WO2018126880A1 - 远近光一体化照明系统及近光前照灯、远光前照灯 - Google Patents

远近光一体化照明系统及近光前照灯、远光前照灯 Download PDF

Info

Publication number
WO2018126880A1
WO2018126880A1 PCT/CN2017/116841 CN2017116841W WO2018126880A1 WO 2018126880 A1 WO2018126880 A1 WO 2018126880A1 CN 2017116841 W CN2017116841 W CN 2017116841W WO 2018126880 A1 WO2018126880 A1 WO 2018126880A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
linear
line
focus
light source
Prior art date
Application number
PCT/CN2017/116841
Other languages
English (en)
French (fr)
Inventor
张文虎
郑秋华
Original Assignee
上海开腾信号设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710009895.9A external-priority patent/CN108613108A/zh
Priority claimed from CN201720017174.8U external-priority patent/CN207179542U/zh
Priority claimed from CN201710735524.9A external-priority patent/CN109751565A/zh
Priority claimed from CN201721069382.9U external-priority patent/CN207688002U/zh
Application filed by 上海开腾信号设备有限公司 filed Critical 上海开腾信号设备有限公司
Priority to EP17889971.2A priority Critical patent/EP3567308A4/en
Publication of WO2018126880A1 publication Critical patent/WO2018126880A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/334Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines

