the negative port of the comparator are led out from the microcontroller U1, and the positive port of the comparator is connected to one charge and discharge circuit 82, and the negative port of the comparator is connected to another charge and discharge circuit 82, and becomes The corresponding charging and discharging circuits 82 of the pair of induction coils 6 are
  • one end of the first induction coil A, the second induction coil B, and the third induction coil C are connected to each other, and the other end is connected to their respective amplifiers.
  • the sampling ends of the respective amplifiers of the two induction coils B are connected to the positive pole of the comparator 83 through a charge and discharge circuit 82, and the third induction coil C is connected to the negative pole of the comparator 83 through a charge and discharge circuit 82.
  • the induced signals on the pair of induction coils can be compared by the comparator 83.
  • the comparators connected to the two pairs of induction coils may be the same or different, and accordingly, one or more comparators are integrated in the single-chip U1.
  • each amplifier is connected to the driving port of the single chip U1 through the pulse generator 91, and each of the two amplifiers is controlled to be turned on by the single chip U1 each time, and the two amplifiers corresponding to the pair of induction coils 6 are turned on at the same time Or close.
  • the amplifier here is optionally a transistor Q, and each induction coil 6 is connected to the base of the corresponding transistor Q, that is, the input terminal; the emitter of the transistor Q, that is, the driving terminal is connected to the corresponding through the corresponding pulse generator 91
  • the driving port of the transistor; the collector of the transistor Q, that is, the sampling terminal is connected to the corresponding charging and discharging circuit 82.
  • the semi-circular metal sheet 2 on the circular tray 1 rotates clockwise or counterclockwise.
  • the pulse signal generated by the excitation circuit 7 radiates electromagnetic signals outward through the excitation coil 5 at a certain period, and the induction coil 6 will produce an induced Voltage; when the semi-circular metal sheet 2 on the circular tray 1 below the anti-magnetic measurement detection module 3 turns to an induction coil 6 above, an inductive eddy current will be formed, resulting in greater power consumption, where the induced voltage is too small
  • the semi-circular metal sheet 2 on the circular tray 1 below the antimagnetic measurement detection module 3 is far away from an induction coil 6 above, there is basically no eddy current, and the induced voltage at this point is relatively large.
  • the transistor Q When the drive end of the single-chip microcomputer outputs the low level to the pulse generator 91, the transistor Q is turned off; when the drive end of the single-chip microcomputer outputs the high level to the pulse generator 91, the transistor Q is turned on, at this time the transistor Q is in the amplification area, and its corresponding capacitor C6 Or C7 starts to discharge, the discharge speed is affected by the induced voltage of the induction coil 6, and the discharge time is controlled by the pulse width of the excitation signal, usually a few nanoseconds.
  • the tiny induced voltage signal in the induction coil 6 is amplified by the transistor Q into a strong voltage signal on the capacitor, which can effectively improve the detection sensitivity and increase the distance between the antimagnetic measurement detection module 3 and the sector metal sheet 2 on the tray 1.
  • the single-chip U1 Before collecting the signal, the single-chip U1 fully charges the capacitors C6 and C7, and the pulse signal generated by the excitation circuit 7 radiates the electromagnetic signal through the excitation coil 5 according to a certain period; when sampling, the switching amplifier circuit is controlled by the single-chip U1 and is divided at a certain time interval
  • the transistor Q where the first induction coil A and the third induction coil C are respectively located, and the transistor Q where the second induction coil B and the third induction coil C are respectively located the person skilled in the art can set the time according to the specific application scenario Interval, and the basic principle is that the interval time applied in the scene with relatively fast rotation speed is shorter than the interval time applied in the scene with relatively slow rotation speed to meet the goal of saving power consumption under the premise of ensuring detection accuracy.
  • the capacitors C6 and C7 are discharged respectively, and the induced voltage is converted into the discharge amount of the capacitors C6 and C7.
  • the induced voltages of the first induction coil A and the third induction coil C are different.
  • the comparator 83 in the microcontroller U1 compares the voltages of the two capacitors C6 and C7, and controls the slow discharge of the high-voltage capacitors until the two capacitors C6 and C7 have the same voltage , MCU U1 timer 84 counts to obtain the discharge time. Since the metal sheet 2 is 120° fan-shaped, the position of the metal sheet 2 directly below the first induction coil A and the third induction coil C can be determined by the discharge time, and the number of rotations can be determined according to the change in position.