Definitions

  • the invention belongs to the field of vehicle illumination, and in particular relates to a headlight and a far and near light integrated illumination system and a lighting method thereof for providing low beam and high beam.
  • Headlights also called headlights
  • headlights are mounted on the sides of the head of a vehicle such as a car for night illumination. Since the lighting effect of the headlights directly affects the operation and traffic safety of driving at night, the traffic management departments of various countries in the world have prescribed their lighting standards in legal form. With the continuous development of technology, the past incandescent vacuum lamps have been eliminated, and now the headlights of automobiles are mainly halogen lamps and xenon lamps.
  • Vehicle headlights such as car headlights
  • Headlamps have very strict requirements for the distribution of low beam illumination. Take the right beam of the low beam as an example.
  • Figure 1A and Figure 1B according to some light distribution standards, when the headlamps are in low beam mode, On the vertical light distribution screen, the bright area below the h-h' line needs to reach a certain light intensity, and the upper side of the HH is a dark area.
  • the B50L is the driver's eye position of the vehicle 50 meters above the opposite lane, and is required to be below 650 cd to avoid The light intensity is too high to produce glare, and the left side of the HH is the main illumination area.
  • the 15° diagonal line on the right side, or the 45° diagonal line to the vertical horizontal line 25cm horizontal deflection line HH ⁇ HH1 ⁇ H1H2 ⁇ H2H4 is the dark area, and the lower side is the side high illumination area and the main illumination area.
  • the right side high illumination area provides the driver with right side road lighting and road sign illumination, and at the same time sets the maximum light intensity requirement of the BR point to avoid traffic safety accidents caused by glare of pedestrians approaching the vehicle.
  • LED has many advantages that other illumination sources do not have, such as low voltage, long life, small size, light weight, fast response, no radiation, no pollution and various harsh conditions, and the LED illumination direction is single.
  • the facet (the traditional light source is 360° in volume) is more conducive to the collection and utilization of light and improve the utilization of light. Therefore, LED headlights are also a new trend in LED light source.
  • the existing LED light flux is not high. In order to increase the luminous flux, the current must be increased, resulting in large heat generation, large heat dissipation, and reduced life. At present, LED low beam lights are already in use on the market, but the LED luminous flux is insufficient.
  • the brightness in the middle area is high, and the brightness on the left and right sides is significantly reduced, resulting in a narrow visual width of the driver.
  • the brightness of HID headlights on the market is brighter than that of LED headlamps.
  • Many auto manufacturers are reluctant to reduce the brightness requirements to choose LED headlamps, unless the LED headlamps can achieve the brightness level of HID headlamps and the power consumption is lower than HID headlamps, no more than 25W, so LED headlamps should be completely Instead of HID headlamps, the brightness, power, heat dissipation, total LED flux, and optical system must be optimized, and existing optical systems are difficult to meet.
  • FIG. 2 is a schematic structural view of a conventional LED near-light beam integrated system, including an ellipsoid reflector 201, a light shield 202, and a lens 203. According to the geometric characteristics of the ellipsoid, it has two focal points F1. And F2.
  • the LED light source is placed on one of the focal points F1, and the light beam emitted by the LED light source is reflected by the ellipsoidal reflector 1 and concentrated on another focus F2, and the second focus of the ellipsoid is precisely the focus of the lens, according to the nature of the lens.
  • the light emitted from the focus is refracted by the lens, and the output should be parallel light.
  • the shape of the ellipsoid, or the shape of the lens 203 can be appropriately changed as required, for the purpose of horizontally diffusing the light from the lens, and then the shadow screen 202 is placed at the focus of the lens to form a horizontal line up to 45°.
  • the slanting line to the horizontal and vertical vertical line of the 25cm turn horizontal line and the other side horizontal line of the cut-off line of the low beam, by removing the blackout screen, the lower part of the LED module ellipsoidal light passes through the focus of the lens 203, forming a far Lights. Since the conventional LED headlamp adopts an ellipsoidal surface, only one LED module can be placed at the focal point F1, and one LED module has less luminous flux.
  • the LED current In order to increase the luminous flux, the LED current must be increased, resulting in large heat generation and heat dissipation volume. Large, reducing life. At the same time, the LED is placed horizontally up and down in the middle, and the heat needs to be diffused to the external heat sink through a small intermediate heat piece, and the heat dissipation effect is poor.
  • the structure of the LED far and near light integrated system includes a low beam LED 301, a high beam LED 302, a low beam light distribution lens 303, a high beam light distribution lens 304, etc.
  • the low beam light of the left and right symmetrical light spot is directly formed by the low beam light distribution lens 303, and the LED 302 light directly converges through the high beam light distribution lens 304 to form a high beam spot.
  • the light lens has a small angle of light, and all the light outside the wrap angle is shielded. Wasted, low light utilization, and the ability to make left-hand driving rules, or right-hand driving rules for low beam lights.
  • FIG. 4 is a schematic structural view of a turtle-shaped reflector LED near-light integrated system, which includes a low beam LED 401, a high beam LED 402, a low beam reflector 403, a high beam reflector 404, and a concentrated light.
  • the LED is placed close to the heat sink 407 to facilitate heat dissipation; the LED 401 light is reflected by the reflector 403, and then refracted by the condenser lens 405, and the light above the cutoff line is shielded by the cut-off shield 406 to form a low-beam spot.
  • the LED 402 is reflected by the reflector 404 to the focus of the collecting lens 405, and then refracted by the collecting lens to form a high beam spot.
  • the LED of this optical system can only use one LED module, the total luminous flux of the LED is limited, and the volume is limited, the optical wrap angle of the reflector is small, the light outside the wrap angle cannot be collected and utilized, and the light utilization rate is low.
  • FIG. 5A is a schematic structural view of a dome-shaped reflector LED near-light integrated system, which includes a low beam 5 LEDs 501, a high beam 3 LEDs 502, a low beam reflector 503, and a high beam reflector 504.
  • the total luminous flux of the LED is improved and the heat dissipation is facilitated, but a rotating dome reflector can only correspond to one LED, so the number of LEDs is limited, and the surface of the dome-shaped reflector corresponding to each LED is small. Most of them are cut off and the light utilization rate is medium.
  • FIG. 5B is a schematic structural diagram of a TIR lens LED low beam system, which includes 10 LEDs 601, 10 TIR assemblies 602, a collecting lens 603, a visor 604, and a heat sink 605.
  • a TIR lens LED low beam system which includes 10 LEDs 601, 10 TIR assemblies 602, a collecting lens 603, a visor 604, and a heat sink 605.
  • LED total The luminous flux is improved, and the heat dissipation is facilitated.
  • the LED light is collimated by TIR and then passed through different tilt angles of the TIR surface, so that most of the light converges toward the focus of the collecting lens, and then condenses and converges through the collecting lens 603, above the cut-off line.
  • Light is shielded by the visor 604 to form a low beam spot.
  • the TIR lens of the TIR lens LED low beam system is concentrated to the focal point of the collecting lens 603, and the light at the far side of the ground cannot be concentrated, which causes waste of the near-field light
  • the high beam ECE R122 regulations specify the brightness requirements on the horizontal line of the test point, but do not specify the upper limit of the brightness of the local area anti-glare area on the horizontal line, causing the opposite vehicle driver and the road pedestrian to dazzle, causing Traffic accident.
  • matrix high beam is currently used in the market, the vehicle and pedestrian position in front of the vehicle are collected by sensors, and the single-point LED at the corresponding position is turned off, so that the corresponding vehicle and pedestrian position form a dark area.
  • the white light is refracted into red, orange, yellow, green, cyan, blue, and purple, and the blue light shift angle is larger than the yellow light, indicating that the short wavelength corresponds to the same medium.
  • the refractive index is defined based on the wavelength of sodium yellow light. Since the refractive indices of light of different wavelengths are different for the same medium, the longer the wavelength, the smaller the refractive index, and the shorter the wavelength, the larger the refractive index.
  • white LEDs are excited by blue light + phosphor to be white light, mainly mixed by blue light and yellow light.
  • the refractive index of PC material is 1.586, and the refractive index is 1.594 when the blue light wavelength is 470um. Therefore, the projection optical system must have overflow blue. phenomenon.
  • the current mainstream headlight optical structure on the market adopts a projection optical system, and the LED light source is placed at the 8001 focus F1 of the ellipsoidal structure, and the light is reflected by the ellipsoidal surface 8001 and then concentrated to F2 at F2.
  • the concentrating lens 8003 is placed in front to make the light passing through F2 reconverge to make the central area meet the light intensity required by laws and regulations, and a cut-off line baffle is placed at F2 to form a dark area of a cut-off line shape above the projected spot.
  • the condensing lens 8003 is slightly moved outward by Hmm, and the incident light is extended to the condensing lens 8003' to form an incident angle which is also ⁇ 1, but the distance of the incident point from the condensing lens 8003' becomes far, and the light is made to Under the nudge, the proportion of blue light in the central area is reduced, thereby reducing the phenomenon of blue cloud at the center, but the light above the concentrating lens shifts the light to the dark area, causing the cut-off line of the light and dark to become unclear.
  • the light of the reflective surface of the region with a large incident angle ⁇ 1 is corrected upward, so that the angle ⁇ 1 becomes smaller, thereby reducing the central blue phenomenon, and the light passing through the focus of the collecting lens 8003 is also reduced. , causing the light intensity in the central area to decrease.
  • An object of the present invention is to provide a far and near-light integrated illumination system for vehicle illumination, including a low beam system and a high beam system, capable of providing low beam and high beam, respectively.
  • the light system can achieve sufficient light intensity to illuminate the road ahead without glare, ensuring efficient and safe use.
  • the high beam system can achieve sufficient light intensity to illuminate the road ahead.
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the low beam system and the high beam system respectively comprise a line type light source, a line type focus reflector and a collecting lens, the line
  • the type of reflector can increase the illumination distance and illumination width of the near-infrared integrated illumination system and reduce the power consumption of the near-infrared integrated illumination system.
  • Another object of the present invention is to provide a near-light integrated illumination system, wherein the low beam system and the high beam system have high light utilization efficiency, and can adapt to left driving and right driving rules, and left and right symmetric driving rules. .
  • Another object of the present invention is to provide a near-light integrated illumination system, wherein the low beam system and the high beam system can employ a plurality of LED modules such that the total luminous flux of the near-infrared integrated illumination system is obtained improve.
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the light emitted by the LEDs in the low beam system and the high beam system sufficiently contacts the face of the corresponding reflector, thereby improving the LED light utilization.
  • Another object of the present invention is to provide a far and near-light integrated illumination system in which LED light in the high beam system can be densely concentrated, thereby increasing the illumination width and illumination distance.
  • Another object of the present invention is to provide a far and near-light integrated illumination system, wherein the high beam system includes an anti-glare element, which not only can provide an anti-glare area, thereby avoiding an on-road vehicle when cornering The driver and pedestrian are dazzled, and the anti-glare area does not affect the driver's ability to see the road sign and determine the situation ahead.
  • Another object of the present invention is to provide a near-light integrated illumination system, wherein the low beam system and the high beam system are capable of providing a linear light source, and the number of the linear light sources is not limited, thereby improving the The optical density and total luminous flux of the far-and near-light integrated illumination system.
  • Another object of the present invention is to provide a far-and near-integrated illumination system in which LEDs are used in combination of white light, warm white light, and/or golden light to reduce the color temperature of the lamp, thereby improving the illumination distance, road surface clarity, and penetration capability. And protect the driver's retina.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the light source in the near-infrared integrated illumination system is a set of horizontally arranged multi-core LED modules, or a plurality of sets of horizontally arranged multi-core LEDs Modules, or single-core LED horizontal line arrangement, or horizontally arranged multi-core LED modules and single-core LED horizontal line arrangement.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the light source of the near-infrared integrated illumination system has the same direction of illumination as the optical axis of the lamp, and the heat conduction surface of the light source is directly mounted on the large-area metal.
  • the heat sink plate facilitates the rapid transfer of heat.
  • Another object of the present invention is to provide a far-and near-integrated illumination system, wherein the focus of the light source and the reflector in the near-infrared integrated illumination system coincide, thereby improving the light intensity of the near-infrared integrated illumination system. And effective usage.
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the reflector opening in the near-infrared integrated illumination system includes a collecting surface capable of light outside the corner of the collecting lens It is reflected on the condenser lens and refracted by the condenser lens to the front and rear side road surfaces.
  • Another object of the present invention is to provide a far-and near-integrated illumination system capable of collecting and utilizing light emitted within a solid angle of 360° of the linear light source to improve light collection rate. Thereby achieving energy saving, durability and environmental protection.
  • Another object of the present invention is to provide a far-and near-integrated illumination system capable of concentrating light emitted by a linear light source to a linear focus, so that the light on the horizontal axis is dense, thereby The light in the far distance of the vehicle is more distributed, and the irradiation distance and the irradiation width are both improved.
  • Another object of the present invention is to provide a far and near light integrated illumination system, wherein the high beam system has a higher optical density and a smaller volume, and is more advantageous for a dot matrix anti-glare system of the liquid crystal screen, and above the control horizontal line. Bright and dark dot shape to achieve anti-glare.
  • Another object of the present invention is to provide a near-and-light integrated illumination system, wherein the linear focus reflector in the near-infrared integrated illumination system includes an upper partial line type focus reflector and a lower partial line type focus reflection.
  • the device is fabricated separately and then assembled to facilitate the plating of the reflective layer on the linear focus reflector.
  • Another object of the present invention is to provide a far-and near-integrated illumination system, wherein the low-beam system includes a line-type focus reflector and a cut-off line mask, and the cut-off line mask and the line-type focus are reflected
  • the phases are assembled or integrated, and a partial light-shielding region of the cut-off visor shields the non-plated reflective film layer for shielding light.
  • Another object of the present invention is to provide a far and near-light integrated illumination system, wherein the high beam system not only satisfies the high beam rule, but also the ground area illumination is consistent with the low beam system, so when the low beam system is switched to In the high beam system, the low beam system can be directly turned off, which greatly reduces the consumption of the whole lamp.
  • Another object of the present invention is to provide a near-infrared integrated illumination system in which when a low beam system and a high beam system are provided to provide low beam and high beam respectively, wherein when the low beam is switched to the high beam, no mechanical movement is required. It can be realized, so it does not have a solenoid valve, so that the structure of the whole far and near light integrated illumination system is simplified, and the power consumption is small.
  • Another object of the present invention is to provide a near-light integrated illumination system in which the low beam system and the high beam system of the present invention can also be integrated in an optical system to increase optical density and luminous flux by forming a linear focus, and
  • the low beam and high beam illumination can be provided separately by driving the cutoff screen to move.
  • Another object of the present invention is to provide a near-infrared integrated illumination system in which the low beam system and the high beam system can also use only a half-line linear focus reflector, the side of the linear light source facing the opening in front of the reflector.
  • Another object of the present invention is to provide a low beam headlamp, wherein the low beam headlamp includes a line type light source capable of forming a line focus, thereby improving the brightness of the low beam spot and the low beam front
  • the light collection rate of the lamp is high.
  • Another object of the present invention is to provide a low beam headlamp, wherein the low beam headlight includes a light reflecting device, and light reaching the light reflecting device is concentrated to a line focus, the cutoff line mask and The reflectors are assembled or may be integrally arranged to reduce the total number of parts of the low beam headlamps.
  • Another object of the present invention is to provide a low beam headlamp, wherein the light reflecting device of the low beam headlight comprises an upper reflecting unit and a lower reflecting unit, the upper reflecting unit and the lower reflecting unit It may be integrally formed, or the rear phase may be separately fabricated to facilitate the reflective surface of the reflective layer inside the reflector.
  • Another object of the present invention is to provide a low beam headlamp wherein the upper light reflecting unit and the lower light reflecting unit are substantially identical in structure and can be used interchangeably to reduce the total number of parts of the low beam headlamp. Raising the low beam front The productivity of the lamp.
  • Another object of the present invention is to provide a high beam headlamp, wherein the high beam headlamp can form a line focus and can provide a high beam spot with a high light collection rate.
  • Another object of the present invention is to provide a high beam headlamp, wherein the high beam headlamp includes an anti-glare panel that provides an anti-glare for the high beam headlamp region.
  • Another object of the present invention is to provide a high beam headlight, wherein the high beam headlight includes an anti-glare area that only avoids the dazzling of the driver and pedestrian of the opposite vehicle without affecting their visibility. Street sign.
  • Another object of the present invention is to provide a high beam headlamp, wherein the high beam headlight comprises a light reflecting device, the light reflecting device comprising an upper reflecting unit and a lower reflecting unit, the upper reflecting unit and the
  • the retroreflective elements may be integrally formed, or may be separately fabricated and assembled to facilitate the inner surface reflective layer plating retroreflective film of the retroreflective device.
  • Another object of the present invention is to provide a high beam headlamp wherein the anti-glare panel is an opaque material, or a transparent, translucent material, or a color changing glass.
  • the glare-area light is shielded by the opaque anti-glare panel; the localized area is roughened by the transparent, translucent anti-glare panel, or the granulated structure weakens the light in the glare zone;
  • the molecules of the liquid crystal film are disordered in arrangement, and light cannot be attenuated by the color-changing glass; when the color-changing glass is energized, the molecules of the liquid crystal film are arranged in order, and the light is enhanced by the color-changing glass.
  • Another object of the present invention is to provide a high beam headlight, wherein the high beam headlight has a higher optical density and a smaller volume, and is more advantageous for a liquid crystal dot matrix anti-glare system, and the liquid crystal screen is smaller.
  • the high-density dot-matrix panel of the high-beam system is a high-density dot matrix liquid crystal screen.
  • the position of the dot matrix of the liquid crystal screen is controlled by a circuit, and the shape of the light and dark dot matrix above the horizontal line is controlled, thereby achieving the purpose of preventing glare.
  • An object of the present invention is to provide a far and near-light integrated illumination system for vehicle illumination, which can provide low beam and high beam respectively, and the low beam system can achieve sufficient light intensity to illuminate The road ahead does not produce glare, ensuring effective and safe use.
  • the high beam system can achieve sufficient light intensity to illuminate the road ahead.
  • Another object of the present invention is to provide a far-and near-integrated illumination system in which the illumination distance and illumination width of the near-infrared integrated illumination system can be improved, and the near-far light is reduced.
  • the power consumption of an integrated lighting system is reduced.
  • Another object of the present invention is to provide a near-light integrated illumination system, wherein the low beam system and the high beam system have high light utilization efficiency, and can adapt to left driving and right driving rules, and left and right symmetric driving rules. .
  • Another object of the present invention is to provide a far-and near-integrated illumination system, wherein the near-infrared integrated illumination system includes a linear light source, and the number of the linear light sources is not limited, thereby integrating the near-far light.
  • the total luminous flux of the lighting system is increased.
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the near-infrared light integrated illumination system comprises a linear focus reflector, wherein light emitted by the linear light source is in full contact with the linear focus reflection The face of the device, thereby increasing the light utilization of the linear light source.
  • Another object of the present invention is to provide a near-infrared integrated illumination system in which light of the linear light source can be densely concentrated, thereby increasing the illumination width and illumination distance of the near-infrared light integrated illumination system.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the linear light source is an LED, and the LED is used in combination of white light, warm white light, and/or golden light, thereby reducing the color temperature of the light fixture, thereby improving the The illumination distance, road surface clarity and penetration ability of the far-and-light integrated illumination system are described, and the driver's retina is protected.
  • the linear light source is an LED
  • the LED is used in combination of white light, warm white light, and/or golden light
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the linear light source in the near-infrared integrated illumination system is a set of horizontally arranged multi-core LED modules, or a plurality of sets of horizontal arrays
  • the multi-core LED module, or the single-core LED horizontal line arrangement, or the horizontally arranged multi-core LED module and the single-core LED horizontal line arrangement are used in combination.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the linear light source in the near-infrared light integrated illumination system has the same illumination direction as the optical axis of the lamp, and the heat conduction surface of the linear light source is directly mounted on the light source.
  • Another object of the present invention is to provide a far-and near-integrated illumination system, wherein the focus of the linear light source and the linear focus reflector in the near-infrared integrated illumination system are coincident, thereby improving the integration of the near and far light. Light intensity and effective usage in the system.
  • Another object of the present invention is to provide a near-infrared integrated illumination system in which the linear focus reflector is capable of concentrating most of the light to a linear focus.
  • Another object of the present invention is to provide a near-light integrated illumination system, wherein the opening of the linear focus reflector in the near-infrared integrated illumination system includes a collection surface capable of collecting a concentrating lens package Light other than the corner is reflected on the condensing lens, and is refracted by the condensing lens to the front and rear side road surfaces.
  • Another object of the present invention is to provide a far-and near-integrated illumination system capable of collecting and utilizing light emitted within a solid angle of 360° of the linear light source to improve light collection rate. Thereby achieving energy saving, durability and environmental protection.
  • Another object of the present invention is to provide a far-and near-integrated illumination system capable of concentrating light emitted by an active light source to a linear focus, so that the light on the horizontal axis is dense, thereby The horizontal direction of the vehicle is more distributed in the horizontal direction, and the illumination distance and the illumination width are both improved.
  • Another object of the present invention is to provide a near-and-light integrated illumination system, wherein the linear focus reflector in the near-infrared integrated illumination system includes an upper partial line type focus reflector and a lower partial line type focus reflection.
  • the device which is fabricated separately and then assembled, facilitates the plating of the retroreflective layer on the inner reflective surface of the linear focus reflector.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the near-infrared integrated illumination system includes a solenoid valve and a cut-off line visor, which is moved and reset by controlling a solenoid of the solenoid valve.
  • the light-off film of the cut-off line is driven to perform corresponding rotation, thereby realizing switching between the high beam system and the low beam system.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system in which the removal of the solenoid valve can be done as a low beam, or the solenoid valve and the cut-off line can be removed, and the high beam can be separately used.
  • Another object of the present invention is to provide a far and near-light integrated illumination system, wherein the cut-off line visor has a window opening, a filter is disposed in the window, and a part of the light is emitted from the line source.
  • the light filter can be weakened and diffused through the filter in the window, and then refracted by the collecting lens to form a weak spot in the dark area above the cut-off line, thereby increasing the light intensity of P1 to P6 without increasing P7, P8, Light intensity at points B50L and HV.
  • Another object of the present invention is to provide a far-and near-integrated illumination system, wherein the optical system of the front section of the louver of the cut-off visor can be a TIR collecting light source or a dome-shaped reflector, etc., without front-end optics. System type restrictions.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the shape of the louver of the cut-off visor can be a square, a circle, an ellipse or the like, or a plurality of squares, circles, and ellipses. Shapes such as shapes can also be shapes such as trademarks and words, and are not limited by the shape and number of windows.
  • Another object of the present invention is to provide a far-and near-light integrated illumination system, wherein the cut-off line of the cut-off line forming surface extends into a triangle-like shape on the sawtooth piece, and is formed into a stretched zigzag structure on the surface to reduce the cutoff
  • the ratio of the blue light at the line, and the blackout or graying treatment of the cut-off visor corrects the light on the sawtooth piece so that the light reflected and diffused is impossible to converge on the condensing lens.
  • the cut-off line is clearer.
  • Another object of the present invention is to provide a near-infrared integrated illumination system in which the concentrating lens is an optical lens that eliminates the phenomenon of blue smearing.
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the input optical surface of the concentrating lens is a planar or non-planar optical surface, and the output upper semi-optical surface is above the central horizontal axis and is a concentrating surface.
  • the output lower optical surface is located below the central horizontal axis and is a profiled surface and a non-rotating surface.
  • Another object of the present invention is to provide a near-infrared integrated illumination system, wherein the output lower optical surface of the concentrating lens is modified such that the blue light output to the lower optical surface is parallel or slightly lower than the output.
  • the yellow light of the semi-optical surface, the yellow light outputting the upper semi-optical surface completely covers the blue light outputting the lower semi-optical surface, and the yellow light outputting the lower semi-optical surface completely covers the blue light outputting the upper semi-optical surface, and finally forms a cut-off line without overflow.
  • the spot of the blue phenomenon is a near-infrared integrated illumination system, wherein the output lower optical surface of the concentrating lens is modified such that the blue light output to the lower optical surface is parallel or slightly lower than the output.
  • Another object of the present invention is to provide a far-and near-integrated illumination system, wherein the condensing lens outputs a lower semi-optical surface as a modified curved surface, and can also output an upper semi-optical surface as a correction surface, or both are correction surfaces. .
  • the present invention provides a near-infrared integrated illumination system including a low beam system and a high beam system, the low beam system including at least one first line light source and at least one first line type a focus reflector, the high beam system comprising at least one second linear light source and at least one second linear focus reflector, wherein the first linear focus reflector is configured as the first linear light source in the low beam system Providing a linear focus of light convergence to provide a low beam spot, wherein the second linear focus reflector in the high beam system is configured to provide a linear focus of the second linear light source to converge light, thereby providing a High beam spot.
  • the low beam system further includes at least one first concentrating lens and at least one cut-off visor, the position of the first linear light source and the line type of the first linear focus reflector Focus F1 is coincident, the first linear focus reflector reflects at least part of the light of the first linear light source and is concentrated to a linear focus F2, and the cut-off light shielding film is mounted on the linear focus F2 and used The light concentrating above the cut-off line is shielded, and the first concentrating lens is disposed in front of the line focus F2 for refracting light to form the low beam spot.
  • the first linear focus reflector has at least one first opening at an end remote from the first linear light source, the first linear light source is perpendicular to the optical axis and linearly arranged and facing Provided in the first opening, the first linear focus reflector has a first horizontal linear reflective surface on the upper and lower sides and a reflective surface on both sides, reaching the first horizontal linear reflective surface and the reflective surface The light rays are concentrated to the line focus F2.
  • the first linear focus reflector further has two first collecting faces that are spaced apart from each other at the opening, and reflect light other than the wrap angle of the first collecting lens to the first poly
  • the optical lens is refracted by the first concentrating lens to a right and left wide angle road surface area.
  • the vertical cut surface of the first horizontal line reflective surface is an elliptical line; or the vertical cut surface is composed of an elliptical line and a partial non-elliptical line; or the vertical cut surface is a non-elliptical line reflecting surface to reflect light To the linear focus F2; or to make particles on the basis of the horizontal linear reflective surface.
  • At least one first light-expanding curved surface extending from each of the first horizontal linear reflective surfaces is further disposed adjacent to the first opening, and a portion of the light is moved upward from the linear focus F2 To enhance ground lighting light distribution.
  • the first horizontal linear reflective surface is linear; or linear and microstrip arc (eg, within 5 radians), increasing vertical light distribution.
  • the reflective surfaces on both sides of the low-beam optical system are each a stretched surface composed of an elliptical line and a partial non-elliptical line; or a further microstrip arc (eg, within 5 radians), Increase the light distribution at a vertical angle.
  • the reflective surfaces on both sides of the low-beam optical system each have at least one elliptical line reflecting surface adjacent to the first linear light source and at least one non-elliptical line extending from the elliptical reflecting surface Reflective surface.
  • the surface shape of each of the first collecting faces is a vertical plane; or an inclined surface; or a curved surface; or a strip curved surface.
  • the cut-off visor is a 15° diagonal, a 45° diagonal, or a 90° right angle, 0° horizontal.
  • the left driving rule, the right driving rule, and the left and right symmetry rule, the cut-off line masks of different shapes are placed in front of the horizontal line focus F2, the light above the cut-off line is shielded, and the remaining light is concentrated by the first collecting lens to form different shapes. Light and light spots.
  • the first linear focus reflector includes an upper portion first linear focus reflector and a lower portion first linear focus reflector, which are integrally formed; or both are structurally symmetric and mutually assembled .
  • the high beam system further includes at least one second concentrating lens, the position of the second linear light source coincides with a line focus F1 of the second linear focus reflector, the second line type
  • the focus reflector reflects at least part of the light of the second linear light source and converges to the linear focus F2, and the second condensing lens is disposed in front of the linear focus F2 for refracting light to form the far Light spot.
  • the second linear focus reflector has at least one second opening at an end remote from the second linear light source, the second linear light source is perpendicular to the optical axis and linearly arranged and facing the first
  • the second linear focus reflector has a second horizontal linear reflective surface on the upper and lower sides, an intermediate partial rotation reflective surface respectively located in the middle of the second horizontal linear reflective surface, and a mirror surface on both sides. For concentrating at least part of the light to the linear focus F2.
  • the mirror surface imaging effects on both sides form a virtual focus F1'
  • the virtual focus F1' of the second linear light source is located on the focal point F1 of the horizontal linear reflective surface on the upper and lower sides.
  • the second linear focus reflector further has two second collecting faces disposed at intervals from each other at the opening, and reflecting light outside the wrap angle of the second collecting lens to the second collecting light The lens is refracted by the second concentrating lens to a left and right wide angle road surface area.
  • the vertical cutoff of each of the second horizontal line reflective surface and the intermediate partial rotating reflective surface The surface is an elliptical line; or an elliptical line and a partial non-elliptical line; or the reflective surface of the non-elliptical line reflects light to the linear focus F2; or the second horizontal linear reflective surface and the intermediate partial reflective reflection Make particles on the basis of the surface.
  • At least one second light-expanding curved surface extending from each of the second horizontal linear reflective surfaces is further adjacent to the second opening, and a portion of the light is moved upward from the linear focus F2 To enhance ground lighting light distribution.
  • the second horizontal linear reflective surface is linear; or linear and microstriped with an arc (eg, within 5 radians), increasing light distribution at a vertical angle.
  • the mirror faces on either side are planar; or the microstrip arc (eg, within 5 radians) increases the light distribution at a vertical angle.
  • the surface shape of each of the second collecting faces is a vertical plane; or an inclined surface; or a curved surface; or a strip curved surface.
  • the second linear focus reflector includes an upper portion second linear focus reflector and a lower portion second linear focus reflector integrally formed; or both are structurally symmetric and assembled to each other.
  • the high beam system further includes at least one anti-glare panel disposed at the line focus F2, wherein the anti-glare panel is an opaque material, or a transparent material, or a color-changing glass, Or a liquid crystal panel in which the light in the glare area is shielded by the opaque anti-glare panel; the localized area is roughened by the transparent anti-glare panel, or the granulated structure weakens the light in the glare area;
  • the liquid crystal film molecules are arranged disorderly, the light cannot be weakened by the color changing glass; the liquid crystal film molecules are arranged in order by energizing the color changing glass, the light is enhanced by the color changing glass; or the lattice position of the liquid crystal screen is controlled by the circuit, Control the shape of the light and dark dots above the level to achieve the purpose of anti-glare.
  • the first/second linear light source is an LED light source or a laser light source.
  • the first/second linear light source is a set of horizontally arranged multi-core LED modules, or a plurality of sets of horizontally arranged multi-core LED modules, or a single-core LED horizontal line arrangement, or horizontal The arranged multi-core LED module and the single-core LED are arranged in a horizontal line.
  • the LED is white light, or warm white light, or a mixture of white light and warm white light and golden light.
  • the first/second concentrating lens is a rotating concentrating lens; or a non-rotating concentrating lens.
  • the light of the linear focus F2 is concentrated by the first/second concentrating lens to form a horizontal linear spot, the optical density at the horizontal axis is the highest, the left and right light width is 40°, and the lower half of the concentrating lens In some optical designs, the light is slightly deflected downward, eliminating the phenomenon of light color blue at the cutoff line.
  • At least one metal heat sink that is attached to the first/second linear light source is further included.
  • the method further includes at least one cover for fixing the first and second concentrating lenses and shielding scattered light in the outer cover, and a sealant is used between the outer cover and the metal heat sink The connection is fixed.
  • At least one outer lens is further included, the outer lens and the outer cover being joined by a sealant.
  • the first linear focus reflector includes two opposite first main reflectors and two opposite first sub-reflectors, and the first main reflectors are respectively located in the first The upper side and the lower side of the one-line type light source, the first sub-reflecting sheets are respectively disposed on two sides of the two first main reflectors, two of the first sub-reflecting sheets and two pieces of the first main The reflector forms a first opening, and light emitted by the first line source is emitted from the first opening.
  • each of the first sub-reflectors includes a first body portion and a first extension, the first body portion and the first main reflector forming the first opening.
  • an inner side of the first body portion is for reflecting light emitted by the first linear light source, the first extension portion extending outwardly from the first body portion and being inward
  • the first extension portion forms a first angle with the first body portion when the first extension portion extends outwardly, and the first extension portion forms a second angle when bent inwardly.
  • the first included angle ranges from 90° to 270° and the second included angle ranges from 0° to 180°.
  • the inner side of the first main reflector has a first intermediate horizontal line reflecting surface and a first diffusing curved surface
  • the first intermediate horizontal line reflecting surface is the first main reflecting board
  • the inner surface extends from one end of the first linear light source to the other end, and the first light-expanding arc extends outwardly from the first intermediate horizontal linear reflective surface and is located at the tail of the first main reflector .
  • the inner side of the first extension is a first collection surface, and the first collection surface is also inclined inward and forms the second angle.
  • the cut-off line mask and the first line-type focus reflector are in a unitary structure or a phase-assembled structure.
  • the second linear focus reflector comprises two oppositely disposed second main reflectors and two oppositely disposed second sub-reflectors, the second sub-reflectors being respectively disposed on two a side of the second main reflector, two of the second sub-reflectors and two of the second main reflectors form a second opening, and the light emitted by the second linear light source can pass through the first The second opening is worn out.
  • each of the second sub-reflective panels includes a second body portion and a second extension, the second body portion and the second main reflector forming the second opening,
  • the inner side surface of the second main body portion is a mirror surface, and reflects light emitted by the second linear light source.
  • the second extension extends outwardly from the second body portion and is bent inwardly, and the second extension portion forms a third clip with the second body portion when extending outwardly angle.
  • the third angle ranges from 90 to 270°.
  • the inner surface of each of the second main reflectors includes a second intermediate partial rotation reflective surface, a second horizontal linear reflective surface, a second light-expanding curved surface, and a second mirrored surface
  • the second extension The inner side surface of the portion is a second collecting surface, wherein the second intermediate partial rotating reflecting surface is formed by the arcuate concave portion, exists in the middle of the second main reflector, and the second linear light source passes through the surface
  • the second light-expanding curved surface extends to the second horizontal linear reflective surface to enhance the distribution of the surface illumination light.
  • the present invention also provides a near-infrared integrated illumination system including a low beam system and a high beam system, the low beam system and the high beam system each including at least one linear light source and at least one linear focus reflector.
  • the linear light source is coincident with the linear focus F1 of the linear focus reflector, and the linear focus reflector reflects at least part of the light of the linear light source and converges to the linear focus F2, wherein the near The light system and the high beam system are capable of providing a low beam spot and a high beam spot, respectively.
  • the low beam system and the high beam system each further include at least one concentrating lens disposed in front of the line focus F2.
  • each of the linear focus reflectors has an opening at an end remote from the linear light source, a linear light source is disposed toward the opening, and the linear focus reflectors each have a horizontal linear reflective surface on the upper and lower sides and a reflective surface on both sides for concentrating at least a portion of the light of the linear light source to the The line focus F2 is described.
  • the linear focus reflector further has two collecting surfaces which are arranged at intervals from each other at the opening, and reflect light other than the corner of the collecting lens to the collecting lens and refracted to the left and right wide angles through the collecting lens Road area.
  • each of the linear focus reflectors has at least one opening at an end remote from the linear light source, the linear light sources are arranged perpendicular to the optical axis and arranged in a line shape and facing the opening,
  • the linear focus reflector has a horizontal linear reflective surface on the upper and lower sides, an intermediate partial rotation reflective surface respectively located in the middle of the horizontal linear reflective surface, and a mirror surface on both sides for concentrating at least part of the light to the line Type focus F2.
  • the mirror surface imaging effect on both sides forms a virtual focus F1', and the virtual focus F1' of the linear light source is located on the focal point F1 of the horizontal linear reflective surface on the upper and lower sides.
  • the linear focus reflector further has two collecting surfaces which are arranged at intervals from each other at the opening, and reflect light other than the corner of the collecting lens to the collecting lens and refracted to the left and right wide angles through the collecting lens Road area.
  • the low beam system and the high beam system further comprise at least one cutoff line mask and at least one anti-glare panel at the line focus F2, respectively.
  • the low beam system and the high beam system share the linear light source, the linear focus reflector and the concentrating lens, and pass through at least the linear focus F2
  • a moving cut-off shading plate provides low beam illumination and high beam illumination, respectively.
  • the present invention also provides a headlamp for use in a vehicle comprising: at least one linear light source, at least one light reflecting device, and at least one concentrating lens, wherein the light reflecting device forms a line focus F1 and a line focus F2 Wherein the linear light source coincides with the linear focus F1 of the reflective light bucket, and at least part of the light reaches the linear focus F2 of the reflective light bucket after being concentrated, and is refracted by the collecting lens to form a front light. Light spots.
  • the light reflecting device has an opening at an end away from the linear light source, the linear light source is disposed toward the opening, and the reflective device has horizontal and horizontal reflective surfaces on the upper and lower sides, two a side reflecting surface extending convexly from the collecting surface of the reflecting surface, wherein the horizontal linear reflecting surface and the reflecting surfaces on both sides are used for concentrating at least part of the light of the linear light source to the line
  • the collecting surface reflects light other than the wrap angle of the collecting lens to the collecting lens and is refracted by the collecting lens to the left and right wide angle road surface regions.
  • the reflective surfaces on both sides include at least one elliptical line reflecting surface adjacent to the linear light source and at least one non-elliptical line reflecting surface extending from the elliptical reflecting surface.
  • at least one light-expanding curved surface extending from the horizontal linear reflective surface and adjacent to the opening is further included to move part of the light upward from the linear focus F2 to enhance ground illumination light distribution.
  • the light reflecting device has an opening at an end away from the linear light source, the linear light source is disposed toward the opening, and the reflective device has a horizontal line type reflective surface on the upper and lower sides, respectively An intermediate partial rotating reflective surface intermediate the horizontal line reflective surface and a mirrored surface on both sides for concentrating at least a portion of the light to the linear focus F2, and the reflective device further has a convexly extending portion
  • the collecting surface of the mirror surface, the collecting surface reflects light other than the angle of the collecting lens to the collecting lens, and is refracted by the collecting lens to the right and left wide angle road surface regions.
  • the mirror surface imaging effect on both sides forms a virtual focus F1', and the virtual focus F1' of the linear light source is located on the focal point F1 of the horizontal linear reflective surface on the upper and lower sides.
  • the light reflecting device is a semi-bucket line type focus reflector, the linear light source emitting axis and the The optical axis of the headlight is mounted vertically or at a predetermined angle.
  • At least one cut-off line mask disposed on the line focus is further included such that the headlamp forms a low beam headlamp.
  • the cut-off visors are configured to be movable to provide a low beam spot and a high beam spot by moving the cut-off visors, respectively, resulting in an integrated low beam and high beam illumination system.
  • the headlamp is a high beam headlamp.
  • the high beam headlamp further includes at least one anti-glare panel located at the line focus F2.
  • the present invention also provides a method of providing headlamp illumination comprising the steps of:
  • At least one linear light source located at the line focus F1 emits light
  • At least one light reflecting device reflects the light emitted by the linear light source
  • At least one concentrating lens refracts the light emitted by the linear light source
  • At least a portion of the light emitted by the linear light source is concentrated to a linear focus F2 and projected to the collecting lens for refraction, and at least a portion of the light emitted by the linear light source directly hits the concentrated light
  • the lens is refracted.
  • the method further includes the step of: the remaining portion of the light being shielded by the cut-off line mask for forming a cut-off line.
  • the method further comprises the step of: reducing the brightness of the position corresponding to the local area anti-glare area on the horizontal line of the high beam spot by the anti-glare plate disposed on the line focus F2 .
  • the method further includes the steps of: reflecting light other than the angle of the condensing lens through the collecting surface and refracting through the collecting lens to the left and right side illumination regions.
  • a part of the light is emitted from the linear light source and reflected by the intermediate horizontal line reflective surface, and is directly reflected to the collecting lens for reflection; a part of the light is from the After the linear light source is emitted, it is reflected by the intermediate horizontal line reflective surface, and is directly reflected to the collecting lens for reflection; a part of the light is emitted from the linear light source and reflected by the light-expanding curved surface, and is directly reflected to The condensing lens performs refraction; a part of the light is emitted from the linear light source, reflected by the elliptical line reflecting surface, and then reflected by the intermediate horizontal line reflecting surface, and then refracted by the condensing lens; a part of the light After being emitted from the linear light source, reflected by the elliptical reflecting surface and reflected by the collecting surface, and then refracted by the collecting lens; a part of the light is emitted
  • a part of the light is emitted from the linear light source and reflected by the horizontal line type reflective surface, and is directly reflected to the collecting lens for reflection; a part of the light is from the line After being emitted, the light source is reflected by the light-expanding arc surface, and is directly reflected to the collecting lens for refraction; a part of the light is emitted from the linear light source and reflected by the mirror surface and then passes through the horizontal line reflective surface or opposite The mirror surface is reflected to the concentrating lens for refraction, or is reflected by the mirror surface and then refracted by the concentrating lens; a part of the light is emitted from the linear light source and then rotated through the intermediate partial reflective surface Refraction after reflection to the concentrating lens; a portion of the light from the linear light After the source is emitted, it is reflected by the collecting surface, and then refracted by the collecting lens; a part of the light is emitted from the linear light source and
  • the near-infrared light integrated illumination system includes at least one linear light source and at least one linear focus reflector, wherein a position of the linear light source coincides with a linear focus F1 of the linear focus reflector
  • the linear focus reflector is capable of concentrating part of the light of the linear light source to the linear focus F2, and the near-infrared integrated illumination system can form a low beam spot or a high beam spot.
  • At least one concentrating lens disposed in front of the line focus F2.
  • a cut-off line mask is further included, the cut-off line mask being mounted on the line-type focus reflector and disposed along the line focus F2.
  • the cut-off visor is rotatable relative to the linear focus reflector to effect switching of the low beam spot and the high beam spot.
  • a solenoid valve is further included, the solenoid valve is connected to the cut-off line visor, and the cut-off visor is driven to rotate by the electromagnetic valve, thereby realizing the low beam spot and Switching of the far spot.
  • the linear focus reflector has at least one opening at an end remote from the linear light source, the linear light source being arranged perpendicular to the optical axis and facing the opening, the line
  • the inside of the focus reflector has two horizontally-shaped reflective surfaces and two mirror-reflecting surfaces disposed opposite to each other, and the light reaching the horizontal linear reflective surface and the mirror-reflecting surface is concentrated to the linear focus F2.
  • the linear focus reflector further has two collection faces that are spaced apart from each other at an opening, and light other than the angle of the condenser lens is reflected to the concentrating lens and passes through the The concentrating lens is refracted to the right and left wide angle road surface areas.
  • the vertical cross section of the horizontal line reflective surface is an elliptical line; or the vertical section is an elliptical line and a partial non-elliptical line; or a reflective surface having a non-elliptical line in a vertical section reflects light to the Line focus F2; or make particles on the basis of the horizontal line type of reflective surface.
  • the horizontal linear reflective surface is linear; or linear and microstriped, increasing vertical angle light distribution.
  • the two mirrored reflecting surfaces are each a stretching surface based on an elliptical line and a partial surface non-elliptical line; or a further microstrip arc thereof, increasing the light distribution of the vertical angle.
  • the two mirrored reflecting surfaces each have at least one elliptical line reflecting surface adjacent to the first line type light source and at least one non-elliptical line reflecting surface extending from the elliptical line reflecting surface.
  • each of the collecting faces is a vertical plane; or an inclined surface; or a curved surface; or a strip-shaped curved surface.
  • the cut-off line forming face of the cut-off line mask is a 15° diagonal line, a 45° diagonal line, or a 90° right angle, or a horizontal line of 0°.
  • the linear focus reflector comprises an upper partial linear focus reflector and a lower partial linear focus reflector
  • the two are integrally formed; or both are structurally symmetric and assembled to each other.
  • the electromagnetic valve drives the cut-off visor to rotate such that light emitted by the linear light source passes through the cut-off visor and is refracted by the condensing lens to form The high beam spot.
  • the linear light source is an LED light source.
  • the linear light source is a set of horizontally arranged multi-core LED modules, or a plurality of sets of horizontally arranged multi-core LED modules, or a single-core LED horizontal line arrangement, or horizontally arranged
  • the multi-core LED module and the single-core LED are arranged in a horizontal line.
  • the LED is white light; or warm white light; or a mixture of white light and warm white light and golden light.
  • the concentrating lens is a rotating concentrating lens; or a non-rotating concentrating lens.
  • the cut-off visor includes a sawtooth piece disposed on the cut-off line forming surface, the saw blade is triangular-like, and the surface of the scallop is provided with a pull The jagged structure of the extension.
  • the method further includes a filter, the cut-off light shielding film includes a window opening, and the filter is disposed in the window opening to enable the linear light source to emit Light can be attenuated by the filter and diffused and then irradiated to the collecting lens.
  • the concentrating lens is an optical lens capable of eliminating the blue phenomenon, comprising an input optical surface, an output upper optical surface, and an output lower optical surface, the output upper optical surface Located above the central horizontal axis, the output lower optical surface is below the central horizontal axis.
  • the output upper semi-optical surface is a concentrating surface
  • the output lower semi-optical surface is a profiled or non-rotating surface
  • the yellow light outputting the upper semi-optical surface completely covers the output
  • the blue light of the semi-optical surface, the yellow light of the output lower semi-optical surface completely covers the blue light of the output upper semi-optical surface, and finally forms a spot where there is no blue phenomenon at the cut-off line.
  • At least one metal heat sink that is attached to the linear light source.
  • At least one heat sink is further included, and the metal heat sink is in contact with the heat sink for heat dissipation.
  • the method further includes at least one cover for fixing the concentrating lens and shielding the scattered light in the outer cover, and the outer cover and the heat sink are fixedly connected by a sealant.
  • At least one outer lens is further included, and the outer lens and the outer cover are fixedly connected by a sealant.
  • a front position light optical lens and a front position light source assembly further comprising a front position light optical lens and a front position light source assembly, the front position light optical lens and the front position light source assembly being sequentially secured to the outer lens and Between the covers.
  • the invention further includes a headlamp comprising at least one linear light source, at least one light reflecting device and at least one concentrating lens, wherein the light reflecting device forms a linear focus F1 and a linear focus F2, wherein the linear light source and the light source Reflective device
  • the linear focus F1 coincides, and at least part of the light passes through the convergence to reach the linear focus F2 of the reflective device, and is refracted by the collecting lens to form a front light spot.
  • the linear light source is disposed toward the opening
  • the light reflecting device has a horizontal line type reflective surface on the upper and lower sides, a mirror-reflecting surface on both sides and a collecting surface protrudingly extending from the mirror-reflecting surface, the collecting surface reflecting light other than the angle of the collecting lens to the collecting lens and passing through the collecting lens Refraction to the left and right wide angle pavement areas.
  • the light reflecting means is a linear focus reflector
  • the light emitting axis of the linear light source is mounted in the same direction or at a predetermined angle to the optical axis of the headlight.
  • a cut-off line mask disposed on the line focus F2 is further included to form the headlamp to form a low beam headlamp.
  • the headlamp is a high beam headlamp.
  • the headlamp is capable of providing a low beam spot and a high beam spot by rotating the cut-off visor
  • the headlamps are formed into an integrated high beam and low beam illumination system.
  • the solenoid valve being fixedly coupled to the cut-off line visor and capable of driving the cut-off visor to rotate relative to the light reflecting device, thereby causing the A headlamp provides the low beam spot and the high beam spot.
  • the method further includes a filter, the cut-off light shielding film includes a window opening, and the filter is fixedly disposed in the window opening to be shielded by the cut-off line mask The light is attenuated by the filter and diffused to the collecting lens.
  • the cut-off visor further comprises a sawtooth piece
  • the scalloped piece is disposed on a cut-off line forming surface
  • the saw blade is triangular-like
  • the sawtooth The surface of the sheet is provided with a stretched serrated structure.
  • a direction of the linear light source and the linear focus reflector is coincident with an optical axis of the headlight, or a direction of the linear light source and the linear focus reflector Forming an angle with an optical axis of the headlamp, the angle being in the range of 0° to 90°.
  • the linear light source is an LED light source.
  • the linear light source is a set of horizontally arranged multi-core LED modules, or a plurality of sets of horizontally arranged multi-core LED modules, or a single-core LED horizontal line arrangement, or horizontally arranged
  • the multi-core LED module and the single-core LED are arranged in a horizontal line.
  • the LED is white light; or warm white light; or a mixture of white light and warm white light and golden light.
  • the concentrating lens is an optical lens capable of eliminating the blue phenomenon, comprising an input optical surface, an output upper optical surface, and an output lower optical surface, the output upper optical surface Located above the central horizontal axis, the output lower optical surface is below the central horizontal axis.
  • the input optical surface is a planar optical surface or a non-planar optical surface
  • the output upper semi-optical surface is a concentrating surface
  • the output lower semi-optical surface is a profiled surface or a non-rotating surface
  • the yellow light outputting the upper semi-optical surface completely covers the output
  • the blue light of the semi-optical surface, the yellow light of the output lower semi-optical surface completely covers the blue light of the output upper semi-optical surface, and finally forms a spot where there is no blue phenomenon at the cut-off line.
  • 1A, 1B and 1C are diagrams of light distribution requirements of a headlight right-hand vehicle on a light distribution screen.
  • FIG. 2 is a schematic structural view of an LED far and near light integrated system in the prior art.
  • 3A and 3B are schematic views showing the structure of a light distribution lens type LED near-light integration system.
  • FIG. 4 is a schematic structural view of a turtle-shaped reflector LED near-light integration system.
  • FIG. 5A is a schematic structural view of a dome-shaped reflector LED near-light integration system.
  • FIG. 5B is a schematic structural view of a TIR lens LED low beam system.
  • Figure 6A is a test point for the high beam ECE R112 regulations.
  • Figure 6B is an increase in anti-glare areas and lines based on the test points required by the high beam ECE R112 regulations.
  • Figure 7A is a prismatic dispersion.
  • Fig. 7B is a schematic view showing the phenomenon of overflowing blue at the cut-off line of the headlamp projection optical system.
  • FIG. 8 is a perspective view showing the three-dimensional structure of the low beam system and the high beam system of the first embodiment of the near-infrared light integrated illumination system according to the present invention.
  • Figure 9 is a perspective view of the three-dimensional structure of Figure 8.
  • Figure 10 is a cross-sectional structural view taken along line A-A of Figure 8.
  • Figure 11 is a schematic view of the exploded structure of Figure 8.
  • FIG. 12A is a schematic structural view of the first line type focus reflector of FIG. 8.
  • FIG. 12A is a schematic structural view of the first line type focus reflector of FIG. 8.
  • Fig. 12B is a schematic view of a low beam light path.
  • FIG. 13A is a schematic structural view of the second line type focus reflector of FIG. 8.
  • FIG. 13A is a schematic structural view of the second line type focus reflector of FIG. 8.
  • Fig. 13B is a schematic view of the high beam optical path.
  • Figure 14 is a schematic enlarged view of the structure B in Figure 11.
  • Fig. 15 is a view showing the overall structure of a near-infrared light integrated illumination system in the first embodiment of the present invention.
  • Figure 16 is a schematic view of the exploded structure of Figure 15.
  • Figure 17 is a schematic exploded view of a modified structure of the first embodiment of the present invention.
  • Figure 18 is a schematic view showing another modified exploded structure of the first embodiment of the present invention.
  • Figure 19 is a cross-sectional view showing still another modification of the first embodiment of the present invention.
  • Figure 20 is a cross-sectional view showing still another modified sectional portion of the first embodiment of the present invention.
  • Figure 21 is a schematic view showing the light spot of the first line type focus F2 and the second line type focus F2 in the first embodiment of the present invention.
  • Figure 22A is a schematic view of a low beam light spot in the first embodiment of the present invention.
  • Fig. 22B is a schematic view showing a high beam spot of the high beam system without the anti-glare panel in the first embodiment of the present invention.
  • Fig. 22C is a schematic view showing a high beam spot of the high beam system with the anti-glare panel in the first embodiment of the present invention.
  • Figure 23 is a perspective view showing the first embodiment of the low beam headlamp of the present invention.
  • Figure 24 is a schematic view of the exploded structure of Figure 23;
  • Figure 25 is a perspective view showing the structure of the light reflecting unit of Figure 23;
  • Figure 26 is a top plan view of the light reflecting unit of Figure 23;
  • Figure 27 is a perspective view showing the first embodiment of the high beam headlamp of the present invention.
  • FIG. 28 is a schematic view of the exploded structure of FIG. 27.
  • Figure 29 is a perspective view showing the structure of the light reflecting unit of Figure 27;
  • Figure 30 is a top plan view showing the light reflecting unit of Figure 27;
  • Figure 31 is a block diagram of a first embodiment of a method of illumination of a low beam lamp according to the present invention.
  • Figure 32 is a perspective view showing the structure of a light reflecting device and a collecting lens in the above-described method of lighting a low beam lamp according to the present invention.
  • Figure 33 is a schematic view showing the path of light rays in the illumination method of the above low beam lamp of the present invention.
  • Figures 34, 35, 36 and 37 are schematic diagrams of light line tracking in the illumination method of the above-described low beam lamp of the present invention.
  • Figure 38 is a block diagram of a first embodiment of the illumination method of the high beam lamp of the present invention.
  • Figure 39 is a perspective view showing the structure of a light reflecting device and a collecting lens in the above-described illumination method of the high beam lamp of the present invention.
  • Figure 40 is a schematic view showing the path of light rays in the illumination method of the above high beam lamp of the present invention.
  • 41, 42, 43 and 44 are schematic diagrams of light line tracking in the illumination method of the above high beam lamp of the present invention.
  • Figure 45 is a perspective view showing the structure of a second embodiment of the near-infrared light integrated illumination system according to the present invention.
  • Figure 46 is a cross-sectional structural view taken along line A-A of Figure 45.
  • Figure 47 is a front elevational view showing the cross section taken along line A-A of Figure 45;
  • FIG. 48 is a schematic exploded view of the near-and-light integrated illumination system of FIG.
  • 49 is a schematic diagram showing the output optical surface structure of the collecting lens in the near-infrared light integrated illumination system of FIG.
  • Fig. 50 is a view showing the optical circuit of the condensing lens of Fig. 49 for eliminating the blue phenomenon.
  • 51 is a schematic structural view of a line type focus reflector in the near-infrared light integrated illumination system of FIG.
  • Fig. 52 is a view showing the optical path of the linear focus reflector of Fig. 51 reflecting light emitted from the linear light source.
  • Figure 53 is a schematic view showing the deformation structure of the line type focus reflector of Figure 51.
  • Figure 54 is a schematic exploded view of the near-and-near-light integrated illumination system of Figure 45 using the linear focus reflector of Figure 53.
  • FIG. 55 is a schematic flow chart showing the working principle of the near-infrared light integrated illumination system of FIG. 45.
  • FIG. 56 is a schematic diagram of the optical path of the cut-off line mask and the filter in the near-infrared integrated illumination system of FIG. 45.
  • FIG. 56 is a schematic diagram of the optical path of the cut-off line mask and the filter in the near-infrared integrated illumination system of FIG. 45.
  • FIG. 57 is a flow chart showing the illumination method of the near-infrared light integrated illumination system described in FIG.
  • Figure 58 is a perspective view showing a further preferred embodiment of the near-infrared light integrated illumination system of Figure 45.
  • FIG. 59 is a schematic exploded view of the near-light integrated illumination system of FIG. 58.
  • FIG. 59 is a schematic exploded view of the near-light integrated illumination system of FIG. 58.
  • Figure 60 is a perspective view showing the structure of a headlamp according to a first embodiment of the present invention.
  • Figure 61 is a schematic exploded view of the headlamp of Figure 60.
  • Figure 62 is a perspective view showing the structure of the light reflecting device in the headlight shown in Figure 61.
  • Figure 63 is a front elevational view showing the structure of the light reflecting device of Figure 62.
  • Figure 64 is a schematic view showing the output optical surface structure of the collecting lens in the headlamp shown in Figure 61.
  • Fig. 65 is a view showing the optical circuit of the condensing lens of Fig. 64 for eliminating the blue phenomenon.
  • Figure 66 is a schematic exploded view of a modified embodiment of the headlamp of Figure 60.
  • Figure 67 is a perspective view showing the structure of the light reflecting device of Figure 66.
  • Figure 68 is a front elevational view showing the structure of the light reflecting device of Figure 67.
  • FIG. 69 is a schematic flow chart of forming a low beam spot of the headlamp according to the present invention.
  • FIG. 70 is a schematic flow chart of forming a high beam spot of the headlamp according to the present invention.
  • Figure 71 is a perspective view showing the structure of a light reflecting device in a lighting method of a headlamp according to the present invention.
  • Figure 72 is a schematic view showing the optical path of the illumination method of the headlamp according to the present invention.
  • Figure 73 is a flow chart showing the illumination method of the headlamp according to the present invention.
  • 74 to 77 are schematic diagrams of light line tracking in a second embodiment of the near-infrared integrated illumination system and the illumination method thereof according to the present invention.
  • 78 is a low-beam simulated light spot diagram of a second embodiment of the near-infrared light integrated illumination system according to the present invention.
  • Figure 79 is a high beam simulation spot diagram of a second embodiment of the near-infrared light integrated illumination system of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • the present invention mainly provides a near-infrared integrated illumination system comprising a low beam system 10 and a high beam system 20, the low beam system 10 including a first line type focus reflector 12
  • the high beam system includes a second line type focus reflector 22, and the low beam system 10 forms a line focus by the light converging action of the first line type focus reflector 12, and is used to provide a low beam spot.
  • the high beam system 20 is reversed by the second line type focus
  • the light converging action of the lighter 22 forms a linear focus and is used to provide a high beam spot.
  • the near-infrared light integrated illumination system is used for vehicle illumination.
  • vehicle may be a road vehicle such as a car; or a surface vehicle such as a ship; or applied to an air vehicle.
  • the low beam system 10 includes at least one first linear light source 11, at least one first linear focus reflector 12, at least one first concentrating lens 13, and at least one cut-off louver 14, the first line
  • the focus reflector 12 is configured to reflect the first linear light source 11 , the first linear light source 11 is perpendicular to the optical axis of the low beam system and arranged horizontally, and is aligned with the first linear focus
  • the linear focus F1 of the reflector 12 coincides, at least a part of the light emitted by the first linear light source 11 is reflected by the first linear focus reflector 12 and concentrated to a linear focus F2, the first collecting lens 13 is mounted in front of the linear focus F2 and converges light passing through the linear focus F2 by a lens principle to form a spot of horizontal linear high-density light, and the cut-off light shielding sheet 14 is mounted on the line type At the focus F2, the light above the cut-off line is shielded, and finally the low-beam system 10 forms a low-beam light spot.
  • the high beam system 20 includes at least one second linear light source 21, at least one second linear focus reflector 22, at least one second concentrating lens 23, and at least one anti-glare panel 24.
  • the second linear focus reflector 22 is connected to the second linear light source 21 to reflect the second linear light source 21, and the second linear light source 21 is perpendicular to the optical axis of the high beam system and horizontally Arranging and aligning with the linear focus F1 of the second linear focus reflector 22, at least a portion of the light emitted by the second linear light source 21 is reflected by the second linear focus reflector 22 and concentrated to the linear focus F2, the second concentrating lens 23 is mounted in front of the linear focus F2 and converges the light passing through the linear focus F2 by a lens principle to form a horizontal linear high-density spot, the anti-glare plate 24 is disposed at the line type focus F2 to form an anti-glare area, that is, corresponding to the area I in FIG. 7B.
  • the first linear light source 11 is horizontally arranged by using a plurality of LEDs 111, wherein in one specific example, the five-core LEDs may be LEDs with a color temperature of 1500 Lm and 5700 K in the middle. Module, two 250L warm white light 3000K color temperature single-core ceramic package LED, mixed with white light and warm white light, so that the color temperature of the whole lamp is reduced, improving the penetration ability of the lamp in foggy and rainy days, and road conditions It is clearer that all of the LEDs 111 are arranged in a horizontal line and the light emitting direction of the LEDs 111 is in the same direction as the optical axis of the first linear light source 11, and coincides with the focus of the first linear focus reflector 12.
  • the first linear light source 11 may be a set of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or White light, warm white light, and golden light are used in combination to reduce the color temperature of the first linear light source.
  • the first linear light source 11 is a plurality of sets of horizontal single-core LED modules arranged in a horizontal line; or a set of horizontal single-core LED modules arranged in a horizontal line The group and the upper left or right half of the horizontal line type of single-core LED module combined to form an LED light source, suitable for the low beam optical system.
  • the first linear light source 11 is a plurality of sets of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light. Or a combination of white light, warm white light, and golden light to reduce the color temperature of the second linear light source.
  • the LEDs 111 can be arranged in a line shape, and the number thereof is not affected. Restricted, so can mention For a relatively high optical density and total luminous flux, thereby reducing the current of a single LED 111, the LED 111 will have a higher luminous efficacy.
  • the first linear focus reflector 12 includes a first main retroreflective structure 121 and a first sub-reflective structure 122, wherein the first main retroreflective structure 121 includes two opposing a first main reflector 1212 is disposed, and the first sub-reflective structure 122 includes two first sub-reflectors 1221 disposed opposite to each other, and the first sub-reflectors 1221 are respectively disposed on the two sheets.
  • a side of the first main reflector 1211, two first sub-reflectors 1221 and two first main reflectors 1211 form a reflective cavity, and has a first opening 120, so that the first line Light emitted by the light source 11 can pass through the first opening 120.
  • the first linear light source 11 extends horizontally and is disposed toward the first opening 120, and the first opening 120 is directly emitted from the first linear light source 11 without being reflected by the first linear focus.
  • the light reflected by the device 12 directly reaches the first collecting lens 13 and is refracted toward the road surface.
  • the first condensing lens 13 may be located at a position where the front of the linear focus F2 can function as a condensing light.
  • the first linear focus reflector 12 may also be other reflective structures capable of forming the line focuss F1 and F2, that is, not limited to the above-mentioned reflectors having four directions.
  • the structure but has other numbers or shapes of reflector structures.
  • each of the first sub-reflecting plates 1221 includes a first main body portion 12211 and a first extending portion 12212, and the first opening is formed between the first main body portion 12211 and the first main reflector 1211. 120.
  • the inner side surface of the first body portion 12211 is curved for reflecting light emitted by the first linear light source 11.
  • the first extending portion 12212 extends outwardly from the first body portion 12211 and is bent inwardly. When the first extending portion 12212 extends outwardly, a first angle ⁇ 1 is formed with the first body portion 12211.
  • the first angle ⁇ 1 may be in the range of, for example, 90° to 270°, and the first extension portion 1212 is formed to be inwardly bent to form a second angle ⁇ 2, and the second angle ⁇ 2 may be in a range. It is 0° ⁇ 180°.
  • each of the first main reflectors 1211 includes a first intermediate horizontal reflective surface 12111 and a first light-emitting curved surface 12112, such as the first intermediate horizontal reflective surface 12111.
  • An inner surface of the first main reflector 1211 extends from an end of the first linear light source 11 toward the other end of the first opening 120.
  • the first intermediate horizontal reflective surface 12111 is mainly based on an elliptical line. The surface of the partial non-elliptical combination line is extended, and the first light-expanding curved surface 12112 extends outwardly from the first intermediate horizontal-line reflective surface 12111 and is located at the tail of the first main reflector 1211.
  • the first main body portion 12211 of the first sub-reflecting plate 1221 includes a first elliptical reflecting surface 122111 and a first non-elliptical reflecting surface 122112, and the first elliptical reflecting surface 122111 is An inner portion of the main body portion 12211 extends toward an opposite end of the first linear light source 11 toward the other end of the first opening 120, and the first non-elliptical curved surface 122112 extends outwardly from the first elliptical line.
  • the face 122111 is located at the tail end of the inside of the first body portion 12211.
  • the first extension portion 12212 extends inward relative to the first body portion 12211.
  • the inner side surface of the first extending portion 12212 is a first collecting surface 122121, and the first collecting surface 122121 is located inside the first extending portion 12212, so the first collecting surface 122121 is also inclined inward.
  • the second angle ⁇ 2 is formed.
  • the first linear focus reflector is in the shape of a light bucket, but in the modified embodiment, it may have other appearances, such as a spherical shape, and the inside thereof can provide the above-mentioned capable line.
  • Type focus F1 and F2 The reflective surface structure can be.
  • the vertical cut surface of the first horizontal line reflective surface 12111 is an elliptical line; or the vertical cut surface is composed of an elliptical line and a partial non-elliptical line; or the vertical cut surface is a non-elliptical line reflecting surface to reflect light to the Line focus F2; or make particles on the basis of the horizontal line type of reflective surface.
  • the first horizontal linear reflective surface 12111 may be a linear type; or a linear type and a microstrip arc (such as within 5 radians) to increase the light distribution of the vertical angle.
  • the reflective surfaces on both sides of the low-beam optical system are each an elliptical line-based, partially-faced non-elliptical line stretching surface; or further micro-strip arc (such as within 5 radians), increasing the vertical angle of light distribution.
  • the reflective surfaces on both sides of the low-beam optical system each have at least one elliptical line reflecting surface 122111 adjacent to the first line type light source and at least one non-extension surface extending from the elliptical line reflecting surface.
  • the surface shape of each of the first collecting faces 122121 is a vertical plane; or an inclined surface; or a curved surface; or a strip-shaped curved surface.
  • the cut-off line visor 14 includes a substrate 141 and a light-shielding baffle 142, and the substrate 141 and the light-shielding baffle 142 are connected.
  • a cut-off line 141 is mounted at the second angle ⁇ 2, which is arranged along the line focus F2.
  • the light emitted by the first linear light source 11 is reflected by the first linear focus reflector 12 and concentrated to the linear focus F2 at the second angle ⁇ 2 by the cutoff line.
  • the light shielding sheet 14 shields the light above the substrate 141 from the light shielding baffle 142, that is, shields the light in the dark area corresponding to the light distribution standard, thereby avoiding glare and projecting the light toward the road surface and the road sign.
  • the cut-off line mask 14 may not be integrally formed with the first line type focus reflector 12, or the cut-off line mask 14 may not have the above substrate. 141.
  • the cut-off line mask 142 is directly mounted on the first line type focus reflector 12.
  • the second linear light source 21 is horizontally arranged by using a plurality of LEDs 211, wherein the LED 211 is a five-core LED module with a color temperature of 1500 Lm and 5700 K in the middle, and two 250 Lm warm white light 3000K on the left and right sides.
  • Color temperature single-core ceramic package LED mixed with white light and warm white light, the color temperature of the whole lamp is reduced, the penetrating ability of the lamp in foggy and rainy days is improved, and the road condition is clearer; all the LEDs 211 are arranged in a horizontal line and The light emitting direction of the LED 211 is the same direction as the optical axis of the second linear light source 21, and coincides with the focus F1 of the second linear focus reflector 22.
  • the second linear light source 21 is a set of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light, Warm white light and golden light are used in combination to reduce the color temperature of the second linear light source.
  • the second linear light source 21 is a plurality of sets of horizontally arranged single-core LED modules.
  • the second linear light source 21 is a plurality of sets of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or White light, warm white light, and golden light are used in combination to reduce the color temperature of the second linear light source.
  • the second linear reflective reflector 22 includes a second main reflective structure 221 and a second secondary reflective structure 222.
  • the second primary reflective structure 221 is two oppositely disposed second primary reflectors 2211.
  • the second pair of reflective structures 222 are Two second sub-reflectors 2221 are disposed opposite to each other, and the second sub-reflectors 2221 are respectively disposed on two sides of the two second main reflectors 2211, two of the second sub-reflectors 2221 and two
  • the second main reflector 2211 forms a second opening 220, so that the light emitted by the second linear light source 22 passes through the second opening 220.
  • the second linear light source 21 extends horizontally and is disposed toward the second opening 220, and directly emits the second opening 220 from the second linear light source 21 without being reflected by the second linear focus reflector 22
  • the light rays directly reach the second collecting lens 23 and are refracted toward the road surface.
  • the second condensing lens 23 may be located at a position where the front of the linear focus F2 can function as a condensing light.
  • the second linear focus reflector 22 may also be other reflective structures capable of forming linear focuss F1 and F2, that is, not limited to the above four directions.
  • the structure of the reflector is a reflector structure of other numbers or shapes.
  • each of the second main reflectors 2211 may be provided with an arcuate recess 22110, and the arcuate recess 22110 is disposed in the middle of the second main reflector 2211 for The light emitted by the second linear light source 21 is reflected.
  • Each of the second sub-reflecting plates 2221 includes a second body portion 22211 and a second extending portion 22212.
  • the second opening 220 is formed between the second body portion 22211 and the second main reflector 2211.
  • the inner side surface of the second main body portion 22211 is a linear reflecting surface 222111 for reflecting light emitted by the second linear light source 21.
  • the second extending portion 22212 extends outwardly from the second main body portion 22211 and is bent inwardly, and the second extending portion 22212 extends outwardly to form a third angle ⁇ 3 with the second main body portion 22211.
  • the third angle ⁇ 3 ranges from 90° to 270°.
  • each of the second main reflectors 2211 includes a second intermediate partial rotating reflective surface 22113, a second horizontal curved reflective surface 22111 and a second expanded curved surface 22112, the second The inner side of the main body portion 22211 has a second mirror surface 222111, and the inner side of the second extending portion 22212 has a second collecting surface 222121, wherein the second intermediate partial rotating reflecting surface 22113 is formed by the arcuate recess 22110.
  • the light from the second linear light source 21 is reflected by the surface of the second main reflector 2211 to the central region of the second linear focus F2.
  • the second light-expanding curved surface 22112 mainly moves the light of a portion of the second linear light source 21 upward from the second linear focus F2 to enhance the distribution of the ground illumination light, and the second mirror surface 222111 Based on the plane, the light of the second linear light source 21 is mirrored and reflected to the second horizontal linear reflective surface 22111 or the mirror surface of the opposite surface thereof, and finally reflected onto the second linear focus F2.
  • a virtual focus F1' is formed by the second mirror surface 222111, and the virtual focus F1' is located at the focus of the second horizontal curved surface 22111, and the light is re-converged by reflection to reach the linear focus F2.
  • the second collecting surface 222121 is mainly composed of a plane and is inclined outward by a predetermined angle for reflecting light other than the wrap angle of the second collecting lens 23 onto the second collecting lens 23, and then passing through the The second condensing lens 23 is refracted to a ground area of a large left and right angle.
  • the second linear focus reflector 20 is in the shape of a light bucket, but in the modified embodiment, it may have other appearances, such as a spherical shape, and the inside thereof can provide the above-mentioned formation.
  • the reflective surface structure of the linear focus F1 and F2 is sufficient.
  • the vertical cut surface of the reflective surface 22113 may be an elliptical line; or an elliptical line and a partial non-elliptical line; or a reflective surface of the non-elliptical line reflects light to the linear focus F2; or the second horizontal linear reflective surface And granules are formed on the basis of the intermediate partially rotating reflective surface.
  • the second horizontal linear reflective surface 22111 may be a linear type; or a linear type and a microstrip arc, increasing the light distribution of the vertical angle.
  • each of the second collecting faces 222121 may be a vertical plane; or an inclined surface; or a curved surface; or a strip-shaped curved surface or the like.
  • the opening of the second linear focus reflector 22 is small, in the embodiment, the left and right openings are 15 degrees, and the upper and lower openings are each 11 degrees. Therefore, the second linear light source 21 directly emits light of the opening to directly The second condensing lens 23 is refracted to the ground. Therefore, the effect of collecting all of the light in the 360° solid angle of the second linear light source 21 is achieved. Therefore, the second linear focus reflector 22 has a high light collection rate, which not only improves the brightness of the lamp, but also reduces the power consumption of the whole lamp.
  • the second linear focus reflector 22 further includes an anti-glare panel 24 disposed at the second linear focus F2.
  • the anti-glare panel 24 includes a base 241 and an anti-glare baffle 242.
  • the anti-glare baffle 242 is provided with an opening 2420 for the second line type. Light from the light source 21 passes to form the high beam spot.
  • the opening 2420 can be set to any shape such as a triangle, a rectangle, or a circle according to actual conditions or customer requirements, as long as the technical effect of the same or similar to the present invention is achieved, and the specific embodiment of the present invention is not limited thereto.
  • the anti-glare area I shown must have a predetermined brightness, but it must have an upper limit to prevent the glare effect from affecting the observation of the road condition, and the minimum and maximum brightness requirements of the Line1 line in the middle of 3° are guaranteed. There is enough brightness to see the street sign information above, without affecting the glare of the opposite vehicle driver and pedestrian when the vehicle turns.
  • the anti-glare panel 24 is a transparent, opaque or translucent material or a color changing glass.
  • the glare-area light is shielded by the opaque anti-glare panel; the localized area is roughened by the transparent, translucent anti-glare panel 24, or the granulated structure weakens the light in the glare zone;
  • the molecules of the liquid crystal film are disordered, and the light cannot pass through the color changing glass to weaken the light;
  • the color changing glass is energized, the molecules of the liquid crystal film are arranged in order, and the light is enhanced by the color changing glass.
  • the linear focus reflector 12 is disposed to include a first upper partial linear focus reflector 12a and a first lower partial linear focus reflector 12b, the first upper partial linear focus reflector 12a and the first The lower partial linear focus reflectors 12b are respectively mounted on the upper and lower sides of the first linear light source 11 to reflect the first linear light source 11, and the first upper partial linear focus reflector 12a
  • the product structure of the first lower partial linear focus reflector 12b is substantially the same, each of which has a part of the first linear reflective surface 12111, a first optical expansion surface 12112, and a first elliptical reflection surface 122111.
  • the first linear focus reflector 12 can also be longitudinally divided into left and right symmetrical, interchangeable structures, which facilitate plating the internal reflective surface of the first linear focus reflector 12 . Reflective layer, but also can reduce the total category of product parts, improve productivity.
  • the material of the reflective coating of the reflective surface of the first linear focus reflector 12 may be selected according to different use requirements, such as metal plating, alloy plating or composite plating, and the first line type.
  • the focus reflector can also be configured as a unitary structure, or other splicing structure.
  • the second linear focus reflector 22 is disposed to include a second upper portion in order to achieve reflective deposition of the reflective surface.
  • the upper and lower sides of the second line type light source 21 are configured to reflect the second line type light source 21, and the product structures of the second upper line type focus reflector 21a and the second lower line type focus reflector 21b are substantially the same.
  • Each of the second intermediate partial rotating reflective surface 22113, the second horizontal curved reflecting surface 22111, the second expanded curved surface 22112, the second mirrored surface 222111, and the second collecting surface 222121 are interchangeably used. Thereby reducing the total category of product parts, so as to reduce the input cost of the product.
  • the second linear focus reflector 22 can also be longitudinally divided into left and right symmetrical, interchangeable structures, which is not advantageous for plating the internal reflective surface of the second linear focus reflector 22. Layers, but also reduce the total category of product parts and increase productivity.
  • the material of the reflective coating of the reflective surface of the second linear focus reflector 22 can be selected according to different use requirements, such as metal plating, alloy plating or composite plating.
  • the second linear focus reflector may also be provided as a unitary structure, or other splicing structure.
  • the near-light integrated illumination system of the present invention is mainly applied to a vehicle, such as a vehicle, wherein the low beam system 10 can achieve sufficient light intensity to illuminate a road ahead, and the high beam The system 20 does not generate glare under the premise of achieving sufficient light intensity to illuminate the road ahead, so the near-light integrated illumination system of the present invention is not only efficient but also safe in use.
  • At least a portion of the light of the first linear light source 11 and the second linear light source 21 are reflected by the first linear focus reflector 12 and the second linear focus reflector 22, respectively, and concentrated to the line type Focus F2, the light-type dense area of the horizontal focus F2 horizontal axis can reach a height of 4 mm, a width of 25 mm, and the light in the horizontal direction of the dense area is uniform when the first linear focus reflector 12 is added and When the width of the second line type focus reflector 22 is increased, the width of the light dense area is also increased accordingly.
  • the low beam system 10 and the high beam system 20 included in the far and near light integrated illumination system are two independent optical systems, wherein the far
  • the light system 20 is simultaneously in line with the low beam system 10, so when the high beam system 20 is required for illumination, the low beam system 10 is switched to the far
  • the light system that is to say, the low beam system 10 can be turned off at this time, so that the near-light integrated illumination system of the present invention can greatly reduce the consumption of the entire lamp.
  • the near-infrared integrated illumination system of the present invention can increase high-density light, when the low-beam system 10 is switched to the high-beam system 20, it is not necessary to use a conventional solenoid valve to remove the mechanical structure of the light-blocking plate, without electromagnetic
  • the power consumption of the valve can also reduce the consumption of the entire lamp to a certain extent.
  • the second linear focus reflector 22 has a higher optical density and a smaller volume, which is more advantageous for a liquid crystal lattice anti-glare system, a smaller liquid crystal screen, and a high beam system.
  • the anti-glare panel 24 of 20 is a high-density dot-matrix liquid crystal screen, and controls the lattice position of the liquid crystal screen through a circuit, thereby controlling the shape of the light and dark dot matrix above the horizontal line, thereby achieving the purpose of anti-glare.
  • the near-infrared integrated illumination system further includes a housing 30, an outer lens 50, and a heat sink 40, wherein the housing 30 is used to connect the high beam system 20 and the
  • the low beam system 10 is coated to protect the low beam system 10 and the high beam system 20, extending the service life of the low beam system 10 and the high beam system 20, and the outer cover 30 can
  • the diffused light emitted by the high beam system 20 and the low beam system 10 is shielded inside, so that the far and near light integrated illumination system has a stronger illumination effect.
  • the outer lens 50 is fixedly coupled to the front end of the outer cover 30, and may further distribute light of the low beam system 10 and the high beam system 20.
  • the outer cover 30 includes a first portion 31 and a second portion 32.
  • the first portion 31 and the second portion 32 are connected to form a receiving cavity 300 for receiving the receiving cavity 300.
  • the second portion 32 is a rear portion, and the metal heat sink 40 is disposed inside the second portion 32.
  • the first portion 31 serves as a front portion and includes a first opening 311 and a second opening 312.
  • the first opening 311 is used for the first concentrating lens 13 to be placed and the light of the first linear light source 11 is passed through, and the second opening 312 is used for the second condensing lens 23 to be placed. And the light from the second linear light source 21 passes through.
  • the outer lens 50 is fixedly coupled to the front end of the outer cover 30 by a sealant and connected to the low beam system 10 and the high beam system 20, thereby causing the low beam system 10 and the far side.
  • the light system 20 has a waterproof and dustproof effect.
  • the first linear light source 11 in the low beam system 10 and the second linear light source 21 in the high beam system 20 can be directly fixed to the heat sink 40 made of metal, such as a heat sink.
  • the heat dissipation tube, the heat dissipation strip, and the like because the heat transfer speed of the metal heat sink 40 is fast, the arrangement of the metal heat sink 40 can avoid the temperature of the first line type light source 11 and the second line type light source 21 being fast. The life expectancy caused by rising or not being able to dissipate in time is reduced.
  • the near-light integrated illumination system of the present invention further includes a metal heat sink 60, and the first linear light source 11 and the second linear light source 21 are directly fixed to the metal heat sink 60, such as soldering. , screwing and other methods.
  • the heat conducting surfaces of the LEDs of the first linear light source 11 and the second linear light source 21 are directly mounted on the large-area metal heat sink 60, because the surface area of the metal heat sink 60 is large.
  • the first linear light source 11 and the second linear light source 21 soldered to the metal heat sink 60 are fixedly connected to the metal heat sink 60.
  • the contact area of the metal heat sink 60 and the metal heat sink 40 is large, the heat dissipation effect of the first line light source 11 and the second line light source 21 can be further improved, thereby improving the first line.
  • the service life of the type light source 11 and the second line type light source 21 is large.
  • FIG. 17 is a schematic diagram of an exploded structure of a modified application of the near-infrared integrated illumination system according to the present invention.
  • the far and near light integrated illumination system includes a high beam system 20' and a low beam system 10',
  • the high beam system 20' and the low beam system 10' are capable of providing a high beam spot and a low beam spot, respectively.
  • a linear focus reflector of substantially the same structure is employed in the low beam system 10' and the high beam system 20'.
  • the second linear focus reflector in the high beam system 20' is substantially identical to the first linear focus reflector 12' in the low beam system 10'. The same structure.
  • each of the low beam and high beam systems 10' and 20' has a main retroreflective structure 121' and a sub-reflective structure 122', wherein the main retroreflective structure 121' includes two oppositely disposed main reflectors 1211'.
  • the sub-reflective structure 122 ′ includes two oppositely disposed side sub-reflectors 1221 ′, and the reflectors 1221 ′ are respectively disposed on two sides of the two main reflectors 1211 ′, and the two sub-reflectors 1221 ' forming a light-reflecting cavity with two of the main reflectors 1211' and having openings, and each of the line-type focus reflectors includes two-part line-type focus reflectors 12a' and 12b' having structural symmetry, and each formed like the above-described implementation
  • the first linear reflecting surface 12111, the first diffusing curved surface 12112, the first elliptical reflecting surface 122111, the first non-elliptical reflecting surface 12211, and the reflective surface structure of the first collecting surface 122121 In this way, it can reduce the total number of product parts in the near-and-near-light integrated illumination system, thereby improving the productivity of the near-infrared integrated illumination system.
  • FIG. 18 is a schematic diagram of an exploded structure of another modified application of the near-infrared light integrated illumination system according to the present invention.
  • the near-light integrated illumination system includes a low beam system 10" and a high beam system 20", and the low beam system 10" and the high beam system 20" can provide a near Light spot and a high beam spot.
  • the first linear focus reflector in the low beam system 10" adopts the second line type in the high beam system 20"
  • the substantially same structure of the focus reflector 22 that is, the linear focus reflector 22" of the low beam system 10" includes a main reflective structure 221" and a pair of retroreflective structures 222", the main reflective structure 221"
  • the two main reflectors 2211" are oppositely disposed
  • the sub-reflective structure 222" is two oppositely disposed sub-reflectors 2221”
  • the sub-reflectors 2221" are respectively disposed on the two main reflectors 2211"
  • the two sides of the sub-reflector 2221" and the two of the main reflectors 2211" form an opening, so that the light emitted by the linear light source 11 passes through the opening, and each linear focus
  • the reflector includes two-part linear focus reflectors 22a' and 22b' which are structurally symmetrical, and each of which is formed with the second intermediate partial rotation reflecting surface 22113, the second
  • FIG. 19A is a schematic cross-sectional structural view showing another modified application of the near-infrared light integrated illumination system according to the present invention.
  • the near-light integrated illumination system includes an optical system 10"', a metal heat sink 60"', a metal heat sink 40"', a cover 30"', and an outer lens 50"', wherein the optical system
  • the 10"' includes a linear light source 11"', a linear reflector 12"', a collecting lens 13"', and a cut-off light shield 14"', the linear light source 11"' and the metal heat dissipation
  • the plate 60"' is in contact connection, and the metal heat sink 40"' is mounted inside one end of the outer cover 30"' and connected to the metal heat sink 60"' to dissipate the linear light source 11"'
  • the linear reflector 12"' is used to reflect the light emitted by the linear light source 11"' to the collecting lens 13"', and then refracted by the collecting lens 13"'.
  • the optical system 10"' is wrapped in the outer cover 30"', and the outer lens 50"' is mounted on the other end of the outer cover 30"' to further the light emitted by the linear light source 11"' Refraction, the cut-off line visor 14"' is mounted to the linear reflector 12 'And the condenser lens 13' "between the cutoff line 14 for shielding the light shielding film" light above the substrate 'so that the distance light integrated lighting system can be formed near a light spot.
  • the line type reflector 12"' includes an upper partial line type focus reflector 12a"' and a lower part line.
  • the type of focus reflector 12b"', as described above, forming the line-type reflector 12"' by providing substantially the same structure is not only advantageous for plating the reflective layer of the internal light-reflecting layer of the line-type reflector 12"', but also It is advantageous to reduce the type of parts of the linear reflector 12"' and improve the production efficiency of the linear reflector 10"'.
  • the specific embodiment of the present invention is not limited thereto, as long as it is based on the present invention. It is within the scope of the present invention to make changes and achieve the same or similar technical effects as the present invention.
  • the near-light cutoff line can be realized by changing the shape and material of the cut-off line visor 14"'.
  • the cut-off line visor 14"' is movably mounted to the near and far.
  • the light-integrated illumination system when an external force is applied, such as by a solenoid valve control to move the cut-off line visor 14"', the near-light integrated illumination system can provide a low beam spot or a high beam spot as needed, ie
  • the far-and-light integrated illumination system can provide a high beam spot, and when the reticle 14" is re-removed back, the near-light is integrated
  • the illumination system can provide a low beam spot.
  • the near-infrared integrated illumination system of the present embodiment can simultaneously realize a low beam spot and a high beam spot using only one set of optical systems.
  • the anti-glare panel can also be driven to move, so that when the cut-off line light shielding sheet 14"' is removed, the anti-glare panel is placed in the optical path, thereby Provide high beam flare.
  • FIG. 20 is a schematic cross-sectional structural view showing still another modified application of the near-infrared light integrated illumination system according to the present invention.
  • the near-light integrated illumination system includes an optical system 10"", a metal heat sink 60"", a metal heat sink 40”", a heat sink reinforcement 90”", a cover 30"", and an outer lens 50.
  • the optical system 10 includes a line type light source 11"", a half line type focus reflector 12"", a concentrating lens 13"", and a cutoff line visor 14"", the line The light source 11"" is in contact with the heat dissipation reinforcement member 90"", and the metal heat dissipation plate 60"" is in close contact with the heat dissipation reinforcement member 90"" to dissipate heat from the linear light source 11"".
  • the half line type focus reflector 12"" is for reflecting the light emitted by the line type light source 11"" to the collecting lens 13"", and then refracting by the collecting lens 13"",
  • the optical system 10"" is disposed in the outer cover 30"", and the outer lens 50"" is mounted on the other end of the outer cover 30"" to further refract light emitted by the linear light source 11"".
  • the cut-off line visor 14"" is mounted on the line-type reflector 12"" and A condenser lens 13 '' for shielding between the light-shielding sheet 14 off line "of light above the substrate", so that the distance light integrated lighting system can be formed near a light spot.
  • the linear light source 11"" is disposed in a direction toward the inner surface of the half-line type focus reflector 12"", the side of which faces the opening of the half-line type focus reflector 12"". That is, the direction in which the linear light source 11"" emits light is perpendicular to the optical axis of the entire optical system, unlike the light emitting direction in the optical axis direction as in the above embodiment, and the light emitting surface is disposed toward the opening.
  • the mounting direction of the linear light source 11"" may be mounted perpendicularly or obliquely to the optical axis, and the invention is not limited in this respect.
  • the linear light source 10"" may include a plurality of sets of LED modules, and the light is reflected by the half-line type focus reflector 12"" to concentrate the light to the linear focus. F2, thereby increasing the total luminous flux of the near-infrared integrated illumination system.
  • the heat dissipation reinforcement member 90"" described in this embodiment is a metal heat dissipation member, and has a large surface area, and can quickly dissipate heat generated by the linear light source 10"" during operation, and the near and far light of the present invention.
  • the integrated lighting system uses a cut-off visor 14"" to provide a low beam spot.
  • the near-light cutoff line can also be realized by changing the shape and material of the cut-off line visor 14"'.
  • the cut-off line visor 14"' can be movably mounted on the Said far and near light integrated lighting system,
  • the near-infrared light integrated illumination system can form a high beam spot after the moving of the cut-off line visor 14"'.
  • the near-and-light integrated illumination system of the embodiment can use only one set of optics. The system simultaneously achieves a low beam spot and a high beam spot.
  • the far-and-light integrated illumination system of the present invention can be flexibly utilized according to customer needs or actual conditions, and the same or similar technical problems as the present invention are solved as long as the same or similar technical solutions as the present invention are adopted, and The technical effects of the same or similar to the present invention are all within the scope of the present invention, and the specific embodiments of the present invention are not limited thereto.
  • the present invention provides a headlight, which may be a low beam headlight or a high beam headlight, the headlamp including at least one linear light source 11 and at least one light reflecting device 70. And at least one concentrating lens 13 is embodied as a low beam headlight when further comprising at least one cut-off visor 14 .
  • the headlight can be implemented as a high beam headlight, and the high beam headlight can also be matched with the above-mentioned anti-glare panel.
  • the light reflecting device 70 reflects at least part of the light emitted by the linear light source 11 at its linear focus F1, and the linear light source 11 is reflected by the reflecting device 70. At least part of the rear light is concentrated to a linear focus F2, and the cut-off light shielding sheet 14 is mounted at the linear focus F2 for shielding light above the cut-off line, and the first collecting lens 13 is Mounting in front of the linear focus F2 and refracting the light of the linear light source 11 by a lens principle finally causes the low beam headlamp to form a low beam spot.
  • the linear light source 11 uses a plurality of LED light sources 111, for example, a five-core LED module in which the LED 111 is a middle color of 1500 Lm and a color temperature of 5700 K, and two 250 Lm warm white light 3000K color temperature single-core ceramic package LED 111, white light Used in combination with warm white light, the color temperature of the whole lamp is lowered, the penetrating ability of the lamp in foggy and rainy days is improved, and the road condition is clearer; all the LED rows 111 are horizontal and the direction of illumination of the LED 111 is The optical axes of the low beam headlights are in the same direction and coincide with the focus F1 of the light reflecting device.
  • LED light sources 111 for example, a five-core LED module in which the LED 111 is a middle color of 1500 Lm and a color temperature of 5700 K, and two 250 Lm warm white light 3000K color temperature single-core ceramic package LED 111, white light Used in combination with warm white light, the color temperature of the whole lamp is
  • the linear light source 11 is a set of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light, warm white light, and Golden light is used in combination to reduce the color temperature of the linear light source.
  • the linear light source 11 is a plurality of sets of horizontally arranged single-core LED modules.
  • the linear light source 11 is a plurality of sets of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light and warm White light and golden light are used in combination to reduce the color temperature of the linear light source.
  • the light reflecting device 70 is a light bucket type focus reflective structure, the opening is small, and the linear light source 11 is reflected by the internal reflecting surface of the reflecting device 70.
  • the inner surface of the light reflecting device 70 is plated with a light reflecting layer to further increase the reflectance and the reflection intensity of the light of the linear light source 11.
  • the light reflecting device 70 includes a reflecting light hopper 71 and two reflective extending portions 72 which are disposed at the same interval and are spaced apart from each other.
  • the reflecting light hopper 71 forms a cavity 700, and the linear light source 11 is irradiated with light.
  • the inside of the reflecting light hopper 71 is reflected, and the reflected light is emitted from the front opening.
  • Each of the reflective extensions 72 includes a first segment 721 and a second segment 722, and the first segment 721 of the reflective extension 72 follows the illumination of the linear light source 11 Extending the two sides of the other end of the reflective hopper 71 outwardly to form the second segment 722, in other words, the first segment 721 of the reflective extension 72 and the A second angle ⁇ 2 is formed between the second segments 722 and a first angle ⁇ 1 is formed between the first segment 721 of the reflective extension 72 and the reflecting light bucket 71.
  • first angle ⁇ 1 ranges from 90° to 270°, preferably 225°
  • second angle ⁇ 2 ranges from 0° to 180°, for example 150°, and is between the reflective light bucket 71
  • An opening flared is formed, and an angle between the first segment 721 of the reflective extension 72 and the reflecting light bucket 71 may be, for example, 225°.
  • the two reflection extensions 72 respectively extend outward from the two sides of the reflector hopper 71, for example 45°, and then inwardly, for example, 30°, such that the reflection extension 72 is For example, 225° is formed between the first segment 721 and the reflecting light bucket 71, and an angle of, for example, 150° is formed between the first segment 721 and the second segment 722 of the reflective extending portion 72.
  • the upper surface and the lower surface of the interior of the reflector hopper 71 respectively include a horizontal line reflective surface 711 and a light-expanding curved surface 712, and the horizontal linear reflective surface 711 and the light-expanding curved surface 712 are used.
  • the horizontal linear reflective surface 711 is adjacent to the linear light source 11
  • the light-expanding curved surface 712 extends from the horizontal linear reflective surface 711 and is located away from the line.
  • the two sides of the interior of the reflector hopper 71 respectively include an elliptical line reflecting surface 713 and a non-elliptical line reflecting surface 714, and the elliptical line reflecting surface 713 and the non-elliptical line reflecting surface 714 are also used to reflect the
  • the light of the linear light source 11 is located near one side of the linear light source 11
  • the non-elliptical linear reflective surface 714 extends from the elliptical curved reflective surface 713 and is located away from the linear light source One side of 11.
  • the upper surface and the lower surface of the interior of the reflecting light bucket 71 respectively include a horizontal linear reflective surface 711 and a light-expanding curved surface 712, wherein the horizontal linear reflective surface 711 is mainly non-elliptical based on an elliptical line.
  • the line combination line is stretched, and the light of the linear light source 11 is concentrated to the line focus F2 through the horizontal line type reflective surface 711 to enhance the center light intensity, and the light expansion curved surface 712 is mainly a Part of the light of the linear light source 11 is moved upward from the linear focus F2, thereby enhancing the distribution of the ground illumination light.
  • the left side surface and the right side surface inside the reflecting light bucket 71 respectively include an elliptical line reflecting surface 713 and a non-elliptical line reflecting surface 714 extending in the longitudinal direction.
  • the elliptical line reflecting surface 713 and the non-elliptical line reflecting surface 714 function to reflect the light of the linear light source 11 and converge to the linear focus F2.
  • the inner surface of the second segment 722 of the reflective extension 72 participates in the reflection of light from the first linear light source 11,
  • the inner surface of the second section 722 of the reflective extension 72 is planar and inclined at an angle inwardly, that is, the reflective extension 72 includes a reflective surface 7221, and the reflective surface 7221 is mainly composed of a plane and The inside is inclined at a certain angle to serve as a collecting surface, so that the light irradiated by the linear light source 11 is reflected to the collecting lens 13 and refracted by the collecting lens 13 to the left and right large-angle ground area.
  • the light of the linear light source 11 irradiated to the outside of the wrap angle of the collecting lens 13 through the reflecting surface 7221 can be re-aggregated to the collecting lens 13 to be refracted to the left and right side illumination regions such as the 40° illumination region.
  • the cut-off line mask 14 includes a substrate 141 and a light shielding shutter 142, and the light shielding shutter 142 is a light shielding layer, and thus the area of the light shielding shutter 142
  • the non-plating reflective film layer is shielded, and the cut-off light shielding sheet 14 is integrally connected with the light reflecting device 70.
  • the cut-off light shielding sheet 14 and the light reflecting device 70 may be detachably connected.
  • the specific embodiments of the present invention are not limited thereto as long as they achieve the same or similar technical effects as the present invention.
  • the reflecting device 70 is disposed 70 as a two-part reflecting unit 70a and a reflecting unit including a symmetrical structure. 70b, the two-part light reflecting units 70a and 70b are respectively mounted on the upper and lower sides of the linear light source 11 to reflect the linear light source 11, so that the total number of product parts can be reduced, so that the near-lower The input cost of the light headlamps.
  • the light reflecting device 70 can also be longitudinally divided into left and right symmetrical, interchangeable structures, which facilitates the plating of the reflective layer on the internal reflective surface of the light reflecting device 70, and can also reduce the total number of product parts. Class, improve productivity.
  • the material of the reflective coating of the reflective surface of the retroreflective device 70 can be selected according to different use requirements, such as metal plating, alloy plating or composite plating, etc., as long as the same or similar technical solutions as the present invention are adopted.
  • the technical problems that are the same as or similar to the present invention are solved, and the technical effects that are the same as or similar to the present invention are all within the scope of the present invention, and the specific embodiments of the present invention are not limited thereto.
  • the linear light source 11 since the opening of the light reflecting device 70 is small, the light from which the linear light source 11 emits the opening directly converges to the collecting lens 13 and is refracted to the ground, so that the linear light source can be
  • the light emitted by 11 is collected in the range of 360°, so the light collection rate is relatively high, so that on the one hand, the brightness of the low beam headlight can be improved, and the power consumption of the whole lamp can be reduced, and at the same time the line is
  • the light emitted by the light source 11 is distributed into a linear focus, and the light on the horizontal axis is dense, so that the distant light of the vehicle is more distributed, the illumination is farther, and the width direction is wider and brighter.
  • the headlight further includes a cover 30, an outer lens 50, and a metal heat sink 40, wherein the cover 30 is used to protect the low beam headlights and extend
  • the headlight has a service life, and the outer cover 30 is capable of shielding the scattered light emitted by the headlights inside.
  • the outer lens 50 is fixedly coupled to the front end of the outer cover 30, and further refracts light emitted by the low beam headlight to improve the illumination effect of the headlight.
  • the outer cover 30 includes a first portion 31 and a second portion 32.
  • the first portion 31 and the second portion 32 are detachably connected to form a receiving cavity 300.
  • the receiving cavity 300 An optical system for housing the headlamps.
  • the second portion 32 serves as a rear end
  • the metal heat sink 40 is disposed inside the second portion 32
  • the first portion 31 serves as a front end, and includes an opening 310, wherein the opening 310 is used for the gathering
  • the light lens 13 is placed and the light of the linear light source 11 is passed therethrough.
  • the outer lens 50 is fixedly connected to the front end of the outer cover 30 by a sealant and connected to the low beam headlight, so that the low beam headlamp has a waterproof and dustproof effect.
  • the linear light source 11 in the low beam headlamp can be directly fixed on the metal heat sink 40. Since the heat transfer speed of the metal heat sink 40 is fast, the arrangement of the metal heat sink 40 can avoid The life of the first linear light source 11 rises rapidly or the heat cannot be dissipated in time.
  • the low beam headlamp of the present invention further includes a metal heat sink 60, and the linear light source 11 is directly fixed to the metal heat sink 60, such as soldering, screwing, etc., preferably, the line
  • the heat conducting surface of the LED of the light source 11 is directly mounted on the large-area metal heat sink 60. Since the metal heat sink 60 has a large surface area, it is advantageous for heat dissipation, and is soldered to the metal heat sink 60.
  • the linear light source 11 is fixedly connected to the metal heat sink 40. Since the contact area of the metal heat sink 60 and the metal heat sink 40 is large, the heat dissipation effect of the first line light source 11 can be further improved, thereby improving the service life of the low beam headlamp.
  • the present invention further provides a headlamp comprising at least one linear light source 21, at least one light reflecting device 80, and at least one collecting lens 13, the reflecting device 80 facing the same At least part of the light emitted by the linear light source 21 is reflected, and at least part of the light reflected by the linear light source 21 through the light reflecting device 80 is concentrated to a linear focus F2, and the collecting lens 13 is mounted on the line The front side of the focus F2 is concentrated by the lens principle to form a spot of horizontal linear high-density light.
  • the linear light source 21 uses a plurality of LEDs 211, wherein the LED 211 is a five-core LED module with a color temperature of 1500 Lm and 5700 K in the middle, and two 250 Lm warm white light 3000K color temperature single-core ceramic package LED 211, white light and warm white light.
  • the LED 211 is a five-core LED module with a color temperature of 1500 Lm and 5700 K in the middle, and two 250 Lm warm white light 3000K color temperature single-core ceramic package LED 211, white light and warm white light.
  • Mixed use reduces the color temperature of the whole lamp, improves the penetrating ability of the lamp in foggy and rainy conditions, and clears the road conditions; all the LEDs 211 are arranged in a horizontal line and coincide with the focus of the first reflecting device.
  • the linear light source 21 is a set of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light, warm white light, and Golden light is used in combination to reduce the color temperature of the linear light source.
  • the linear light source 21 is a plurality of sets of horizontally arranged single-core LED modules.
  • the linear light source 21 is a plurality of sets of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light and warm White light and golden light are used in combination to reduce the color temperature of the linear light source.
  • the light reflecting device 80 is a light bucket type reflector, the opening is small, and the linear light source 21 is reflected by the internal reflecting surface of the light reflecting device 80.
  • the inner surface of the light reflecting device 80 is plated with a light reflecting layer to further increase the reflectance and the reflection intensity of the light of the linear light source 21.
  • the light reflecting device 80 includes a reflecting light bucket 81 and a reflection extending portion 82.
  • the reflecting light bucket 81 forms a cavity 800, and the linear light source 21 can be performed through the inside of the reflecting light bucket 81. Reflected, the reflected light is again opened from the front of the reflecting light bucket 81.
  • the reflective extension 82 includes two reflective collection segments 821 that are substantially identical in structure and spaced apart from each other, and the two reflective collection segments 821 extend outwardly along the illumination direction of the linear light source 21 to the reflective light bucket, respectively.
  • the two sides of the 81 are away from the one end of the linear light source 21 and are bent outward. In other words, each of the reflection collecting sections 82 forms an angle ⁇ with the reflecting light bucket 81, respectively.
  • the angle ⁇ ranges from 90° to 270°, for example 210°.
  • the two reflection collecting sections 82 are respectively extended outward by the reflecting light bucket 81 and bent outward by 30° to form the included angle ⁇ .
  • the upper surface and the lower surface of the inside of the reflecting light bucket 81 respectively include a horizontal linear reflective surface 811 and a light-expanding curved surface 812 adjacent to the linear light source 21,
  • the light-emitting curved surface 812 extends on the horizontal linear reflective surface 811 and is located away from the side of the linear light source 21, and the horizontal linear reflective surface 811 and the light-expanding curved surface 812 are both used to reflect the linear light source. 21 light.
  • the horizontal linear reflective surface 811 is mainly a surface in which a partial non-elliptical combined line is horizontally stretched based on an elliptical line.
  • the light-expanding curved surface 812 mainly moves part of the light of the linear light source 21 upward from the linear focus F2 to enhance ground illumination light distribution.
  • the surfaces on both sides of the reflecting light bucket 81 are mirror images 813.
  • the mirror surface 813 mirrors the light of the linear light source 21 to the horizontal linear reflective surface 811 or the mirror surface of the opposite surface mainly on a plane basis. And finally reflected to the line Type focus on F2.
  • the reflecting light bucket 81 further includes an arcuate groove 810, the surface of the arcuate groove 810 is an intermediate partial rotating reflective surface 814, and the intermediate partial rotating reflective surface 814 is formed on the The middle of the upper surface and the lower surface of the interior of the reflecting light bucket 81 is disposed along the emitting direction of the linear light source 21, and the intermediate partial rotating reflecting surface 814 is a partial rotating surface, which is mainly based on an elliptical line. A face that is rotated by an elliptical combination line.
  • the inner side surface of the reflective collecting section 82 participates in reflecting the light emitted by the linear light source 21, so that the inner side surfaces of the two reflective collecting sections 82 respectively include a collecting surface 821, and the collecting surface 821 is mainly composed of a plane and The light is emitted outwardly at a certain angle for reflecting the light emitted by the linear light source 21 onto the condensing lens 23, and is refracted by the second condensing lens 23 to the left and right large angle ground regions.
  • the linear light source 21 since the opening of the light reflecting device 80 is small, the light from which the linear light source 21 emits the opening directly converges to the collecting lens 23 and is refracted to the ground, so that the linear light source can be
  • the light emitted by 21 is collected in the range of 360°, so the light collection rate is relatively high, so that on the one hand, the brightness of the headlight can be improved, and the power consumption of the whole lamp can be reduced, and at the same time, the linear light source is The light emitted by 21 is distributed into a linear focus.
  • the light on the horizontal axis When implemented as a high beam headlight, the light on the horizontal axis is dense, so that the distant light of the vehicle is more distributed, the illumination is farther, and the width direction is wider and brighter. .
  • the high beam headlight further includes an anti-glare panel 24 disposed at the line focus F2.
  • the anti-glare panel 24 includes a base 241 and an anti-glare baffle 242.
  • the anti-glare baffle 242 is provided with an opening 2420 for the second linear light source 21 The light passes through to form the high beam spot.
  • the opening 2420 can be set to any shape such as a triangle, a rectangle, or a circle according to actual conditions or customer requirements, as long as the technical effect of the same or similar to the present invention is achieved, and the specific embodiment of the present invention is not limited thereto.
  • the anti-glare area I must have a certain brightness, but it must have an upper limit to prevent the glare effect from affecting the observation of the road condition, and the line 1 line of 3° in the middle requires minimum and maximum brightness requirements, thereby ensuring Sufficient brightness to see the street sign information above, without affecting the glare of the opposite vehicle driver and pedestrian when the vehicle turns.
  • the anti-glare panel 24 is a transparent, opaque or translucent material or a color changing glass.
  • the glare-area light is shielded by the opaque anti-glare panel 24; the localized area is roughened by the transparent, translucent anti-glare panel 24, or the granulated structure weakens the light in the glare zone;
  • the molecules of the liquid crystal film are disordered, and the light cannot pass through the color-changing glass to weaken the light;
  • the color-changing glass is energized, the molecules of the liquid crystal film are arranged in order, and the light is enhanced by the color-changing glass.
  • the reflecting device 80 is arranged to include two parts, that is, the upper partial reflecting unit 80a and The lower part of the retroreflective unit 80b can therefore reduce the total class of product parts, so as to reduce the input cost of the high beam headlamps.
  • the light reflecting device 80 can also be vertically divided into left and right symmetrical, interchangeable structures, which facilitates the plating of the reflective layer on the internal reflective surface of the light reflecting device 80, and can also reduce the total number of product parts. Class, improve productivity.
  • the material of the reflective coating of the reflective surface of the retroreflective device 80 can be selected according to different use requirements, such as metal plating, alloy plating or composite plating, and the reflective device 80 can also be configured as an integral structure according to requirements. .
  • the same or similar technique as the present invention is solved as long as the same or similar technical solutions as the present invention are employed.
  • the technical problems that are the same as or similar to the present invention are all within the scope of the present invention, and the specific embodiments of the present invention are not limited thereto.
  • the optical density of the light reflecting device 80 is higher and the volume is smaller, it is more advantageous to be a liquid crystal lattice anti-glare system, and the liquid crystal screen is more Small, its high-beam system anti-glare board is a high-density dot-matrix LCD screen, which controls the dot position of the liquid crystal screen through the circuit, and then controls the shape of the bright and dark dot matrix above the horizontal line, thereby achieving the purpose of anti-glare.
  • the headlamp of this preferred embodiment can also be implemented as a low beam headlamp when the anti-glare panel 24 is replaced by a cut-off line mask.
  • the headlamp further includes a cover 30, an outer lens 50, and a metal heat sink 60, wherein the cover 30 fixes the collecting lens 23, thereby facing the high beam.
  • the headlights are protected to extend the life of the high beam headlamps.
  • the outer lens 50 is fixedly coupled to the front end of the outer cover 30, and further refracts light emitted by the high beam headlight, thereby improving the illumination effect of the high beam headlight.
  • the outer cover 30 includes a first portion 31 and a second portion 32.
  • the first portion 31 and the second portion 32 form a receiving cavity 300 for receiving the High beam headlights.
  • the second portion 32 is a rear end
  • the metal heat sink 40 is disposed inside the second portion 32