  • the single-chip U1 in this application can use a low-power PIC single-chip microcomputer.
  • This series of single-chip microcomputers has a high-performance RISC CPU and a flexible oscillator structure. It also includes an analog comparison module and a timer module to meet actual functional requirements. The consumption characteristics can meet the battery-powered use scenarios, so it is selected as the control core of the antimagnetic measurement and detection module 3.
  • this embodiment improves the sensitivity by turning a small voltage change into a more obvious time change, and can determine the position based on a smaller signal, avoiding the anti-magnetic measurement detection module caused by the weak signal in the prior art
  • the distance from the fan-shaped metal sheet 2 on the tray 1 is greatly restricted.
  • This application can be used for liquid flow measurement, gas flow measurement, low-speed mechanical transmission turns counting, etc.; and effectively solve the traditional dry reed pipe measurement method, Hall sensor measurement method, plug-in inductive non-magnetic measurement method, etc.
  • the problem of electromagnetic signal interference is described in this embodiment.

Abstract

一种防磁计量检测装置,包括绕轴线(4)旋转的托盘(1)和位于托盘(1)上方且固定不动的旋转检测模块(3),托盘(1)上表面呈部分金属化状态,旋转检测模块(3)包括依次相连的激励电路(7)、PCB线圈和信号处理电路,PCB线圈包括与托盘(1)上平面相平行且圆心位于轴线(4)上的激励线圈(5)和在激励线圈(5)内部等角度周向排列的多个感应线圈(6),且相邻两个感应线圈(6)两两配对,信号处理电路包括开关放大电路(9)和连接于开关放大电路(9)采样端的采样电路(8),且每个感应线圈(6)的一端分别连接至开关放大电路(9)的输入端。开关放大电路(9)能够放大感应线圈(6)的感应信号,增加托盘(1)的上平面与PCB线圈平面之间的最大距离。

Description

一种防磁计量检测装置
相关申请的交叉引用
本申请要求于2018年12月7日提交的申请号为201811497289.7,发明名称为“一种防磁计量检测装置”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请涉及液体计量、气体计量等流体计量领域,具体涉及一种防磁计量检测装置。
背景技术
目前流体计量应用中,最常见的方式是基于流体或气体流动带动机械部件转动来检测液体或气体的流速或流量。其中有一种防磁计量检测装置,其用来将流量转化为数字信号。
现有技术中的流体计量中具有几种常见的计量检测方式:
第一种使用磁性传感器,多在转子靠边位置放置小型的永磁体,永磁体绕轴心转动,在永磁体转动路径上方放置干簧管等磁性传感器,将磁场状态变化转为电信号。但由于外部强磁场很容易干扰磁性传感器状态,因此该方法抗干扰能力较差。
第二种,如中国专利公开了一种专利号为ZL200680007522.8,专利名称为感应式角位传感器的发明专利,该发明解决了传统磁性传感器容易被永磁体干扰的问题。但是其次级线圈的输出信号直接输出给比较器,由于次级线圈的输出信号是通过感应金属化圆盘的转动感应而来,信号本身比较微弱,所以直接将信息输出给比较器的方式,会使金属化的圆盘与防磁计量检测模块之间的距离受到较大的限制,两者需要有比较近的距离,稍远离一些就会大大影响检测结果。
发明内容
本申请的目的是针对上述问题,提供一种能够放大检测信号的防磁计量检测装置。
为达到上述目的,本申请采用了下列技术方案:
一种防磁计量检测装置,包括绕轴线旋转的托盘和位于托盘上方且固定不动的防磁计量检测模块,所述托盘表面安装有高导电率材料,通常为金属材料,所述防磁计量检测模块包括依次相连的激励电路、PCB线圈和信号处理电路,所述PCB线圈包括与托盘上平面相平行且圆心位于所述轴线上的激励线圈和在激励线圈内部等角度周向排列的多个感应线圈,其特征在于,信号处理电路包括开关放大电路和连接于所述开关放大电路采样端的采样电路,开关放大电路的输入端分别与对应的感应线圈相连,感应线圈的一端则互相连接于同一点,感应线圈数量为奇数个。
在上述的防磁计量检测装置中,所述采样电路包括控制电路和连接于所述控制电路的充放电电路,所述开关放大电路通过所述充放电电路连接于所述控制电路。
在上述的防磁计量检测装置中,所述采样电路包括多个所述充放电电路,所述开关放大电路包括多个放大器,且每个感应线圈均连接于不同放大器的输入端,每个放大器的采样端通过所述充放电电路连接于控制电路,且感应线圈对应的放大器通过不同的充放电电路连接至控制电路。
在上述的防磁计量检测装置中,一个感应线圈对应的放大器通过同一个充放电电路连接于控制电路,另外两个感应线圈共用另一个充放电电路连接与控制电路另一端。
在上述的防磁计量检测装置中,每个充放电电路均包括相互连接的电阻和电容,所述电容和电阻的公共端分别连接于相应放大器和控制电路,所述电容的另一端接地。
在上述的防磁计量检测装置中,每个放大器的驱动端通过脉冲发生器连接于单片机的驱动端口,每次由所述单片机控制其中两个放大器打开,且每次相应感应线圈(6)所对应的放大器同时打开或关闭。
在上述的防磁计量检测装置中,三个感应线圈对应的放大器与脉冲发生器连接,不同脉冲发生器分别连接于所述单片机不同驱动端口。
在上述的防磁计量检测装置中,所述放大器为晶体管,每个感应线圈均连接于相应晶体管的基极,所述晶体管的发射极连接于相应脉冲发生器,集电极连接于相应的充放电电路。
所述感应线圈为大小相等的三个,依次为第一感应线圈A、第二感应线圈B、第三感应线圈C。
在上述的防磁计量检测装置中,所述控制电路包括所述单片机,所述单片机内集成有比较器和定时器,所述单片机上引出有连接于所述比较器的比较器正端口和比较器负端口,且比较器正端口连接于一个充放电电路,比较器负端口连接于另一个充放电电路,且成对的感应线圈各自对应的充放电电路分别连接至同一个比较器的比较器正端口和比较器负端口。
在上述的防磁计量检测装置中,所述托盘表面安装有高导电率材料,且该导电材料可以为任何金属,如铁片、不锈钢片等材料。
多个感应线圈分别从各自的中心点起,向外绕经多圈之后,于激励线圈的圆心处相互连接,每个感应线圈的中心点与各自对应的放大器相连;
所述防磁计量检测模块为多层印刷电路板,且包括PCB线圈和位于PCB线圈上方的屏蔽层,所述激励线圈和感应线圈均印制在PCB线圈层中。
本申请的优点在于:
1.使用三个感应线圈,可获取转动圈数和转动方向,在感应线圈总面积一定的情况下,单个感应线圈面积最大,每对感应线圈感应到的能量强度变化上下限都变大,依此可以提高检测灵敏度,从而提高了计量检测模块与托盘上金属片之间的距离。
2.开关放大电路能够放大感应线圈的感应信号,增加托盘的上平面与PCB线圈平面之间的最大距离。
3.采用分时采样的工作模式,共用一个采样电路,且采样电路中的比较器、定时器能够采用现有技术中集成比较器和定时器的单片机,节省空间和成本。
4.由电容、电阻、比较器和定时器构成采样电路,通过电容的放电时间和放电量检测感应信号的变化值,可显著提高防磁计量检测模块与托盘上金属片之间的距离,同时可判断两者之间的距离变化,检测防磁计量检测模块是否发生脱离等。
附图说明
图1为防磁计量检测装置与托盘位置关系示意图;
图2为印制在印制电路板上PCB线圈的结构示意图;
图3为防磁计量检测装置的检测原理图。
图中:托盘1;金属片2;防磁计量检测模块3;轴线4;激励线圈5;感应线圈6;第一感应线圈A;第二感应线圈B;第三感应线圈C;电容C6、C7;电阻R6、R7;单片机U1;激励电路7;采样电路8;控制电路81;充放电电路82;比较器83;定时器84;开关放大电路9;脉冲发生器91;晶体管Q。
具体实施方式
下面结合附图和具体实施方式对本申请做进一步详细的说明。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,当液体或气体流动时,机械传动部件会带动托盘1绕其轴线4转动,根据实际液体或气体流向,托盘1按顺时针或者逆时针方向转动,托盘1可以为圆形托盘或者非圆形托盘,本实施例可选地为圆形托盘,托盘1上表面镶嵌或者涂敷有扇形金属材料,例如图1中,托盘1上表面镶嵌了一个120°扇形的金属片2,当然,实际使用时也可以是240°的金属片,本例中三个感应线圈平分了360°,即每个感应线圈占120°面积,此处可选地为120°扇形的金属片保证了某时刻有且只有一个感应线圈被金属片完全覆盖。
防磁计量检测模块3固定在托盘1正上方,实际使用时,托盘1与防磁计量检测模块3之间可放置或填充玻璃,塑料等非金属材料。
具体地,本实施例的防磁计量检测模块3包括依次相连的激励电路7、PCB线圈和信号处理电路,且这里的防磁计量检测模块3为一印刷电路板,印制板可以为双层板或多层板,且最少包括PCB线圈层和位于PCB线圈层上方的屏蔽层,本实施例选择四层结构,从上至下依次为:第一层为元器件层,第二层为屏蔽层,第三层为空置层,第四层为PCB线圈层;当模块运行起来后屏蔽层很好的隔离了PCB线圈层对元器件层的干扰,同 时也很好的隔离了其他电磁波对PCB线圈层的干扰。
PCB线圈包括印制在印刷电路板靠近托盘1一面的激励线圈5和三个感应线圈6,激励线圈5呈圆形且将三个感应线圈6包围在其圆形内。3个感应线圈6等角度周向排列,且每个线圈大小一致,共同组成一个圆形。进一步地,防磁计量检测模块3靠近托盘1的一面与托盘1上表面相平行,且激励线圈5的圆心以及三个感应线圈6合围成的圆形的圆心均位于托盘1转动的轴线4上。需要说明的是,检测转动圈数至少需要1对感应线圈6,如需判断转动方向则至少需要2对感应线圈6。如图2所示,本实施例采用3个感应线圈配成2对感应线圈,且3个感应线圈分别记为第一感应线圈A、第二感应线圈B、第三感应线圈C。
进一步地,激励线圈5连接于激励电路7,激励电路7可以采用RC微分电路,激励电路7连接于单片机U1以通过单片机U1使激励电路7产生周期的激励脉冲。本实施例中,脉冲信号的脉宽设置为5~20ns,例如10ns,可有效降低功耗和减少外部干扰。
在一个实施例中,如图3所示,本实施例的信号处理电路包括开关放大电路9和连接于开关放大电路9采样端的采样电路8,且每个感应线圈6的一端分别连接至开关放大电路9的输入端,以将感应线圈6的感应信号放大,并将放大了的感应信号传送给采样电路8进行比较输出;其中,采样电路8包括控制电路81和多个连接于控制电路81的充放电电路82,开关放大电路9通过多个充放电电路82连接于控制电路81。
具体地,开关放大电路9包括多个放大器,各个感应线圈均连接于不同放大器的输入端,每个放大器的采样端通过充放电电路82连接于控制电路81,且成对感应线圈6对应的两个放大器通过不同的充放电电路82连接至控制电路81,具体到本实施例,如图3所示,第一感应线圈A与第二感应线圈B对应的放大器通过同一个充放电电路82连接于控制电路81,第三感应线圈C对应的放大器通过另一个充放电电路82连接于控制电路81,这里的两个感应线圈6共用一个充放电电路82,能够节省原材料,降低成本,简化电路,并且不会对检测目的造成任何影响。
进一步地,如图2所示,本实施例的三个感应线圈6分别从各自的中心点起,向外绕经多圈之后,于激励线圈5的圆心处相互连接,每个感应 线圈6的中心点与各自对应的放大器相连。