  • the first portion 31 serves as a front end, and includes an opening 310, wherein the opening 310 is used for the The condensing lens 23 is placed and the light of the linear light source 21 is passed therethrough.
  • the outer lens 50 is fixedly coupled to the front end of the outer cover 30 by a sealant, thereby providing the headlamp with a waterproof and dustproof effect.
  • the linear light source 21 in the high beam headlamp can be directly fixed on the metal heat sink 40. Since the heat transfer speed of the metal heat sink 40 is fast, the arrangement of the metal heat sink 40 can be avoided.
  • the linear light source 21 has a rapid rise in temperature or a decrease in the life caused by the inability to dissipate heat in time.
  • the headlamp of the present invention further includes a metal heat sink 60, and the linear light source 21 is directly fixed to the metal heat sink 60, such as soldering, screwing, etc., preferably, the linear light source
  • the heat conducting surface of the LED of 21 is directly mounted on the large-area metal heat sink 60. Since the metal heat sink 60 has a large surface area, it is advantageous for heat dissipation, and the wire soldered to the metal heat sink is further
  • the light source 21 is fixedly connected to the metal heat sink 40. Since the contact area of the metal heat sink 60 and the metal heat sink 40 is large, the heat dissipation effect of the line light source 21 can be further improved, thereby improving the service life of the high beam headlamp.
  • the present invention further provides a method for providing a low beam spot, comprising the following steps:
  • a line type light source 11 emits light L
  • a light reflecting device 70 reflects the light L emitted by the linear light source 11;
  • a condensing lens 13 refracts the light L emitted by the linear light source 11;
  • the light L emitted by the linear light source 11 includes a first partial light L1 and a second partial light L2, and the first partial light L1 is reflected by the light reflecting device 70 to be refracted by the collecting lens 13, The second portion of the light L2 is directly directed to the collecting lens 13 for refraction to finally form a low beam spot.
  • the method of illuminating the low beam lamp further includes a step:
  • the cut-off line mask 14 is shielded.
  • the reflective surface of the first light reflecting device 70 is plated with a light reflecting layer, thereby improving the light reflecting efficiency of the first light reflecting device 70.
  • the material of the reflective coating of the reflective surface can be selected according to different use requirements, such as metal plating, alloy plating or composite plating, and the reflective device 70 can also be provided as a unitary structure.
  • the reflective surface of the first light reflecting device 70 includes an intermediate horizontal reflective surface 711, a light-expanding curved surface 712, an elliptical curved reflecting surface 713, and a non-elliptical reflecting surface. 714 and a collection surface 715 are formed.
  • the intermediate horizontal line type reflecting surface 711 is mainly a surface obtained by stretching a partial non-elliptical line combining line based on an elliptical line, and the first line type light source 11 is concentrated to the line type focus F2 through the surface to enhance a central light intensity; the linear light source 11 is concentrated on the linear focus F2 via the elliptical reflection surface 713 and the non-elliptical reflection surface 714; the light expansion curved surface 712 is mainly a partial light Moving upward from the linear focus F2 to enhance ground illumination light distribution; the collection surface 715 is mainly composed of a plane and inclined at an angle to reflect light onto the collecting lens 13, and then The condensing lens 13 is refracted to the left and right large angle ground regions; since the opening of the first light reflecting device 70 is small, the light of the linear light source 11 can directly exit the opening and directly refract through the condensing lens 13 to ground.
  • the first light reflecting device 70 can collect all the light in the 360° solid angle emitted by the first linear light source 11 , and the high light collecting rate can improve the brightness of the light fixture, thereby reducing the overall light fixture. Power consumption, at the same time, the light emitted by the first linear light source 11 is distributed to the linear focus F2, and the light on the horizontal axis is dense, so that the distant light of the vehicle is distributed more, the illumination is farther, and the width direction It is also wider and brighter.
  • the first partial light L1 reflected by the first light reflecting means 70 includes the following parts:
  • the second partial light L2 and the partial light L11-L14 are both located within a wrap angle of the collecting lens 13, and the partial light L15 is located outside the wrap angle of the collecting lens 13.
  • the remaining portion of the light is blocked by the cut-off line mask 14 and cannot be emitted outward, thereby serving to form the low beam stop to form a cut-off line.
  • the left and right light spot widths of 10,000 cd are increased to 18 degrees on the left and right sides to achieve a wider, Brighter visual requirements, while the central area light intensity increased to more than 50,000 cd, so that the central area and the right driving rules are farther away from the distance, and the cut-off line is obvious, so it can avoid dazzling the opposite driver and pedestrian Head.
  • the portion of the light L11 in the first partial light L1 is emitted from the linear light source 11 and reflected by the intermediate horizontal reflective surface 711, and is reflected directly to the collecting lens 13 for refraction.
  • the part of the light L12 in the first partial light L1 is emitted from the linear light source 11 and reflected by the light-expanding curved surface 712, and then refracted by the collecting lens 13;
  • the first partial light L1 The portion of the light L13 emitted from the linear light source 11 is reflected by the elliptical line reflecting surface 713 and then reflected by the intermediate horizontal reflecting surface 711, and then refracted by the collecting lens 13;
  • the part of the light L14 in the first partial light L1 is emitted from the linear light source 11 and reflected by the non-elliptical reflection surface 714 to the collecting lens 13 for refracting; in the first partial light L1
  • the portion of the light L15 is emitted from the linear light source 11 and reflected by the collecting surface 7
  • the present invention further provides a method for providing a high beam spot, comprising the following steps:
  • a line type light source 21 emits light M
  • a light reflecting device 80 reflects the light M emitted from the linear light source 21;
  • a condensing lens 23 refracts the light M emitted by the linear light source 21;
  • the light M emitted by the linear light source 21 includes a first partial light M1 and a second partial light M2, and the first partial light M1 is reflected by the light reflecting device 80 to be refracted by the collecting lens 23, The second portion of the light M2 of the second linear light source emission 21 is directly directed to the condensing lens 23 for refraction to finally form a high beam spot.
  • the illumination method of the high beam further includes a step:
  • An anti-glare panel 24 is provided such that the light emitted by the high beam has an anti-glare region.
  • the anti-glare panel 24 is disposed at the line focus F2.
  • the first partial light M1 passing through the light reflecting device 80 includes the following paths:
  • the linear light source 21 After the linear light source 21 is emitted, it is reflected by the light-expanding curved surface 812, and then a part of the light M12 of the collecting lens 23;
  • the condensing lens 23 or the mirror surface 813 that faces the horizontal linear reflective surface 811 or the opposite surface is projected onto the condensing lens 23 again. a part of the light M13;
  • the portion of light M15 that is reflected by the collecting surface 821 and that is reflected by the linear light source 21 to the collecting lens 23 is emitted from the linear light source 21.
  • the second portion of the light M2 and the partial light M11-M14 of the first partial light M1 are both located within a wrap angle of the collecting lens 23, and the portion of the light M15 is located at the collecting lens 23. Outside the wrap angle range.
  • the part of the light M11 in the first partial light M1 is emitted from the linear light source 21 and then reflected by the horizontal linear reflective surface 811, and then reflected directly to the collecting lens 23 for refraction; the first part Light M1
  • the part of the light M12 is emitted from the linear light source 21, reflected by the light-expanding curved surface 812, and then refracted by the collecting lens 23; a part of the light M13 in the first partial light M1 is from the After the linear light source 21 is emitted, it is reflected by the mirror surface 813 and then reflected by the horizontal linear reflective surface 811 or the opposite mirror surface 813 and then refracted by the collecting lens 23, or through the mirror surface.
  • the 813 is reflected and then refracted by the collecting lens 23; a part of the light M14 in the first partial light M1 is emitted from the linear light source 21 and reflected by the intermediate partial rotating reflective surface 814 to the collecting lens 23 Refraction is performed; a part of the light M15 in the first partial light M1 is emitted from the linear light source 21, reflected by the collecting surface 821, and then refracted by the collecting lens 23; the second partial light M2 After being emitted from the linear light source 21, it is directly emitted to the collecting lens 23 for refraction, thereby forming the high beam spot.
  • the partial light M11-M14 in the first partial light M1 can be concentrated to the linear focus F2 after being reflected by the light reflecting device 80, thereby improving the illumination effect of the high beam.
  • the near-infrared light integrated illumination system includes at least one linear light source 411 and at least one linear focus reflector 412. Wherein the position of the linear light source 411 coincides with the linear focus F1 of the linear focus reflector 412, the linear focus reflector 412 capable of concentrating part of the light of the linear light source 11 to the linear focus F2, the far and near light integrated illumination system can form a low beam spot or a high beam spot.
  • the integrated illumination system of the present invention further includes at least one condensing lens 413 disposed in front of the linear focus F2.
  • the cut-off line mask 414 is mounted on the line-type focus reflector 412 and disposed along the line focus F2, and The cut-off visor 414 is fixedly connected to the electromagnetic valve 416, and the cut-off visor 414 is rotated by the electromagnetic valve 416 at the linear focus F2, so that the linear light source 411 is directly emitted.
  • Light and light reflected by the linear focus reflector 412 are partially shielded by the cut-off line mask 414 or partially pass through the area of the cut-off line mask 414, and then formed by the refraction of the collecting lens 413.
  • the near-infrared light integrated illumination system is used for vehicle illumination.
  • the vehicle may be a road vehicle such as a car, or a surface vehicle such as a ship, or applied to an air vehicle.
  • the linear focus reflector is used to reflect the linear light source
  • the linear light source 411 is arranged perpendicular to the optical axis of the system and horizontally arranged, and the linear focus of the linear focus reflector 412 F1 coincides, at least a part of the light emitted by the linear light source 411 is reflected by the linear focus reflector 412 and concentrated to another linear focus F2 of the linear focus reflector 412, and the collecting lens 413 is mounted.
  • the light passing through the linear focus F2 is concentrated by the lens principle to form a spot of horizontal linear high-density light in front of the linear focus F2; the cut-off shading 414 is mounted at the linear focus F2
  • the cut-off shading 414 is mounted at the linear focus F2
  • part of the light passes through the cut-off line 414, and is refracted by the condensing lens to form a low-light area above the cut-off line, which forms a low-beam light. spot.
  • the linear light source 411 is horizontally arranged by using a plurality of LEDs.
  • the five-core LED module may be a color center of 1500Lm and 5700K.
  • the horizontal line type and the light emitting direction of the LED are in the same direction as the optical axis of the linear light source 411, and coincide with the focus of the linear focus reflector 412, thereby increasing the total luminous flux of the linear light source 411.
  • the linear light source 411 may be a set of horizontally arranged multi-core LEDs, wherein the LEDs are white light, or warm white light, or a mixture of white light and warm white light. Use, or a mixture of white light, warm white light, and golden light to reduce the color temperature of the linear light source 411, thereby improving the illumination distance, road surface clarity, and penetration capability of the near-infrared light integrated illumination system, and protecting the driver Retina.
  • the linear light source 411 is a plurality of sets of horizontal-line-arranged single-core LED modules, or a set of horizontal-line-arranged single-core LED modules and an upper left or
  • the LED light source formed by the combination of the right half of the horizontal line type single-core LED module is suitable for the low beam optical system.
  • the LEDs can be arranged in a line shape, the number of which is not limited, and thus can provide a relatively high optical density and total The luminous flux, thereby reducing the current of a single LED, so that the LED will have higher luminous efficacy, and the illumination width and illumination distance will be correspondingly improved.
  • the linear focus reflector 412 includes a main reflective structure 4121 and a sub-reflective structure 4122, wherein the main reflective structure 4121 includes two pieces.
  • the sub-reflective structure 4112 includes two sub-reflectors 41221 having substantially the same structure, and the two sub-reflectors 41221 are disposed on the side of the two main reflectors 41211.
  • the two main reflectors 41211 and the two sub-reflectors 41221 are formed into a reflective cavity.
  • the reflective cavity has an opening 4120 through which light emitted by the linear light source 411 can pass.
  • the linear light source 411 extends horizontally and is disposed toward the opening 4120, so that light directly emitted from the linear light source 411 directly from the opening 4120 without being reflected by the linear focus reflector 412 directly reaches the poly
  • the light lens 413 is refracted toward the road surface.
  • the condensing lens 413 is located at a position where the front side of the linear focus F2 can condense.
  • the linear focus reflector 412 may also be other reflective structures capable of forming the linear focus F1 and F2, that is, not limited to the above-mentioned reflective structure having four directions, and It is a reflector structure with other numbers or shapes.
  • each of the sub-reflecting plates 41021 includes a main body portion 412211 and an extending portion 412212.
  • the main body portion 412211 and the main reflector 41211 form the reflective cavity, and the inner side surface of the main body portion 412211 includes a mirror reflection.
  • the surface 4122111 is configured to mirror reflection of the light emitted by the linear light source 411.
  • the extending portion 412212 further includes a transition portion 412212a and an extension portion 412212b.
  • the transition portion 412212a extends upwardly to the main body portion 412211 and is outwardly bent.
  • the transition portion 412212a is formed between the transition portion 412212a and the main body portion 412211.
  • first angle ⁇ 1 ranges from 90° to 270°
  • extension portion 412212b extends upwardly to the transition portion 412212a and is bent inward
  • extension portion 412212b is
  • a second angle ⁇ 2 is formed between the transition portions 412212a, and the second angle ⁇ 2 ranges from 0° to 180°.
  • the mirror reflection surface 4122111 is a flat surface.
  • those skilled in the art may also set the inner side surface of the main body portion 412211 (ie, the mirror reflection surface 4122111) as a surface having a curvature.
  • the mirror reflection surface 4122111 is provided, The light emitted from the linear light source 411 can be reflected.
  • the technical problems that are the same as or similar to the present invention are solved as long as the same or similar technical solutions as the present invention are employed, and the same or similar technical effects as the present invention are achieved, and are within the scope of the present invention.
  • each of the main reflectors 41211 includes a horizontal linear reflective surface 412111 and a light-expanding curved surface 412112.
  • the horizontal curved reflective surface 412111 is such that the inner surface of the primary reflective reflector 41211 is close to One end of the linear light source 411 extends toward the other end of the opening 4120.
  • the horizontal linear reflective surface 412111 is mainly a surface in which a partial non-elliptical line is combined and stretched based on an elliptical line, and the light-expanding curved surface 412112 extends outwardly from the horizontal linear reflective surface 412111 and is located on the main reflective plate. The tail of 41211.
  • the main body portion 412211 of the sub-reflecting plate 41221 includes the mirror-reflecting surface 4122111, and the mirror-reflecting surface 4122111 is an end of the main body portion 412211 near the end of the linear light source 411 toward the opening 4120. The other end extends.
  • the extending portion 4122121 extends outwardly relative to the main body portion 412211, and the transition portion 412212a of the extending portion 412212 and the inner side surface of the extending portion 412212b collectively form a collecting surface 4122121, the collecting surface 4122121 Located on the inner side of the extending portion 412212, the collecting surface 4122121 is also inclined outward and forms the second angle ⁇ 2 with the main body portion 412211.
  • the near-infrared light integrated illumination system of the present invention can collect and utilize all the light emitted within the 360-degree solid angle of the linear light source 411, thereby improving the light collection rate, thereby achieving energy saving, durability, and environmental protection effects. .
  • the linear focus reflector 412 is in the shape of a light bucket, but the linear focus reflector of the present invention is not limited to the light bucket shape.
  • Those skilled in the art can also set the linear focus reflector 412 to have an appearance of other shapes, such as a sphere shape or the like, as long as the inside thereof can provide the above-described reflective surface structure forming the line-type focal points F1 and F2.
  • the vertical cut surface of the horizontal line reflective surface 412111 is an elliptical line, or the vertical cut surface is composed of an elliptical line and a partial non-elliptical line, or the vertical cut surface is a non-elliptical line reflective surface.
  • Light is reflected to the linear focus F2, or particles are formed on the basis of the horizontal linear reflective surface 412111.
  • the horizontal line type reflective surface 412111 may be a straight line type, or a line type and a microstrip arc (such as within 5 radians) to increase the light distribution at a vertical angle.
  • the mirror reflection surfaces 4122111 on both sides of the linear focus reflector 412 are each based on a straight line.
  • the mirror reflection surface 4122111 is a stretching surface composed of a part of non-elliptical lines based on an elliptical line, that is, including an elliptical reflection surface 4122111a and a
  • the non-elliptical line reflecting surface 4122111b, or its further microstrip arc increases the light distribution at a vertical angle.
  • the elliptical line reflecting surface 4122111a extends from the end of the main body portion 412211 near the first linear light source 411 toward the other end of the opening 4120, and the non-elliptical reflecting surface 4122112b extends outwardly.
  • the elliptical line reflecting surface 4122111a is located at the inner end of the main body portion 412211.
  • the extension 412212 extends inwardly relative to the body portion 412211.
  • the inner side of the extending portion 412212 is the collecting surface 4122121, and the collecting surface 4122121 is located inside the extending portion 412212, so the collecting surface 4122121 is also inclined inward and forms the second angle ⁇ 2.
  • the surface shape of each of the collecting surfaces 4122121 is a vertical plane, or an inclined surface, or a curved surface, or a strip curved surface. Wait.
  • the cut-off line forming surface of the cut-off line mask 414 has a face shape of 15° oblique line, 45° oblique line, or 90° right angle, or 0° horizontal line.
  • the cut-off louver 414 includes a horizontal member 414a and a vertical member 414b, wherein one end of the horizontal member 414a and one end of the vertical member 414b coincide with each other and the horizontal member 414a and the vertical member 414b are mutually
  • the vertical arrangement is such that the cut-off louvers 414 are substantially L-shaped.
  • the cut-off line 414 includes at least one rotating hole 4141, at least one moving hole 4142, at least one window opening 4143, and at least one saw blade 4144, wherein the cut-off wire 414 is mounted on the linear focus reflective
  • the 412 is disposed on the cut-off line forming surface
  • the electromagnetic valve 416 includes a magnetic rod 4161
  • the electromagnetic rod 4161 is fixedly disposed on the electromagnetic valve 416.
  • the moving hole 4142 is fixedly connected to the electromagnetic rod 4161 of the electromagnetic valve 416, and the rotating hole 4141 is located at a coincident end of the horizontal member 414a and the vertical member 414b, and the cut-off line shielding sheet 414 can Rotation is performed along the rotation hole 4141.
  • the electromagnetic valve 416 when the electromagnetic valve 416 is driven to move the electromagnetic rod 4161, the electromagnetic valve 416 can push the cut-off wire 414 to move along the moving hole 4142 by pushing the electromagnetic rod 4161.
  • the cut-off line mask 414 is rotated along the rotating hole 4141 so that light previously blocked by the cut-off line mask 414 passes through the cut-off line mask 414 to the collecting lens 413. Refraction is performed to eventually form a high beam spot.
  • the sawtooth piece 4144 is triangular-like, and the surface of the sawtooth piece 4144 is provided with a stretched zigzag structure for reducing the proportion of blue light at the cutoff line, and at the cutoff point.
  • the line mask 414 is not blackened or grayed, the light projected onto the saw blade 4144 is corrected so that the reflected and diffused light is not projected onto the collecting lens 413. Thereby the resulting cut-off line is clearer.
  • the linear focus reflector 412 since the opening of the linear focus reflector 412 is small, the internal reflective surface is deep, and the linear focus is reflected in order to realize the reflective surface plating reflective layer.
  • the 412 is arranged to include an upper partial linear focus reflector 412a and a lower partial linear focus reflector 412b, and the upper partial linear focus reflector 412a and the lower partial linear focus reflector 412b are respectively mounted on the The upper and lower sides of the linear light source 411 are described to reflect the linear light source 411.
  • the optical structures of the upper partial linear focus reflector 412a and the lower partial linear focus reflector 412b are substantially the same, each having a portion of the horizontal linear reflective surface 412111, the light-expanding curved surface 412112, and the mirror image Reflecting surface 4122111.
  • the deformation of the linear focus reflector 412 is designed to increase the illumination brightness of the left and right wide angles of the road surface.
  • the mirror reflection surface 4122111 of the main body portion 412211 can be deformed into an elliptical reflection surface and a non-elliptical line. a reflecting surface, the linear light source 411 is emitted to the elliptical reflecting surface and the non-elliptical reflecting surface, and is directly reflected to the collecting lens 413, and is refracted by the collecting lens 413 to the left and right wide angles of the ground.
  • the deformation is designed as a non-elliptical reflection surface to increase the illumination of the ground at a wide angle.
  • the window opening 4143 is disposed at the horizontal member 414a and at a substantially center of the horizontal member 414, so that light irradiated from the linear light source 411 can pass through the window opening. Slot 4143.
  • the near-light integrated illumination system of the present invention further includes a filter 415 fixedly disposed in the window opening 4143 of the cut-off line 414, and is shielded by the cut-off line. Part of the light of the sheet 414 passes through the filter 415 in the window opening 4143, thereby weakening and diffusing light onto the collecting lens 413, and then passing through the collecting light.
  • the mirror 413 is refracted to a dark area above the cut-off line to form a weak light zone Zone ⁇ to enhance the light intensity of P1 to P6 without enhancing the light intensity of the P7, P8, B50L and HV test points, so that the opposite pedestrian can see the front The vehicle has to pass.
  • the sawtooth piece 4144 on the cut-off line forming surface can shield the light having a large incident angle through the collecting lens 413, thereby reducing the proportion of blue light at the cut-off line and eliminating the blue phenomenon at the cut-off line.
  • the filter 415 is made of an opaque material, or is made of a translucent material, or is made of a diffusing material, or is made of a white material, etc., as long as those skilled in the art
  • the technical solutions which are the same as or similar to the present invention are solved, and the technical problems that are the same as or similar to the present invention are solved, and the technical effects that are the same as or similar to the present invention are achieved, and are all within the scope of the present invention.
  • the filters described are not limited by the materials.
  • the window opening 4143 has a rectangular shape, and the shape of the filter 415 is consistent with the shape of the window opening 4143 and is matched with the window opening 4143. Thereby, the cut-off line mask 414 can be fixed in the window opening 4143.
  • the shape of the window opening 4143 may be specifically formed into a square shape, a circular shape, an elliptical shape, or the like, or may be a plurality of square, circular, elliptical or the like or a combination thereof.
  • the shape of the filter 415 may also be implemented as a square, a circle, an ellipse or the like, or may be a plurality of square, circular, elliptical or the like, or a combination thereof, or a shape such as a trademark or a character. In other words, the shape of the filter 415 is not limited by the shape and number of the window opening 415.
  • the condensing lens 413 is an optical lens that eliminates the blue phenomenon, and includes an input optical surface 4133, an output upper optical surface 4131, and an output lower optical surface. 4132. More preferably, the input optical surface 4133 of the concentrating lens 413 is a planar or non-planar optical surface, the output upper semi-optical surface 4131 is above the central horizontal axis and is a concentrating surface, and the output lower semi-optical surface 4132 is at the central horizontal axis. Below, it is a profiled surface, a non-rotating surface.
  • the central section of the lower optical surface 4132 output by the collecting lens 413 is divided into a plurality of optical curves 41321, 41322, 41323, ... 4132*, and the setting parameters of the present invention are as follows: 41321 lateral optical surface light micro Lower offset range: 0° to 0.05°, 41322 lateral optical surface light slightly downward biased range: 0.05° to 0.1°, 41323 laterally several optical surface light slightly downward biased range: 0.1° to 0.15°, 4132* lateral optical surface light The range is slightly downward: 0.05 ⁇ *°-0.05° to 0.05 ⁇ *°, or other parameters.
  • the condensing lens 413 is an optical lens for eliminating the blue phenomenon
  • the output lower optical surface 4132 is modified so that the blue light of the output optical surface 4132 is slightly lower than the output upper optical surface.
  • the yellow light outputting the upper semi-optical surface 4131 completely covers the blue light of the output optical surface 4132
  • the yellow light of the output optical surface 4132 completely covers the blue light outputting the upper semi-optical surface 4131, and finally forms a blue-free phenomenon at the cut-off line. Spot.
  • the output lower semi-optical surface 4132 is modified such that the blue light output to the lower semi-optical surface 4132 is parallel to or slightly lower than the yellow light of the upper semi-optical surface 4131, and the upper half 4131 optical surface is output.
  • the yellow light completely covers the blue light outputting the lower semi-optical surface 4132, and the yellow light outputting the lower semi-optical surface 4132 completely covers the blue light outputting the upper semi-optical surface 4131, eventually forming a spot where there is no blue phenomenon at the cut-off line.
  • an optical lens for eliminating the phenomenon of blue is a white light LED light source, which is mixed with blue light by a blue light by a blue light, and thus is mainly composed of yellow light and blue light.
  • the same optical material has different refractive indices for different wavelengths. The longer the wavelength, the lower the refractive index, and the shorter the wavelength, the higher the refractive index.
  • Parallel light L4101Y'...L4102Y'...L4103Y' and parallel light L4201B'...L4202B'...L4203B are mixed to form a non-overflow blue phenomenon spot; L4101B'...L4102B'...L4103B' which is inclined downward and 'L4201Y'...L4202Y which is inclined downward '...L4203Y' is mixed to form a speckle-free blue spot, so that there is no blue phenomenon at the cut-off line.
  • the output lower semi-optical surface 4132 is a modified curved surface
  • the output upper semi-optical surface 4131 may be a modified curved surface
  • the output upper semi-optical surface 4131 and the output lower semi-optical surface 4132 may be corrected.
  • the face, or input optical surface 4133 is a modified surface.
  • the working principle of the second embodiment of the near-infrared light integrated illumination system of the present invention is as follows:
  • a part of the light emitted by the linear light source 411 is reflected by the different faces of the linear focus reflector 412 one or more times, and then reaches the cut-off line mask 414, and the cut-off line mask 414 will cut off the line.
  • the upper light is shielded, and the remaining light reaches the condensing lens 413 for refraction to form the low beam spot;
  • the other part of the light emitted by the linear light source 411 directly reaches the cut-off line mask 414.
  • the cut-off line mask 414 shields the light above the cut-off line, and the remaining light reaches the collecting lens 413 for refraction, thereby Forming the low beam spot;
  • the electromagnetic valve 416 is driven, and the electromagnetic rod 4161 drives the cut-off line 316 to rotate under the driving of the electromagnetic valve 416, so that the light shielded by the cut-off line 414 is shielded. All of the condensing lenses 413 can be refracted to form the high beam spot. In this way, the switching of the high beam spot and the low beam spot is performed again by driving the reset of the solenoid valve 416, so that the high beam effect and the low beam effect can be quickly realized.
  • the near-infrared light integrated illumination system further includes a housing 430, the housing 430 includes a first portion 431 and a second portion 432, the first portion 431 and the second portion
  • the 432 forms a receiving chamber 4300 for accommodating the high beam headlights.
  • the second portion 432 is a rear end
  • the metal heat sink 440 is disposed inside the second portion 432
  • the first portion 431 serves as a front end, and includes an opening 4310 for the
  • the condensing lens 413 is placed and the light of the linear light source 411 is passed therethrough.
  • the cover 430 can shield the scattered light emitted by the linear light source 411 from the inside of the accommodating cavity 4300, so that the near-light integrated illumination system has a stronger illumination effect.
  • the far-and-light integrated illumination system further includes an outer lens 450 fixedly disposed at a front portion of the outer cover 430, thereby providing the headlamp with a waterproof and dustproof effect.
  • the light emitted by the linear light source 411 is refracted by the condensing lens 413 and then further refracted by the outer lens 450.
  • the outer lens 450 is fixedly coupled to the front end of the outer cover 430 by a sealant to form an integral body with the near-infrared light integrated illumination system.
  • the outer lens 450 is fixedly connected to the front end of the outer cover 430 by a sealant, thereby shielding the linear light source 411, the linear focus reflector 412, and the cutoff line.
  • the sheet 414, the solenoid valve 416, and the filter 415 have a waterproof and dustproof effect.
  • the specific embodiment of the present invention is not limited thereto, and those skilled in the art may fix the outer lens 450 to the front end of the outer cover 430 in any manner on the basis of the above disclosure, as long as the same as the present invention is adopted.
  • the technical solutions that are the same or similar to the present invention and the technical effects that are the same as or similar to the present invention are all within the protection scope of the present invention, and the specific embodiments of the present invention are not This is limited.
  • the present invention further includes a front position light optical lens 492 and a front position light source assembly 491, the front position light optical lens 492 and the front position light source assembly 491 being sequentially fixedly disposed on the outer lens 450 is interposed between the outer cover 430 to further improve the illumination effect of the near-infrared light integrated illumination system.
  • the present invention further includes a heat sink 440, which is preferably made of a metal material to increase the heat dissipation effect of the heat sink.
  • the linear light source 411 is fixedly connected to the heat sink 440 to dissipate heat generated by the linear light source 411, and the heat sink 440 and the outer cover 430 are fixedly connected to the outer cover by a sealant. 430.
  • the linear light source 411 in the near-light integrated illumination system can be directly fixed to the heat sink 440. Since the heat transfer speed of the heat sink 440 is fast, the arrangement of the heat sink 440 can avoid The temperature of the linear light source 411 rises rapidly or the life caused by the heat cannot be dissipated in time.
  • the present invention further includes a metal heat sink 460, and the heat conducting surface of the line light source 411 is fixedly mounted on the metal heat sink 460, thereby further improving the heat dissipation effect on the line light source 411.
  • the specific structure and material of the heat sink 440 can be determined according to the actual situation on the basis of the above disclosure, and the same or similar technical solutions as the present invention are adopted, and the same as the present invention is solved.
  • the technical problems that are similar to or similar to the present invention are within the scope of the present invention, and the specific embodiments of the present invention are not limited thereto.
  • the present invention further provides an illumination method for a near-infrared integrated illumination system for the near-infrared integrated illumination system
  • FIG. 57 is a schematic flow diagram of the illumination method, including the following steps:
  • the linear light source 411 emits light L
  • the linear focus reflector 412 reflects the light L emitted by the linear light source 411;
  • the condensing lens 413 refracts the light L emitted by the linear light source 411;
  • the light L emitted by the linear light source 411 includes a first partial light L41 and a second partial light L42.
  • the first partial light L41 is reflected by the linear focus reflector 412 to the collecting lens 413 for refraction.
  • the second portion of the light L42 is directly reflected to the collecting lens 413 for refracting, and the light above the cut-off line is shielded by the cut-off line mask 414 to finally form a low-beam spot; the electromagnetic valve 416 is energized to move it.
  • the electromagnetic rod 4161 pushes the cut-off line ray 414 to rotate, and the cut-off line forming surface moves downward.
  • the light emitted by the linear light source 411 passes under the focus area of the condensing lens 413 to form a high beam spot.
  • the electromagnetic rod 4161 is reset by de-energizing the solenoid valve 416, and the cut-off line mask 414 is rotationally reset to restore the low beam spot.
  • the illumination method of the near-infrared light integration further includes a step:
  • the first partial light L41 reflected by the first linear focus reflector 412 includes the following parts:
  • the second partial light L42 and the partial light L411-L414 are located within a wrap angle of the collecting lens 413,
  • the partial light L415 is located outside the wrap angle of the condensing lens 413.
  • the remaining portion of the light is blocked by the cut-off line mask 414 and cannot be emitted outward, thereby serving to form the low beam stop to form a cut-off line.
  • the left and right light spot widths of 10,000 cd are increased to 18 degrees to the left and right, Achieve wider and brighter visual requirements, while the central area is increased to more than 50,000 cd, so that the center area and the right driving rule are farther away, and the cut-off line is obvious, thus avoiding the opposite driving The staff and pedestrians are dazzling.
  • the portion of the light L411 in the first partial light L41 is emitted from the linear light source 411 and then reflected by the horizontal linear reflective surface 412111, and is reflected directly to the collecting lens 413 for refraction;
  • the part of the light L412 in the first partial light L41 is emitted from the linear light source 411 and reflected by the light-expanding curved surface 412112, and then refracted by the collecting lens 413;
  • the first partial light L41 is The portion of the light L413 is emitted from the linear light source 411, reflected by the mirror reflection surface 4122111 to the horizontal linear reflection surface 412111, and concentrated on the linear focus F2, and then to the collecting lens.
  • the part of the light L414 in the first partial light L41 is emitted from the linear light source 411 and reflected by the mirror reflection surface 4122111 to the condensing lens 413 for refracting; the first partial light
  • the portion of the light L415 in the L41 is emitted from the linear light source 411 and reflected by the collecting surface 4122121 to the collecting lens 413 for refracting; the second partial light L42 is emitted from the linear light source 411.
  • the cut-off line mask 414 Directly after It is emitted to the collecting lens 413 for refraction, and part of the light is blocked by the cut-off line mask 414 and cannot be emitted outward, so that the low beam spot forms a cut-off line.
  • the electromagnetic valve 416 is energized to move the electromagnetic rod 4161, and the cut-off line ray 414 is pushed to rotate, so that the cut-off line forming surface moves downward, and the light passes through the focus area of the condensing lens 413 to form a high beam spot.
  • the electromagnetic rod 4161 is reset by the power off of the solenoid valve 416, so that the cut-off line mask 414 is rotated and reset, and the low beam spot is restored.
  • the present invention further includes a headlamp comprising at least one linear light source 411, at least one light reflecting device 470, and at least one collecting lens 413, further comprising at least one cutoff
  • a headlamp comprising at least one linear light source 411, at least one light reflecting device 470, and at least one collecting lens 413, further comprising at least one cutoff
  • the line mask 414 is lined, it is implemented as a low beam headlamp.
  • a solenoid valve 416 is further included for driving the cut-off louver 414 to rotate relative to the light-reflecting device 470 without blocking light to form a cut-off line
  • the headlamp can be implemented as a high beam front Light up.
  • the light reflecting device 470 emits the line light source 411 located at its line focus F1 to A portion of the light is reflected, and at least part of the light reflected by the linear light source 411 through the light reflecting device 470 is concentrated to a linear focus F2, and the cut-off light shielding sheet 414 is mounted on the linear focus F2.
  • the light above the cut-off line is shielded, and the first collecting lens 413 is mounted in front of the linear focus F2 and refracts the light of the linear light source 411 by a lens principle to finally make the low beam
  • the headlights form a low beam of light.
  • the linear light source 411 uses a plurality of LED light sources 4111, for example, a five-core LED module in which the LED 4111 is a middle 1500 Lm and a 5700 K color temperature, and two 250 Lm warm white light 3000K color temperature single-core ceramic package LED 111, white light Used in combination with warm white light, the color temperature of the whole lamp is lowered, the penetrating ability of the lamp in foggy and rainy days is improved, and the road condition is clearer; all the LEDs 4111 are arranged in a horizontal line and the direction of illumination of the LED 4111 is The optical axes of the low beam headlights are in the same direction and coincide with the focus F1 of the light reflecting device.
  • LED light sources 4111 for example, a five-core LED module in which the LED 4111 is a middle 1500 Lm and a 5700 K color temperature, and two 250 Lm warm white light 3000K color temperature single-core ceramic package LED 111, white light Used in combination with warm white light, the color temperature of the whole lamp is
  • the linear light source 411 is a set of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light, warm white light, and Golden light is used in combination to reduce the color temperature of the linear light source.
  • the linear light source 411 is a plurality of sets of horizontally arranged single-core LED modules.
  • the linear light source 411 is a plurality of sets of horizontally arranged multi-core LED modules, wherein the LEDs are used in combination of white light and warm white light, or white light and warm White light and golden light are used in combination to reduce the color temperature of the linear light source.
  • the light reflecting means 470 is a light bucket type focus reflecting structure, the opening is small, and the linear light source 411 is reflected by the internal reflecting surface of the reflecting means 470.
  • the inner surface of the light reflecting device 470 is plated with a light reflecting layer to further improve the reflectance and the reflection intensity of the light of the linear light source 411.
  • the light reflecting device 470 includes a reflecting light hopper 471 and two reflective extending portions 472 which are disposed at the same interval and spaced apart from each other.
  • the reflecting light hopper 471 forms a cavity 4700, and the linear light source 411 is irradiated with light.
  • the inside of the reflection light hopper 471 is reflected, and the reflected light is emitted from the front opening.
  • Each of the reflective extensions 472 includes a first segment 4721 and a second segment 4722, and the first segment 4721 of the reflective extension 472 extends outwardly along the illumination direction of the linear light source 411.
  • the two sides of the other end of the reflector 471 are again inwardly gathered to form the second segment 4722.
  • the first segment 4721 and the second segment 4722 of the reflective extension 472 have A second angle ⁇ 2 and a first angle ⁇ 1 between the first segment 4721 of the reflective extension 472 and the reflecting light bucket 471.
  • first angle ⁇ 1 ranges from 180° to 270°, preferably 225°
  • second angle ⁇ 2 ranges from 0° to 180°, for example 150°
  • an angle between the first segment 4721 of the reflective extension 472 and the reflecting light bucket 471 may be, for example, 225°.
  • the two reflection extensions 472 respectively extend outward from the two sides of the reflector 471, for example 45°, and then inwardly, for example, 30°, such that the reflection extension 472 is
  • a first segment 4721 forms an e.g. 225° with the reflecting light bucket 471, and an angle of, for example, 150° is formed between the first segment 4721 and the second segment 4722 of the reflective extension 472.
  • the upper surface and the lower surface of the interior of the reflecting light bucket 471 respectively include a horizontal line reflective surface 4711 And a light-expanding curved surface 4712, wherein the horizontal linear reflective surface 4711 and the light-expanding curved surface 4712 are both used to reflect the light of the first linear light source 411, and the horizontal linear reflective surface 4711 is adjacent to the linear pattern.
  • the light source 411 extends from the horizontal curved surface 4711 and is located away from one side of the linear light source 411.
  • the two sides of the inside of the reflecting light bucket 471 respectively include an elliptical line reflecting surface 4713 and a non-elliptical line reflecting surface 4714, and the elliptical line reflecting surface 4713 and the non-elliptical line reflecting surface 4714 are also used to reflect the
  • the light of the linear light source 411 is located on a side close to the linear light source 411.
  • the non-elliptical curved reflective surface 4714 extends over the elliptical curved reflective surface 4713 and is located away from the linear light source.
  • the upper surface and the lower surface of the interior of the reflecting light bucket 471 respectively include a horizontal line reflective surface 4711 and a light-expanding curved surface 4712, wherein the horizontal linear reflective surface 4711 is mainly non-elliptical based on an elliptical line.
  • the line combination light is stretched, and the light of the linear light source 411 is concentrated to the linear focus F2 through the horizontal linear reflective surface 4711 to enhance the central light intensity, and the light expansion curved surface 4712 is mainly a Part of the light of the linear light source 411 is moved upward from the linear focus F2, thereby enhancing the distribution of the ground illumination light.
  • the left side surface and the right side surface of the inside of the reflecting light bucket 471 respectively include an elliptical line reflecting surface 4713 and a non-elliptical line reflecting surface 4714 which are arranged to extend in the longitudinal direction.
  • the elliptical line reflecting surface 4713 and the non-elliptical line reflecting surface 4714 function to reflect the light of the linear light source 411 and converge to the linear focus F2.
  • the inner surface of the second segment 4722 of the reflective extension 472 participates in the reflection of light from the first linear light source 411,
  • the inner surface of the second section 4722 of the reflective extension portion 472 is planar and inclined at an angle inwardly, that is, the reflective extension portion 472 includes a reflective surface 47221, and the reflective surface 47221 is mainly composed of a plane.
  • the inside is inclined at a certain angle to serve as a collecting surface, so that the light irradiated by the linear light source 411 is reflected to the collecting lens 413, and then refracted by the collecting lens 413 to the left and right large-angle ground area, and
  • the light of the linear light source 411 irradiated to the outside of the corner of the collecting lens 413 through the reflecting surface 47221 can be re-aggregated to the collecting lens 413 for refracting to the left and right sides, such as an illumination area such as a 40° illumination area. .
  • the cut-off line forming surface of the cut-off line mask 414 has a shape of 15° oblique line, 45° oblique line, or 90° right angle, or 0.
  • the horizontal line of the cut-off line 414 includes a horizontal member 414a and a vertical member 414b, wherein one end of the horizontal member 414a coincides with one end of the vertical member 414b and the horizontal member 414a and the vertical portion
  • the pieces 414b are disposed perpendicular to each other such that the cut-off line mask 414 is disposed substantially in an L shape.
  • the cut-off line 414 includes at least one rotating hole 4141, at least one moving hole 4142, at least one window opening 4143, and at least one saw blade 4144, wherein the cut-off wire 414 is mounted on the light reflecting device 470. And disposed along the linear focus F2, the saw blade 4144 is located on the cut-off line forming surface, the solenoid valve 416 includes a fixedly disposed electromagnetic rod 4161, and the moving hole 4142 and the electromagnetic valve 416 The magnetic rod 4161 is fixedly coupled, and the rotating hole 4141 is located at a coincident end of the horizontal member 414a and the vertical member 414b, and the cut-off line shielding piece 414 is rotatable along the rotating hole 4141.
  • the electromagnetic valve 416 when the electromagnetic valve 416 is driven to move the electromagnetic rod 4161, the electromagnetic valve 416 can push the cut-off wire 414 to move along the moving hole 4142 by pushing the electromagnetic rod 4161.
  • the cut-off line mask 414 is rotated along the rotating hole 4141 so that the light previously blocked by the cut-off line mask 414 passes through the cut-off line mask 414 to the collecting lens. Refraction, eventually forming a high beam spot.
  • the serrations 4144 are triangular-like, and the surface of the serrations 4144 is provided with a stretched serrated structure for reducing the proportion of blue light at the cut-off line, as well as at the cut-off line.
  • the light shielding sheet 414 is not blackened or grayed, the light projected onto the saw blade 4144 is corrected so that the reflected and diffused light is not projected onto the collecting lens 413, thereby Make the cut-off line clearer.
  • the window opening 4143 is disposed on the horizontal member 414a and on the horizontal member 414a so that light irradiated from the linear light source 411 can pass through the window opening 4143.
  • the low beam lamp of the present invention further includes a filter 415 fixedly disposed in the window opening 4143 of the cut-off line mask 414, through the cut-off line 414 Part of the light passes through the filter 415 in the window opening 4143, thereby attenuating and diffusing the light onto the collecting lens 413, and then refracting through the collecting lens 413 to the cut-off line to the cut-off line.
  • the upper dark area forms a weak light zone Zone ⁇ to enhance the light intensity of P1 to P6, while not enhancing the light intensity of the P7, P8, B50L and HV test points, so that the opposite pedestrian can see the preceding vehicle to pass.
  • the sawtooth piece 4144 of the cut-off line forming surface can shield the light having a large incident angle through the collecting lens 413, thereby reducing the proportion of blue light at the cut-off line and eliminating the blue phenomenon at the cut-off line.
  • the filter 415 is made of an opaque material, or is made of a translucent material, or is made of a diffusing material, or is made of a white material, etc., as long as those skilled in the art
  • the technical solutions which are the same as or similar to the present invention are solved, and the technical problems that are the same as or similar to the present invention are solved, and the technical effects that are the same as or similar to the present invention are achieved, and are all within the scope of the present invention.
  • the filters described are not limited by the materials.
  • the window opening 4143 has a rectangular shape, and the shape of the filter 415 is consistent with the shape of the window opening 4143 and is matched with the window opening 4143. Thereby, the filter 415 can be fixed in the window opening 4143.
  • the shape of the window opening 4143 may be specifically formed into a square shape, a circular shape, an elliptical shape, or the like, or may be a plurality of square, circular, elliptical or the like or a combination thereof.
  • the shape of the cut-off line 414 may be implemented as a square, a circle, an ellipse or the like, or may be a plurality of square, circular, elliptical or the like, or a combination thereof, or a shape such as a trademark or a character.
  • the shape of the filter 415 is not limited by the shape and number of the window opening 4143.
  • the condensing lens 413 is an optical lens that eliminates the blue phenomenon, and includes an input optical surface 4133, an output upper optical surface 4131, and an output lower optical surface. 4132. More preferably, the input optical surface 4133 of the concentrating lens 413 is a planar or non-planar optical surface, the output upper semi-optical surface 4131 is above the central horizontal axis and is a concentrating surface, and the output lower semi-optical surface 4132 is at the central horizontal axis. Below, it is a profiled surface, a non-rotating surface.
  • the central section of the lower optical surface 4132 output by the collecting lens 413 is divided into a plurality of optical curves 41321, 41322, 41323, ... 4132*, and the setting parameters of the present invention are as follows: 41321 lateral optical surface light micro Lower offset range: 0° to 0.05°, 41322 lateral optical surface light slightly downward biased range: 0.05° to 0.1°, 41323 laterally several optical surface light slightly downward biased range: 0.1° to 0.15°, 4132* lateral optical surface light The range is slightly downward: 0.05 ⁇ *°-0.05° to 0.05 ⁇ *°, or other parameters.
  • the condensing lens 413 is an optical lens for eliminating the blue phenomenon
  • the output lower optical surface 4132 is modified so that the blue light of the output optical surface 4132 is slightly lower than the output upper optical surface. 4131 yellow Light, the yellow light outputting the upper semi-optical surface 4131 completely covers the blue light of the output optical surface 4132, and the yellow light of the output optical surface 4132 completely covers the blue light outputting the upper semi-optical surface 4131, eventually forming a blue-spotted spot at the cut-off line.
  • the output lower semi-optical surface 4132 is modified such that the blue light output to the lower semi-optical surface 4132 is parallel to or slightly lower than the yellow light of the upper semi-optical surface 4131, and the upper half 4131 optical surface is output.
  • the yellow light completely covers the blue light outputting the lower semi-optical surface 4132, and the yellow light outputting the lower semi-optical surface 4132 completely covers the blue light outputting the upper semi-optical surface 4131, eventually forming a spot where there is no blue phenomenon at the cut-off line.
  • the light source is a white light LED light source
  • the white light LED light source is mixed by the blue light through the excited phosphor into white light, and thus is mainly composed of yellow light and blue light.
  • the same optical material has different refractive indices for different wavelengths. The longer the wavelength, the lower the refractive index, and the shorter the wavelength, the higher the refractive index. Therefore, the light L4101...L4102...L4103 passing through F1 passes through the input optical surface 4133 and is refracted.
  • the blue light component L4101B...L4102B...L4103B and the yellow light component L4101Y...L4102Y...L4103Y the greater the angle of incidence, the greater the angle of the blue light shift, and then the upper semi-optical surface 4131 is refracted and then divided into the downwardly inclined L4101B'... L4102B'...L4103B' and parallel light L4101Y'...L4102Y'...L4103Y'; after passing through the input optical surface 4133 through the light L4201...L4202...L4203 of F1, L4201B...L4202B...L4203B which is refracted into blue light component and L4201Y of yellow light component...
  • L4202Y...L4203Y the larger the angle of incidence, the larger the angle of the yellow light offset, and then refracted by the output optical surface 4132 to be divided into parallel light L4201B'...L4202B'...L4203B and 'L4201Y'...L4202Y'...L4203Y' which are inclined downward.
  • Parallel light L4101Y'...L4102Y'...L4103Y' and parallel light L4201B'...L4202B'...L4203B are mixed to form a non-overflow blue phenomenon spot; L4101B'...L4102B'...L4103B' which is inclined downward and 'L4201Y'...L4202Y which is inclined downward '...L4203Y' is mixed to form a speckle-free blue spot, so that there is no blue phenomenon at the cut-off line.
  • the output lower semi-optical surface 4132 is a modified curved surface
  • the output upper semi-optical surface 4131 may be a modified curved surface
  • the output upper semi-optical surface 4131 and the output lower semi-optical surface 4132 may be corrected.
  • the face, or input optical surface 4133 is a modified surface.
  • the reflecting device is disposed 470 as a two-part reflecting unit 470a and a reflecting unit including a symmetrical structure.
  • the two-part light reflecting units 470a and 470b are respectively mounted on the upper and lower sides of the linear light source 411 to reflect the linear light source 411, thereby reducing the total class of product parts, so as to reduce the near The input cost of the light headlamps.
  • the light reflecting device 470 can also be vertically divided into left and right symmetrical and interchangeable structures, which is not advantageous for plating the reflective layer on the internal reflective surface of the light reflecting device 470, and can also reduce product parts.
  • the general category improves productivity.
  • the material of the reflective coating of the reflective surface of the reflective device 470 may be selected according to different use requirements, such as metal plating, alloy plating or composite plating, etc., as long as the same or similar technical solutions as the present invention are adopted.
  • the technical problems that are the same as or similar to the present invention are solved, and the technical effects that are the same as or similar to the present invention are all within the scope of the present invention, and the specific embodiments of the present invention are not limited thereto.
  • the linear light source 411 since the opening of the light reflecting device 470 is small, the light that the linear light source 411 emits from the opening directly converges to the collecting lens 413 and is refracted to the ground, so the linear light source can be
  • the light emitted by 411 is collected in the range of 360°, so the light collection rate is relatively high, so that on the one hand, the brightness of the low beam headlight can be improved, and The power consumption of the whole lamp can be reduced, and the light emitted by the linear light source 411 is distributed into a linear focus, and the light on the horizontal axis is dense, so that the distant light of the vehicle is more distributed, the illumination is farther, and the width direction is It is also wider and brighter.
  • the structure of the light-reflecting device 480 is as shown in the drawing, and the light-reflecting device 480 is different from the above-described light-reflecting device 470 in that
  • the surface on both sides of the reflection light hopper 481 is a mirror surface 4813.
  • the mirror surface 4813 is mainly based on a plane, and mirrors the light of the linear light source 421 to the horizontal linear reflective surface 4811 or the mirror surface of the opposite surface. 4813 is finally reflected onto the linear focus F2.
  • the headlamp of the present invention operates as follows:
  • a part of the light emitted by the linear light source 411 is reflected by the different faces of the light reflecting device 470 (480) one or more times, and then reaches the cut-off line light shielding sheet 414, and the cut-off line light shielding film 414 will cut off the line.
  • the upper light is shielded and attenuated and diffused by the filter 415, and the remaining light reaches the condensing lens 413 for refraction to form the low beam spot;
  • the other part of the light emitted by the linear light source 411 directly reaches the cut-off line mask 414.
  • the cut-off line mask 414 shields the light above the cut-off line from the filter 415 for attenuation and diffusion, and the remaining light Reaching the condensing lens 413 to form the low beam spot;
  • the electromagnetic valve 416 is driven, and the electromagnetic rod 4161 drives the cut-off line 316 to rotate under the driving of the electromagnetic valve 416, so that the light shielded by the cut-off line 414 is shielded. All of the condensing lenses 413 can be refracted to form the high beam spot. In this way, the switching of the high beam spot and the low beam spot is performed again by driving the reset of the solenoid valve 416, so that the high beam effect and the low beam effect can be quickly realized.
  • the headlamp further includes a cover 430 and a heat sink 440.
  • the cover 430 includes a first portion 431 and a second portion 432, the first portion 431 and the second portion 432.
  • a receiving chamber 4300 is formed for receiving the high beam headlights.
  • the second portion 432 is a rear end, and the heat dissipating body 440 is fixedly disposed on the second portion 432.
  • the first portion 431 serves as a front end and includes an opening 4310.
  • the opening 4310 is used for the gathering.
  • the light lens 413 is placed and passed through by the linear light source 411.
  • the heat sink 440 is preferably made of metal to improve heat dissipation.
  • the headlight further includes an outer lens 450 fixedly coupled to the front end of the outer cover 430 to provide the headlamp with a waterproof and dustproof effect.
  • the linear light source 411 in the headlight can be directly fixed on the heat sink 440. Since the heat transfer speed of the heat sink 440 is fast, the arrangement of the heat sink 440 can avoid the linear light source. 411 The temperature rises rapidly or the heat cannot be dissipated in time to cause a decrease in life.
  • the headlamp of the present invention further includes a front position light optical lens 492 and a front position light source assembly 491, the front position light optical lens 492 and the front position light source assembly 491 being sequentially fixed.
  • the outer lens 450 is disposed between the outer lens 450 and the outer cover 430 to further improve the illumination effect of the near-infrared light integrated illumination system.
  • the outer lens 450 is fixedly connected to the front end of the outer cover 430 by a sealant, so that the linear light source 411, the light reflecting device 470 (480), and the cutoff line are shielded from light.
  • the sheet 414, the solenoid valve 416, and the filter 415 have a waterproof and dustproof effect.
  • the specific embodiment of the present invention is not limited thereto, and those skilled in the art may fix the outer lens 450 to the front end of the outer cover 430 in any manner on the basis of the above disclosure, as long as the same as the present invention is adopted. Or an approximate technical solution that solves the same or similar technical problem as the present invention.
  • the technical effects of the same or similar to the present invention are all within the scope of the present invention, and the specific embodiments of the present invention are not limited thereto.
  • the headlamp of the present invention further includes a metal heat sink 460
  • the linear light source 411 is directly fixed to the metal heat sink 460, such as soldering, screwing, etc., preferably, the linear light source
  • the heat conducting surface of the LED of 411 is directly mounted on the large-area metal heat sink 460. Since the metal heat sink 460 has a large surface area, it is advantageous for heat dissipation, and the soldered to the metal heat sink 460 is further described.
  • the linear light source 411 is fixedly connected to the heat sink 440. Since the contact area of the metal heat sink 460 and the heat sink 440 is large, the heat dissipation effect of the line light source 411 can be further improved, thereby improving the service life of the headlamp.
  • the present invention further provides a lighting method for a headlight, wherein the headlight includes the following steps:
  • the linear light source 411 emits light L
  • the light reflecting device 470 (480) reflects the light L emitted by the linear light source 411;
  • the condensing lens 413 refracts the light L emitted by the linear light source 411;
  • the light L emitted by the linear light source 411 includes a first partial light L41 and a second partial light L42.
  • the first partial light L41 is reflected by the light reflecting device 470 (480) to the collecting lens 413 for refraction.
  • the second portion of the light L42 is directly refracted to the condensing lens 413, and the light above the cut-off line is shielded by the cut-off line 414 to finally form a low-beam spot;
  • the electromagnetic valve 416 is energized to move the electromagnetic rod 4161, and the cut-off wire 414 is pushed to rotate, so that the cut-off line forming surface moves downward, and the light passes through the focus area of the collecting lens 413 to form a far distance.
  • the light spot by de-energizing the electromagnetic, 416, resets the magnetic rod 4161, and the cut-off line mask 414 is rotated and reset, and the low beam spot is restored.
  • the illumination method of the headlamp continues to include a step:
  • the first partial light L41 reflected by the light reflecting device 470 (480) includes the following parts:
  • the light is reflected by the mirror reflection surface 4713 to the horizontal linear reflection surface 4711 and is concentrated on the linear focus F2, and then a part of the light L413 of the condensing lens 413;
  • the second partial light L42 and the partial light L411-L414 are located within a wrap angle of the collecting lens 413,
  • the partial light L415 is located outside the wrap angle of the condensing lens 413.
  • the remaining portion of the light is blocked by the cut-off line mask 414 and cannot be emitted outward, thereby serving to form the low beam stop to form a cut-off line.
  • the left and right light spot widths of 10,000 cd are increased to 18 degrees to the left and right, Achieve wider and brighter visual requirements, while the central area is increased to more than 50,000 cd, so that the center area and the right driving rule are farther away, and the cut-off line is obvious, thus avoiding the opposite driving The staff and pedestrians are dazzling.
  • the portion of the light L411 in the first partial light L41 is emitted from the linear light source 411 and then reflected by the horizontal linear reflective surface 4711, and is reflected directly to the collecting lens 413 for refraction;
  • the part of the light L412 in the first partial light L41 is emitted from the linear light source 411 and reflected by the light-expanding curved surface 4712, and then refracted by the collecting lens 413;
  • the first partial light L41 is The portion of the light L413 is emitted from the linear light source 411, reflected by the mirror reflection surface 4713 to the horizontal linear reflection surface 4711, and concentrated on the linear focus F2, and then to the collecting lens.
  • the portion of the light L414 in the first partial light L41 is emitted from the linear light source 411 and reflected by the mirror reflection surface 4713 to the condensing lens 413 for refracting; the first partial light
  • the portion of the light L415 in the L41 is emitted from the linear light source 411 and reflected by the collecting surface 47221 to the collecting lens 413 for refracting; the second partial light L42 is emitted from the linear light source 411.
  • a condenser lens 413 refracts light by the cut-off portion of the light shielding sheet 414 can not be emitted outside the barrier, so that for low beam spot cut-off line is formed.
  • the electromagnetic valve 416 is energized to move the electromagnetic rod 4161, and the cut-off line ray 414 is pushed to rotate, so that the cut-off line forming surface moves downward, and the light passes through the focus area of the condensing lens 413 to form a high beam spot.
  • the electromagnetic rod 4161 is reset by the power off of the solenoid valve 416, so that the cut-off line mask 414 is rotated and reset, and the low beam spot is restored.

Abstract

一种远近光一体化照明系统和近光前照灯以及远光前照灯,远近光一体化照明系统包括近光系统(10,10',10'')和远光系统(20,20',20''),近光系统(10,10',10'')和远光系统(20,20',20'')分别通过线型LED光源发光,光斗线型焦点反光器将光汇聚至线型焦点,以及聚光透镜(13,13''',13'''',23,413)的汇聚作用,能够分别提供近光和远光。近光灯能达到足够的光强以照亮前方的道路,又不会产生眩光,从而确保能有效并安全的使用;远光灯能达到足够的光强以照亮前方的道路。因为焦点是线型的,因此LED(111,211,4111)可以线型排列,LED(111,211,4111)数量不受到限制,光密度高,灯具总的光通量高,可以降低单颗LED(111,211,4111)电流,LED(111,211,4111)的光效更高。

Description

远近光一体化照明系统及近光前照灯、远光前照灯 技术领域
本发明属于交通工具照明领域,具体涉及一种前照灯和一种远近光一体化照明系统及其提供近光和远光的照明方法。
背景技术
前照灯,也叫前大灯,安装于交通工具例如汽车的头部两侧,用于夜间照明。由于前照灯的照明效果直接影响夜间行车驾驶的操作和交通安全,因此世界各国交通管理部门多以法律形式规定了其照明标准。随着技术的不断发展,过去那种白炽真空灯已先后被淘汰,现在汽车的前照灯以卤素灯、氙气灯为主。
交通工具的前照灯例如汽车前照灯有其独特的配光结构,根据发光的类型也可分为远光灯和近光灯。例如远光灯发出的灯光经灯罩反射体反射后径直向前射去,以形成“远光”。近光灯发出的光给遮光板挡到灯罩反射体的上半部分,其反射出去的光线都是朝下漫射向地面,以形成“近光”,从而不会给对面来车的驾驶者造成眩目。
前照灯对近光的光照的分配有着很严格的要求,以近光灯右行使为例,如图1A、图1B所示,根据一些配光标准,在前照灯呈现近光模式时,在垂直配光屏上,h-h’线以下的明区需要到达一定的光强,左侧HH上方为暗区,B50L为对面车道上50米的车辆驾驶员眼睛位置,要求在650cd以下,避免光强过高产生眩目,左侧HH下方为主照明区域。右侧15°斜线,或者45°斜线至水平垂直距25cm转向水平的折线HH→HH1→H1H2→H2H4的上方为暗区,下方为旁高照明区和主照明区。所述的右侧旁高照明区为驾驶员提供了右侧马路照明和路标照明,同时又设定了BR点的最大光强要求,避免靠近车辆的行人产生眩目引起的交通安全事故。
同时截止线上方Zone III区域内需要有一定的亮度要求,如图1C所示,确保车辆前上方的有足够的亮度,车辆前方的行人和对面车辆驾驶员知道车辆的存在,因此规定了P1+P2+P3≥190cd,p4+P5+P6≥375cd,P7≥65cd,P8≥125cd。同时又不能使车辆前方的行人和对面车辆驾驶员眩目,引起交通故事,因此规定了P1至P8各点最大值不超过625cd。
LED作为新型光源,自身有着其他照明光源所没有的许多优点,譬如低电压、长寿命、体积小、重量轻、响应快、无辐射、无污染及耐各种恶劣条件,并且LED发光方向是单面性的(传统光源都是体积的360°),更有利于光线的收集利用,提高光利用率等优点。因此以LED为光源制作LED前照灯也是一个新趋势,但是现有的LED光通量不高,为了提高光通量必须提高电流,造成发热量大,散热体积大,降低寿命。目前市场上LED近光灯已在使用,但是LED光通量不足,为了达到标准,中间区域做的亮度高,左右两侧亮度明显下降很多,造成驾驶员视觉宽度窄。同时目前市场上的HID前照灯亮度比LED前照灯亮,很 多汽车厂家不愿意降低亮度要求选择用LED前照灯,除非LED前照灯能够达到HID前照灯的亮度等级以及功耗低于HID前照灯,不超过25W,因此LED前照灯要完全替代HID前照灯,必须从灯具亮度、功率、散热、LED总光通量以及光学系统都得到优化,现有的光学系统就很难再满足要求。
如图2所示是一种传统的LED远近光灯一体化系统的结构示意图,其包括椭球反光体201,遮光屏202,以及透镜203.根据椭球的几何特性,它存在两个焦点F1以及F2。LED光源放置在其中一个焦点F1上,LED光源发出的光束通过椭球反光体1反射而汇聚到另外一个焦点F2上,而椭球的第二焦点又恰恰是透镜的焦点,根据透镜的性质,焦点上发射出的光线通过透镜的折射,输出的应当是平行光。根据这个原理,就可以根据要求适当的改变椭球的形状,或者透镜203的形状,目的使从透镜的光水平扩散,然后在透镜的焦点处放置遮光屏202,以达到形成水平线向上成45°斜线至水平垂直距25cm转向水平的折线以及另侧水平线的明暗截止线的近光灯,通过移开遮光屏,使下部分的LED模组椭球面的光经过透镜203的焦点处,形成远光灯。这种传统的LED前照灯由于采用是椭球面,只能放置一颗LED模组在焦点F1处,一颗LED模组光通量少,为了提高光通量必须提高LED电流,造成发热量大,散热体积大,降低寿命。同时LED水平上下放置在中间,热量需要经过小的中间热量片再扩散至外部散热体,散热效果差。
如图3A和3B所示的LED远近光灯一体化系统的结构示意图,其包括近光灯LED301,远光灯LED302,近光灯配光透镜303,远光灯配光透镜304等,LED301光直接通过近光灯配光透镜303形成左右对称光斑的近光灯,LED302光直接通过远光灯配光透镜304汇聚形成远光光斑,配光透镜光包角小,包角以外的光全部遮蔽浪费掉,光利用率低,以及无法做左驾驶规则,或右驾驶规则的近光灯。
如图4所示的龟背状反光器LED远近光灯一体化系统的结构示意图,其包括近光灯LED401,远光灯LED402,近光灯反光器403,远光灯反光器404,聚光透镜405,近光灯截止线遮光板406,以及散热体407。LED上下靠近散热体407放置,有利于散热;LED401光经过反光器403反射,再经过聚光透镜405折射,截止线上方的光通过截止线遮光板406遮蔽掉,形成近光灯光斑。LED402经过反光器404反射至聚光透镜405焦点处,再经过聚光透镜折射形成远光灯光斑。此光学系统的LED只能采用一颗LED模组,LED总的光通量受到限制,以及体积受到限制,反光器的光包角小,包角以外的光无法收集利用,光利用率低。
如图5A所示的蚌形反光器LED远近光灯一体化系统的结构示意图,其包括近光灯5颗LED501,远光灯3颗LED502,近光灯反光器503,远光灯反光器504,聚光透镜505,近光灯截止线遮光板506,以及散热体507。采用分散的多颗LED,LED总光通量有所提高以及有利于散热,但是一个旋转蚌形反光器只能对应一颗LED,因此LED数量有限,以及每颗LED对应的蚌形反光器的面少,大部分被切除掉,光利用率中等。
如图5B所示的TIR透镜LED近光灯系统结构示意图,其包括10颗LED601,10颗TIR组合体602,聚光透镜603,遮光板604以及散热体605。采用分散的多颗LED,LED总的 光通量提高了,而且有利于散热,LED光经过TIR准直,再经过不同的TIR表面的倾斜角,使光大部分往聚光透镜焦点处汇聚,再经过聚光透镜603折射汇聚,截止线以上的光通过遮光板604遮蔽掉,形成近光灯光斑。但是TIR透镜LED近光灯系统的TIR透镜汇聚至聚光透镜603的虚焦点大,地面远处的光无法密集集中,使地面近场光过多造成浪费。
如图6A和6B所示远光灯ECE R122法规规定测试点的水平线上的亮度要求,但是没有规定水平线上局部区域防眩目区域亮度上限要求,造成对面车辆驾驶员和路上行人眩目,引起交通事故。为了解决远光灯眩目问题,目前市场上运用了矩阵远光灯,通过感应器收集车辆前方的车辆和行人位置,关闭对应位置的单点LED,使对应的车辆和行人位置形成暗区,起到防眩目目的,但矩阵远光灯成本高,功率大,无法普及中低档车辆,并且前方的光斑瞬间变化以及水平下方的光也关闭会影响驾驶员判断前方路况。
如图7A所示,太阳平行光光经过三棱镜折射后,白光折射成红、橙、黄、绿、青、蓝和紫,蓝光偏移角度比黄光大,说明波长短的对应同一介质折射率大。定义折射率是采用钠黄光波长为基础计算的,由于不同波长的光对应同一介质的折射率不一样,波长越长折射率越小,波长越短折射率越大。目前白光LED由蓝光+荧光粉受激混合成白光,主要由蓝光和黄光混合,例如PC材料折射率:1.586,蓝光波长470um时,折射率为1.594,因此采用投射式光学系统必然存在溢蓝现象。
行内为了减轻溢蓝现象,采取了多种方法,例如:在聚光透镜的输入光学表面上打网点、移动聚光透镜使之偏焦,以及减少入射角大的光线分配等。如图7B所示,目前市场上主流的前照灯光学结构是采用投射式光学系统,LED光源放置在椭球面结构的8001焦点F1处,光经过椭球面8001反射后汇聚至F2处,在F2前方放置聚光透镜8003,使经过F2的光线再次汇聚使中心区域满足法律法规规定要求的光强,通过在F2处放置截止线挡板,使投射的光斑上方形成截止线形状的暗区,从而符合法律法规规定的测试点要求,但是远离LED的反光面反射的光线至聚光透镜8003的入射角α1大,使蓝光的偏移角度大,从而中心区域的蓝光所占的比例大,使截止线处会存在严重的溢蓝现象,而且溢蓝区域大,颜色严重超出法律法规规定的区域内。为了减轻溢蓝现象,把聚光透镜8003往外微移动Hmm,入射光延伸至聚光透镜8003’形成入射角同样是α1,但是入射点离聚光透镜8003’的距离变远了,使光线往下微移,中心区域的蓝光比例减少,从而减轻中心溢蓝现象,但是聚光透镜上方会使光往暗区偏移,造成明暗截止线变的不清晰。另外一种方法通过修改椭球反光,使入射角α1大的区域反光面的光往上修正,使α1角变小,从而减轻中心溢蓝现象,同时经过聚光透镜8003焦点的光也减少了,造成中心区域的光强降低。
发明内容
本发明的一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统用于车辆照明,包括一近光系统和一远光系统,能够分别提供近光和远光,近光系统能达到足够的光强以照亮前方的道路,又不会产生眩光,从而确保能有效并安全的使用,远光系统能达到足够的光强以照亮前方的道路。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统和所述远光系统中分别包括一线型光源,一线型焦点反光器以及一聚光透镜,所述线型反光器能够提高所述远近光一体化照明系统的照明距离和照明宽度,并且降低所述远近光一体化照明系统的功耗。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统和所述远光系统的光利用率高,并且能够适应左驾驶和右驾驶规则,以及左右对称驾驶规则。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统和所述远光系统能够采用多个LED模组从而使得所述远近光一体化照明系统的总光通量得到提高。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统和所述远光系统中的所述LED发出的光充分接触对应的反光器的面,从而提高所述LED的光利用率。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远光系统中的LED光能够密集集中,从而增加照明宽度和照明距离。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远光系统中包括防眩目元件,所述防眩目元件不仅能够提供防眩目区域,从而避免转弯时对面车辆的驾驶员和行人眩目,而且所述防眩目区域不会影响驾驶者看清路牌及判断前方状况。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统和所述远光系统能够提供线型光源,且所述线型光源的数量不受限制,从而提高所述远近光一体化照明系统的光密度和总的光通量。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中LED为白光、暖白光和/或金黄光混合使用,从而降低灯具色温,从而提高照射距离、路面清晰度和穿透能力,并且保护驾驶者视网膜。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统中的光源为一组水平排列的多芯LED模组,或者多组水平排列的多芯LED模组,或者单芯的LED水平线型排列,或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统中的光源的发光方向与灯具光轴为同一方向,光源的导热面直接安装在大面积的金属散热板上,从而有利于热量的快速传递。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统中的光源和反光器的焦点重合,从而提高所述远近光一体化照明系统的光密集度和有效使用率。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光光源和所述远光光源能够将大部分光经汇聚至线型焦点。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统中的反光器开口处包括一收集面,所述收集面能够将聚光透镜包角以外的光反射至聚光透镜上,再经过聚光透镜折射至前方左右侧路面。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统能够将所述线型光源360°立体角内发出的光线全部收集利用,提高光的收集率,从而达到节能、耐用并且环保的效果。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统能将线型光源发出的光汇聚至线型焦点,因此水平轴上的光线型密集,从而使车辆远处的光分配更多,照射距离和照射宽度都得到提高。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远光系统的光密度更高,体积更小,更有利于做液晶屏点阵防眩目系统,控制水平线上方的亮、暗点阵形状,从而达到防眩目的。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统中的所述线型焦点反光器包括一上部分线型焦点反光器和一下部分线型焦点反光器,其分开制造然后组装,从而有利于所述线型焦点反光器进行镀反光层。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统中包括一线型焦点反光器和一截止线遮光片,所述截止线遮光片与所述线型焦点反光器相组装或一体设置,且所述截止线遮光片的局部遮光区域遮蔽不镀反光膜层从而用来遮挡光线。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中远光系统不仅能满足远光规则,而且地面区域照明又与所述近光系统一致,因此当所述近光系统切换为远光系统时,所述近光系统能直接关闭,大大的降低了整灯的消耗。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中当包括近光系统和远光系统以分别提供近光和远光时,其中当近光切换为远光时无须机械移动即可实现,因此不带有电磁阀,从而使整个远近光一体化照明系统结构简化,功耗小。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中本发明的近光系统和远光系统也可以集成在一个光学系统中,通过形成线型焦点,提高光密度和光通量,并且可以通过驱动截止线遮光片移动的方式分别提供近光和远光照明。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中近光系统和远光系统也可以只使用半部分线型焦点反光器,线型光源的侧面面向反光器前方的开口。
本发明的另一个目的在于提供一种近光前照灯,其中所述近光前照灯包括一线型光源,其光线能够形成线型焦点,从而提高近光光斑的亮度且所述近光前照灯的光收集率高。
本发明的另一个目的在于提供一种近光前照灯,其中所述近光前照灯包括一反光装置,到达所述反光装置的光线被汇聚至线型焦点,所述截止线遮光片与所述反光器相组装,或者可以一体设置从而减少所述近光前照灯的零件总数。
本发明的另一个目的在于提供一种近光前照灯,其中所述近光前照灯的所述反光装置包括一上反光单元和一下反光单元,所述上反光单元和所述下反光单元可以一体形成,或者可以单独制作后相装从而有利于所述反光器内部的反光面镀反光层。
本发明的另一个目的在于提供一种近光前照灯,其中所述上反光单元和所述下反光单元结构基本一致并且能够互换使用,从而减少所述近光前照灯的零件总数,提高所述近光前照 灯的生产率。
本发明的另一个目的在于提供一种远光前照灯,其中所述远光前照灯能够形成线型焦点,能够提供光收集率高的远光光斑。
本发明的另一个目的在于提供一种远光前照灯,其中所述远光前照灯包括一防眩目板,所述防眩目板为所述远光前照灯提供一防眩目区域。
本发明的另一个目的在于提供一种远光前照灯,其中所述远光前照灯包括的防眩目区域仅避免对面的车辆的驾驶员和行人眩目,而不会影响他们看清路牌。
本发明的另一个目的在于提供一种远光前照灯,其中所述远光前照灯包括一反光装置,所述反光装置包括一上反光单元和一下反光单元,所述上反光单元和所述下反光单元可一体形成,也可以是分别制作然后组装从而有利于所述反光装置的内表面反光层镀反光膜。
本发明的另一个目的在于提供一种远光前照灯,其中所述防眩目板为不透明材料,或者透明、半透明材料,或者变色玻璃。通过不透明的防眩目板使眩目区的光遮蔽掉;通过透明、半透明的防眩目板局部区域粗糙化、或者颗粒化结构使眩目区的光减弱;通过变色玻璃不通电,使液晶膜分子排列无序,光无法通过变色玻璃使光减弱;通过变色玻璃通电,使液晶膜分子排列有序,光通过变色玻璃使光增强。
本发明的另一个目的在于提供一种远光前照灯,其中远光前照灯的光密度更高,体积更小,更有利于做液晶点阵防眩目系统,液晶屏更小,其远光系统防眩目板为高密度点阵液晶屏,通过电路控制液晶屏的点阵位置,控制水平线上方的亮、暗点阵形状,从而达到防眩目目的。
本发明的一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统用于车辆照明,能够分别提供近光和远光,近光系统能够达到足够的光强以照亮前方的道路,又不会产生眩光,从而确保能有效并安全的使用,远光系统能够达到足够的光强以照亮前方的道路。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统中能够提高所述远近光一体化照明系统的照明距离和照明宽度,并且降低所述远近光一体化照明系统的功耗。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述近光系统和所述远光系统的光利用率高,并且能够适应左驾驶和右驾驶规则,以及左右对称驾驶规则。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统包括一线性光源,所述线型光源的数量不受限制,从而使得所述远近光一体化照明系统的总光通量得到提高。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统包括一线性焦点反光器,其中所述线型光源发出的光充分接触所述线型焦点反光器的面,从而提高所述线型光源的光利用率。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述线型光源的光能够密集集中,从而增加所述远近光一体化照明系统的照明宽度和照明距离。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述线型光源为LED,所述LED为白光、暖白光和/或金黄光混合使用,从而降低灯具色温,从而提高所述远近光一体化照明系统的照射距离、路面清晰度和穿透能力,并且保护驾驶者视网膜。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统中的所述线型光源为一组水平排列的多芯LED模组,或者多组水平排列的多芯LED模组,或者单芯的LED水平线型排列,或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统中的线型光源的发光方向与灯具光轴为同一方向,线型光源的导热面直接安装在大面积的金属散热板上,从而有利于热量的快速传递。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统中的线型光源和线型焦点反光器的焦点重合,从而提高所述远近光一体化照明系统中的光密集度和有效使用率。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述线型焦点反光器能够将大部分光汇聚至线型焦点。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统中的线型焦点反光器的开口处包括一收集面,所述收集面能够将聚光透镜包角以外的光反射至聚光透镜上,再经过聚光透镜折射至前方左右侧路面。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统能够将所述线型光源360°立体角内发出的光线全部收集利用,提高光的收集率,从而达到节能、耐用并且环保的效果。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统能够能将现行光源发出的光汇聚至线型焦点,因此水平轴上的光线型密集,从而使车辆远处的水平方向光分配更多,照射距离和照射宽度都得到提高。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述远近光一体化照明系统中的所述线型焦点反光器包括一上部分线型焦点反光器和一下部分线型焦点反光器,其分开制造然后组装,从而有利于所述线型焦点反光器的内部反光面镀反光层。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述远近光一体化照明系统包括一电磁阀和一截止线遮光片,通过控制所述电磁阀的电磁杆进行移动和复位,带动截止线遮光片进行相应的旋转,从而实现远光系统和近光系统的切换。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中去掉电磁阀可以单独做近光灯,或者去掉电磁阀和截止线遮光片,可以单独做远光灯。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述截止线遮光片有个开窗槽,开窗槽内放置一滤光片,从所述线型光源发出的部分光能够穿过所述开窗槽内的滤光片从而减弱及扩散,再经聚光透镜折射形成截止线上方暗区的弱光斑,增加P1至P6的光强,同时又不增加P7、P8、B50L和HV点的光强。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述截止线遮光片的开窗槽前段的光学系统可以采用TIR收集光源,也可以是蚌形反光器等,不受前端光学系统类型的限制。
本发明的另一个目的在于提供一种远近光一体化照明系统,截止线遮光片的开窗槽形状可以是一个方形、圆形、椭圆形等形状,也可以是多个方形、圆形、椭圆形等形状,也可以是商标和字等形状,不受开窗形状和数量限制。
本发明的另一个目的在于提供一种远近光一体化照明系统,所述截止线遮光片截止线形成面的锯齿片上延伸成类三角形,并在表面做成拉伸的锯齿状结构,减少对截止线处蓝光的比例,以及所述截止线遮光片不做发黑或发灰处理的情况下,使投身锯齿片上的光修正,使其反射、漫反射的光不可能至聚光透镜上,使明暗截止线更清晰。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述聚光透镜为消除溢蓝现象的光学透镜。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述聚光透镜的输入光学表面为平面或者非平面光学表面,输出上半光学表面位于中心水平轴上方并为聚光表面,输出下半光学表面位于中心水平轴下方,并为异形面、非旋转面。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述聚光透镜所述的输出下半光学表面经过修正,使输出下半光学表面的蓝光平行于或者略低于输出上半光学表面的黄光,输出上半光学表面的黄光完全覆盖输出下半光学表面的蓝光,输出下半光学表面的黄光完全覆盖输出上半光学表面的蓝光,最终形成截止线处无溢蓝现象的光斑。
本发明的另一个目的在于提供一种远近光一体化照明系统,其中所述聚光透镜输出下半光学表面为修正曲面,也可以输出上半光学表面为修正面,或者两者都是修正面。
为达到以上至少一个目的,本发明提供一远近光一体化照明系统,其包括一近光系统和一远光系统,所述近光系统包括至少一第一线型光源和至少一第一线型焦点反光器,所述远光系统包括至少一第二线型光源和至少一第二线型焦点反光器,所述近光系统中所述第一线型焦点反光器构造成为所述第一线型光源提供光线汇聚的线型焦点,从而能够提供一近光光斑,所述远光系统中所述第二线型焦点反光器构造成为所述第二线型光源提供光线汇聚的线型焦点,从而能够提供一远光光斑。
在一些实施例中,所述近光系统进一步包括至少一第一聚光透镜及至少一截止线遮光片,所述第一线型光源的位置与所述第一线型焦点反光器的线型焦点F1重合,所述第一线型焦点反光器将所述第一线型光源的至少部分光反射后汇聚至线型焦点F2,所述截止线遮光片安装于所述线型焦点F2处并用于将明暗截止线上方的光线遮蔽,所述第一聚光透镜被设置于所述线型焦点F2的前方,用于折射光线形成所述近光光斑。
在一些实施例中,所述第一线型焦点反光器在远离所述第一线型光源的一端具有至少一第一开口,所述第一线型光源垂直于光轴并线型排列并面向所述第一开口地设置,所述第一线型焦点反光器内部具有上下两侧的第一水平线型反光面以及两侧的反射面,到达所述第一水平线型反光面以及所述反射面的光线被汇聚至所述线型焦点F2。
在一些实施例中,所述第一线型焦点反光器还具有开口处互相间隔地设置的两第一收集面,将所述第一聚光透镜包角以外的光反射至所述第一聚光透镜并经所述第一聚光透镜折射至左右宽角度路面区域。
在一些实施例中,所述第一水平线型反光面的垂直截止面为椭圆线;或者垂直截止面为椭圆线和局部非椭圆线组成;或者垂直截止面为非椭圆线的反光面使光反射至所述线型焦点F2;或在水平线型反光面的基础上做颗粒。
在一些实施例中,在邻近所述第一开口处还具有延伸于各个所述第一水平线型反光面的至少一第一扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
在一些实施例中,所述第一水平线型反光面是直线型;或直线型并微带弧度(如5弧度以内),增加垂直角度的光分配。
在一些实施例中,所述近光光学系统两侧所述反射面各自为以椭圆线为基础,部分面非椭圆线组成的拉伸面;或者其进一步微带弧度(如5弧度以内),增加垂直角度的光分配。
在一些实施例中,所述近光光学系统两侧所述反射面各自具有邻近所述第一线型光源的至少一椭圆线反射面以及延伸于所述椭圆线反射面的至少一非椭圆线反射面。
在一些实施例中,各个所述第一收集面的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
在一些实施例中,所述截止线遮光片为15°斜线、45°斜线、或90°直角、0°水平线。以及左驾驶规则、右驾驶规则和左右对称规则,水平线型焦点F2前放置不同形状的截止线遮光片,将截止线上方的光遮蔽掉,其余光经第一聚光透镜汇聚形成不同形状的近光灯光斑。
在一些实施例中,所述第一线型焦点反光器包括一上部分第一线型焦点反光器和一下部分第一线型焦点反光器,两者一体形成;或者两者结构对称并且互相组装。
在一些实施例中,所述远光系统进一步包括至少一第二聚光透镜,所述第二线型光源的位置与所述第二线型焦点反光器的线型焦点F1重合,所述第二线型焦点反光器将所述第二线型光源的至少部分光反射后汇聚至线型焦点F2,所述第二聚光透镜被设置于所述线型焦点F2的前方,用于折射光线形成所述远光光斑。
在一些实施例中,所述第二线型焦点反光器在远离所述第二线型光源的一端具有至少一第二开口,所述第二线型光源垂直于光轴并线型排列并面向所述第二开口地设置,所述第二线型焦点反光器内部具有上下两侧第二水平线型反光面、分别位于所述第二水平线型反光面中间的中间局部旋转反光面以及位于两侧的镜像面,用于将至少部分光线汇聚至所述线型焦点F2。
在一些实施例中,两侧所述镜像面成像作用形成虚焦点F1’,所述第二线型光源的虚焦点F1’位于上下两侧的所述水平线型反光面的焦点F1上。
在一些实施例中,所述第二线型焦点反光器还具有开口处互相间隔地设置的两第二收集面,将所述第二聚光透镜包角以外的光反射至所述第二聚光透镜并经所述第二聚光透镜折射至左右宽角度路面区域。
在一些实施例中,各个所述第二水平线型反光面及所述中间局部旋转反光面的垂直截止 面为椭圆线;或者椭圆线和局部非椭圆线组成;或者非椭圆线的反光面使光反射至所述线型焦点F2;或在所述第二水平线型反光面及所述中间局部旋转反光面的基础上做颗粒。
在一些实施例中,在邻近所述第二开口处还具有延伸于各个所述第二水平线型反光面的至少一第二扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
在一些实施例中,所述第二水平线型反光面是直线型;或直线型并微带弧度(如5弧度以内),增加垂直角度的光分配。
在一些实施例中,两侧所述镜像面为平面;或微带弧度(如5弧度以内),增加垂直角度的光分配。
在一些实施例中,各个所述第二收集面的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
在一些实施例中,所述第二线型焦点反光器包括一上部分第二线型焦点反光器和一下部分第二线型焦点反光器,两者一体形成;或者两者结构对称并且互相组装。
在一些实施例中,所述远光系统还包括设置于所述线型焦点F2处的至少一防眩目板,其中所述的防眩目板为不透明材料,或者透明材料,或者变色玻璃,或者液晶屏,其中通过不透明的防眩目板使眩目区的光遮蔽掉;通过透明的防眩目板局部区域粗糙化、或者颗粒化结构使眩目区的光减弱;通过变色玻璃不通电,使液晶膜分子排列无序,光无法通过变色玻璃使光减弱;通过变色玻璃通电,使液晶膜分子排列有序,光通过变色玻璃使光增强;或者通过电路控制液晶屏的点阵位置,控制水平上方的亮、暗点阵形状,从而达到防眩目的目的。
在一些实施例中,所述第一/第二线型光源为LED光源或激光光源。
在一些实施例中,所述第一/第二线型光源为一组水平排列的多芯LED模组、或者多组水平排列的多芯LED模组、或者单芯的LED水平线型排列、或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
在一些实施例中,所述的LED为白光、或者暖白光、或者白光和暖白光以及金黄光混合使用。
在一些实施例中,所述第一/第二聚光透镜为旋转的聚光透镜;或者非旋转的聚光透镜。
在一些实施例中,所述线型焦点F2的光经过所述第一/第二聚光透镜汇聚形成水平线型光斑,水平轴线处光密度最高,左右光宽度至40°,聚光透镜下半部分光学设计时光线略往下偏,消除截止线处光色溢蓝现象。
在一些实施例中,还包括贴合于所述第一/第二线型光源的至少一金属散热体。
在一些实施例中,还包括至少一外罩,用于固定所述第一和第二聚光透镜以及将散射光遮蔽在所述外罩内,所述外罩与所述金属散热体之间采用密封胶连接固定。
在一些实施例中,还包括至少一外透镜,采用密封胶将外透镜和所述外罩相连接。
在一些实施例中,所述第一线型焦点反光器包括两片相对设置的第一主反光板和两片相对设置的第一副反光板,所述第一主反光板分别位于所述第一线型光源的上侧和下侧,所述第一副反光板分别设置于两片所述第一主反光板的侧面,两片所述第一副反光板与两片所述第一主反光板形成一第一开口,所述第一线型光源发出的光从所述第一开口射出。
在一些实施例中,各个所述第一副反光板包括一第一主体部和一第一延伸部,所述第一主体部和所述第一主反光板形成所述第一开口。
在一些实施例中,所述第一主体部的内侧面用于对所述第一线型光源发出的光进行反射,所述第一延伸部向外延伸于所述第一主体部并向内弯折,所述第一延伸部向外延伸时与所述第一主体部形成一第一夹角,所述第一延伸部再向内弯折时形成一第二夹角。在一些实施例中,所述第一夹角的范围为90°-270°,所述第二夹角的范围为0°~180°。
在一些实施例中,所述第一主反光板的内侧具有一第一中间水平线型反光面和一第一扩光弧面,所述第一中间水平线型反光面为所述第一主反光板的内表面由靠近所述第一线型光源的一端向另一端延伸,所述第一扩光弧面向外延伸于所述第一中间水平线型反光面并位于所述第一主反光板的尾部。
在一些实施例中,所述第一延伸部的内侧面为一第一收集面,所述第一收集面也向内倾斜并形成所述第二夹角。
在一些实施例中,所述截止线遮光片与所述第一线型焦点反光器为一体结构或相组装结构。
在一些实施例中,所述第二线型焦点反光器包括两片的相对设置的第二主反光板和两片相对设置的第二副反光板,所述第二副反光板分别设置于两片所述第二主反光板的侧边,两片所述第二副反光板与两片所述第二主反光板形成一第二开口,所述第二线型光源发出的光能够通过所述第二开口穿出。
在一些实施例中,各个所述第二副反光板包括一第二主体部和一第二延伸部,所述第二主体部和所述第二主反光板形成所述第二开口,所述第二主体部的内侧面为镜像面,对所述第二线型光源发出的光进行反射。
在一些实施例中,所述第二延伸部向外延伸于所述第二主体部并向内弯折,所述第二延伸部向外延伸时与所述第二主体部形成一第三夹角。其中所述第三夹角的范围为90-270°。
在一些实施例中,各个所述第二主反光板的内表面包括第二中间局部旋转反光面、第二水平线型反光面、第二扩光弧面和第二镜像面,所述第二延伸部的内侧面为一第二收集面,其中所述第二中间局部旋转反光面为上述弧形凹陷部形成,存在于所述第二主反光板的中间,所述第二线型光源经过此面用于汇聚至所述线型焦点F2的中心,以增强中心光强,所述第二扩光弧面延伸于所述第二水平线型反光面,以增强路面照明光的分配。
本发明还提供一远近光一体化照明系统,其包括一近光系统和一远光系统,所述近光系统和所述远光系统各自包括至少一线型光源和至少一线型焦点反光器,所述线型光源与所述线型焦点反光器的线型焦点F1重合,并且所述线型焦点反光器将所述线型光源的至少部分光反射后汇聚至线型焦点F2,其中所述近光系统和所述远光系统能够分别提供一近光光斑和一远光光斑。
在一些实施例中,所述近光系统和所述远光系统各自还包括设置于所述线型焦点F2前方的至少一聚光透镜。
在一些实施例中,各个所述线型焦点反光器在远离所述线型光源的一端具有开口,所述 线型光源朝向所述开口地布置,并且所述线型焦点反光器各自具有上下两侧的水平线型反光面以及两侧的反射面,用于将所述线型光源的至少部分光线汇聚至所述线型焦点F2。所述线型焦点反光器还具有开口处互相间隔地设置的两收集面,将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。
在一些实施例中,各个所述线型焦点反光器在远离所述线型光源的一端具有至少一开口,所述线型光源垂直于光轴并线型排列并面向所述开口地设置,所述线型焦点反光器内部具有上下两侧水平线型反光面、分别位于所述水平线型反光面中间的中间局部旋转反光面以及位于两侧的镜像面,用于将至少部分光线汇聚至所述线型焦点F2。两侧所述镜像面成像作用形成虚焦点F1’,所述线型光源的虚焦点F1’位于上下两侧的所述水平线型反光面的焦点F1上。所述线型焦点反光器还具有开口处互相间隔地设置的两收集面,将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。
在一些实施例中,所述近光系统和所述远光系统还分别包括位于所述线型焦点F2处的至少一截止线遮光片和至少一防眩目板。
在一些实施例中,所述近光系统和所述远光系统共用所述线型光源,所述线型焦点反光器和所述聚光透镜,并且通过位于所述线型焦点F2处的至少一移动截止线遮光片实现分别提供近光照明和远光照明。
本发明还提供一前照灯,应用于一交通工具,其包括:至少一线型光源,至少一反光装置,以及至少一聚光透镜,其中所述反光装置形成线型焦点F1和线型焦点F2,其中所述线型光源与所述反射光斗的线型焦点F1重合,并且至少部分光经汇聚后到达所述反射光斗的线型焦点F2,并经所述聚光透镜折射形成前照灯光斑。
在一些实施例中,所述反光装置在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口地布置,并且所述反光装置具有上下两侧的水平线型反光面,两侧的反射面,凸出地延伸于所述反射面的收集面,其中所述水平线型反光面和两侧的所述反射面用于将所述线型光源的至少部分光线汇聚至所述线型焦点F2,所述收集面将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。在一些实施例中,两侧的所述反射面包括邻近所述线型光源的至少一椭圆线反射面以及延伸于所述椭圆线反射面的至少一非椭圆线反射面。在一些实施例中,还包括延伸于所述水平线型反光面并邻近所述开口的至少一扩光弧面,以将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
在一些实施例中,所述反光装置在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口地布置,所述反光装置内部具有上下两侧水平线型反光面、分别位于所述水平线型反光面中间的中间局部旋转反光面以及位于两侧的镜像面,用于将至少部分光线汇聚至所述线型焦点F2,并且所述反光装置还具有分别凸出地延伸于所述镜像面的收集面,所述收集面将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。两侧所述镜像面成像作用形成虚焦点F1’,所述线型光源的虚焦点F1’位于上下两侧的所述水平线型反光面的焦点F1上。
在一些实施例中,所述反光装置是半光斗线型焦点反光器,所述线型光源发光轴与所述 前照灯的光轴垂直或倾斜预定角度地安装。
在一些实施例中,还包括设置于所述线型焦点的至少一截止线遮光片,从而所述前照灯形成一近光前照灯。
在一些实施例中,所述截止线遮光片构造成可活动,以通过移动所述截止线遮光片分别提供近光光斑和远光光斑,从而得到一体化的近光和远光照明系统。
在一些实施例中,所述前照灯是远光前照灯。
在一些实施例中,所述远光前照灯还包括位于所述线型焦点F2处的至少一防眩目板。
本发明还提供一进一步提供一种提供前照灯照明的方法,包括以下步骤:
位于线型焦点F1的至少一线型光源发射光;
至少一反光装置反射所述线型光源发出的所述光;
至少一聚光透镜折射所述线型光源发出的所述光;其中,
所述线型光源发射出的至少一部分所述光汇聚至线型焦点F2并投射至所述聚光透镜进行折射,所述线型光源发射出的至少一部分所述光直接射至所述聚光透镜进行折射。
进一步地,当提供近光光斑时,所述方法还包括步骤:剩余部分光被截止线遮光片遮蔽以用于形成明暗截止线。
进一步地,当提供远光光斑时,所述方法还包括步骤:通过设置于所述线型焦点F2的防眩目板将对应于远光光斑水平线上局部区域防眩目区域的位置的亮度减弱。
进一步地,所述方法还包括步骤:将所述聚光透镜包角以外的光经收集面反射并经所述聚光透镜折射至左右侧照明区。
进一步地,在一个具体的近光光斑形成方法中:一部分光从所述线型光源发出后经过中间水平线型反光面进行反射,反射后直接至所述聚光透镜进行折射;一部分光从所述线型光源发出后经所述中间水平线型反光面反射,反射后直接至所述聚光透镜进行折射;一部分光从所述线型光源发出后经所述扩光弧面反射,反射后直接至所述聚光透镜进行折射;一部分光从所述线型光源发出后经所述椭圆线反射面反射后又通过所述中间水平线型反光面反射,再至所述聚光透镜进行折射;一部分光从所述线型光源发出后经所述椭圆线反射面反射后又通过所述收集面反射,再至所述聚光透镜进行折射;一部分光从所述线型光源发出后经非椭圆线反射面反射后至所述聚光透镜进行折射;一部分光从所述线型光源发出后经所述收集面反射后至所述聚光透镜进行折射;一部分光从所述线型光源发出后直接发射至所述聚光透镜;剩余部分光被所述截止线遮光片阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线,以形成所述近光光斑。
进一步地,在一个具体的远光光斑形成方法中,一部分光从所述线型光源发出后经过水平线型反光面进行反射,反射后直接至所述聚光透镜进行折射;一部分光从所述线型光源发出后经所述扩光弧面反射,反射后直接至所述聚光透镜进行折射;一部分光从所述线型光源发出后经镜像面反射后又通过所述水平线型反光面或对面的所述镜像面反射再至所述聚光透镜进行折射,或者经所述镜像面反射后再经所述聚光透镜进行折射;一部分光从所述线型光源发出后经中间局部旋转反光面反射后至所述聚光透镜进行折射;一部分光从所述线型光 源发出后通过所述收集面进行反射,再至所述聚光透镜进行折射;一部分光从所述线型光源发出后直接发射至所述聚光透镜进行折射,从而形成所述远光光斑。
在其中一些实施例中,所述远近光一体化照明系统包括至少一线型光源和至少一线型焦点反光器,其中所述线型光源的位置与所述线型焦点反光器的线型焦点F1重合,所述线型焦点反光器能够将所述线型光源的部分光线汇聚至线型焦点F2,所述远近光一体化照明系统能够形成一近光光斑或一远光光斑。
在其中一些实施例中,其中还包括设置于所述线型焦点F2前方的至少一聚光透镜。
在其中一些实施例中,其中还包括一截止线遮光片,所述截止线遮光片被安装于所述线型焦点反光器上并沿着所述线型焦点F2设置。
在其中一些实施例中,其中所述截止线遮光片能够相对于所述线型焦点反光器进行旋转,从而实现所述近光光斑和所述远光光斑的切换。
在其中一些实施例中,其中还包括一电磁阀,所述电磁阀与所述截止线遮光片连接,通过所述电磁阀驱动所述截止线遮光片进行旋转,从而实现所述近光光斑和所述远光斑的切换。
在其中一些实施例中,其中所述线型焦点反光器在远离所述线型光源的一端具有至少一开口,所述线型光源垂直于光轴线型排列并面向所述开口设置,所述线型焦点反光器内部具有分别相对设置的两水平线型反光面和两镜像反射面,到达所述水平线型反光面以及所述镜像反射面的光线被汇聚至所述线型焦点F2。
在其中一些实施例中,其中所述线型焦点反光器还具有开口处相互间隔地设置的两收集面,将所述聚光透镜包角以外的光反射至所述聚光透镜并经过所述聚光透镜折射至左右宽角度路面区域。
在其中一些实施例中,其中所述水平线型反光面的垂直截面为椭圆线;或者垂直截面为椭圆线和局部非椭圆线组成;或者垂直截面为非椭圆线的反光面使光反射至所述线型焦点F2;或在水平线型反光面的基础上做颗粒。
在其中一些实施例中,其中在邻近所述开口处还具有延伸于各个所述水平线型反光面的至少一扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
在其中一些实施例中,其中所述水平线型反光面是直线型;或直线型并微带弧度,增加垂直角度的光分配。
在其中一些实施例中,其中两所述镜像反射面各自为以椭圆线为基础,部分面非椭圆线组成的拉伸面;或者其进一步微带弧度,增加垂直角度的光分配。
在其中一些实施例中,其中两所述镜像反射面各自具有邻近所述第一线型光源的至少一椭圆线反射面以及延伸于所述椭圆线反射面的至少一非椭圆线反射面。
在其中一些实施例中,其中各个所述收集面的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
在其中一些实施例中,其中所述截止线遮光片的截止线形成面为15°斜线、45°斜线、或90°直角、或0°的水平线。
在其中一些实施例中,其中所述线型焦点反光器包括一上部分线型焦点反光器和一下部分线型焦点反光器,两者一体形成;或者两者结构对称并且互相组装。
在其中一些实施例中,其中当所述电磁阀带动所述截止线遮光片转动从而使所述线型光源发出的光全部通过所述截止线遮光片,再被所述聚光透镜折射后形成所述远光光斑。
在其中一些实施例中,其中所述线型光源为LED光源。
在其中一些实施例中,其中所述线型光源为一组水平排列的多芯LED模组、或者多组水平排列的多芯LED模组、或者单芯的LED水平线型排列、或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
在其中一些实施例中,其中所述的LED为白光;或者暖白光;或者白光和暖白光以及金黄光的混合使用。
在其中一些实施例中,其中所述聚光透镜为旋转的聚光透镜;或者非旋转的聚光透镜。
在其中一些实施例中,其中所述截止线遮光片包括一锯齿片,所述锯齿片被设置于截止线形成面上,所述锯齿片为类三角形,且所述锯齿片的表面设置有拉伸的锯齿状结构。
在其中一些实施例中,其中还包括一滤光片,所述截止线遮光片包括一开窗槽,所述滤光片设置于所述开窗槽内,从而使所述线型光源发出的光能够通过所述滤光片进行减弱并扩散后再照射至所述聚光透镜。
在其中一些实施例中,其中所述聚光透镜为能够消除溢蓝现象的光学透镜,包括一输入光学表面、一输出上半光学表面和一输出下半光学表面,所述输出上半光学表面位于中心水平轴上方,所述输出下半光学表面位于中心水平轴下方。
在其中一些实施例中,其中所述输入光学表面为平面光学表面或者非平面光学表面,所述输出上半光学表面为聚光表面,所述输出下半光学表面为异形面或非旋转面。
在其中一些实施例中,其中所述输出下半光学表面的蓝光平行于或略低于所述输出上半光学表面的黄光,所述输出上半光学表面的黄光完全覆盖所述输出下半光学表面的蓝光,所述输出下半光学表面的黄光完全覆盖所述输出上半光学表面的蓝光,最终形成截止线处无溢蓝现象的光斑。
在其中一些实施例中,其中还包括贴合于所述线型光源的至少一金属散热板。
在其中一些实施例中,其中还包括至少一散热体,所述金属散热板与所述散热体接触以进行散热。
在其中一些实施例中,其中还包括至少一外罩,用于固定所述聚光透镜以及将散射光遮蔽在所述外罩内,所述外罩与所述散热体之间采用密封胶固定连接。
在其中一些实施例中,其中还包括至少一外透镜,所述外透镜与所述外罩之间采用密封胶进行固定连接。
在其中一些实施例中,其中还包括一前位置灯光学透镜和一前位置灯光源组件,所述前位置灯光学透镜和所述前位置灯光源组件被顺序固定于所述外透镜与所述外罩之间。
本发明进一步包括一前照灯,包括至少一线型光源、至少一反光装置以及至少一聚光透镜,其中所述反光装置形成线型焦点F1和线型焦点F2,其中所述线型光源与所述反光装置 的线型焦点F1重合,并且至少部分光经过汇聚后到达所述反光装置的线型焦点F2,并经过所述聚光透镜折射后形成前照灯光斑。
在其中一些实施例中,其中所述反光装置在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口布置,并且所述反光装置具有上下两侧的水平线型反光面、两侧的镜像反射面以及凸出地延伸于所述镜像反射面的收集面,所述收集面将所述聚光透镜包角以外的光反射至所述聚光透镜并经过所述聚光透镜折射至左右宽角度路面区域。
在其中一些实施例中,其中所述反光装置是线型焦点反光器,所述线型光源的发光轴与所述前照灯的光轴同方向或倾斜预定角度地安装。
在其中一些实施例中,其中还包括设置于所述线型焦点F2的一截止线遮光片,从而使所述前照灯形成一近光前照灯。
在其中一些实施例中,其中所述前照灯为远光前照灯。
在其中一些实施例中,其中所述截止线遮光片能够相对于所述前照灯进行旋转,通过旋转所述截止线遮光片使所述前照灯能够提供近光光斑和远光光斑,从而使所述前照灯形成一体化的远光和近光照明系统。
在其中一些实施例中,其中还包括至少一电磁阀,所述电磁阀与所述截止线遮光片固定连接并能够驱动所述截止线遮光片相对于所述反光装置进行旋转,从而使所述前照灯提供所述近光光斑和所述远光光斑。
在其中一些实施例中,其中还包括一滤光片,所述截止线遮光片包括一开窗槽,所述滤光片固定设置于所述开窗槽内使被所述截止线遮光片屏蔽的光通过所述滤光片进行减弱并扩散至所述聚光透镜。
在其中一些实施例中,其中所述截止线遮光片还包括一锯齿片,所述锯齿片,所述锯齿片被设置于截止线形成面上,所述锯齿片为类三角形,且所述锯齿片的表面设置有拉伸的锯齿状结构。
在其中一些实施例中,其中所述线型光源和所述线型焦点反光器的方向与所述前照灯的光轴一致,或者所述线型光源和所述线型焦点反光器的方向与所述前照灯的光轴形成夹角,所述夹角的范围为0°~90°。
在其中一些实施例中,其中所述线型光源为LED光源。
在其中一些实施例中,其中所述线型光源为一组水平排列的多芯LED模组、或者多组水平排列的多芯LED模组、或者单芯的LED水平线型排列、或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
在其中一些实施例中,其中所述的LED为白光;或者暖白光;或者白光和暖白光以及金黄光的混合使用。
在其中一些实施例中,其中所述聚光透镜为能够消除溢蓝现象的光学透镜,包括一输入光学表面、一输出上半光学表面和一输出下半光学表面,所述输出上半光学表面位于中心水平轴上方,所述输出下半光学表面位于中心水平轴下方。
在其中一些实施例中,其中所述输入光学表面为平面光学表面或者非平面光学表面,所 述输出上半光学表面为聚光表面,所述输出下半光学表面为异形面或非旋转面。
在其中一些实施例中,其中所述输出下半光学表面的蓝光平行于或略低于所述输出上半光学表面的黄光,所述输出上半光学表面的黄光完全覆盖所述输出下半光学表面的蓝光,所述输出下半光学表面的黄光完全覆盖所述输出上半光学表面的蓝光,最终形成截止线处无溢蓝现象的光斑。
附图说明
图1A、图1B和图1C为前照灯右行驶车辆在配光屏上的配光要求图。
图2是现有技术中的一种LED远近光一体化系统的结构示意图。
图3A和图3B是配光透镜型LED远近光一体化系统的结构示意图。
图4是龟状反光器LED远近光一体化系统的结构示意图。
图5A是蚌形反光器LED远近光一体化系统的结构示意图。
图5B是TIR透镜LED近光灯系统的结构示意图。
图6A是远光灯ECE R112法规要求测试点。
图6B是远光灯ECE R112法规要求测试点基础上增加防眩目区域和线。
图7A三棱镜光散。
图7B前照灯投射式光学系统减弱截止线处溢蓝现象示意图。
图8是本发明所述的远近光一体化照明系统的第一实施例的近光系统和远光系统安装在一起立体结构示意图。
图9是图8中A-A方向立体结构示意图。
图10是图8中A-A方向剖面结构示意图。
图11是图8的爆炸结构示意图。
图12A是图8中的第一线型焦点反光器的结构示意图。
图12B是近光光路示意图。
图13A是图8中的第二线型焦点反光器的结构示意图。
图13B是远光光路示意图。
图14是图11中B处的放大结构示意图。
图15是本发明上述第一实施例中的远近光一体化照明系统的整体结构示意图。
图16是图15的爆炸结构示意图。
图17是本发明上述第一实施例的一种变形结构爆炸示意图。
图18是本发明上述第一实施例的另一种变形爆炸结构示意图。
图19是本发明上述第一实施例的又一种变形剖面结构示意图。
图20是本发明上述第一实施例的又一种变形剖面结构示意图。
图21是本发明上述第一实施例中的第一线型焦点F2和所述第二线型焦点F2的光斑示意图。
图22A是本发明上述第一实施例中的近光灯光斑示意图。
图22B是本发明上述第一实施例中的远光系统无防眩目板的远光光斑示意图。
图22C是本发明上述第一实施例中的远光系统带防眩目板的远光光斑示意图。
图23是本发明所述的近光前照灯的第一实施例的立体结构示意图。
图24是图23的爆炸结构示意图。
图25是图23中的反光单元的立体结构示意图。
图26是图23中的反光单元的俯视结构示意图。
图27是本发明所述的远光前照灯的第一实施例的立体结构示意图。
图28是图27的爆炸结构示意图。
图29是图27中的反光单元的立体结构示意图。
图30是图27中的反光单元的俯视结构示意图。
图31是本发明所述的近光灯的照明方法的第一实施例的框图。
图32是本发明上述的近光灯的照明方法中的反光装置和聚光透镜的立体结构示意图。
图33是本发明上述近光灯的照明方法中的光线的路径示意图。
图34、35、36和37是本发明上述近光灯的照明方法中的光线线路追踪示意图。
图38是本发明所述的远光灯的照明方法的第一实施例的框图。
图39是本发明上述的远光灯的照明方法中的反光装置和聚光透镜的立体结构示意图。
图40是本发明上述远光灯的照明方法中的光线的路径示意图。
图41、42、43和44是本发明上述远光灯的照明方法中的光线线路追踪示意图。