进一步地,如图3所示,每个充放电电路82包括相互连接的电容C6、C7和电阻R6、R7,每个充放电电路82中的电容C6、C7和电阻R6、R7的公共端分别连接于相应放大器和控制电路81,电容C6、C7的另一端接地,电阻R6、R7的另一端连于单片机U1;控制电路81包括前述单片机U1,单片机U1内集成有比较器83和定时器84,单片机U1上引出有连接于比较器83的比较器正端口和比较器负端口,且比较器正端口连接于一个充放电电路82,比较器负端口连接于另一个充放电电路82,且成对的感应线圈6各自对应的充放电电路82分别连接至同一个比较器83的比较器正端口和比较器负端口。具体到本实施例,如图3所示,第一感应线圈A、第二感应线圈B以及第三感应线圈C一端彼此相连,另一端则与各自对应的放大器相连,第一感应线圈A与第二感应线圈B各自的放大器采样端通过充放电电路82连接至比较器83的正极,第三感应线圈C通过充放电电路82连接至比较器83的负极。这样,一对感应线圈上的感应信号就能够通过比较器83进行比较。其中两对感应线圈连接的比较器可以为同一个,也可以为不同个,相应地,单片机U1内集成有一个或多个比较器。
进一步地,每个放大器的驱动端通过脉冲发生器91连接于单片机U1的驱动端口,每次由单片机U1控制其中两个放大器打开,且每次成对的感应线圈6对应的两个放大器同时打开或关闭。具体地,这里的放大器可选地为晶体管Q,每个感应线圈6均连接于相应晶体管Q的基极,即输入端;晶体管Q的发射极,即驱动端通过相应脉冲发生器91连接于相应的驱动端口;晶体管Q的集电极,即采样端连接于相应的充放电电路82。
下面以一个比较器、两个充放电电路和120°扇形金属片为例描述旋检测装置的实现原理:
工作时,圆形托盘1上的半圆形金属片2按顺时针或逆时针转动,激励电路7产生的脉冲信号通过激励线圈5按一定周期往外辐射电磁信号,感应线圈6则会产生感应的电压;当防磁计量检测模块3下方圆形托盘1上的半圆形金属片2转到上方某个感应线圈6处时,会形成电感涡流,导致更大的电能消耗,该处感应电压偏小;当防磁计量检测模块3下方的圆 形托盘1上的半圆形金属片2远离上方某个感应线圈6处时,基本不存在涡流,该点感应电压相对较大。
单片机驱动端输出低电平给脉冲发生器91时,晶体管Q关闭;单片机驱动端输出高电平给脉冲发生器91时,晶体管Q导通,此时晶体管Q处于放大区域,其对应的电容C6或C7开始放电,放电速度受感应线圈6的感应电压影响,放电时间受激励信号脉宽控制,通常为几个纳秒。感应线圈6中微小的感应电压信号经过晶体管Q放大为电容上的强电压信号,可非常有效的提升检测灵敏度,增加防磁计量检测模块3与托盘1上的扇形金属片2之间的间距。
在采集信号前,单片机U1将电容C6,C7充满电,激励电路7产生的脉冲信号通过激励线圈5按一定周期往外辐射电磁信号;采样时,开关放大电路受单片机U1控制,按一定时间间隔分时打开第一感应线圈A、第三感应线圈C分别所在的晶体管Q,和第二感应线圈B、第三感应线圈C分别所在的晶体管Q,本领域技术人员可以根据具体的应用场景设定时间间隔,且基本原则是,应用在转速相对较快的场景的间隔时间小于应用在转速相对较慢的场景的间隔时间,以满足保证检测精度的前提下节省功耗的目标。并通过晶体管Q分别对电容C6,C7放电,将感应到的电压转化为电容C6、C7放电量大小。例如,当第一感应线圈A和第三感应线圈C开启后,由于圆形托盘1上半圆形金属片2的存在,第一感应线圈A和第三感应线圈C的感应电压大小不一样,导致电容C6和C7上放电后剩余的电压不同,随后由单片机U1中比较器83比较两个电容C6和C7的电压大小,并控制高电压的电容的缓慢放电至两个电容C6和C7电压相等,单片机U1定时器84计数获取该放电时间。由于金属片2为120°扇圆形,故可以通过放电时间长短判断第一感应线圈A和第三感应线圈C正下方所对应金属片2位置,根据位置的变化判断转动圈数。按上述过程依次获取第一感应线圈A、第三感应线圈C,和第二感应线圈B、第三感应线圈C的状态,与预先设定的位置编码表进行比较,通过各状态变化关系,便可获取金属片2转动方向。值得注意的是,使用AD采样的方式同样可以获取充放电电容剩余电压的值,与之相比,使用比较器加定时器在功耗控制上更具有优势。
进一步地,本申请中单片机U1可以采用低功耗PIC单片机,该系列单片机具有高性能的RISC CPU,灵活的振荡器结构,同时包含模拟比较模块,定时器模块,满足实际功能需求,其低功耗的特性可满足电池供电的使用场景,故选择作为防磁计量检测模块3的控制核心。