图45为本发明所述的远近光一体化照明系统的第二实施例的立体结构示意图。
图46为图45中A-A向的剖视结构示意图。
图47为图45中A-A向剖视的正面结构示意图。
图48为图45中的远近光一体化照明系统的爆炸结构示意图。
图49为图45中的远近光一体化照明系统中的聚光透镜的输出光学表面结构示意图。
图50为图49中的聚光透镜消除溢蓝现象光学线路示意图。
图51为图45中的远近光一体化照明系统中的线型焦点反光器的结构示意图。
图52为图51中的线型焦点反光器将线型光源发出的光进行反射后的光路示意图。
图53为图51中的线型焦点反光器的变形结构示意图。
图54为图45中的远近光一体化照明系统使用图53中的线型焦点反光器的爆炸结构示意图。
图55为图45中的远近光一体化照明系统的工作原理流程示意图。
图56为图45中的远近光一体化照明系统中的截止线遮光片与滤光片结合后的光路示意图。
图57为图45中所述的远近光一体化照明系统的照明方法的流程示意图。
图58为图45中的远近光一体化照明系统的进一步优选实施方式的立体结构示意图。
图59为图58中的远近光一体化照明系统的爆炸结构示意图。
图60为本发明所述的前照灯的第实施例的立体结构示意图。
图61为图60中所述的前照灯的爆炸结构示意图。
图62为图61所述的前照灯中反光装置的立体结构示意图。
图63为图62中的反光装置的主视结构示意图。
图64为图61中所述的前照灯中的聚光透镜的输出光学表面结构示意图。
图65为图64中的聚光透镜消除溢蓝现象光学线路示意图。
图66为图60中所述的前照灯的变形实施方式的爆炸结构示意图。
图67为图66中的反光装置的立体结构示意图。
图68为图67中的反光装置的主视结构示意图。
图69为本发明所述的前照灯形成近光光斑的流程示意图。
图70为本发明所述的前照灯形成远光光斑的流程示意图。
图71为本发明所述的前照灯的照明方法中的反光装置的立体结构示意图。
图72为本发明所述的前照灯的照明方法的光路示意图。
图73为本发明所述的前照灯的照明方法的流程示意图。
图74至图77为本发明所述的远近光一体化照明系统的第二实施例及其照明方法中的光线线路追踪示意图。
图78为本发明所述的远近光一体化照明系统的第二实施例的近光模拟光斑图。
图79为本发明所述的远近光一体化照明系统的第二实施例的远光模拟光斑图。
具体实施方式
以下描述用于揭露本实用新型以使本领域技术人员能够实现本实用新型。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本实用新型的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本实用新型的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本实用新型的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本实用新型的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
本发明主要提供一种远近光一体化照明系统,所述远近光一体化照明系统包括一近光系统10和一远光系统20,所述近光系统10包括一第一线型焦点反光器12,所述远光系统包括一第二线型焦点反光器22,所述近光系统10通过所述第一线型焦点反光器12的光线汇聚作用形成线型焦点,并用于提供一近光光斑,所述远光系统20通过所述第二线型焦点反 光器22的光线汇聚作用形成线型焦点,并用于提供一远光光斑。
如图8至图14所示,在本发明的第一实施例中,所述远近光一体化照明系统用于交通工具照明之用。所述交通工具可以是路面交通工具如汽车;或水面交通工具如船舶;或应用于空中交通工具。其中所述近光系统10包括至少一第一线型光源11、至少一第一线型焦点反光器12、至少一第一聚光透镜13以及至少一截止线遮光片14,所述第一线型焦点反光器12用于对所述第一线型光源11进行反光,所述第一线型光源11与所述近光系统光轴垂直并水平线型排列,并且与所述第一线型焦点反光器12的线型焦点F1重合,所述第一线型光源11发出的至少一部分光线经过所述第一线型焦点反光器12反射后汇聚至一线型焦点F2,所述第一聚光透镜13被安装于所述线型焦点F2的前方并利用透镜原理将经过所述线型焦点F2的光线汇聚形成水平线型高密度光的光斑,所述截止线遮光片14被安装于所述线型焦点F2处,用于将截止线上方的光屏蔽掉,最终使所述近光系统10形成近光灯光斑。
如图8至图22所示,所述远光系统20包括至少一第二线型光源21、至少一第二线型焦点反光器22、至少一第二聚光透镜23以及至少一防眩目板24,所述第二线型焦点反光器22被连接于所述第二线型光源21以对所述第二线型光源21进行反光,所述第二线型光源21与所述远光系统光轴垂直并水平线型排列,并且与所述第二线型焦点反光器22的线型焦点F1重合,所述第二线型光源21发出的至少一部分光线经过所述第二线型焦点反光器22反射后汇聚至线型焦点F2,所述第二聚光透镜23被安装于所述线型焦点F2的前方并利用透镜原理将经过所述线型焦点F2的光线汇聚形成水平线型高密度的光斑,所述防眩目板24被设置于所述线型焦点F2处,以形成防眩目区域,即对应图7B中区域I。
具体地,在本发明的第一实施例中,所述第一线型光源11采用多个LED 111水平排列,其中在一个具体示例中,如可以是LED111为中间1500Lm、5700K色温的五芯LED模组,左右各2颗250Lm暖白光3000K色温单芯陶瓷封装LED,正白光和暖白光混合使用,使整灯的色温下降,提高灯具在雾天和下雨天情况下的穿透能力,以及路况更清晰;所有的LED111排成水平线型且所述LED111的发光方向与所述第一线型光源11的光轴为同一方向,并与所述第一线型焦点反光器12的焦点重合。
作为本发明的该第一实施例的一种变形,其中所述第一线型光源11可以为一组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述第一线型光源的色温。
作为本发明的该第一实施例的另一种变形方式,其中所述第一线型光源11为多组水平线型排列的单芯LED模组;或者下方一组水平线型排列的单芯LED模组和上方左或右半组水平线型排列的单芯LED模组组合形成的LED光源,适用于近光灯光学系统。
作为本发明的该第一实施例的另一种变形方式,其中所述第一线型光源11为多组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述第二线型光源的色温。
换言之,由于本发明所述的第一线型焦点反光器12和所述第二线型焦点反光器22的焦点F1和F2是线型的,因此所述LED111可以线型排列,其数量不会受到限制,因此能够提 供比较高的光密度和总的光通量,从而降低单颗所述LED111的电流,如此,所述LED111的光效会更高。
在本发明的第一实施例中,所述第一线型焦点反光器12包括一第一主反光结构121和一第一副反光结构122,其中所述第一主反光结构121包括两片相对设置的第一主反光板1211,所述第一副反光结构122包括两片基本相同结构相对设置的位于侧面第一副反光板1221,所述第一副反光板1221分别设置于两片所述第一主反光板1211的侧边,两片所述第一副反光板1221与两片所述第一主反光板1211形成反光腔,并且具有一第一开口120,从而使所述第一线型光源11发出的光能够通过所述第一开口120穿出。所述第一线型光源11水平线型延伸并朝向所述第一开口120地布置,从所述第一线型光源11直接射出所述第一开口120而不被所述第一线型焦点反光器12反射的光线直接到达所述第一聚光透镜13并折射向路面。所述第一聚光透镜13可以位于所述线型焦点F2前方能够起到聚光作用的位置。
可以理解的是,在另外的变形实施例中,所述第一线型焦点反光器12也可以是其他能够形成线型焦点F1和F2的反光结构,即不限于上述具有四个方向的反光板的结构,而是具有其他数量或形状的反光板结构。
另外,各个所述第一副反光板1221包括一第一主体部12211和一第一延伸部12212,所述第一主体部12211和所述第一主反光板1211之间形成所述第一开口120。所述第一主体部12211的内侧面为弧形,用于对所述第一线型光源11发出的光进行反射。所述第一延伸部12212向外延伸于所述第一主体部12211并向内弯折,所述第一延伸部12212向外延伸时与所述第一主体部12211形成一第一夹角α1,所述第一夹角α1的范围例如可以为90°-270°,所述第一延伸部12212向内弯折时再形成一第二夹角α2,所述第二夹角α2的范围可以为0°~180°。
值得注意的是,每个所述第一主反光板1211的内侧包括一第一中间水平线型反光面12111和一第一扩光弧面12112,如所述第一中间水平线型反光面12111为所述第一主反光板1211的内表面由靠近所述第一线型光源11的一端向所述第一开口120的另一端延伸,所述第一中间水平线型反光面12111主要以椭圆线为基础局部非椭圆线组合线拉伸而成的面,所述第一扩光弧面12112向外延伸于所述第一中间水平线型反光面12111并位于所述第一主反光板1211的尾部。所述第一副反光板1221的所述第一主体部12211包括一第一椭圆线反射面122111和一第一非椭圆线反射面122112,所述第一椭圆线反射面122111为由所述第一主体部12211的内部靠近所述第一线型光源11的一端向所述第一开口120的另一端延伸,所述第一非椭圆线反射面122112向外延伸于所述第一椭圆线反射面122111并位于所述第一主体部12211的内部的尾端。由于所述第一延伸部12212相对于所述第一主体部12211向内延伸。而所述第一延伸部12212的内侧面为一第一收集面122121,所述第一收集面122121位于所述第一延伸部12212的内侧,所以所述第一收集面122121也向内倾斜并形成所述第二夹角α2。
可以理解的是,本发明的这个示例中,第一线型焦点反光器呈光斗状,但是在变形实施方式中,其也可以具有其他的外观,如球体状,其内部提供上述能够形成线型焦点F1和F2 的反光面结构即可。
另外,所述第一水平线型反光面12111的垂直截止面为椭圆线;或者垂直截止面为椭圆线和局部非椭圆线组成;或者垂直截止面为非椭圆线的反光面使光反射至所述线型焦点F2;或在水平线型反光面的基础上做颗粒。
所述第一水平线型反光面12111可以是直线型;或直线型并微带弧度(如5弧度以内),增加垂直角度的光分配。
另外,所述近光光学系统两侧所述反射面各自为椭圆线为基础,部分面非椭圆线组成的拉伸面;或者其进一步微带弧度(如5弧度以内),增加垂直角度的光分配。例如在这个实施例中,所述近光光学系统两侧所述反射面各自具有邻近所述第一线型光源的至少一椭圆线反射面122111以及延伸于所述椭圆线反射面的至少一非椭圆线反射面122112。各个所述第一收集面122121的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
如图11所示,在本发明的第一实施例中,所述截止线遮光片14包括一基板141和一遮光挡板142,所述基板141和所述遮光挡板142相连接,所述截止线遮光片141被安装于所述第二夹角处α2,其沿所述线型焦点F2布置。换句话说,所述第一线型光源11发出的光通过所述第一线型焦点反光器12反光后汇聚到所述线型焦点F2在所述第二夹角处α2被所述截止线遮光片14将基板141上方的光通过所述所述遮光挡板142屏蔽掉,即将对应配光标准中暗区位置的光屏蔽,从而避免产生眩光,使光朝向路面和路标投射。在另外的实施例中,所述截止线遮光片14也可以没有上述基板141,而是与所述第一线型焦点反光器12一体形成;或者所述截止线遮光片14也可以没有上述基板141,直接将截止线遮光片142安装在第一线型焦点反光器12上。
同样地,在本发明的第一实施例中,所述第二线型光源21采用多个LED211水平排列,其中LED211为中间1500Lm、5700K色温的五芯LED模组,左右各2颗250Lm暖白光3000K色温单芯陶瓷封装LED,正白光和暖白光混合使用,使整灯的色温下降,提高灯具在雾天和下雨天情况下的穿透能力,以及路况更清晰;所有的LED211排成水平线型且所述LED211的发光方向与所述第二线型光源21的光轴为同一方向,并与所述第二线型焦点反光器22的焦点F1重合。
作为本发明的该第一实施例的一种变形,其中所述第二线型光源21为一组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述第二线型光源的色温。
为本发明的该第一实施例的另一种变形方式,其中所述第二线型光源21为多组水平线型排列的单芯LED模组。
为本发明的该第一实施例的另一种变形方式,其中所述第二线型光源21为多组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述第二线型光源的色温。
所述第二线型焦点反光器22包括一第二主反光结构221和一第二副反光结构222,所述第二主反光结构221为两片相对设置的第二主反光板2211,所述第二副反光结构222为 两片相对设置的第二副反光板2221,所述第二副反光板2221分别设置于两片所述第二主反光板2211的侧边,两片所述第二副反光板2221与两片所述第二主反光板2211形成一第二开口220,从而使所述第二线型光源22发出的光通过所述第二开口220穿出。所述第二线型光源21水平线型延伸并朝向所述第二开口220地布置,从所述第二线型光源21直接射出所述第二开口220而不被所述第二线型焦点反光器22反射的光线直接到达所述第二聚光透镜23并折射向路面。所述第二聚光透镜23可以位于所述线型焦点F2前方能够起到聚光作用的位置。
相应地,可以理解的是,在另外的变形实施例中,所述第二线型焦点反光器22也可以是其他能够形成线型焦点F1和F2的反光结构,即不限于上述具有四个方向的反光板的结构,而是具有其他数量或形状的反光板结构。
值得注意的是,各个所述第二主反光板2211均可以设置有一弧形凹陷部22110,所述弧形凹陷部22110被设置于所述第二主反光板2211的正中间,用于对所述第二线型光源21发出的光进行反射。
各个所述第二副反光板2221包括一第二主体部22211和一第二延伸部22212,所述第二主体部22211和所述第二主反光板2211之间形成所述第二开口220。所述第二主体部22211的内侧面为一线型反射面222111,用于对所述第二线型光源21发出的光进行反射。所述第二延伸部22212向外延伸于所述第二主体部22211并向内弯折,所述第二延伸部22212向外延伸时与所述第二主体部22211形成一第三夹角β3,所述第三夹角β3的范围为90°-270°。
值得注意的是,每个所述第二主反光板2211的内侧包括一第二中间局部旋转反光面22113、一第二水平线型反光面22111和一第二扩光弧面22112,所述第二主体部22211的内侧具有第二镜像面222111,所述第二延伸部22212的内侧具有一第二收集面222121,其中所述第二中间局部旋转反光面22113为上述弧形凹陷部22110形成,存在于所述第二主反光板2211的中间并将来自第二线型光源21的光经过此面反射至所述第二线型焦点F2中心区域上。所述第二扩光弧面22112主要是将部分所述第二线型光源21的光从所述第二线型焦点F2往上移,以增强地面照明光的分配,所述第二镜像面222111以平面为基础,将所述第二线型光源21的光镜像并反射至所述第二水平线型反光面22111或其对面的镜像面,最终反射至所述第二线型焦点F2上。换言之,通过所述第二镜像面222111作用形成一虚焦点F1’,所述虚焦点F1’位于所述第二水平线型反光面22111的焦点上,光线经反射重新汇聚达到线型焦点F2。所述第二收集面222121主要由平面组成并往外倾斜预定的角度,用于将所述第二聚光透镜23包角以外的光反射至所述第二聚光透镜23上,再经过所述第二聚光透镜23折射至左右大角度的地面区域。
可以理解的是,本发明的这个实施例中,第二线型焦点反光器20呈光斗状,但是在变形实施方式中,其也可以具有其他的外观,如球体状,其内部提供上述能够形成线型焦点F1和F2的反光面结构即可。
本领域技术人员应领会的是,各个所述第二水平线型反光面22111及所述中间局部旋转 反光面22113的垂直截止面可以为椭圆线;或者椭圆线和局部非椭圆线组成;或者非椭圆线的反光面使光反射至所述线型焦点F2;或在所述第二水平线型反光面及所述中间局部旋转反光面的基础上做颗粒。
另外,所述第二水平线型反光面22111可以是直线型;或直线型并微带弧度,增加垂直角度的光分配。
可以理解的是,两侧所述镜像面222111为平面;或微带弧度,增加垂直角度的光分配。各个所述第二收集面222121的表面形状可以为垂直平面;或者倾斜面;或者弧面;或者条状弧面等。
由于所述第二线型焦点反光器22的开口较小,在本实施例中为左右各开口15度,上下开口各11度,因此所述第二线型光源21直接射出此开口的光能够直接至所述第二聚光透镜23折射至地面。因此实现了将所述第二线型光源21的360°立体角内的光全部收集的作用。所以所述第二线型焦点反光器22的光收集率高,不仅能够提高灯具的亮度,而且能降低整灯的功耗。
更进一步地,所述第二线型焦点反光器22进一步包括一防眩目板24,所述防眩目板24设置于所述第二线型焦点F2处。如图中所示,所述所述防眩目板24包括一底座241和一防炫目挡板242,所述防炫目挡板242上设置有一开口2420,所述开口2420供所述第二线型光源21的光通过以形成所述远光光斑。所述开口2420可以根据实际情况或客户需求设置为三角形、长方形或圆形等任何形状,只要达到与本发明相同或近似的技术效果即可,本发明的具体实施方式并不以此为限。所示防眩目区域I必须要要有预定的亮度,但必须要有上限,起到防眩目效果又不影响观察路况,以及中间上3°的Line1线要求最低和最高亮度要求,从而保证有足够的亮度看清上方的路牌信息,同时又不影响车辆转弯时对对面车辆驾驶员和行人产生眩目。
所述防眩目板24为透明、不透明或者半透明材料,或者是变色玻璃。通过不透明的所述防眩目板使眩目区的光遮蔽掉;通过透明、半透明的防眩目板24局部区域粗糙化、或者颗粒化结构使眩目区的光减弱;通过变色玻璃不通电,使液晶膜分子排列无序,光无法通过变色玻璃从而使光减弱;通过变色玻璃通电,使液晶膜分子排列有序,光通过变色玻璃使光增强。
需要强调的是,在本发明的第一实施例中,由于所述第一线型焦点反光器12的开口较小,内部反光面较深,为了实现反光面镀反光镀层,将所述第一线型焦点反光器12设置为包括一第一上部分线型焦点反光器12a和一第一下部分线型焦点反光器12b,所述第一上部分线型焦点反光器12a和所述第一下部分线型焦点反光器12b分别被安装于所述第一线型光源11的上下两侧从而对所述第一线型光源11进行反光,而所述第一上部分线型焦点反光器12a和所述第一下部分线型焦点反光器12b产品结构是基本相同的,其各自具有一部分上述第一线型反射面12111,第一扩光弧面12112,第一椭圆线反射面122111,第一非椭圆线反射面12211,以及第一收集面122121。因此能够互换使用,从而减少产品零件总类,以至于降低产品的投入成本。
同样地,所述第一线型焦点反光器12也可以纵向分为左右两部分对称、可互换使用的结构,这样有利于对所述第一线型焦点反光器12的内部反光面进行镀反光层,而且也能减少产品零件总类,提高生产率。此外,所述第一线型焦点反光器12的所述反光面的反光镀层的材料可以根据不同的使用需求进行选择,比如金属镀层、合金镀层或复合镀层等,另外,所述第一线型焦点反光器也可以设置为一体结构,或者其他的拼接结构。只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
同样地,由于所述第二线型焦点反光器22的开口较小,内部反光面较深,为了实现反光面镀反光镀层,将所述第二线型焦点反光器22设置为包括一第二上部分线型焦点反光器22a和一第二下部分线型焦点反光器22b,所述第二上部分线型焦点反光器22a和所述第二下部分线型焦点反光器22b分别被安装于所述第二线型光源21的上下两侧从而对所述第二线型光源21进行反光,而所述第二上线型焦点反光器21a和所述第二下线型焦点反光器21b产品结构是基本相同的,其各自具有一部分上述第二中间局部旋转反光面22113,第二水平线型反光面22111,第二扩光弧面22112,第二镜像面222111,和第二收集面222121,因此能够互换使用,从而减少产品零件总类,以至于降低产品的投入成本。
同样地,所述第二线型焦点反光器22也可以纵向分为左右两部分对称、可互换使用的结构,这样不有利于对所述第二线型焦点反光器22的内部反光面进行镀反光层,而且也能减少产品零件总类,提高生产率。并且,所述第二线型焦点反光器22的所述反光面的反光镀层的材料可以根据不同的使用需求进行选择,比如金属镀层、合金镀层或复合镀层等。另外,所述第二线型焦点反光器也可以设置为一体结构,或者其他的拼接结构。只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
本发明所述的远近光一体化照明系统主要应用于交通工具中,比如以车辆为例,其中所述近光系统10能够达到足够的光强度以着照亮前方的道路,而所述远光系统20在达到足够的光强以照亮前方道路的前提下又不会产生眩光,因此本发明所述的远近光一体化照明系统在使用过程中不仅高效,而且安全。所述第一线型光源11和所述第二线型光源21的至少一部分光线分别经过所述第一线型焦点反光器12和所述第二线型焦点反光器22反光后汇聚至所述线型焦点F2,所述线型焦点F2水平轴的光线型密集区可达到高度4mm,宽度25mm,在密集区水平方向的光是均匀的,当增加所述第一线型焦点反光器12和所述第二线型焦点反光器22的宽度时,光密集区的宽度也会相应增加。
除此以外,在本发明的第一实施例中,所述远近光一体化照明系统里包括的所述近光系统10和所述远光系统20为两套独立的光学系统,其中所述远光系统20除了能够满足远光规则标准以外,同时地面区域照明又与所述近光系统10一致,因此当需要使用远光系统20进行照明时,将所述近光系统10切换为所述远光系统,也就是说,所述近光系统10此时可以关闭,因此本发明所述的远近光一体化照明系统能够在很大程度上降低整灯的消耗。并且 由于本发明所述的远近光一体化照明系统能够提高高密度的光,因此当近光系统10切换为远光系统20时,不必采用传统的电磁阀移开挡光板的机械结构,没有了电磁阀的功率消耗也能够在一定程度上降低整灯的消耗。
此外,在所述远光系统中,所述第二线型焦点反光器22的光密度更高,体积更小,更有利于做液晶点阵防眩目系统,液晶屏更小,其远光系统20中的所述防眩目板24为高密度点阵液晶屏,通过电路控制液晶屏的点阵位置,进而控制水平线上方的亮、暗点阵形状,从而达到防眩目的目的。
如图15和图16所示,所述远近光一体化照明系统进一步包括一外罩30、一外透镜50以及一散热体40,其中所述外罩30用于将所述远光系统20和所述近光系统10包覆,从而对所述近光系统10和所述远光系统20进行保护,延长所述近光系统10和所述远光系统20的使用寿命,并且所述外罩30能够将所述远光系统20和所述近光系统10发射出来的散射光遮蔽在内部,从而使所述远近光一体化照明系统具有更强的照明效果。所述外透镜50固定连接于所述外罩30的前端,并也可以对所述近光系统10和所述远光系统20的光进一步进行分配。
如图16所示,所述外罩30包括一第一部分31和一第二部分32,所述第一部分31和所述第二部分32连接后形成一容纳腔300,所述容纳腔300用于容纳所述近光系统10和所述远光系统20。其中所述第二部分32作为后段,所述金属散热体40设置于所述第二部分32的内部,所述第一部分31作为前段,包括一第一开口311和一第二开口312,所述第一开口311用于供所述第一聚光透镜13放置并供所述第一线型光源11的光穿过,所述第二开口312用于供所述第二聚光透镜23放置并供所述第二线型光源21的光穿过。
优选地,所述外透镜50可通过密封胶固定连接于所述外罩30的前端并与所述近光系统10及所述远光系统20相连,从而使所述近光系统10和所述远光系统20具有防水防尘的效果。所述近光系统10中的所述第一线型光源11和所述远光系统20中的所述第二线型光源21能够直接固定于所述由金属制成的散热体40,如散热板,散热管,散热条等,由于金属散热体40的热量传递速度快,因此所述金属散热体40的设置能够避免由于所述第一线型光源11和所述第二线型光源21的温度快速上升或者热量无法及时散发而引起的寿命降低。
优选地,本发明所述的远近光一体化照明系统进一步包括一金属散热板60,所述第一线型光源11和所述第二线型光源21直接固定于所述金属散热板60,比如焊接、螺接等方式。优选地,所述第一线型光源11和所述第二线型光源21的所述LED的导热面直接安装于大面积的所述金属散热板60上,由于所述金属散热板60的表面积大,有利于散热,再将焊接于所述金属散热板60的所述第一线型光源11和所述第二线型光源21与所述金属散热体60固定连接。由于所述金属散热板60和所述金属散热体40的接触面积大,因此能够进一步提高所述第一线型光源11和所述第二线型光源21的散热效果,从而提高所述第一线型光源11和所述第二线型光源21的使用寿命。
如图17所示,为本发明所述的远近光一体化照明系统的一种变形应用的爆炸结构示意图。在该实施例中,所述远近光一体化照明系统中包括一远光系统20’和一近光系统10’, 所述远光系统20’和所述近光系统10’能够分别提供一远光光斑和一近光光斑。与上述实施例不同的是,在本实施例中,所述近光系统10’和所述远光系统20’中采用了基本相同结构的线型焦点反光器。换言之,在该实施例中,所述远光系统20’中的所述第二线型焦点反光器采用的是与所述近光系统10’中的所述第一线型焦点反光器12’基本相同的结构。即近光和远光系统10’和20’的各自都具有主反光结构121’和副反光结构122’,其中所述主反光结构121’包括两片的相对设置的主反光板1211’,所述副反光结构122’包括两片相对设置的位于侧面副反光板1221’,所述反光板1221’分别设置于两片所述主反光板1211’的侧边,两片所述副反光板1221’与两片所述主反光板1211’形成反光腔,并且具有开口,并且各个线型焦点反光器包括结构对称的两部分线型焦点反光器12a’和12b’,并且各自形成有类似上述实施例中的所述第一线型反射面12111,第一扩光弧面12112,第一椭圆线反射面122111,第一非椭圆线反射面12211,以及第一收集面122121的反光面结构。这样,其能降低所述远近光一体化照明系统中的产品零件总数,进而提高所述远近光一体化照明系统的生产率。
如图18所示,为本发明所述的远近光一体化照明系统的另一种变形应用的爆炸结构示意图。在该实施例中,所述远近光一体化照明系统中包括一近光系统10”和一远光系统20”,所述近光系统10”和所述远光系统20”能够分别提供一近光光斑和一远光光斑。与上述实施例不同的是,在本实施例中,所述近光系统10”中的所述第一线型焦点反光器采用的是与所述远光系统20”中的所述第二线型焦点反光器22”基本相同的结构,即所述近光系统10”的所述线型焦点反光器22”包括一主反光结构221”和一副反光结构222”,所述主反光结构221”为两片相对设置的主反光板2211”,所述副反光结构222”为两片相对设置的副反光板2221”,所述副反光板2221”分别设置于两片所述主反光板2211”的侧边,两片所述副反光板2221”与两片所述主反光板2211”形成一开口,从而使所述线型光源11发出的光通过所述开口穿出。并且各个线型焦点反光器包括结构对称的两部分线型焦点反光器22a’和22b’,并且各自形成有类似上述实施例中的上述第二中间局部旋转反光面22113,第二水平线型反光面22111,第二扩光弧面22112,第二镜像面222111,和第二收集面222121的反光面结构。
如图19A所示,为本发明所述的远近光一体化照明系统的另一种变形应用的剖面结构示意图。所述远近光一体化照明系统包括一光学系统10”’、一金属散热板60”’、一金属散热体40”’、一外罩30”’以及一外透镜50”’,其中所述光学系统10”’中包括一线型光源11”’、一线型反光器12”’、一聚光透镜13”’以及一截止线遮光片14”’,所述线型光源11”’与所述金属散热板60”’接触连接,所述金属散热体40”’安装于所述外罩30”’的一端内部并与所述金属散热板60”’连接,从而对所述线型光源11”’进行散热,所述线型反光器12”’用于对所述线型光源11”’发出的光进行反射至所述聚光透镜13”’,再通过所述聚光透镜13”’进行折射,所述光学系统系统10”’包覆于所述外罩30”’内,所述外透镜50”’安装于所述外罩30”’的另一端对所述线型光源11”’发出的光进行进一步折射,所述截止线遮光片14”’安装于所述线型反光器12”’和所述聚光透镜13”’之间用于遮蔽所述截止线遮光片14”’的基板上方的光,从而使所述远近光一体化照明系统能够形成一近光光斑。
在本实施例中,所述线型反光器12”’包括一上部分线型焦点反光器12a”’和一下部分线 型焦点反光器12b”’,如上所述,通过设置基本相同的结构形成所述线型反光器12”’不仅有利于对所述线型反光器12”’的内部反光层镀反光膜,而且有利于减少所述线型反光器12”’的零件种类,提高所述线型反光器10”’的生产效率。但本发明的具体实施方式并不以此为限,只要在本发明的基础上进行改变并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内。
值得注意的是,在本实施例中,可以通过改变所述截止线遮光片14”’的形状和材料实现近光截止线。同时,所述截止线遮光片14”’活动安装于所述远近光一体化照明系统,当施加一外力如通过电磁阀控制以移动所述截止线遮光片14”’之后,所述远近光一体化照明系统就能够根据需要提供近光光斑或远光光斑,即当移开所述截止线遮光片14”’时,所述远近光一体化照明系统就能够提供远光光斑,而在重新移回所述截止线遮光片14”’时,所述远近光一体化照明系统就能够提供近光光斑。换言之,本实施例所述的远近光一体化照明系统可以仅用一套光学系统同时实现近光光斑和远光光斑。
此外,作为本实施例的一种变形,所述防眩目板也能够被驱动移动,从而移开所述截止线遮光片14”’时,将所述防眩目板置入光路中,从而提供远光光斑。
如图20所示,为本发明所述的远近光一体化照明系统的再一种变形应用的剖面结构示意图。所述远近光一体化照明系统包括一光学系统10””、一金属散热板60””、一金属散热体40””、一散热加强件90””、一外罩30””以及一外透镜50””,其中所述光学系统10””中包括一线型光源11””、一半线型焦点反光器12””、一聚光透镜13””以及一截止线遮光片14””,所述线型光源11””与所述散热加强件90””接触连接,所述金属散热板60””紧贴于所述散热加强件90””,从而对所述线型光源11””进行散热,半线型焦点反光器12””用于对所述线型光源11””发出的光进行反射至所述聚光透镜13””,再通过所述聚光透镜13””进行折射,所述光学系统10””设置于所述外罩30””内,所述外透镜50””安装于所述外罩30””的另一端对所述线型光源11””发出的光进行进一步折射,所述截止线遮光片14””安装于所述线型反光器12””和所述聚光透镜13””之间用于遮蔽所述截止线遮光片14””的基板上方的光,从而使所述远近光一体化照明系统能够形成一近光光斑。
所述线型光源11””朝向所述半线型焦点反光器12””内表面的方向设置,其侧面朝向所述半线型焦点反光器12””的开口。即所述线型光源11””出光的方向与整个光学系统的光轴垂直,而不像上述实施例中其沿与光轴方向出光,并且发光面朝向开口地设置。所述线型光源11””的安装方向可与光轴垂直或倾斜地安装,本发明在这方面并不受限。
本实施例与图2中的不同之处在于,所述线型光源10””可以包括多组LED模组,经由所述半线型焦点反光器12””反射光线从而汇聚光至线型焦点F2,从而提高所述远近光一体化照明系统的总的光通量。此外,本实施例所述的散热加强件90””为金属散热件,并且表面积大,可以快速消散所述线型光源10””在工作过程中发散的热量,且本发明所述的远近光一体化照明系统采用的是截止线遮光片14””,以提供近光光斑。
值得注意的是,在本实施例中,也可以通过改变所述截止线遮光片14”’的形状和材料实现近光截止线。同时,所述截止线遮光片14”’可活动安装于所述远近光一体化照明系统, 当施加移动所述截止线遮光片14”’之后,所述远近光一体化照明系统就能够形成一远光光斑。换言之,本实施例所述的远近光一体化照明系统可以仅用一套光学系统同时实现近光光斑和远光光斑。
因此,本发明所述的远近光一体化照明系统能够根据客户需求或实际情况进行灵活运用,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
如图23至图26所示,本发明提供一种前照灯,其可以是近光前照灯或远光前照灯,所述前照灯包括至少一线型光源11、至少一反光装置70、以及至少一聚光透镜13,当还包括至少一截止线遮光片14时,其实施为近光前照灯。当不用来遮挡光线而形成明暗截止线时,所述前照灯可以实施为远光前照灯,远光前照灯也可以搭配上述的防眩目板。这里,以近光前照灯为例,所述反光装置70对位于其线型焦点F1的所述线型光源11发出的至少部分光进行反射,所述线型光源11经过所述反光装置70反射后的至少部分光汇聚至一线型焦点F2,所述截止线遮光片14被安装于所述线型焦点F2处,用于将截止线上方的光屏蔽掉,所述第一聚光透镜13被安装于所述线型焦点F2的前方并利用透镜原理对所述线型光源11的光进行折射最终使所述近光前照灯形成近光灯光斑。
具体而言,所述线型光源11采用多个LED光源111,例如其中LED111为中间1500Lm、5700K色温的五芯LED模组,左右各2颗250Lm暖白光3000K色温单芯陶瓷封装LED111,正白光和暖白光混合使用,使整灯的色温下降,提高灯具在雾天和下雨天情况下的穿透能力,以及路况更清晰;所有的LED排111成水平线型且所述LED111的发光方向与所述近光前照灯的光轴为同一方向,并与所述反光装置的焦点F1重合。
作为本发明的该实施例的一种变形,其中所述线型光源11为一组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源的色温。
为本发明的该实施例的另一种变形方式,其中所述线型光源11为多组水平线型排列的单芯LED模组。
为本发明的该实施例的另一种变形方式,其中所述线型光源11为多组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源的色温。
所述反光装置70为光斗线型焦点反光结构,开口较小,并且所述线型光源11通过所述反光装置70的内部反射面进行反光。优选地,所述反光装置70的内部表面镀反光层,进一步提高所述线型光源11的光的反射率和反射强度。
具体而言,所述反光装置70包括一反射光斗71和两个结构相同互相间隔地设置的反射延伸部72,所述反射光斗71形成一腔体700,所述线型光源11光照射进所述反射光斗71的内部进行反光,反射后的光再从前方的开口射出。各个所述反射延伸部72包括一第一段721和一第二段722,所述反射延伸部72的所述第一段721沿着所述线型光源11的光照方 向向外延伸于所述反射光斗71的另一端的两个侧面再向内聚拢形成所述第二段722,换句话说,所述反射延伸部72的所述第一段721和所述第二段722之间具有一第二角度α2且所述反射延伸部72的所述第一段721与所述反射光斗71之间形成一第一角度α1。
其中所述第一角度α1范围为90°至270°,优选为225°,所述第二角度α2范围为0°至180°,例如可以为150°,并与所述反射光斗71之间形成向外张开的开口,所述反射延伸部72的所述第一段721与所述反射光斗71之间的角度例如可以为225°。换句话说,两个所述反射延伸部72分别从所述反射光斗71的两侧向外延伸例如45°之后再向内分别聚拢例如30°,从而使所述反射延伸部72的所述第一段721与所述反射光斗71之间形成例如225°,且所述反射延伸部72的所述第一段721和所述第二段722之间形成例如150°角度。
详细来说,所述反射光斗71内部的上表面和下表面分别包括一水平线型反光面711和一扩光弧面712,所述水平线型反光面711和所述扩光弧面712均用于反射所述第一线型光源11的光,所述水平线型反光面711靠近所述线型光源11,所述扩光弧面712延伸于所述水平线型反光面711并位于远离所述线型光源11的一边。所述反射光斗71内部的两个侧面分别包括一椭圆线反射面713和一非椭圆线反射面714,所述椭圆线反射面713和所述非椭圆线反射面714也用于反射所述线型光源11的光,所述椭圆线反射面713位于靠近所述线型光源11的一边,所述非椭圆线反射面714延伸于所述椭圆线反射面713并位于远离所述线型光源11的一边。换句话说,所述反射光斗71内部的上表面和下表面分别包括一水平线型反光面711和一扩光弧面712,其中所述水平线型反光面711主要以椭圆线为基础局部非椭圆线组合线拉伸而成,所述线型光源11的光经过所述水平线型反光面711汇聚至所述线型焦点F2,以增强中心光强,所述扩光弧面712主要是将所述线型光源11的部分光从所述线型焦点F2往上移,从而增强地面照明光的分配。所述反射光斗71内部的左侧面和右侧面分别包括沿长度方向延伸布置的一椭圆线反射面713和一非椭圆线反射面714。所述椭圆线反射面713和所述非椭圆线反射面714的作用是将所述线型光源11的光反射后汇聚至所述线型焦点F2。
由于所述反射延伸部72的所述第二段722向内弯折,因此所述反射延伸部72的所述第二段722的内表面参与所述第一线型光源11的光的反射,所述反射延伸部72的所述第二段722的内表面为平面并向内倾斜一定的角度,即所述反射延伸部72包括一反射面7221,所述反射面7221主要由平面组成并往内倾斜一定的角度,以作为收集面,从而将所述线型光源11照射过来的光反射至所述聚光透镜13,再经过所述聚光透镜13折射至左右大角度地面区域,另外,所述线型光源11照射至所述聚光透镜13包角以外的光经过所述反射面7221的反射能够重新汇聚至所述聚光透镜13进行折射至左右侧照明区如40°照明区。
在本发明所述的近光前照灯中,所述截止线遮光片14包括一基板141和一遮光挡板142,所述遮光挡板142为遮光层,因此所述遮光挡板142的区域遮蔽不镀反光膜层,并且所述截止线遮光片14与所述反光装置70是一体连接的,作为选择,所述截止线遮光片14与所述反光装置70也可以为可拆卸式连接,只要达到与本发明相同或近似的技术效果即可,本发明的具体实施方案并不以此为限。
需要强调的是,由于所述反光装置70的开口较小,内部反光面较深,为了实现反光面镀反光镀层,将所述反光装置设置70为包括对称结构的两部分反光单元70a和反光单元70b,所述两部分反光单元70a和70b分别被安装于所述线型光源11的上下两侧从而对所述线型光源11进行反光,因此能够减少产品零件总类,以至于降低所述近光前照灯的投入成本。
同样地,所述反光装置70也可以纵向分为左右两部分对称、可互换使用的结构,这样有利于对所述反光装置70的内部反光面进行镀反光层,而且也能减少产品零件总类,提高生产率。此外,所述反光装置70的所述反光面的反光镀层的材料可以根据不同的使用需求进行选择,比如金属镀层、合金镀层或复合镀层等,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
综上所述,由于所述反光装置70的开口较小,因此所述线型光源11射出此开口的光直接汇聚至所述聚光透镜13再折射至地面,因此能够将所述线型光源11射出的光在360°范围内全部收集,所以光的收集率比较高,这样一方面能够提高所述近光前照灯的亮度,还能降低整灯的功耗,同时又将所述线型光源11射出的光分配成线型焦点,水平轴线上的光线密集,使车辆的远处光分配更多,照射视觉更远,宽度方向也是更宽更亮。
如图23和图24所示,所述前照灯进一步包括一外罩30、一外透镜50以及一金属散热体40,其中所述外罩30用于对所述近光前照灯进行保护,延长所述前照灯的使用寿命,并且所述外罩30能够将所述前照灯发射出来的散射光遮蔽在内部。所述外透镜50固定连接于所述外罩30的前端,并对所述近光前照灯发出的光进行进一步的折射,从而提高所述前照灯的照明效果。
如图24所示,所述外罩30包括一第一部分31和一第二部分32,所述第一部分31和所述第二部分32可拆卸式连接后形成一容纳腔300,所述容纳腔300用于容纳所述前照灯的光学系统。其中所述第二部分32作为后端,所述金属散热体40设置于所述第二部分32的内部,所述第一部分31作为前端,包括开口310,所述开口310用于供所述聚光透镜13放置并供所述线型光源11的光穿过。
优选地,所述外透镜50通过密封胶固定连接于所述外罩30的前端并与所述近光前照灯相连,从而使所述近光前照灯具有防水防尘的效果。所述近光前照灯中的线型光源11能够直接固定于所述金属散热体40上,由于金属散热体40的热量传递速度快,因此所述金属散热体40的设置能够避免由于所述第一线型光源11温度快速上升或者热量无法及时散发而引起的寿命降低。
优选地,本发明所述近光前照灯进一步包括一金属散热板60,所述线型光源11直接固定于所述金属散热板60,比如焊接、螺接等方式,优选地,所述线型光源11的所述LED的导热面直接安装于大面积的所述金属散热板60上,由于所述金属散热板60的表面积大,有利于散热,再将焊接于所述金属散热板60的所述线型光源11与所述金属散热体40固定连接。由于所述金属散热板60和所述金属散热体40的接触面积大,因此能够进一步提高所述第一线型光源11的散热效果,从而提高所述近光前照灯使用寿命。
如图27至图30所示,本发明进一步提供一前照灯,所述前照灯包括至少一线型光源21、至少一反光装置80以及至少一聚光透镜13,所述反光装置80对所述线型光源21发出的至少部分光进行反射,所述线型光源21经过所述反光装置80反射后的至少部分光汇聚至一线型焦点F2,所述聚光透镜13被安装于所述线型焦点F2的前方并利用透镜原理将所述线型焦点F2汇聚形成水平线型高密度光的光斑。
具体而言,所述线型光源21采用多个LED211,其中LED211为中间1500Lm、5700K色温的五芯LED模组,左右各2颗250Lm暖白光3000K色温单芯陶瓷封装LED211,正白光和暖白光混合使用,使整灯的色温下降,提高灯具在雾天和下雨天情况下的穿透能力,以及路况更清晰;所有的LED211排成水平线型并与所述第一反光装置的焦点重合。
作为本发明的该实施例的一种变形,其中所述线型光源21为一组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源的色温。
为本发明的该实施例的另一种变形方式,其中所述线型光源21为多组水平线型排列的单芯LED模组。
为本发明的该实施例的另一种变形方式,其中所述线型光源21为多组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源的色温。
所述反光装置80为光斗线型反光器,开口较小,并且所述线型光源21通过所述反光装置80的内部反射面进行反光。优选地,所述反光装置80的内部表面镀反光层,进一步提高所述线型光源21的光的反射率和反射强度。
具体而言,所述反光装置80包括一反射光斗81和一反射延伸部82,所述反射光斗81形成一腔体800,所述线型光源21能够通过所述反射光斗81内部进行反光,反射后的光再从所述反射光斗81的前方开口出来。所述反射延伸部82包括两个结构基本相同并且互相间隔的反射收集段821,所述两个反射收集段821分别沿着所述线型光源21的光照方向向外延伸于所述反射光斗81的远离所述线型光源21的一端的两个侧面并向外弯折。换句话说,各个所述反射收集段82分别与所述反射光斗81形成一夹角β。
所述夹角β的范围为90°-270°,例如可以为210°。也就是说。两个所述反射收集段82分别由所述反射光斗81向外延伸并向外弯折30°,从而形成所述夹角β。
详细而言,所述反射光斗81内部的上表面和下表面分别包括一水平线型反光面811和一扩光弧面812,所述水平线型反光面811邻近所述线型光源21,所述扩光弧面812延伸于所述水平线型反光面811并位于远离所述线型光源21的一边,所述水平线型反光面811和所述扩光弧面812都用于反射所述线型光源21的光。其中所述水平线型反光面811主要由椭圆线为基础局部非椭圆线组合线水平拉伸而成的面。所述扩光弧面812主要是将所述线型光源21的部分光从所述线型焦点F2往上移,以增强地面照明光分配。
所述反射光斗81内部两侧的面为镜像面813,所述镜像面813主要以平面为基础,将所述线型光源21的光镜像至所述水平线型反光面811或对面的镜像面,最终反射至所述线 型焦点F2上。
值得注意的是,所述反射光斗81进一步包括一弧形凹槽810,所述弧形凹槽810的表面为一中间局部旋转反光面814,所述中间局部旋转反光面814形成于所述反射光斗81的内部的上表面和下表面的中间,沿着所述线型光源21的发射方向设置,所述中间局部旋转反光面814为局部旋转面,是主要以椭圆线为基础局部非椭圆线组合线旋转而成的面。
所述反射收集段82的内侧表面参与反射所述线型光源21发出的光,因此两个所述反射收集段82的内侧表面分别包括一收集面821,所述收集面821主要由平面组成并往外倾斜一定角度,用于将所述线型光源21发出的光反射至所述聚光透镜23上,再经过所述第二聚光透镜23折射至左右大角度地面区域。
综上所述,由于所述反光装置80的开口较小,因此所述线型光源21射出此开口的光直接汇聚至所述聚光透镜23再折射至地面,因此能够将所述线型光源21射出的光在360°范围内全部收集,所以光的收集率比较高,这样一方面能够提高所述前照灯的亮度,还能降低整灯的功耗,同时又将所述线型光源21射出的光分配成线型焦点,在实施为远光前照灯时,使水平轴线上的光线密集,使车辆的远处光分配更多,照射视觉更远,宽度方向也是更宽更亮。
本发明所述的前照灯实施为远光前照灯时,所述远光前照灯进一步包括一防眩目板24,所述防眩目板24设置于所述线型焦点F2处。如图28所示,所述防眩目板24包括一底座241和一防炫目挡板242,所述防炫目挡板242上设置有一开口2420,所述开口2420供所述第二线型光源21的光通过以形成所述远光光斑。所述开口2420可以根据实际情况或客户需求设置为三角形、长方形或圆形等任何形状,只要达到与本发明相同或近似的技术效果即可,本发明的具体实施方式并不以此为限。
所述防眩目区域I必须要有一定的亮度,但必须要有上限,起到防眩目效果又不影响观察路况,以及中间上3°的Line1线要求最低和最高亮度要求,从而保证有足够的亮度看清上方的路牌信息,同时又不影响车辆转弯时对对面车辆驾驶员和行人产生眩目。所述防眩目板24为透明、不透明或者半透明材料,或者是变色玻璃。通过不透明的所述防眩目板24使眩目区的光遮蔽掉;通过透明、半透明的防眩目板24局部区域粗糙化、或者颗粒化结构使眩目区的光减弱;通过变色玻璃不通电,使液晶膜分子排列无序,光无法通过变色玻璃从而使光减弱;通过变色玻璃通电,使液晶膜分子排列有序,光通过变色玻璃使光增强。
同样需要强调的是,由于所述反光装置80的开口较小,内部反光面较深,为了实现反光面镀反光镀层,将所述反光装置80设置为包括两部分,即上部分反光单元80a和下部分反光单元80b,因此能够减少产品零件总类,以至于降低所述远光前照灯的投入成本。
同样地,所述反光装置80也可以纵向分为左右两部分对称、可互换使用的结构,这样有利于对所述反光装置80的内部反光面进行镀反光层,而且也能减少产品零件总类,提高生产率。此外,所述反光装置80的所述反光面的反光镀层的材料可以根据不同的使用需求进行选择,比如金属镀层、合金镀层或复合镀层等,所述反光装置80也可以根据需求设置为一体结构。只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技 术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
在本发明所述的实施为远光前照灯的该实施例中,由于所述反光装置80的光密度更高,体积更小,更有利于做液晶点阵防眩目系统,液晶屏更小,其远光系统防眩目板为高密度点阵液晶屏,通过电路控制液晶屏的点阵位置,进而控制水平线上方的亮、暗点阵形状,从而达到防眩目的目的。
可以理解的是,将上述防眩目板24替换为截止线遮光片时,这个优选实施例的前照灯也可以实施为一个近光前照灯。
如图27和图28所示,所述前照灯进一步包括一外罩30、一外透镜50以及一金属散热体60,其中所述外罩30固定所述聚光透镜23,从而对所述远光前照灯进行保护,延长所述远光前照灯的使用寿命。所述外透镜50固定连接于所述外罩30的前端,并对所述远光前照灯发出的光进行进一步的折射,从而提高所述远光前照灯的照明效果。
如图28所示,所述外罩30包括一第一部分31和一第二部分32,所述第一部分31和所述第二部分32形成一容纳腔300,所述容纳腔300用于容纳所述远光前照灯。其中所述第二部分32作为后端,所述金属散热体40设置于所述第二部分32的内部,所述第一部分31作为前端,包括一开口310,所述开口310用于供所述聚光透镜23放置并供所述线型光源21的光穿过。
优选地,所述外透镜50通过密封胶固定连接于所述外罩30的前端,从而使所述前照灯具有防水防尘的效果。所述远光前照灯中的所述线型光源21能够直接固定于所述金属散热体40上,由于金属散热体40的热量传递速度快,因此所述金属散热体40的设置能够避免由于所述线型光源21温度快速上升或者热量无法及时散发而引起的寿命降低。
优选地,本发明所述前照灯进一步包括一金属散热板60,所述线型光源21直接固定于所述金属散热板60,比如焊接、螺接等方式,优选地,所述线型光源21的所述LED的导热面直接安装于大面积的所述金属散热板60上,由于所述金属散热板60的表面积大,有利于散热,再将焊接于所述金属散热板的所述线型光源21与所述金属散热体40固定连接。由于所述金属散热板60和所述金属散热体40的接触面积大,因此能够进一步提高所述线型光源21的散热效果,从而提高所述远光前照灯使用寿命。
如图31至图37所示,本发明进一步提供一种提供近光光斑的方法,包括以下步骤:
一线型光源11发射光L;
一反光装置70反射所述线型光源11发出的所述光L;
一聚光透镜13折射所述线型光源11发出的所述光L;其中,
所述线型光源11发射的所述光L包括一第一部分光L1和一第二部分光L2,第一部分光L1经过所述反光装置70反光后至所述聚光透镜13进行折射,所述第二部分光L2直射至所述聚光透镜13进行折射,最终形成一近光光斑。
进一步地,所述近光灯的照明方法继续包括一步骤:
对所述第一部分光L1经所述反光装置70反光后位于所述明暗截止线上方的光被所述 截止线遮光片14遮蔽。
更进一步地,在所述近光灯的照明方法中,所述第一反光装置70的反光面镀反光层,从而提高所述第一反光装置70的反光效率。所述反光面的反光镀层的材料可以根据不同的使用需求进行选择,比如金属镀层、合金镀层或复合镀层等,所述反光装置70也可以设置为一体结构。只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
更具体而言,如图32所示,所述第一反光装置70的反光面由一中间水平线型反光面711、一扩光弧面712、一椭圆线反射面713、一非椭圆线反射面714以及一收集面715组成。其中所述中间水平线型反光面711主要以椭圆线为基础局部非椭圆线组合线拉伸而成的面,所述第一线型光源11经过此面汇聚至所述线型焦点F2,以增强中心光强;所述线型光源11经过所述椭圆线反射面713和所述非椭圆线反射面714汇聚形成于所述线型焦点F2上;所述扩光弧面712主要是将部分光从所述线型焦点F2往上移,以增强地面照明光分配;所述收集面715主要由平面组成并往内倾斜一定角度,将光反射至所述聚光透镜13上,再经过所述聚光透镜13折射至左右大角度地面区域;由于所述第一反光装置70的开口较小,因此所述线型光源11的光能够直接射出此开口并直接通过所述聚光透镜13折射至地面。换句话说,所述第一反光装置70能够将所述第一线型光源11发出的360°立体角内的光全部收集,高的光收集率能够提高灯具的亮度,从而降低了整体灯具的功率消耗,同时又将所述第一线型光源11射出的光分配至所述线型焦点F2,水平轴线上的光线密集,使车辆的远处光分配更多,照射视觉更远,宽度方向也是更宽更亮。
如上所述,在本发明的该实施例中,经过所述第一反光装置70反光的所述第一部分光L1包括以下部分:
经所述中间水平线型反光面711反射后至所述聚光透镜13的一部分光L11;
经所述扩光弧面712反射,再至所述聚光透镜13的一部分光L12;
经所述椭圆线反射面713反射后又通过所述中间水平线型反光面711反射,再至所述聚光透镜13的一部分光L13;
经所述非椭圆线反射面714反射后至所述聚光透镜13的一部分光L14;以及
经过所述收集面715反射后至所述聚光透镜13的一部分光L15。其中所述第二部分光L2和所述部分光L11-L14都位于所述聚光透镜13的包角范围内,所述部分光L15位于所述聚光透镜13的包角范围以外。
剩余部分光被所述截止线遮光片14阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线。
通过设置所述反光装置以及所述截止线遮光片14并搭配所述聚光透镜13进行作用,从而使所述近光灯光斑左右宽度1万cd增加至左右各18°,以实现更宽、更亮的视觉要求,同时中心区域光强增至5万多cd,从而使中心区域以及右驾驶规则下远处照射更远,并且明暗截止线明显,因此能够避免使对面的驾驶员和行人眩目。
也就是说,所述第一部分光L1中的所述一部分光L11从所述线型光源11发出后经过所述中间水平线型反光面711进行反射,反射后直接至所述聚光透镜13进行折射;所述第一部分光L1中的所述一部分光L12从所述线型光源11发出后经所述扩光弧面712反射,再至所述聚光透镜13进行折射;所述第一部分光L1中的所述一部分光L13从所述线型光源11发出后经所述椭圆线反射面713反射后又通过所述中间水平线型反光面711反射,再至所述聚光透镜13进行折射;所述第一部分光L1中的所述一部分光L14从所述线型光源11发出后经所述非椭圆线反射面714反射后至所述聚光透镜13进行折射;所述第一部分光L1中的所述一部分光L15从所述线型光源11发出后经所述收集面715反射后至所述聚光透镜13进行折射;所述第二部分光L2从所述线型光源11发出后直接发射至所述聚光透镜13进行折射,从而形成所述近光光斑。剩余部分光被所述截止线遮光片14阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线。
如图38至图44所示,本发明进一步提供一种提供远光光斑的方法,包括以下步骤:
一线型光源21发射光M;
一反光装置80对所述线型光源21发出来的所述光M进行反射;
一聚光透镜23对所述线型光源21发出的光M进行折射;其中,
所述线型光源21发射的所述光M包括一第一部分光M1和一第二部分光M2,所述第一部分光M1经过所述反光装置80反光后至所述聚光透镜23进行折射,所述第二线型光源发射21的第二部分光M2直射至所述聚光透镜23进行折射,最终形成一远光光斑。
进一步地,所述远光灯的照明方法继续包括一步骤:
提供一防眩目板24,从而使所述远光灯发出的光具有一防炫目区域。所述防眩目板24设置于所述线型焦点F2处。
综上所述,经过所述反光装置80的所述第一部分光M1包括以下路径:
从所述线型光源21发出后经过所述水平线型反光面811反射后至所述聚光透镜23的一部分光M11;
从所述线型光源21发出后经过所述扩光弧面812进行反射,再至所述聚光透镜23的一部分光M12;
从所述线型光源21发出后经过所述镜像面813反射后至所述聚光透镜23或射至所述水平线型反光面811或对面的镜像面813再投射至所述聚光透镜23的一部分光M13;
从所述线型光源21发出后经过所述中间局部旋转反光面814反射后至所述聚光透镜23的一部分光M14;
从所述线型光源21发出后经过所述收集面821反射后至所述聚光透镜23的所述一部分光M15。其中第二部分光M2和所述第一部分光M1中的所述部分光M11-M14都位于所述聚光透镜23的包角范围内,而所述一部分光M15位于所述聚光透镜23的包角范围外。
接下来,对所述远光灯的工作原理做进一步的简单说明:
所述第一部分光M1中的所述一部分光M11从所述线型光源21发出后经过所述水平线型反光面811进行反射,反射后直接至所述聚光透镜23进行折射;所述第一部分光M1中 的所述一部分光M12从所述线型光源21发出后经所述扩光弧面812进行反射,再至所述聚光透镜23进行折射;所述第一部分光M1中的一部分光M13从所述线型光源21发出后经所述镜像面813反射后又通过所述水平线型反光面811或对面的所述镜像面813反射再至所述聚光透镜23进行折射,或者经所述镜像面813反射后再经所述聚光透镜23进行折射;所述第一部分光M1中的一部分光M14从所述线型光源21发出后经中间局部旋转反光面814反射后至所述聚光透镜23进行折射;所述第一部分光M1中的一部分光M15从所述线型光源21发出后通过所述收集面821进行反射,再至所述聚光透镜23进行折射;所述第二部分光M2从所述线型光源21发出后直接发射至所述聚光透镜23进行折射,从而形成所述远光光斑。需要强调的是,其中第一部分光M1中的所述部分光M11-M14在经过所述反光装置80反光后能汇聚至所述线型焦点F2,从而提高所述远光灯的照明效果。
如图45至图52所示,在本发明所述的远近光一体化照明系统的第二实施例中,所述远近光一体化照明系统包括至少一线型光源411和至少一线型焦点反光器412,其中所述线型光源411的位置与所述线型焦点反光器412的线型焦点F1重合,所述线型焦点反光器412能够将所述线型光源11的部分光线汇聚至线型焦点F2,所述远近光一体化照明系统能够形成一近光光斑或一远光光斑。
优选地,本发明所述的一体化照明系统,进一步包括设置于所述线型焦点F2前方的至少一聚光透镜413。更进一步地,其中还包括一截止线遮光片414和一电磁阀416,所述截止线遮光片414被安装于所述线型焦点反光器412上并沿着所述线型焦点F2设置,且所述截止线遮光片414与所述电磁阀416固定连接,在所述线型焦点F2处通过所述电磁阀416旋转所述截止线遮光片414,从而使所述线型光源411直接发出的光以及经过所述线型焦点反光器412反射的光被所述截止线遮光片414部分屏蔽或者部分光通过所述截止线遮光片414区域,之后再经过所述聚光透镜413的折射作用形成近光光斑或远光光斑。
详细而言,在本发明的第二实施例中,所述远近光一体化照明系统用于交通工具照明之用。所述交通工具可以是路面交通工具如汽车,或水面交通工具如船舶,或应用于空中交通工具。其中所述线型焦点反光器用于对所述线型光源进行反光,所述线型光源411与所述系统光轴垂直并水平线型排列,并且与所述线型焦点反光器412的线型焦点F1重合,所述线型光源411发出的至少一部分光线经过所述线型焦点反光器412反射后汇聚至所述线型焦点反光器412的另一线型焦点F2,所述聚光透镜413被安装于所述线型焦点F2的前方并利用透镜原理将经过所述线型焦点F2的光线汇聚形成水平线型高密度光的光斑;所述截止线遮光片414被安装于所述线型焦点F2处,用于将截止线遮光片414的截止线上方的光屏蔽掉,部分光穿过截止线遮光片414上方,再经聚光透镜折射形成截止线上方的弱光区域,即形成了近光灯光斑。
具体地,在本发明的第二实施例中,所述线型光源411采用多个LED水平排列,其中在一个具体示例中,如可以是LED为中间1500Lm、5700K色温的五芯LED模组,左右各2颗250Lm暖白光3000K色温单芯陶瓷封装LED,正白光和暖白光混合使用,使整灯的色温下降,提高灯具在雾天和下雨天情况下的穿透能力,以及路况更清晰;所有的LED排成 水平线型且所述LED的发光方向与所述线型光源411的光轴为同一方向,并与所述线型焦点反光器412的焦点重合,从而提高所述线型光源411总的光通量。
作为本发明的该第二实施例的一种变形,其中所述线型光源411可以为一组水平线型排列的多芯LED,其中所述LED为白光,或者暖白光,或者白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源411的色温,从而提高所述远近光一体化照明系统的照射距离、路面清晰度以及穿透能力,并且保护驾驶者视网膜。
作为本发明的上述实施例的另一种变形,其中所述线型光源411为多组水平线型排列的单芯LED模组,或者下方一组水平线型排列的单芯LED模组和上方左或右半组水平线型排列的单芯LED模组组合形成的LED光源,适用于近光灯光学系统。
换言之,由于本发明所述的线型焦点反光器412的焦点F1和F2是呈线型,因此所述LED可以线型排列,其数量不会受到限制,因此能够提供比较高的光密度以及总的光通量,从而降低单颗所述LED的电流,如此,所述LED的光效会更高,照明宽度和照明距离也会得到相应的提高。
如图48至图51所示,在本发明的第二实施例中,所述线型焦点反光器412包括一主反光结构4121和一副反光结构4122,其中所述主反光结构4121包括两片相对设置的主反光板41211,所述副反光结构4122包括两片相对设置的结构基本相同的副反光板41221,两片所述副反光板41221别设置于两片所述主反光板41211的侧边,从而使所述两片主反光板41211和两片所述副反光板41221部形成一反光腔。所述反光腔具有一开口4120,所述线型光源411发出的光能够从所述开口4120穿出。所述线型光源411水平线型延伸并朝向所述开口4120设置,使从所述线型光源411直接射出所述开口4120而不被所述线型焦点反光器412反射的光线直接到达所述聚光透镜413并折射向路面。所述聚光透镜413位于所述线型焦点F2的前方能够起到聚光作用的位置。
可以理解的是,在另外的变形实施例中,所述线型焦点反光器412也可以是其他能够形成线型焦点F1和F2的反光结构,即不限于上述具有四个方向的反光结构,而是具有其他数量或形状的反光板结构。
另外,各个所述副反光板41221包括一主体部412211和一延伸部412212,所述主体部412211和所述主反光板41211形成所述反光腔,所述主体部412211的内侧面包括一镜像反射面4122111,用于对所述线型光源411发出的光进行镜像反射。所述延伸部412212进一步包括一过渡部412212a和一外延部412212b,所述过渡部412212a向上延伸于所述主体部412211并向外弯折,所述过渡部412212a与所述主体部412211之间形成一第一夹角α1,所述第一夹角α1的范围为90°-270°,所述外延部412212b向上延伸于所述过渡部412212a并向内弯折,所述外延部412212b与所述过渡部412212a之间形成一第二夹角α2,所述第二夹角α2的范围为0°-180°。
需要强调的是,在本发明的上述实施例中,所述镜像反射面4122111为平面。除此以外,如图53所示,作为本发明的一种变形,本领域技术人员还可以将所述主体部412211的内侧面(即所述镜像反射面4122111)设置为带有弧度的面,只要带有所述镜像反射面4122111, 能够对所述线型光源411发出的光进行反射即可。换言之,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内。
值得注意的是,每个所述主反光板41211的内侧包括一水平线型反光面412111和一扩光弧面412112,如所述水平线型反光面412111为所述主反光板41211的内表面由靠近所述线型光源411的一端向所述开口4120的另一端延伸。所述水平线型反光面412111主要以椭圆线为基础局部非椭圆线组合拉伸而成的面,所述扩光弧面412112向外延伸于所述水平线型反光面412111并位于所述主反光板41211的尾部。所述副反光板41221的所述主体部412211包括所述镜像反射面4122111,所述镜像反射面4122111为由所述主体部412211的内部靠近所述线型光源411的一端向所述开口4120的另一端延伸。由于所述延伸部4122121相对于所述主体部412211向外延伸,而所述延伸部412212的所述过渡部412212a和所述外延部412212b的内侧面共同形成一收集面4122121,所述收集面4122121位于所述延伸部412212的内侧,所述收集面4122121也向外倾斜并与所述主体部412211形成所述第二夹角α2。通过所述收集面4122121的设置,能够将所述聚光透镜413包角以外的光反射至所述聚光透镜413上,再经过所述聚光透镜413折射至前方左右侧宽角度路面。换言之,本发明所述的远近光一体化照明系统能够将所述线型光源411的360度立体角内发出的光线全部收集利用,从而提高光的收集率,因此达到节能、耐用并且环保的效果。
可以理解的是,在本发明的该实施例中,所述线型焦点反光器412为光斗状,但本发明的线型焦点反光器并不限于光斗状,在其他变形实施方式中,本领域技术人员也可以将所述线型焦点反光器412设置为具有其他形状的外观,如球体状等,只要其内部能够提供上述形成线型焦点F1和F2的反光面结构即可。
另外,作为本发明的一种变形,所述水平线型反光面412111的垂直截止面为椭圆线,或者垂直截止面为椭圆线和局部非椭圆线组成,或者垂直截止面为非椭圆线的反光面使光反射至所述线型焦点F2,或者在水平线型反光面412111的基础上做颗粒。
所述水平线型反光面412111可以是直线型,或者线型并微带弧度(如5弧度以内),以增加垂直角度的光分配。
另外,所述线型焦点反光器412两侧所述镜像反射面4122111各自以直线为基础。作为本发明的一种变形,如图53和图54所示,所述镜像反射面4122111是以椭圆线为基础,部分非椭圆线组成的拉伸面,即包括一椭圆线反射面4122111a和一非椭圆线反射面4122111b,或者其进一步微带弧度(如5弧度以内),以增加垂直角度的光分配。其中,所述椭圆线反射面4122111a为由所述主体部412211的内部靠近所述第一线型光源411的一端向所开口4120的另一端延伸,所述非椭圆线反射面4122112b向外延伸于所述椭圆线反射面4122111a并位于所述主体部412211的内部的尾端。由于所述延伸部412212相对于所述主体部412211向内延伸。而所述延伸部412212的内侧面为所述收集面4122121,所述收集面4122121位于所述延伸部412212的内侧,所以所述收集面4122121也向内倾斜并形成所述第二夹角α2。各个所述收集面4122121的表面形状为垂直的平面,或者倾斜面,或者弧面,或者条状弧面 等。
如图48所示,在本发明的第二实施例中,所述截止线遮光片414的截止线形成面形状为15°斜线、45°斜线、或90°直角、或0°的水平线,所述截止线遮光片414包括一水平件414a和一垂直件414b,其中所述水平件414a的一端与所述垂直件414b的一端相互重合并且所述水平件414a和所述垂直件414b相互垂直设置,从而使所述截止线遮光片414大致呈L型设置。所述截止线遮光片414包括至少一旋转孔4141、至少一移动孔4142、至少一开窗槽4143以及至少一锯齿片4144,其中所述截止线遮光片414被安装于所述线型焦点反光器412上并沿着所述线型焦点F2设置,所述锯齿片4144位于截止线形成面上,所述电磁阀416包括一电磁杆4161,所述电磁杆4161固定设置于所述电磁阀416,所述移动孔4142与所述电磁阀416的所述电磁杆4161固定连接,所述旋转孔4141位于所述水平件414a和所述垂直件414b的重合端且所述截止线遮光片414能够沿着所述旋转孔4141进行旋转。因此当驱动所述电磁阀416带动所述电磁杆4161进行移动时,所述电磁阀416可以通过推动所述电磁杆4161而推动所述截止线遮光片414沿着所述移动孔4142进行移动,同时,所述截止线遮光片414沿着所述旋转孔4141进行转动,从而使之前被所述截止线遮光片414遮住的光穿过所述截止线遮光片414到达所述聚光透镜413进行折射,最终形成远光光斑。
如图45至图48所示,所述锯齿片4144为类三角形,并且所述锯齿片4144的表面设置有拉伸的锯齿状结构,用于减少截止线处蓝光的比例,以及在所述截止线遮光片414不做发黑或发灰处理的情况下,使投射至所述锯齿片4144上的光修正,使其反射、漫反射的光不会再投射至所述聚光透镜413上,从而使形成的明暗截止线更清晰。
需要强调的是,在本发明的第二实施例中,由于所述线型焦点反光器412的开口较小,内部反光面较深,为了实现反光面镀反光层,将所述线型焦点反光器412设置为包括一上部分线型焦点反光器412a和一下部分线型焦点反光器412b,所述上部分线型焦点反光器412a和所述下部分线型焦点反光器412b分别被安装于所述线型光源411的上下两侧从而对所述线型光源411进行反光。所述上部分线型焦点反光器412a和所述下部分线型焦点反光器412b的光学结构基本相同,其各自具有一部分所述水平线型反射面412111、所述扩光弧面412112和所述镜像反射面4122111。
需要强调的是,所述线型焦点反光器412的变形设计以增加路面左右宽角度的照明亮度,所述主体部412211的所述镜像反射面4122111可以变形设计为椭圆线反射面和非椭圆线反射面,所述线型光源411发射至椭圆线反射面和非椭圆线反射面,再直接反射至所述聚光透镜413,经过所述聚光透镜413的折射至地面左右宽角度的照明,或者变形设计为非椭圆线的反射面,以增加地面左右宽角度的照明。
如图48所示,所述开窗槽4143设置于所述水平件414a并位于所述水平件414的大致中心处,以使从所述线型光源411照射过来的光能够通过所述开窗槽4143。本发明所述的远近光一体化照明系统进一步包括一滤光片415,所述滤光片415固定设置于所述截止线遮光片414的所述开窗槽4143内,通过所述截止线遮光片414的部分光通过所述开窗槽4143内的所述滤光片415,从而对光进行减弱及扩散至所述聚光透镜413上,再经过所述聚光透 镜413折射至截止线上方暗区形成一块弱光区Zoneγ,以增强P1至P6的光强,同时又不增强P7、P8、B50L和HV测试点的光强,使对面的行人可以看清前方车辆要通过。截止线形成面上的所述锯齿片4144可以屏蔽透过所述聚光透镜413的入射角大的光线,从而减小截止线处的蓝光比例,消除截止线处溢蓝现象。
在本发明的上述优选实施例中,所述滤光片415为不透明材料制成,或者为半透明材料制成,或者为扩散材料制成,或者为白色材料制成等,本领域技术人员只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内,本发明所述的滤光片不受材料的限制。
在本发明的上述具体实施例中,所述开窗槽4143的形状为长方形,所述滤光片415的形状与所述开窗槽4143的形状一致并与所述开窗槽4143尺寸配合,从而使所述截止线遮光片414能够被固定于所述开窗槽4143内。作为本发明的一种变形,所述开窗槽4143的形状也可以具体实施为方形、圆形、椭圆形等形状,也可以为多个方形、圆形、椭圆形等形状或者其结合,所述滤光片415的形状也可以被实施为为方形、圆形、椭圆形等形状,也可以为多个方形、圆形、椭圆形等形状或者其结合,或者是商标或文字等形状,换句话说,所述滤光片415的形状不受所述开窗槽415的形状和数量限制。
如图49所示,在本发明的该实施方式中,所述聚光透镜413为消除溢蓝现象的光学透镜,其包括:输入光学表面4133、输出上半光学表面4131和输出下半光学表面4132。更优选地,所述聚光透镜413的输入光学表面4133为平面或者非平面光学表面,输出上半光学表面4131位于中心水平轴上方并为聚光表面,输出下半光学表面4132位于中心水平轴下方,并为异形面、非旋转面。
如图50所示,所述聚光透镜413输出的下半光学表面4132中心剖面分为若干光学曲线41321、41322、41323……4132*,本发明设定参数如下:41321横向若干光学表面光微往下方偏范围:0°至0.05°,41322横向若干光学表面光微往下方偏范围:0.05°至0.1°,41323横向若干光学表面光微往下方偏范围:0.1°至0.15°,4132*横向若干光学表面光微往下方偏范围:0.05×*°-0.05°至0.05×*°,或者其它参数。
需要强调的是,所述聚光透镜413作为一种消除溢蓝现象的光学透镜,所述的输出下半光学表面4132经过修正后,使输出光学表面4132的蓝光略低于输出上半光学表面4131的黄光,输出上半光学表面4131的黄光完全覆盖输出光学表面4132的蓝光,输出光学表面4132的黄光完全覆盖输出上半光学表面4131的蓝光,最终形成截止线处无溢蓝现象光斑。
换言之,在本具体实施方式中,所述输出下半光学表面4132经过修正,使输出下半光学表面4132的蓝光平行于或略低于上半光学表面4131的黄光,输出上半4131光学表面的黄光完全覆盖输出下半光学表面4132的蓝光,输出下半光学表面4132的黄光完全覆盖输出上半光学表面4131的蓝光,最终形成截止线处无溢蓝现象的光斑。
需要强调的是,一种消除溢蓝现象的光学透镜,所述的光源为白光LED光源,白光LED光源由蓝光通过受激的荧光粉混合成白光,因此主要由黄光和蓝光组成。同一种光学材质对应不同波长的光折射率是不一样的,波长越长折射率越低,波长越短折射率越高,因此通过 F1的光线L4101…L4102…L4103经过输入光学表面4133后,折射成蓝光成份的L4101B…L4102B…L4103B和黄光成分的L4101Y…L4102Y…L4103Y,入射角越大蓝光偏移的角度越大,再经过输出上半光学表面4131折射后分成往下倾斜的L4101B’…L4102B’…L4103B’和平行光L4101Y’…L4102Y’…L4103Y’;通过F1的光线L4201…L4202…L4203经过输入光学表面4133后,折射成蓝光成份的L4201B…L4202B…L4203B和黄光成分的L4201Y…L4202Y…L4203Y,入射角越大黄光偏移的角度越大,再经过输出光学表面4132折射后分成平行光L4201B’…L4202B’…L4203B和往下倾斜的’L4201Y’…L4202Y’…L4203Y’。平行光L4101Y’…L4102Y’…L4103Y’和平行光L4201B’…L4202B’…L4203B混合形成无溢蓝现象光斑;往下倾斜的L4101B’…L4102B’…L4103B’和往下倾斜的’L4201Y’…L4202Y’…L4203Y’混合形成无溢蓝现象光斑,使最终使截止线处光斑不存在溢蓝现象。
作为选择,所述输出下半光学表面4132为修正曲面,也可以所述输出上半光学表面4131为修正曲面,或者所述输出上半光学表面4131和所述输出下半光学表面4132均为修正面,或者输入光学表面4133为修正曲面。
因此,如图55所示,本发明所述的远近光一体化照明系统的第二实施例的工作原理为:
所述线型光源411发出的一部分光经过所述线型焦点反光器412的不同的面进行一次或多次反射后,到达所述截止线遮光片414,所述截止线遮光片414将截止线上方的光进行屏蔽,其余光到达所述聚光透镜413进行折射,从而形成所述近光光斑;
所述线型光源411发出的另一部分光直接到达所述截止线遮光片414,所述截止线遮光片414将截止线上方的光进行屏蔽,其余光到达所述聚光透镜413进行折射,从而形成所述近光光斑;
此时,驱动所述电磁阀416,在所述电磁阀416的驱动下,所述电磁杆4161带动所述截止线遮光片414进行旋转,从而使上述被所述截止线遮光片414屏蔽的光能够全部到达所述聚光透镜413进行折射,从而形成所述远光光斑。如此,通过驱动所述电磁阀416的复位再次进行远光光斑和近光光斑的切换,因此能够快速实现远光效果和近光效果。
如图58和图59所示,所述远近光一体化照明系统进一步包括一外罩430,所述外罩430包括一第一部分431和一第二部分432,所述第一部分431和所述第二部分432形成一容纳腔4300,所述容纳腔4300用于容纳所述远光前照灯。其中所述第二部分432作为后端,所述金属散热体440设置于所述第二部分432的内部,所述第一部分431作为前端,包括一开口4310,所述开口4310用于供所述聚光透镜413放置并供所述线型光源411的光穿过。所述外罩430能够将所述线型光源411发射出来的散射光遮蔽在所述容纳腔4300的内部,从而使所述远近光一体化照明系统具有更强的照明效果。
所述远近光一体化照明系统进一步包括一外透镜450,所述外透镜450被固定设置于所述外罩430的前段,从而使所述前照灯具有防水防尘的效果。所述线型光源411发出的光经过所述聚光透镜413折射之后再经过所述外透镜450进行进一步折射。在本发明的该具体实施例中,所述外透镜450是通过密封胶固定连接于所述外罩430的前端,从而与所述远近光一体化照明系统形成一个整体。
在本发明的该实施例中,所述外透镜450通过密封胶固定连接于所述外罩430的前端,从而使所述线型光源411、所述线型焦点反光器412、所述截止线遮光片414、所述电磁阀416以及所述滤光片415具有防水防尘的效果。但本发明的具体实施方式并不以此为限,本领域技术人员可以在上述揭露的基础上采用任何方式将所述外透镜450固定于所述外罩430的前端,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
除此以外,本发明进一步包括一前位置灯光学透镜492和一前位置灯光源组件491,所述前位置灯光学透镜492和所述前位置灯光源组件491被顺序固定设置于所述外透镜450与所述外罩430之间,从而进一步提高所述远近光一体化照明系统的照明效果。
本发明进一步包括一散热体440,所述散热体440优先选择为金属材料制成,从而增加散热体的散热效果。所述线型光源411与所述散热体440固定连接,从而对所述线型光源411产生的热量进行散发,同时,所述散热体440与所述外罩430通过密封胶固定连接于所述外罩430。所述远近光一体化照明系统中的所述线型光源411能够直接固定于所述散热体440,由于所述散热体440的热量传递速度快,因此所述散热体440的设置能够避免由于所述线型光源411的温度快速上升或者热量无法及时散发而引起的寿命降低。
本发明进一步包括一金属散热板460,所述线型光源411的导热面被固定安装于所述金属散热板460,从而进一步提高对所述线型光源411的散热效果。
除此以外,本领域技术人员可以在上述揭露的基础上,根据实际情况确定所述散热体440的具体结构和材质,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
如图57所示,本发明进一步提供一种远近光一体化照明系统的照明方法,用于所述远近光一体化照明系统,图57为所述照明方法的流程示意图,包括以下步骤:
所述线型光源411发射光L;
所述线型焦点反光器412反射所述线型光源411发出的所述光L;
所述聚光透镜413折射所述线型光源411发出的所述光L;其中,
所述线型光源411发射的所述光L包括一第一部分光L41和一第二部分光L42,第一部分光L41经过所述线型焦点反光器412反光后至所述聚光透镜413进行折射,所述第二部分光L42直射至所述聚光透镜413进行折射,通过所述截止线遮光片414屏蔽截止线上方的光,最终形成一近光光斑;通过电磁阀416通电使之移动所述电磁杆4161,推动所述截止线遮光片414旋转,使截止线形成面往下移动,所述线型光源411发出的光通所述聚光透镜413的焦点区域下方,形成远光光斑。通过对所述电磁阀416断电使电磁杆4161复位,使所述截止线遮光片414旋转复位,又恢复所述近光光斑。
进一步地,所述远近光一体化的照明方法继续包括一步骤:
对所述第一部分光L41经所述线型焦点反光器412反光后位于所述明暗截止线上方的 光被所述截止线遮光片414遮蔽。
更进一步地,在所述远近光一体化照明系统的照明方法中,经过所述第一线型焦点反光器412反光的所述第一部分光L41包括以下部分:
经所述水平线型反射面412111反射后至所述聚光透镜413的一部分光L411;
经所述扩光弧面412112反射,再至所述聚光透镜413的一部分光L412;
经所述经过所述镜像反射面4122111反射至所述水平线型反射面412111并汇聚形成于所述线型焦点F2上,再至所述聚光透镜413的一部分光L413;
经所述镜像反射面4122111反射至所述聚光透镜413的一部分光L414;
经过所述收集面4122121反射后至所述聚光透镜413的一部分光L415,其中所述第二部分光L42和所述部分光L411-L414都位于所述聚光透镜413的包角范围内,所述部分光L415位于所述聚光透镜413的包角范围以外。
剩余部分光被所述截止线遮光片414阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线。
通过设置所述线型焦点反光器412以及所述截止线遮光片414并搭配所述聚光透镜413进行作用,从而使所述近光灯光斑左右宽度1万cd增加至左右各18°,以实现更宽、更亮的视觉要求,同时中心区域光强增至5万多cd,从而使中心区域以及右驾驶规则下远处照射更远,并且明暗截止线明显,因此能够避免使对面的驾驶员和行人眩目。
也就是说,所述第一部分光L41中的所述一部分光L411从所述线型光源411发出后经过所述水平线型反射面412111进行反射,反射后直接至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L412从所述线型光源411发出后经所述扩光弧面412112反射,再至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L413从所述线型光源411发出后经所述镜像反射面4122111反射至所述水平线型反射面412111并汇聚形成于所述线型焦点F2上,再至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L414从所述线型光源411发出后经所述镜像反射面4122111反射后至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L415从所述线型光源411发出后经所述收集面4122121反射后至所述聚光透镜413进行折射;所述第二部分光L42从所述线型光源411发出后直接发射至所述聚光透镜413进行折射,部分光被所述截止线遮光片414阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线。通过电磁阀416通电使之移动电磁杆4161,推动所述截止线遮光片414旋转,使截止线形成面往下移动,光通聚光透镜413焦点区域下方,形成远光光斑。通过电磁阀416断电使电磁杆4161复位,使所述截止线遮光片414旋转复位,又恢复近光光斑。
如图60至图68所示,本发明进一步包括一前照灯,所述前照灯包括至少一线型光源411、至少一反光装置470、以及至少一聚光透镜413,当还包括至少一截止线遮光片414时,其实施为近光前照灯。当进一步包括一电磁阀416用于驱动所述截止线遮光片414进行相对于所述反光装置470进行旋转而不用来遮挡光线而形成明暗截止线时,所述前照灯可以实施为远光前照灯。所述反光装置470对位于其线型焦点F1的所述线型光源411发出的至 少部分光进行反射,所述线型光源411经过所述反光装置470反射后的至少部分光汇聚至一线型焦点F2,所述截止线遮光片414被安装于所述线型焦点F2处,用于将截止线上方的光屏蔽掉,所述第一聚光透镜413被安装于所述线型焦点F2的前方并利用透镜原理对所述线型光源411的光进行折射最终使所述近光前照灯形成近光灯光斑。
具体而言,所述线型光源411采用多个LED光源4111,例如其中LED4111为中间1500Lm、5700K色温的五芯LED模组,左右各2颗250Lm暖白光3000K色温单芯陶瓷封装LED111,正白光和暖白光混合使用,使整灯的色温下降,提高灯具在雾天和下雨天情况下的穿透能力,以及路况更清晰;所有的LED 4111排成水平线型且所述LED4111的发光方向与所述近光前照灯的光轴为同一方向,并与所述反光装置的焦点F1重合。
作为本发明的该实施例的一种变形,其中所述线型光源411为一组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源的色温。
为本发明的该实施例的另一种变形方式,其中所述线型光源411为多组水平线型排列的单芯LED模组。
为本发明的该实施例的另一种变形方式,其中所述线型光源411为多组水平线型排列的多芯LED模组,其中所述LED为白光和暖白光混合使用,或者白光、暖白光和金黄光混合使用,从而降低所述线型光源的色温。
如图61至63所示,所述反光装置470为光斗线型焦点反光结构,开口较小,并且所述线型光源411通过所述反光装置470的内部反射面进行反光。优选地,所述反光装置470的内部表面镀反光层,进一步提高所述线型光源411的光的反射率和反射强度。
具体而言,所述反光装置470包括一反射光斗471和两个结构相同互相间隔地设置的反射延伸部472,所述反射光斗471形成一腔体4700,所述线型光源411光照射进所述反射光斗471的内部进行反光,反射后的光再从前方的开口射出。各个所述反射延伸部472包括一第一段4721和一第二段4722,所述反射延伸部472的所述第一段4721沿着所述线型光源411的光照方向向外延伸于所述反射光斗471的另一端的两个侧面再向内聚拢形成所述第二段4722,换句话说,所述反射延伸部472的所述第一段4721和所述第二段4722之间具有一第二角度α2且所述反射延伸部472的所述第一段4721与所述反射光斗471之间形成一第一角度α1。
其中所述第一角度α1范围为180°至270°,优选为225°,所述第二角度α2范围为0°至180°,例如可以为150°,并与所述反射光斗471之间形成向外张开的开口,所述反射延伸部472的所述第一段4721与所述反射光斗471之间的角度例如可以为225°。换句话说,两个所述反射延伸部472分别从所述反射光斗471的两侧向外延伸例如45°之后再向内分别聚拢例如30°,从而使所述反射延伸部472的所述第一段4721与所述反射光斗471之间形成例如225°,且所述反射延伸部472的所述第一段4721和所述第二段4722之间形成例如150°角度。
详细来说,所述反射光斗471内部的上表面和下表面分别包括一水平线型反光面4711 和一扩光弧面4712,所述水平线型反光面4711和所述扩光弧面4712均用于反射所述第一线型光源411的光,所述水平线型反光面4711靠近所述线型光源411,所述扩光弧面4712延伸于所述水平线型反光面4711并位于远离所述线型光源411的一边。所述反射光斗471内部的两个侧面分别包括一椭圆线反射面4713和一非椭圆线反射面4714,所述椭圆线反射面4713和所述非椭圆线反射面4714也用于反射所述线型光源411的光,所述椭圆线反射面4713位于靠近所述线型光源411的一边,所述非椭圆线反射面4714延伸于所述椭圆线反射面4713并位于远离所述线型光源411的一边。换句话说,所述反射光斗471内部的上表面和下表面分别包括一水平线型反光面4711和一扩光弧面4712,其中所述水平线型反光面4711主要以椭圆线为基础局部非椭圆线组合线拉伸而成,所述线型光源411的光经过所述水平线型反光面4711汇聚至所述线型焦点F2,以增强中心光强,所述扩光弧面4712主要是将所述线型光源411的部分光从所述线型焦点F2往上移,从而增强地面照明光的分配。所述反射光斗471内部的左侧面和右侧面分别包括沿长度方向延伸布置的一椭圆线反射面4713和一非椭圆线反射面4714。所述椭圆线反射面4713和所述非椭圆线反射面4714的作用是将所述线型光源411的光反射后汇聚至所述线型焦点F2。
由于所述反射延伸部472的所述第二段4722向内弯折,因此所述反射延伸部472的所述第二段4722的内表面参与所述第一线型光源411的光的反射,所述反射延伸部472的所述第二段4722的内表面为平面并向内倾斜一定的角度,即所述反射延伸部472包括一反射面47221,所述反射面47221主要由平面组成并网内倾斜一定的角度,以作为收集面,从而将所述线型光源411照射过来的光反射至所述聚光透镜413,再经过所述聚光透镜413折射至左右大角度地面区域,另外,所述线型光源411照射至所述聚光透镜413包角以外的光经过所述反射面47221的反射能够重新汇聚至所述聚光透镜413进行折射至左右侧如照明区如40°照明区。
如图61所示,在本发明所述的近光前照灯中,所述截止线遮光片414的截止线形成面形状为15°斜线、45°斜线、或90°直角、或0°的水平线,所述截止线遮光片414包括一水平件414a和一垂直件414b,其中所述水平件414a的一端与所述垂直件414b的一端相互重合并且所述水平件414a和所述垂直件414b相互垂直设置,从而使所述截止线遮光片414大致呈L型设置。所述截止线遮光片414包括至少一旋转孔4141、至少一移动孔4142、至少一开窗槽4143以及至少一锯齿片4144,其中所述截止线遮光片414被安装于所述反光装置470上并沿着所述线型焦点F2设置,所述锯齿片4144位于截止线形成面上,所述电磁阀416包括一固定设置的电磁杆4161,所述移动孔4142与所述电磁阀416的所述电磁杆4161固定连接,所述旋转孔4141位于所述水平件414a和所述垂直件414b的重合端且所述截止线遮光片414能够沿着所述旋转孔4141进行旋转。因此当驱动所述电磁阀416带动所述电磁杆4161进行移动时,所述电磁阀416可以通过推动所述电磁杆4161而推动所述截止线遮光片414沿着所述移动孔4142进行移动,同时,所述截止线遮光片414沿着所述旋转孔4141进行转动,从而使之前被所述截止线遮光片414遮住的光穿过所述截止线遮光片414到达所述聚光透镜进行折射,最终形成远光光斑。
如图59和60所示,所述锯齿片4144为类三角形,并且所述锯齿片4144的表面设置有拉伸的锯齿状结构,用于减少截止线处蓝光的比例,以及在所述截止线遮光片414不做发黑或发灰处理的情况下,使投射至所述锯齿片4144上的光修正,使其反射、漫反射的光不会再投射至所述聚光透镜413上,从而使明暗截止线更清晰。
如图61所示,所述开窗槽4143设置于所述水平件414a并位于所述水平件414a上,以使从所述线型光源411照射过来的光能够通过所述开窗槽4143。本发明所述的近光灯进一步包括一滤光片415,所述滤光片415固定设置于所述截止线遮光片414的所述开窗槽4143内,通过所述截止线遮光片414的部分光通过所述开窗槽4143内的所述滤光片415,从而对光进行减弱及扩散至所述聚光透镜413上,再经过所述聚光透镜413折射至截止线折射至截止线上方暗区形成一块弱光区Zoneγ,以增强P1至P6的光强,同时又不增强P7、P8、B50L和HV测试点的光强,使对面的行人可以看清前方车辆要通过。截止线形成面的锯齿片4144可以屏蔽透过所述聚光透镜413的入射角大的光线,从而减小截止线处的蓝光比例,消除截止线处溢蓝现象。
在本发明的上述优选实施例中,所述滤光片415为不透明材料制成,或者为半透明材料制成,或者为扩散材料制成,或者为白色材料制成等,本领域技术人员只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内,本发明所述的滤光片不受材料的限制。
在本发明的上述具体实施例中,所述开窗槽4143的形状为长方形,所述滤光片415的形状与所述开窗槽4143的形状一致并与所述开窗槽4143尺寸配合,从而使所述滤光片415能够被固定于所述开窗槽4143内。作为本发明的一种变形,所述开窗槽4143的形状也可以具体实施为方形、圆形、椭圆形等形状,也可以为多个方形、圆形、椭圆形等形状或者其结合,所述截止线遮光片414的形状也可以被实施为为方形、圆形、椭圆形等形状,也可以为多个方形、圆形、椭圆形等形状或者其结合,或者是商标或文字等形状,换句话说,所述滤光片415的形状不受所述开窗槽4143的形状和数量限制。
如图64所示,在本发明的该实施方式中,所述聚光透镜413为消除溢蓝现象的光学透镜,其包括:输入光学表面4133、输出上半光学表面4131和输出下半光学表面4132。更优选地,所述聚光透镜413的输入光学表面4133为平面或者非平面光学表面,输出上半光学表面4131位于中心水平轴上方并为聚光表面,输出下半光学表面4132位于中心水平轴下方,并为异形面、非旋转面。
如图65所示,所述聚光透镜413输出的下半光学表面4132中心剖面分为若干光学曲线41321、41322、41323……4132*,本发明设定参数如下:41321横向若干光学表面光微往下方偏范围:0°至0.05°,41322横向若干光学表面光微往下方偏范围:0.05°至0.1°,41323横向若干光学表面光微往下方偏范围:0.1°至0.15°,4132*横向若干光学表面光微往下方偏范围:0.05×*°-0.05°至0.05×*°,或者其它参数。
需要强调的是,所述聚光透镜413为一种消除溢蓝现象的光学透镜,所述的输出下半光学表面4132经过修正后,使输出光学表面4132的蓝光略低于输出上半光学表面4131的黄 光,输出上半光学表面4131的黄光完全覆盖输出光学表面4132的蓝光,输出光学表面4132的黄光完全覆盖输出上半光学表面4131的蓝光,最终形成截止线处无溢蓝现象光斑。
换言之,在本具体实施方式中,所述输出下半光学表面4132经过修正,使输出下半光学表面4132的蓝光平行于或略低于上半光学表面4131的黄光,输出上半4131光学表面的黄光完全覆盖输出下半光学表面4132的蓝光,输出下半光学表面4132的黄光完全覆盖输出上半光学表面4131的蓝光,最终形成截止线处无溢蓝现象的光斑。
需要强调的是,在所述能够消除溢蓝现象的光学透镜中,所述的光源为白光LED光源,白光LED光源由蓝光通过受激的荧光粉混合成白光,因此主要由黄光和蓝光组成。同一种光学材质对应不同波长的光折射率是不一样的,波长越长折射率越低,波长越短折射率越高,因此通过F1的光线L4101…L4102…L4103经过输入光学表面4133后,折射成蓝光成份的L4101B…L4102B…L4103B和黄光成分的L4101Y…L4102Y…L4103Y,入射角越大蓝光偏移的角度越大,再经过输出上半光学表面4131折射后分成往下倾斜的L4101B’…L4102B’…L4103B’和平行光L4101Y’…L4102Y’…L4103Y’;通过F1的光线L4201…L4202…L4203经过输入光学表面4133后,折射成蓝光成份的L4201B…L4202B…L4203B和黄光成分的L4201Y…L4202Y…L4203Y,入射角越大黄光偏移的角度越大,再经过输出光学表面4132折射后分成平行光L4201B’…L4202B’…L4203B和往下倾斜的’L4201Y’…L4202Y’…L4203Y’。平行光L4101Y’…L4102Y’…L4103Y’和平行光L4201B’…L4202B’…L4203B混合形成无溢蓝现象光斑;往下倾斜的L4101B’…L4102B’…L4103B’和往下倾斜的’L4201Y’…L4202Y’…L4203Y’混合形成无溢蓝现象光斑,使最终使截止线处光斑不存在溢蓝现象。
作为选择,所述输出下半光学表面4132为修正曲面,也可以所述输出上半光学表面4131为修正曲面,或者所述输出上半光学表面4131和所述输出下半光学表面4132均为修正面,或者输入光学表面4133为修正曲面。
需要强调的是,由于所述反光装置470的开口较小,内部反光面较深,为了实现反光面镀反光镀层,将所述反光装置设置470为包括对称结构的两部分反光单元470a和反光单元470b,所述两部分反光单元470a和470b分别被安装于所述线型光源411的上下两侧从而对所述线型光源411进行反光,因此能够减少产品零件总类,以至于降低所述近光前照灯的投入成本。
同样地,所述反光装置470也可以纵向分为左右两部分对称、可互换使用的结构,这样不有利于对所述反光装置470的内部反光面进行镀反光层,而且也能减少产品零件总类,提高生产率。此外,所述反光装置470的所述反光面的反光镀层的材料可以根据不同的使用需求进行选择,比如金属镀层、合金镀层或复合镀层等,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问题,并且达到了与本发明相同或近似的技术效果,均属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
综上所述,由于所述反光装置470的开口较小,因此所述线型光源411射出此开口的光直接汇聚至所述聚光透镜413再折射至地面,因此能够将所述线型光源411射出的光在360°范围内全部收集,所以光的收集率比较高,这样一方面能够提高所述近光前照灯的亮度,还 能降低整灯的功耗,同时又将所述线型光源411射出的光分配成线型焦点,水平轴线上的光线密集,使车辆的远处光分配更多,照射视觉更远,宽度方向也是更宽更亮。
如图66至图68所示,作为本发明所述的反光装置的一种变形,所述反光装置480的结构如图所示,所述反光装置480与上述反光装置470的不同之处在于,所述反射光斗481内部两侧的面为镜像面4813,所述镜像面4813主要以平面为基础,将所述线型光源421的光镜像至所述水平线型反光面4811或对面的镜像面4813,最终反射至所述线型焦点F2上。
因此,如图69和70所示,本发明所述的前照灯的工作原理为:
所述线型光源411发出的一部分光经过所述反光装置470(480)的不同的面进行一次或多次反射后,到达所述截止线遮光片414,所述截止线遮光片414将截止线上方的光进行屏蔽通过所述滤光片415进行减弱及扩散,其余光到达所述聚光透镜413进行折射,从而形成所述近光光斑;
所述线型光源411发出的另一部分光直接到达所述截止线遮光片414,所述截止线遮光片414将截止线上方的光进行屏蔽通过所述滤光片415进行减弱及扩散,其余光到达所述聚光透镜413进行折射,从而形成所述近光光斑;
此时,驱动所述电磁阀416,在所述电磁阀416的驱动下,所述电磁杆4161带动所述截止线遮光片414进行旋转,从而使上述被所述截止线遮光片414屏蔽的光能够全部到达所述聚光透镜413进行折射,从而形成所述远光光斑。如此,通过驱动所述电磁阀416的复位再次进行远光光斑和近光光斑的切换,因此能够快速实现远光效果和近光效果。
如图66所示,所述前照灯进一步包括一外罩430和一散热体440,所述外罩430包括一第一部分431和一第二部分432,所述第一部分431和所述第二部分432形成一容纳腔4300,所述容纳腔4300用于容纳所述远光前照灯。其中所述第二部分432作为后端,所述散热体440被固定设置于所述第二部分432,所述第一部分431作为前端,包括一开口4310,所述开口4310用于供所述聚光透镜413放置并供所述线型光源411的光穿过。所述散热体440优选为金属制成,从而提高散热效果。
所述前照灯进一步包括一外透镜450,所述外透镜450固定连接于所述外罩430的前端,从而使所述前照灯具有防水防尘的效果。所述前照灯中的所述线型光源411能够直接固定于所述散热体440上,由于散热体440的热量传递速度快,因此所述散热体440的设置能够避免由于所述线型光源411温度快速上升或者热量无法及时散发而引起的寿命降低。
除此以外,本发明所述的前照灯进一步包括一前位置灯光学透镜492和一前位置灯光源组件491,所述前位置灯光学透镜492和所述前位置灯光源组件491被顺序固定设置于所述外透镜450与所述外罩430之间,从而进一步提高所述远近光一体化照明系统的照明效果。
在本发明的该实施例中,所述外透镜450通过密封胶固定连接于所述外罩430的前端,从而使所述线型光源411、所述反光装置470(480)、所述截止线遮光片414、所述电磁阀416以及所述滤光片415具有防水防尘的效果。但本发明的具体实施方式并不以此为限,本领域技术人员可以在上述揭露的基础上采用任何方式将所述外透镜450固定于所述外罩430的前端,只要采用了与本发明相同或近似的技术方案,解决了与本发明相同或近似的技术问 题,并且达到了与本发明相同或近似的技术效果,都属于本发明的保护范围之内,本发明的具体实施方式并不以此为限。
优选地,本发明所述前照灯进一步包括一金属散热板460,所述线型光源411直接固定于所述金属散热板460,比如焊接、螺接等方式,优选地,所述线型光源411的所述LED的导热面直接安装于大面积的所述金属散热板460上,由于所述金属散热板460的表面积大,有利于散热,再将焊接于所述金属散热板460的所述线型光源411与所述散热体440固定连接。由于所述金属散热板460和所述散热体440的接触面积大,因此能够进一步提高所述线型光源411的散热效果,从而提高所述前照灯使用寿命。
如图71至图73所示,本发明进一步提供一种前照灯的照明方法,用于所述前照灯,包括以下步骤:
所述线型光源411发射光L;
所述反光装置470(480)反射所述线型光源411发出的所述光L;
所述聚光透镜413折射所述线型光源411发出的所述光L;其中,
所述线型光源411发射的所述光L包括一第一部分光L41和一第二部分光L42,第一部分光L41经过所述反光装置470(480)反光后至所述聚光透镜413进行折射,所述第二部分光L42直射至所述聚光透镜413进行折射,通过所述截止线遮光片414屏蔽截止线上方的光,最终形成一近光光斑;
通过所述电磁阀416通电使之移动所述电磁杆4161,推动所述截止线遮光片414旋转,使截止线形成面往下移动,光通所述聚光透镜413的焦点区域下方,形成远光光斑,通过对所述电磁,416断电使电磁杆4161复位,使所述截止线遮光片414旋转复位,又恢复所述近光光斑。
进一步地,所述前照灯的照明方法继续包括一步骤:
对所述第一部分光L41经所述反光装置470(480)反光后位于所述明暗截止线上方的光被所述截止线遮光片414遮蔽。
更进一步地,在所述前照灯的照明方法中,经过所述反光装置470(480)反光的所述第一部分光L41包括以下部分:
经所述水平线型反射面4711反射后至所述聚光透镜413的一部分光L411;
经所述扩光弧面4712反射,再至所述聚光透镜413的一部分光L412;
经所述经过所述镜像反射面4713反射至所述水平线型反射面4711并汇聚形成于所述线型焦点F2上,再至所述聚光透镜413的一部分光L413;
经所述镜像反射面4713反射至所述聚光透镜413的一部分光L414;
经过所述收集面47221反射后至所述聚光透镜413的一部分光L415,其中所述第二部分光L42和所述部分光L411-L414都位于所述聚光透镜413的包角范围内,所述部分光L415位于所述聚光透镜413的包角范围以外。
剩余部分光被所述截止线遮光片414阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线。
通过设置所述反光装置470(480)以及所述截止线遮光片414并搭配所述聚光透镜413进行作用,从而使所述近光灯光斑左右宽度1万cd增加至左右各18°,以实现更宽、更亮的视觉要求,同时中心区域光强增至5万多cd,从而使中心区域以及右驾驶规则下远处照射更远,并且明暗截止线明显,因此能够避免使对面的驾驶员和行人眩目。
也就是说,所述第一部分光L41中的所述一部分光L411从所述线型光源411发出后经过所述水平线型反射面4711进行反射,反射后直接至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L412从所述线型光源411发出后经所述扩光弧面4712反射,再至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L413从所述线型光源411发出后经所述镜像反射面4713反射至所述水平线型反射面4711并汇聚形成于所述线型焦点F2上,再至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L414从所述线型光源411发出后经所述镜像反射面4713反射后至所述聚光透镜413进行折射;所述第一部分光L41中的所述一部分光L415从所述线型光源411发出后经所述收集面47221反射后至所述聚光透镜413进行折射;所述第二部分光L42从所述线型光源411发出后直接发射至所述聚光透镜413进行折射,部分光被所述截止线遮光片414阻挡而不能向外射出,从而用于使近光光斑形成明暗截止线。通过电磁阀416通电使之移动电磁杆4161,推动所述截止线遮光片414旋转,使截止线形成面往下移动,光通聚光透镜413焦点区域下方,形成远光光斑。通过电磁阀416断电使电磁杆4161复位,使所述截止线遮光片414旋转复位,又恢复近光光斑。
本领域的技术人员应理解,上述描述及附图中所示的本实用新型的实施例只作为举例而并不限制本实用新型。本实用新型的目的已经完整并有效地实现。本实用新型的功能及结构原理已在实施例中展示和说明,在没有背离该原理下,本实用新型的实施方式可以有任何变形或修改。