需要特别说明的是,本实施例通过将微小的电压变化转为更加明显的时间变化来提高灵敏度,能够基于更小的信号进行位置判断,避免了现有技术由于信号微弱问题导致防磁计量检测模块与托盘1上的扇形金属片2之间的间距受到较大限制的问题。本申请可用于液体流量计量、气体流量计量、低速机械传动圈数计数等场合;且有效解决传统的干簧管计量方式、霍尔传感器计量方式、插件电感式无磁计量等方式等易受外界电磁信号干扰的问题。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经过适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种防磁计量检测装置,包括绕轴线(4)旋转的托盘(1)和位于托盘(1)上方且固定不动的防磁计量检测模块(3),所述托盘表面安装有高导电率材料,所述防磁计量检测模块(3)包括依次相连的激励电路(7)、PCB线圈和信号处理电路,所述PCB线圈包括与托盘(1)上平面相平行且圆心位于所述轴线(4)上的激励线圈(5)和在激励线圈(5)内部等角度周向排列的多个感应线圈(6),其特征在于,信号处理电路包括开关放大电路(9)和连接于所述开关放大电路(9)采样端的采样电路(8),开关放大电路(9)的输入端分别与对应的感应线圈相连(6),感应线圈(6)的一端则互相连接于同一点,感应线圈数量为奇数个
  2. 根据权利要求1所述的防磁计量检测装置,其特征在于,所述采样电路(8)包括控制电路(81)和连接于所述控制电路(81)的充放电电路(82),所述开关放大电路(9)通过所述充放电电路(82)连接于所述控制电路(81)。
  3. 根据权利要求2所述的防磁计量检测装置,其特征在于,所述采样电路(8)包括多个所述充放电电路(82),所述开关放大电路(9)包括多个放大器,每个感应线圈均连接于不同放大器的输入端,每个放大器的采样端通过所述充放电电路连接于控制电路(81),且感应线圈(6)对应的放大器通过不同的充放电电路(82)连接至控制电路(81)。
  4. 根据权利要求3所述的防磁计量检测装置,其特征在于,一个感应线圈(6)对应的放大器通过同一个充放电电路(82)连接于控制电路(81),另外两个感应线圈共用另一个充放电电路(82)连接与控制电路(81)另一端。
  5. 根据权利要求3所述的防磁计量检测装置,其特征在于,每个充放电电路(82)均包括相互连接的电阻(R6、R7)和电容(C6、C7),所述电容(C6、C7)和电阻(R6、R7)的公共端分别连接于相应放大器和控制电路(81),所述电容(C6、C7)的另一端接地。
  6. 根据权利要求3-5任意一项所述的防磁计量检测装置,其特征在于,每个放大器的驱动端通过脉冲发生器(91)连接于单片机(U1)的驱动端口,每次由所述单片机(U1)控制其中两个放大器打开,且每次相应感应 线圈(6)所对应的放大器同时打开或关闭。
  7. 根据权利要求6所述的防磁计量检测装置,其特征在于,感应线圈(6)对应的放大器与脉冲发生器(91)连接,不同脉冲发生器(91)分别连接于所述单片机(U1)不同驱动端口。
  8. 根据权利要求7所述的防磁计量检测装置,其特征在于,所述放大器为晶体管(Q),每个感应线圈均连接于相应晶体管(Q)的基极,所述晶体管(Q)的发射极连接于相应脉冲发生器(91),集电极连接于相应的充放电电路(82);
    所述感应线圈(6)可选地为大小相等的三个,依次为第一感应线圈(A)、第二感应线圈(B)、第三感应线圈(C);
  9. 根据权利要求7所述的防磁计量检测装置,其特征在于,所述控制电路(81)包括所述单片机(U1),所述单片机(U1)内集成有比较器(83)和定时器(84),所述单片机(U1)上引出有连接于所述比较器(83)的比较器正端口和比较器负端口,且比较器正端口连接于一个充放电电路(82),比较器负端口连接于另一个充放电电路(82),且感应线圈(6)各自对应的充放电电路(82)分别连接至同一个比较器(83)的比较器正端口和比较器负端口。
  10. 根据权利要求1所述的防磁计量检测装置,其特征在于,所述托盘(1)表面安装的高导电率材料为金属;
    多个感应线圈(6)分别从各自的中心点起,向外绕经多圈之后,于激励线圈(5)的圆心处相互连接,每个感应线圈(6)的中心点与各自对应的放大器相连;
    所述旋转检测模块(3)为多层印刷电路板,且包括PCB线圈和位于PCB线圈上方的屏蔽层,所述激励线圈(5)和感应线圈(6)均印制在PCB线圈层中。