Claims (104)

  1. 一远近光一体化照明系统,其特征在于,包括一近光系统和一远光系统,所述近光系统包括至少一第一线型光源和至少一第一线型焦点反光器,所述远光系统包括至少一第二线型光源和至少一第二线型焦点反光器,所述近光系统中所述第一线型焦点反光器构造成为所述第一线型光源提供光线汇聚的线型焦点,从而能够提供一近光光斑,所述远光系统中所述第二线型焦点反光器构造成为所述第二线型光源提供光线汇聚的线型焦点,从而能够提供一远光光斑。
  2. 根据权利要求1所述的远近光一体化照明系统,其中所述近光系统进一步包括至少一第一聚光透镜及至少一截止线遮光片,所述第一线型光源的位置与所述第一线型焦点反光器的线型焦点F1重合,所述第一线型焦点反光器将所述第一线型光源的至少部分光反射后汇聚至线型焦点F2,所述截止线遮光片安装于所述线型焦点F2处并用于将明暗截止线上方的光线遮蔽,所述第一聚光透镜被设置于所述线型焦点F2的前方,用于折射光线形成所述近光光斑。
  3. 根据权利要求2所述的远近光一体化照明系统,其中所述第一线型焦点反光器在远离所述第一线型光源的一端具有至少一第一开口,所述第一线型光源垂直于光轴并线型排列并面向所述第一开口地设置,所述第一线型焦点反光器内部具有上下两侧的第一水平线型反光面以及两侧的反射面,到达所述第一水平线型反光面以及所述反射面的光线被汇聚至所述线型焦点F2。
  4. 根据权利要求3所述的远近光一体化照明系统,其中所述第一线型焦点反光器还具有开口处互相间隔地设置的两第一收集面,将所述第一聚光透镜包角以外的光反射至所述第一聚光透镜并经所述第一聚光透镜折射至左右宽角度路面区域。
  5. 根据权利要求3所述的远近光一体化照明系统,其中所述第一水平线型反光面的垂直截止面为椭圆线;或者垂直截止面为椭圆线和局部非椭圆线组成;或者垂直截止面为非椭圆线的反光面使光反射至所述线型焦点F2;或在水平线型反光面的基础上做颗粒。
  6. 根据权利要求3所述的远近光一体化照明系统,其中在邻近所述第一开口处还具有延伸于各个所述第一水平线型反光面的至少一第一扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
  7. 根据权利要求3所述的远近光一体化照明系统,其中所述第一水平线型反光面是直线型;或直线型并微带弧度,增加垂直角度的光分配。
  8. 根据权利要求3所述的远近光一体化照明系统,其中所述近光光学系统两侧所述反射面各自为以椭圆线为基础,部分面非椭圆线组成的拉伸面;或者其进一步微带弧度,增加垂直角度的光分配。
  9. 根据权利要求3所述的远近光一体化照明系统,其中所述近光光学系统两侧所述反射面各自具有邻近所述第一线型光源的至少一椭圆线反射面以及延伸于所述椭圆线反射面的至少一非椭圆线反射面。
  10. 根据权利要求4所述的远近光一体化照明系统,其中各个所述第一收集面的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
  11. 根据权利要求2所述的远近光一体化照明系统,其中所述截止线遮光片为15°斜线、45°斜线、或90°直角、或0°的水平线。
  12. 根据权利要求2所述的远近光一体化照明系统,其中所述第一线型焦点反光器包括一上部分第一线型焦点反光器和一下部分第一线型焦点反光器,两者一体形成;或者两者结构对称并且互相组装。
  13. 根据权利要求1至12中任一所述的远近光一体化照明系统,其中所述远光系统进一步包括至少一第二聚光透镜,所述第二线型光源的位置与所述第二线型焦点反光器的线型焦点F1重合,所述第二线型焦点反光器将所述第二线型光源的至少部分光反射后汇聚至线型焦点F2,所述第二聚光透镜被设置于所述线型焦点F2的前方,用于折射光线形成所述远光光斑。
  14. 根据权利要求13所述的远近光一体化照明系统,其中所述第二线型焦点反光器在远离所述第二线型光源的一端具有至少一第二开口,所述第二线型光源垂直于光轴并线型排列并面向所述第二开口地设置,所述第二线型焦点反光器内部具有上下两侧第二水平线型反光面、分别位于所述第二水平线型反光面中间的中间局部旋转反光面以及位于两侧的镜像面,用于将至少部分光线汇聚至所述线型焦点F2。
  15. 根据权利要求13所述的远近光一体化照明系统,其中两侧所述镜像面成像作用形成虚焦点F1’,所述第二线型光源的虚焦点F1’位于上下两侧的所述水平线型反光面的焦点F1上。
  16. 根据权利要求15所述的远近光一体化照明系统,其中所述第二线型焦 点反光器还具有开口处互相间隔地设置的两第二收集面,将所述第二聚光透镜包角以外的光反射至所述第二聚光透镜并经所述第二聚光透镜折射至左右宽角度路面区域。
  17. 根据权利要求14所述的远近光一体化照明系统,其中各个所述第二水平线型反光面及所述中间局部旋转反光面的垂直截止面为椭圆线;或者椭圆线和局部非椭圆线组成;或者非椭圆线的反光面使光反射至所述线型焦点F2;或在所述第二水平线型反光面及所述中间局部旋转反光面的基础上做颗粒。
  18. 根据权利要求17所述的远近光一体化照明系统,其中在邻近所述第二开口处还具有延伸于各个所述第二水平线型反光面的至少一第二扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
  19. 根据权利要求14所述的远近光一体化照明系统,其中所述第二水平线型反光面是直线型;或直线型并微带弧度,增加垂直角度的光分配。
  20. 根据权利要求14所述的远近光一体化照明系统,其中两侧所述镜像面为平面;或微带弧度,增加垂直角度的光分配。
  21. 根据权利要求16所述的远近光一体化照明系统,其中各个所述第二收集面的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
  22. 根据权利要求14所述的远近光一体化照明系统,其中所述第二线型焦点反光器包括一上部分第二线型焦点反光器和一下部分第二线型焦点反光器,两者一体形成;或者两者结构对称并且互相组装。
  23. 根据权利要求14所述的远近光一体化照明系统,其中所述远光系统还包括设置于所述线型焦点F2处的至少一防眩目板,其中所述的防眩目板为不透明材料,或者透明材料,或者变色玻璃,或者液晶屏,其中通过不透明的防眩目板使眩目区的光遮蔽掉;通过透明的防眩目板局部区域粗糙化、或者颗粒化结构使眩目区的光减弱;通过变色玻璃不通电,使液晶膜分子排列无序,光无法通过变色玻璃使光减弱;通过变色玻璃通电,使液晶膜分子排列有序,光通过变色玻璃使光增强;或者通过电路控制液晶屏的点阵位置,控制水平上方的亮、暗点阵形状,从而达到防眩目的目的。
  24. 根据权利要求1至23中任一所述的远近光一体化照明系统,其中所述第一/第二线型光源为LED光源或激光光源。
  25. 根据权利要求1至23中任一所述的远近光一体化照明系统,其中所述 第一/第二线型光源为一组水平排列的多芯LED模组、或者多组水平排列的多芯LED模组、或者单芯的LED水平线型排列、或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
  26. 根据权利要求25所述的远近光一体化照明系统,其中所述的LED为白光、或者暖白光、或者白光和暖白光以及金黄光混合使用。
  27. 根据权利要求1至23中任一所述的远近光一体化照明系统,其中所述第一/第二聚光透镜为旋转的聚光透镜;或者非旋转的聚光透镜。
  28. 根据权利要求27所述的远近光一体化照明系统,其中所述线型焦点F2的光经过所述第一/第二聚光透镜汇聚形成水平线型光斑,水平轴线处光密度最高,左右光宽度至40°,聚光透镜下半部分光学设计时光线略往下偏,消除截止线处光色溢蓝现象。
  29. 根据权利要求25所述的远近光一体化照明系统,其中还包括贴合于所述第一/第二线型光源的至少一金属散热体。
  30. 根据权利要求29所述的远近光一体化照明系统,其中还包括至少一外罩,用于固定所述第一和第二聚光透镜以及将散射光遮蔽在所述外罩内,所述外罩与所述金属散热体之间采用密封胶连接固定。
  31. 根据权利要求30所述的远近光一体化照明系统,其中还包括至少一外透镜,采用密封胶将外透镜和所述外罩相连接。
  32. 一远近光一体化照明系统,其特征在于,包括一近光系统和一远光系统,所述近光系统和所述远光系统各自包括至少一线型光源和至少一线型焦点反光器,所述线型光源与所述线型焦点反光器的线型焦点F1重合,并且所述线型焦点反光器将所述线型光源的至少部分光反射后汇聚至线型焦点F2,其中所述近光系统和所述远光系统能够分别提供一近光光斑和一远光光斑。
  33. 根据权利要求32所述的远近光一体化照明系统,其中所述近光系统和所述远光系统各自还包括设置于所述线型焦点F2前方的至少一聚光透镜。
  34. 根据权利要求33所述的远近光一体化照明系统,其中各个所述线型焦点反光器在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口地布置,并且所述线型焦点反光器各自具有上下两侧的水平线型反光面以及两侧的反射面,用于将所述线型光源的至少部分光线汇聚至所述线型焦点F2。
  35. 根据权利要求34所述的远近光一体化照明系统,其中所述线型焦点反 光器还具有开口处互相间隔地设置的两收集面,将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。
  36. 根据权利要求35所述的远近光一体化照明系统,其中所述水平线型反光面的垂直截止面为椭圆线;或者垂直截止面为椭圆线和局部非椭圆线组成;或者垂直截止面为非椭圆线的反光面使光反射至所述线型焦点F2;或在水平线型反光面的基础上做颗粒;或者在邻近所述第一开口处还具有延伸于各个所述第一水平线型反光面的至少一扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
  37. 根据权利要求35所述的远近光一体化照明系统,其中所述水平线型反光面是直线型;或直线型并微带弧度,增加垂直角度的光分配。
  38. 根据权利要求35所述的远近光一体化照明系统,其中所述反射面各自为椭圆线为基础,部分面非椭圆线组成的拉伸面;或者其进一步微带弧度,增加垂直角度的光分配。
  39. 根据权利要求35所述的远近光一体化照明系统,其中各个所述线型焦点反光器在远离所述线型光源的一端具有至少一开口,所述线型光源垂直于光轴并线型排列并面向所述开口地设置,所述线型焦点反光器内部具有上下两侧水平线型反光面、分别位于所述水平线型反光面中间的中间局部旋转反光面以及位于两侧的镜像面,用于将至少部分光线汇聚至所述线型焦点F2。
  40. 根据权利要求39所述的远近光一体化照明系统,其中两侧所述镜像面成像作用形成虚焦点F1’,所述线型光源的虚焦点F1’位于上下两侧的所述水平线型反光面的焦点F1上。
  41. 根据权利要求39所述的远近光一体化照明系统,其中所述线型焦点反光器还具有开口处互相间隔地设置的两收集面,将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。
  42. 根据权利要求39所述的远近光一体化照明系统,其中各个所述第二水平线型反光面及所述中间局部旋转反光面的垂直截止面为椭圆线;或者椭圆线和局部非椭圆线组成;或者非椭圆线的反光面使光反射至所述线型焦点F2;或在所述水平线型反光面及所述中间局部旋转反光面的基础上做颗粒;在邻近所述开口处还具有延伸于各个所述水平线型反光面的至少一扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
  43. 根据权利要求39所述的远近光一体化照明系统,其中所述水平线型反光面是直线型;或直线型并微带弧度,增加垂直角度的光分配。
  44. 根据权利要求39所述的远近光一体化照明系统,其中两侧所述镜像面为平面;或微带弧度,增加垂直角度的光分配。
  45. 根据权利要求32至44中任一所述的远近光一体化照明系统,其中所述近光系统和所述远光系统还分别包括位于所述线型焦点F2处的至少一截止线遮光片和至少一防眩目板。
  46. 根据权利要求32至44中任一所述的远近光一体化照明系统,其中所述近光系统和所述远光系统共用所述线型光源,所述线型焦点反光器和所述聚光透镜,并且通过位于所述线型焦点F2处的至少一移动截止线遮光片实现分别提供近光照明和远光照明。
  47. 一前照灯,应用于一交通工具,其特征在于,包括:至少一线型光源,至少一反光装置,以及至少一聚光透镜,其中所述反光装置形成线型焦点F1和线型焦点F2,其中所述线型光源与所述反射光斗的线型焦点F1重合,并且至少部分光经汇聚后到达所述反射光斗的线型焦点F2,并经所述聚光透镜折射形成前照灯光斑。
  48. 根据权利要求47所述的前照灯,其中所述反光装置在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口地布置,并且所述反光装置具有上下两侧的水平线型反光面,两侧的反射面,凸出地延伸于所述反射面的收集面,其中所述水平线型反光面和两侧的所述反射面用于将所述线型光源的至少部分光线汇聚至所述线型焦点F2,所述收集面将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。
  49. 根据权利要求47所述的前照灯,其中两侧的所述反射面包括邻近所述线型光源的至少一椭圆线反射面以及延伸于所述椭圆线反射面的至少一非椭圆线反射面。
  50. 根据权利要求48所述的前照灯,其中还包括延伸于所述水平线型反光面并邻近所述开口的至少一扩光弧面,以将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
  51. 根据权利要求47所述的前照灯,其中所述反光装置在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口地布置,所述反光装置内部具有 上下两侧水平线型反光面、分别位于所述水平线型反光面中间的中间局部旋转反光面以及位于两侧的镜像面,用于将至少部分光线汇聚至所述线型焦点F2,并且所述反光装置还具有分别凸出地延伸于所述镜像面的收集面,所述收集面将所述聚光透镜包角以外的光反射至所述聚光透镜并经所述聚光透镜折射至左右宽角度路面区域。
  52. 根据权利要求51所述的前照灯,其中两侧所述镜像面成像作用形成虚焦点F1’,所述线型光源的虚焦点F1’位于上下两侧的所述水平线型反光面的焦点F1上。
  53. 根据权利要求47所述的前照灯,其中所述反光装置是半光斗线型焦点反光器,所述线型光源发光轴与所述前照灯的光轴垂直或倾斜预定角度地安装。
  54. 根据权利要求47至53中任一所述的前照灯,其中还包括设置于所述线型焦点的至少一截止线遮光片,从而所述前照灯形成一近光前照灯。
  55. 根据权利要求54所述的前照灯,其中所述截止线遮光片构造成可活动,以通过移动所述截止线遮光片分别提供近光光斑和远光光斑,从而得到一体化的近光和远光照明系统。
  56. 根据权利要求47至53中任一所述的前照灯,其中所述前照灯是远光前照灯。
  57. 根据权利要求56所述的前照灯,其中所述远光前照灯还包括位于所述线型焦点F2处的至少一防眩目板。
  58. 根据权利要求54或57中所述的前照灯,其中所述近光灯线型焦点反光器能够运用于所述远光前照灯上,所述远光灯线型焦点反光器能够运用于所述近光前照灯上,或者所述近光灯线型焦点反光器和所述远光灯线型焦点反光器混合使用。
  59. 根据权利要求53至58中任一所述的前照灯,其中所述线型光源和线型焦点反光器的方向与灯具光轴一致,或者所述线型光源和线型焦点反光器的方向与灯具光轴形成夹角,所述夹角的范围为0°~90°。
  60. 一远近光一体化照明系统,其特征在于,所述远近光一体化照明系统包括至少一线型光源和至少一线型焦点反光器,其中所述线型光源的位置与所述线型焦点反光器的线型焦点F1重合,所述线型焦点反光器能够将所述线型光源的部分光线汇聚至线型焦点F2,所述远近光一体化照明系统能够形成一近光光斑 或一远光光斑。
  61. 根据权利要求60所述的一体化照明系统,其中还包括设置于所述线型焦点F2前方的至少一聚光透镜。
  62. 根据权利要求61所述的一体化照明系统,其中还包括一截止线遮光片,所述截止线遮光片被安装于所述线型焦点反光器上并沿着所述线型焦点F2设置。
  63. 根据权利要求62所述的一体化照明系统,其中所述截止线遮光片能够相对于所述线型焦点反光器进行旋转,从而实现所述近光光斑和所述远光光斑的切换。
  64. 根据权利要求63所述的一体化照明系统,其中还包括一电磁阀,所述电磁阀与所述截止线遮光片连接,通过所述电磁阀驱动所述截止线遮光片进行旋转,从而实现所述近光光斑和所述远光斑的切换。
  65. 根据权利要求60-64中任一项所述的远近光一体化照明系统,其中所述线型焦点反光器在远离所述线型光源的一端具有至少一开口,所述线型光源垂直于光轴线型排列并面向所述开口设置,所述线型焦点反光器内部具有分别相对设置的两水平线型反光面和两镜像反射面,到达所述水平线型反光面以及所述镜像反射面的光线被汇聚至所述线型焦点F2。
  66. 根据权利要求65所述的远近光一体化照明系统,其中所述线型焦点反光器还具有开口处相互间隔地设置的两收集面,将所述聚光透镜包角以外的光反射至所述聚光透镜并经过所述聚光透镜折射至左右宽角度路面区域。
  67. 根据权利要求66所述的远近光一体化照明系统,其中所述水平线型反光面的垂直截面为椭圆线;或者垂直截面为椭圆线和局部非椭圆线组成;或者垂直截面为非椭圆线的反光面使光反射至所述线型焦点F2;或在水平线型反光面的基础上做颗粒。
  68. 根据权利要求65所述的远近光一体化照明系统,其中在邻近所述开口处还具有延伸于各个所述水平线型反光面的至少一扩光弧面,将部分光从所述线型焦点F2往上移,以增强地面照明光分配。
  69. 根据权利要求65所述的远近光一体化照明系统,其中所述水平线型反光面是直线型;或直线型并微带弧度,增加垂直角度的光分配。
  70. 根据权利要求65所述的远近光一体化照明系统,其中两所述镜像反射 面各自为以椭圆线为基础,部分面非椭圆线组成的拉伸面;或者其进一步微带弧度,增加垂直角度的光分配。
  71. 根据权利要求65所述的远近光一体化照明系统,其中两所述镜像反射面各自具有邻近所述第一线型光源的至少一椭圆线反射面以及延伸于所述椭圆线反射面的至少一非椭圆线反射面。
  72. 根据权利要求66所述的远近光一体化照明系统,其中各个所述收集面的表面形状为垂直平面;或者倾斜面;或者弧面;或者条状弧面。
  73. 根据权利要求72所述的远近光一体化照明系统,其中所述截止线遮光片的截止线形成面为15°斜线、45°斜线、或90°直角、或0°的水平线。
  74. 根据权利要求60所述的远近光一体化照明系统,其中所述线型焦点反光器包括一上部分线型焦点反光器和一下部分线型焦点反光器,两者一体形成;或者两者结构对称并且互相组装。
  75. 根据权利要求64所述的远近光一体化照明系统,其中当所述电磁阀带动所述截止线遮光片转动从而使截止线向上转动,补充水平中心机上部分的光,,再被所述聚光透镜折射后形成所述远光光斑。
  76. 根据权利要求60-75中任一项所述的远近光一体化照明系统,其中所述线型光源为LED光源。
  77. 根据权利要求60-75中任一项所述的远近光一体化照明系统,其中所述线型光源为一组水平排列的多芯LED模组、或者多组水平排列的多芯LED模组、或者单芯的LED水平线型排列、或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
  78. 根据权利要求77所述的远近光一体化照明系统,其中所述的LED为白光;或者暖白光;或者白光和暖白光以及金黄光的混合使用。
  79. 根据权利要求60-75中任一项所述的远近光一体化照明系统,其中所述聚光透镜为旋转的聚光透镜;或者非旋转的聚光透镜。
  80. 根据权利要求62-79中任一项所述的远近光一体化照明系统,其中所述截止线遮光片包括一锯齿片,所述锯齿片被设置于截止线形成面上,所述锯齿片为类三角形,且所述锯齿片的表面设置有拉伸的锯齿状结构。
  81. 根据权利要求80所述的远近光一体化照明系统,其中还包括一滤光片,所述截止线遮光片包括一开窗槽,所述滤光片设置于所述开窗槽内,从而使所述 线型光源发出的光能够通过所述滤光片进行减弱并扩散后再照射至所述聚光透镜。
  82. 根据权利要求81所述的远近光一体化照明系统,其中所述聚光透镜为能够消除溢蓝现象的光学透镜,包括一输入光学表面、一输出上半光学表面和一输出下半光学表面,所述输出上半光学表面位于中心水平轴上方,所述输出下半光学表面位于中心水平轴下方。
  83. 根据权利要求82所述的远近光一体化照明系统,其中所述输入光学表面为平面光学表面或者非平面光学表面,所述输出上半光学表面为聚光表面,所述输出下半光学表面为异形面或非旋转面。
  84. 根据权利要求83所述的远近光一体化照明系统,其中所述输出下半光学表面的蓝光平行于或略低于所述输出上半光学表面的黄光,所述输出上半光学表面的黄光完全覆盖所述输出下半光学表面的蓝光,所述输出下半光学表面的黄光完全覆盖所述输出上半光学表面的蓝光,最终形成截止线处无溢蓝现象的光斑。
  85. 根据权利要求84所述的远近光一体化照明系统,其中还包括贴合于所述线型光源的至少一金属散热板。
  86. 根据权利要求85所述的远近光一体化照明系统,其中还包括至少一散热体,所述金属散热板与所述散热体接触。
  87. 根据权利要求86所述的远近光一体化照明系统,其中还包括至少一外罩,用于固定所述聚光透镜以及将散射光遮蔽在所述外罩内,所述外罩与所述散热体之间采用密封胶固定连接。
  88. 根据权利要求87所述的远近光一体化照明系统,其中还包括至少一外透镜,所述外透镜与所述外罩之间采用密封胶进行固定连接。
  89. 根据权利要求88所述的远近光一体化照明系统,其中还包括一前位置灯光学透镜和一前位置灯光源组件,所述前位置灯光学透镜和所述前位置灯光源组件被顺序固定于所述外透镜与所述外罩之间。
  90. 一前照灯,应用于一交通工具,其特征在于,包括至少一线型光源、至少一反光装置以及至少一聚光透镜,其中所述反光装置形成线型焦点F1和线型焦点F2,其中所述线型光源与所述反光装置的线型焦点F1重合,并且至少部分光经过汇聚后到达所述反光装置的线型焦点F2,并经过所述聚光透镜折射后形 成前照灯光斑。
  91. 根据权利要求90所述的前照灯,其中所述反光装置在远离所述线型光源的一端具有开口,所述线型光源朝向所述开口布置,并且所述反光装置具有上下两侧的水平线型反光面、两侧的镜像反射面以及凸出地延伸于所述镜像反射面的收集面,所述收集面将所述聚光透镜包角以外的光反射至所述聚光透镜并经过所述聚光透镜折射至左右宽角度路面区域。
  92. 根据权利要求91所述的前照灯,其中所述反光装置是线型焦点反光器,所述线型光源的发光轴与所述前照灯的光轴同方向或倾斜预定角度地安装。
  93. 根据权利要求90-92中任一项所述的前照灯,其中还包括设置于所述线型焦点F2的一截止线遮光片,从而使所述前照灯形成一近光前照灯。
  94. 根据权利要求90-92中任一项所述的前照灯,其中所述前照灯为远光前照灯。
  95. 根据权利要求94所述的前照灯,其中所述截止线遮光片能够相对于所述前照灯进行旋转,通过旋转所述截止线遮光片使所述前照灯能够提供近光光斑和远光光斑,从而使所述前照灯形成一体化的远光和近光照明系统。
  96. 根据权利要求95所述的前照灯,其中还包括至少一电磁阀,所述电磁阀与所述截止线遮光片固定连接并能够驱动所述截止线遮光片相对于所述反光装置进行旋转,从而使所述前照灯提供所述近光光斑和所述远光光斑。
  97. 根据权利要求96所述的前照灯,其中还包括一滤光片,所述截止线遮光片包括一开窗槽,所述滤光片固定设置于所述开窗槽内使被所述截止线遮光片屏蔽的光通过所述滤光片进行减弱并扩散至所述聚光透镜。
  98. 根据权利要求97所述的前照灯,其中所述截止线遮光片还包括一锯齿片,所述锯齿片,所述锯齿片被设置于截止线形成面上,所述锯齿片为类三角形,且所述锯齿片的表面设置有拉伸的锯齿状结构。
  99. 根据权利要求90-98中任一项所述的前照灯,其中所述线型光源为LED光源。
  100. 根据权利要求90-98中任一项所述的前照灯,其中所述线型光源为一组水平排列的多芯LED模组、或者多组水平排列的多芯LED模组、或者单芯的LED水平线型排列、或者水平排列的多芯LED模组和单芯的LED水平线型排列混合使用。
  101. 根据权利要求100所述的前照灯,其中所述的LED为白光;或者暖白光;或者白光和暖白光以及金黄光的混合使用。
  102. 根据权利要求90-101中任一项所述的前照灯,其中所述聚光透镜为能够消除溢蓝现象的光学透镜,包括一输入光学表面、一输出上半光学表面和一输出下半光学表面,所述输出上半光学表面位于中心水平轴上方,所述输出下半光学表面位于中心水平轴下方。
  103. 根据权利要求102所述的前照灯,其中所述输入光学表面为平面光学表面或者非平面光学表面,所述输出上半光学表面为聚光表面,所述输出下半光学表面为异形面或非旋转面。
  104. 根据权利要求103所述的前照灯,其中所述输出下半光学表面的蓝光平行于或略低于所述输出上半光学表面的黄光,所述输出上半光学表面的黄光完全覆盖所述输出下半光学表面的蓝光,所述输出下半光学表面的黄光完全覆盖所述输出上半光学表面的蓝光,最终形成截止线处无溢蓝现象的光斑。
PCT/CN2017/116841 2017-01-06 2017-12-18 远近光一体化照明系统及近光前照灯、远光前照灯 WO2018126880A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17889971.2A EP3567308A4 (en) 2017-01-06 2017-12-18 LIGHTING SYSTEM WITH INTEGRATED HIGH BEAM AND LOW BEAM, LOW BEAM AND HIGH BEAM

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201720017174.8 2017-01-06
CN201710009895.9 2017-01-06
CN201710009895.9A CN108613108A (zh) 2017-01-06 2017-01-06 远近光一体化照明系统及近光前照灯、远光前照灯
CN201720017174.8U CN207179542U (zh) 2017-01-06 2017-01-06 远近光一体化照明系统及前照灯
CN201721069382.9 2017-08-24
CN201710735524.9 2017-08-24
CN201710735524.9A CN109751565A (zh) 2017-08-24 2017-08-24 远近光一体化照明系统及前照灯
CN201721069382.9U CN207688002U (zh) 2017-08-24 2017-08-24 远近光一体化照明系统及前照灯

Publications (1)

Publication Number Publication Date
WO2018126880A1 true WO2018126880A1 (zh) 2018-07-12

Family

ID=62789059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116841 WO2018126880A1 (zh) 2017-01-06 2017-12-18 远近光一体化照明系统及近光前照灯、远光前照灯

Country Status (2)

Country Link
EP (1) EP3567308A4 (zh)
WO (1) WO2018126880A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185828A (zh) * 2018-10-08 2019-01-11 郑州森源新能源科技有限公司 Led汽车灯
CN111660916A (zh) * 2020-05-29 2020-09-15 马瑞利汽车零部件(芜湖)有限公司 一种集成刚性支架的车灯调节系统
CN114396596A (zh) * 2022-01-06 2022-04-26 常州信息职业技术学院 一种基于液晶透镜的前照灯模组、前照灯及其车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263589A (zh) * 1998-02-05 2000-08-16 天工灯光有限公司 带线反射器的投射灯装置
CN1701446A (zh) * 2002-08-30 2005-11-23 吉尔科有限公司 Led平面光源和由其构造的低轮廓前灯
US20060028831A1 (en) * 2004-08-06 2006-02-09 Koito Manufacturing Co., Ltd. Vehicle headlamp and lamp unit
WO2013176628A1 (en) * 2012-05-25 2013-11-28 Hella Saturnus Slovenija, Proizodnja Svetlobne Opreme Za Motorna In Druga Vozila, D.O.O. Motor vehicle fog light comprising a light source on the basis of led
CN104879695A (zh) * 2015-05-14 2015-09-02 西安和合光电科技有限公司 一种led汽车大灯
CN204648055U (zh) * 2014-07-21 2015-09-16 上海开腾信号设备有限公司 地面交通工具区域对应指向配光型led灯

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1015365A (en) * 1962-01-08 1965-12-31 Cibie Pierre Improvements in or relating to headlamps for vehicles
US5055981A (en) * 1989-02-17 1991-10-08 Koito Manufacturing Co., Ltd. Automotive projector type headlight
JPH0817045B2 (ja) * 1989-10-06 1996-02-21 株式会社小糸製作所 自動車用ヘッドランプ
JP3995919B2 (ja) * 2001-11-08 2007-10-24 株式会社小糸製作所 車両用前照灯
JP2006210169A (ja) * 2005-01-28 2006-08-10 Stanley Electric Co Ltd 車両用前照灯
JP5212785B2 (ja) * 2008-02-22 2013-06-19 スタンレー電気株式会社 車両用前照灯
KR200449756Y1 (ko) * 2010-02-05 2010-08-06 케이디지전자 주식회사 이륜차용 헤드램프
FR2979971B1 (fr) * 2011-09-13 2014-01-17 Valeo Vision Dispositif d'eclairage et/ou de signalisation pour vehicule automobile
US8894257B2 (en) * 2012-05-17 2014-11-25 Osram Sylvania Inc. Headlamp featuring both low-beam and high-beam outputs and devoid of moving parts
WO2014119980A1 (es) * 2013-01-30 2014-08-07 Terán Balaguer Luis Fausto Dispositivo de iluminación frontal con patrones de luz adaptativos
FR3004786B1 (fr) * 2013-04-17 2017-09-08 Valeo Vision Lentille, module optique et dispositif d'eclairage et/ou de signalisation pour vehicule automobile
JP6232225B2 (ja) * 2013-08-09 2017-11-15 株式会社小糸製作所 車両用灯具
KR20150068118A (ko) * 2013-12-11 2015-06-19 에스엘 주식회사 차량용 헤드 램프
KR102201451B1 (ko) * 2014-03-25 2021-01-15 현대모비스 주식회사 차량용 헤드 램프
CN204404000U (zh) * 2014-12-22 2015-06-17 郑州科仪科贸有限公司 远近光一体照明组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263589A (zh) * 1998-02-05 2000-08-16 天工灯光有限公司 带线反射器的投射灯装置
CN1701446A (zh) * 2002-08-30 2005-11-23 吉尔科有限公司 Led平面光源和由其构造的低轮廓前灯
US20060028831A1 (en) * 2004-08-06 2006-02-09 Koito Manufacturing Co., Ltd. Vehicle headlamp and lamp unit
WO2013176628A1 (en) * 2012-05-25 2013-11-28 Hella Saturnus Slovenija, Proizodnja Svetlobne Opreme Za Motorna In Druga Vozila, D.O.O. Motor vehicle fog light comprising a light source on the basis of led
CN204648055U (zh) * 2014-07-21 2015-09-16 上海开腾信号设备有限公司 地面交通工具区域对应指向配光型led灯
CN104879695A (zh) * 2015-05-14 2015-09-02 西安和合光电科技有限公司 一种led汽车大灯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567308A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185828A (zh) * 2018-10-08 2019-01-11 郑州森源新能源科技有限公司 Led汽车灯
CN111660916A (zh) * 2020-05-29 2020-09-15 马瑞利汽车零部件(芜湖)有限公司 一种集成刚性支架的车灯调节系统
CN114396596A (zh) * 2022-01-06 2022-04-26 常州信息职业技术学院 一种基于液晶透镜的前照灯模组、前照灯及其车辆
CN114396596B (zh) * 2022-01-06 2023-12-05 常州信息职业技术学院 一种基于液晶透镜的前照灯模组、前照灯及其车辆

Also Published As

Publication number Publication date
EP3567308A1 (en) 2019-11-13
EP3567308A4 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2016190165A1 (ja) 前照灯モジュール及び前照灯装置
JP6832542B2 (ja) 車両用前照灯およびそれを用いた車両
CN110094688B (zh) 智能头灯
CN110094689B (zh) 智能头灯
WO2021109361A1 (zh) 车灯模组及车灯
CN100494772C (zh) 车辆用灯具
CN207179542U (zh) 远近光一体化照明系统及前照灯
WO2018126880A1 (zh) 远近光一体化照明系统及近光前照灯、远光前照灯
CN107859968A (zh) 车灯照明系统、车灯总成及汽车
WO2012005686A1 (en) An automotive led headlamp comprising a light tunnel device
JP5445049B2 (ja) 車両用灯具
JP2003338210A (ja) 車輌用前照灯
JP5446757B2 (ja) 車両用灯具
JP2018060720A (ja) 前照灯モジュール及び前照灯装置
KR20190009524A (ko) 차량용 램프
JP2003257222A (ja) 車輌用前照灯
CN208764859U (zh) 近光照明系统
WO2020052398A1 (zh) 一种车灯
KR102419832B1 (ko) 자동차용 조명장치
JP4038649B2 (ja) 照明装置
CN109027951B (zh) 一种激光光源的汽车前照灯
CN207688002U (zh) 远近光一体化照明系统及前照灯
KR102091488B1 (ko) 차량용 램프
WO2019227938A1 (zh) 光源模组
CN109751565A (zh) 远近光一体化照明系统及前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889971

Country of ref document: EP

Effective date: 20190806