PCT/CN2019/091850 2018-12-07 2019-06-19 一种防磁计量检测装置 WO2020113940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811497289.7 2018-12-07
CN201811497289.7A CN109443462A (zh) 2018-12-07 2018-12-07 一种防磁计量检测装置

Publications (1)

Publication Number Publication Date
WO2020113940A1 true WO2020113940A1 (zh) 2020-06-11

Family

ID=65558369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091850 WO2020113940A1 (zh) 2018-12-07 2019-06-19 一种防磁计量检测装置

Country Status (2)

Country Link
CN (1) CN109443462A (zh)
WO (1) WO2020113940A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443462A (zh) * 2018-12-07 2019-03-08 杭州为峰智能科技有限公司 一种防磁计量检测装置
CN109945931A (zh) * 2019-04-23 2019-06-28 宁波水表股份有限公司 计量装置和计量仪
CN110346000B (zh) * 2019-07-24 2020-09-29 杭州乾博科技有限公司 一种具有异常检测功能的线圈感应式水表
CN110530437A (zh) * 2019-09-10 2019-12-03 长沙铨准电子科技有限公司 一种直接激励式角位传感计量装置
CN111521228A (zh) * 2020-05-29 2020-08-11 湖南威铭能源科技有限公司 一种无磁计量装置、计量方法和流体计量设备
CN111998904A (zh) * 2020-07-08 2020-11-27 湖南威铭能源科技有限公司 一种无磁计量装置、无磁计量方法和流量表
CN111854897A (zh) * 2020-08-05 2020-10-30 湖北楚天汉仪科技有限公司 一种检测距离可量化的金属旋转水表用检测装置
CN112050865B (zh) * 2020-09-11 2023-07-21 武汉盛帆电子股份有限公司 无磁感应测量装置及转动板组件转动信息的计算方法
CN115508576B (zh) * 2022-11-22 2023-03-24 天津赛恩能源技术股份有限公司 一种励磁调整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315038A1 (en) * 2009-06-16 2010-12-16 Kyozo Terao Battery charging pad employing magnetic induction
CN108195365A (zh) * 2017-06-22 2018-06-22 中国航天标准化研究所 一种动力调谐陀螺仪及其角位置传感器
CN108279027A (zh) * 2018-02-08 2018-07-13 江苏昕泉物联科技有限公司 抗强磁干扰的无磁转动信号采集装置
CN208059911U (zh) * 2018-02-08 2018-11-06 江苏昕泉物联科技有限公司 一种抗强磁干扰的无磁转动信号采集装置
CN109443462A (zh) * 2018-12-07 2019-03-08 杭州为峰智能科技有限公司 一种防磁计量检测装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO902076L (no) * 1989-09-06 1991-03-07 Int Control Automation Finance Anordning til synkronisering av driften av kretser som ertilsluttet en stroemningsmaaler.
DE102004018078B3 (de) * 2004-04-08 2006-01-05 Krohne Meßtechnik GmbH & Co KG Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgeräts
FR2882818B1 (fr) * 2005-03-07 2007-10-19 Sappel Soc Par Actions Simplif Capteur inductif de position angulaire
CN2909179Y (zh) * 2006-06-27 2007-06-06 韩斐迪 磁阻式直读表头
CN101067564A (zh) * 2007-05-31 2007-11-07 浙江大学 电磁式射流流量计
DE102007053222A1 (de) * 2007-11-06 2009-05-07 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zur Signalverarbeitung von Spannungssignalen von Elektroden eines magnetisch induktiven Durchflussmessgeräts
DE102008018099A1 (de) * 2008-04-09 2009-11-05 Prof. Dr. Horst Ziegler und Partner GbR (vertretungsberechtigter Gesellschafter: Prof. Dr. Horst Ziegler 33100 Paderborn) Anordnung zum Erfassen einer Drehung eines Drehelements
US20100110069A1 (en) * 2008-10-31 2010-05-06 Sharp Laboratories Of America, Inc. System for rendering virtual see-through scenes
DE102009009061A1 (de) * 2009-01-21 2010-07-29 Gerd Reime Verfahren zum induktiven Erzeugen eines elektrischen Messsignals sowie zugehörige Sensorvorrichtung
JP2013156207A (ja) * 2012-01-31 2013-08-15 Semiconductor Components Industries Llc 流体の流量測定装置
CN103345289B (zh) * 2013-06-26 2015-03-04 矽力杰半导体技术(杭州)有限公司 斜率补偿和环路带宽自适应控制电路及应用其的开关电源
DE102014220446A1 (de) * 2014-10-09 2016-04-14 Robert Bosch Gmbh Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil
CN104317315B (zh) * 2014-11-20 2017-06-13 陈一其 一种液位控制开关装置和控制电路
CN106403806B (zh) * 2016-10-14 2020-08-28 联合汽车电子有限公司 角度位置传感器、角度位置测量系统及方法
CN106679560B (zh) * 2016-12-02 2020-03-17 安徽沃巴弗电子科技有限公司 一种电磁感应式扭矩角度传感器
CN108180957A (zh) * 2018-02-08 2018-06-19 江苏远传智能科技有限公司 无磁远传水表
CN209512943U (zh) * 2018-12-07 2019-10-18 杭州为峰智能科技有限公司 一种防磁计量检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315038A1 (en) * 2009-06-16 2010-12-16 Kyozo Terao Battery charging pad employing magnetic induction
CN108195365A (zh) * 2017-06-22 2018-06-22 中国航天标准化研究所 一种动力调谐陀螺仪及其角位置传感器
CN108279027A (zh) * 2018-02-08 2018-07-13 江苏昕泉物联科技有限公司 抗强磁干扰的无磁转动信号采集装置
CN208059911U (zh) * 2018-02-08 2018-11-06 江苏昕泉物联科技有限公司 一种抗强磁干扰的无磁转动信号采集装置
CN109443462A (zh) * 2018-12-07 2019-03-08 杭州为峰智能科技有限公司 一种防磁计量检测装置

Also Published As

Publication number Publication date
CN109443462A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020113940A1 (zh) 一种防磁计量检测装置
CN110412310B (zh) 角位感应式传感器及感应方法
CN206146435U (zh) 一种电磁感应式角度位置传感器
CN209512943U (zh) 一种防磁计量检测装置
CN209326719U (zh) 一种旋转检测装置
CN103344262B (zh) 基于韦根效应的旋转自供电磁电式多圈绝对值编码器
US20150323348A1 (en) Rotational sensing with inductive sensor and rotating axial target surface
CN204286507U (zh) 一种自发电的电子计量的水表
CN203301580U (zh) 一种手机旋转检测装置
CN209820564U (zh) 一种线圈感应式计量装置
CN111521228A (zh) 一种无磁计量装置、计量方法和流体计量设备
CN111174856B (zh) 一种旋转检测装置
WO2022007322A1 (zh) 一种无磁计量装置、无磁计量方法和流量表
CN113110148A (zh) 一种低功耗磁编码器及工作方法
CN210981298U (zh) 一种磁聚焦分体式一体化传感器
CN112577414A (zh) 脉冲型lc振荡感应式角度传感器及角度位置测量方法
CN111174856A (zh) 一种旋转检测装置
CN209945434U (zh) 一种感应式无磁远传水表
CN110849399A (zh) 一种磁聚焦分体式一体化传感器及转速、扭矩、角度计算方法
CN211904273U (zh) 一种水/气表用抗干扰低功耗防磁计量采样装置
CN209820546U (zh) 一种防磁计量装置
CN111457978A (zh) 一种水/气表用抗干扰低功耗防磁计量采样装置
CN212363512U (zh) 一种可变匝数的磁聚焦式传感器
JP2003194510A (ja) ステアリング軸回転角度検出器
CN203732558U (zh) 一种三相异步电动机测速电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893291

Country of ref document: EP

Kind code of ref document: A1