WO2018123671A1 - 非水電解質二次電池用正極および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極および非水電解質二次電池 Download PDF

Info

Publication number
WO2018123671A1
WO2018123671A1 PCT/JP2017/045239 JP2017045239W WO2018123671A1 WO 2018123671 A1 WO2018123671 A1 WO 2018123671A1 JP 2017045239 W JP2017045239 W JP 2017045239W WO 2018123671 A1 WO2018123671 A1 WO 2018123671A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
positive electrode
secondary battery
electrolyte secondary
metal oxide
Prior art date
Application number
PCT/JP2017/045239
Other languages
English (en)
French (fr)
Inventor
孝哉 杤尾
かおる 長田
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/472,512 priority Critical patent/US20200099050A1/en
Priority to JP2018559058A priority patent/JP6964280B2/ja
Priority to CN201780071645.6A priority patent/CN109983601B/zh
Publication of WO2018123671A1 publication Critical patent/WO2018123671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention mainly relates to an improvement in the positive electrode of a nonaqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries in particular lithium ion secondary batteries, have high voltage and high energy density, and thus are expected as power sources for small consumer applications, power storage devices, and electric vehicles.
  • the positive electrode active material of the nonaqueous electrolyte secondary battery for example, a lithium-containing transition metal oxide containing Ni, Co, and Al is used (see Patent Document 1).
  • the alkali component used for the synthesis of the lithium-containing transition metal oxide may remain on the surface of the lithium-containing transition metal oxide.
  • This alkaline component reacts with surrounding moisture and carbon dioxide gas to produce lithium carbonate and the like.
  • Products such as lithium carbonate decompose to generate carbon dioxide during charge / discharge of the non-aqueous electrolyte secondary battery and during high-temperature storage.
  • an alkali component tends to remain and carbon gas is likely to be generated. When the amount of carbon gas generated increases, problems such as battery swelling occur.
  • the positive electrode for a nonaqueous electrolyte secondary battery includes first particles and second particles.
  • the first particle is an electrochemically active positive electrode active material
  • the positive electrode active material includes a lithium-containing transition metal oxide.
  • the second particles are electrochemically inert metal oxides, the second particles have a BET specific surface area of 10 to 100 m 2 / g, and the second particles have a sphericity of 0.8. That's it.
  • a nonaqueous electrolyte secondary battery includes the positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode for a non-aqueous electrolyte secondary battery includes first particles and second particles.
  • the first particle is an electrochemically active positive electrode active material
  • the positive electrode active material includes a lithium-containing transition metal oxide.
  • the second particles are electrochemically inert metal oxides.
  • the inert metal oxide that does not contribute to the charge / discharge reaction contains almost no alkali component.
  • the BET specific surface area of the second particles is 10 to 100 m 2 / g, and the sphericity of the second particles is 0.8 or more.
  • Such second particles are porous and have pores of an appropriate size (for example, an average pore diameter of 10 to 100 nm) in order to incorporate an alkali component.
  • the surface area of the part exposed to the exterior of a 2nd particle is comparatively small, and the surface area inside a 2nd particle (inside of a hole) is comparatively large.
  • the above-mentioned second particles are easy to incorporate the alkali component remaining on the surface of the first particles into the inside of the second particles (in the pores).
  • gas generation during charging / discharging and high-temperature storage can be suppressed.
  • the BET specific surface area of the second particle is less than 10 m 2 / g, the surface area inside (in the pores) of the second particle becomes small, and the second particle does not have adequately sized pores. Particles are less likely to take up alkali components.
  • the BET specific surface area of the second particle is more than 100 m 2 / g, pores are hardly formed inside the second particle, and the contribution of the particle surface exposed to the outside becomes large. Therefore, it becomes difficult to incorporate an alkali component into the second particles (inside the pores). Further, it may be difficult to adjust the viscosity of the positive electrode slurry used in the production of the positive electrode.
  • the BET specific surface area of the second particle is in the range of 10 to 100 m 2 / g, if the sphericity of the second particle is less than 0.8, the shape of the second particle becomes complicated, and the second particle It is difficult to form pores inside, and the contribution of the particle surface exposed to the outside increases. Therefore, it becomes difficult to incorporate an alkali component into the second particles (inside the pores).
  • the BET specific surface area of the second particles is preferably 40 to 75 m 2 / g, and the sphericity of the second particles is preferably 0.9 or more.
  • sphericity of the second particles 4 ⁇ S / L a 2 (however, S is the area of the orthogonal projection image of the second particles, L a is the peripheral length of the orthogonal projection image of the second particles) represented by.
  • the sphericity of the second particles can be measured, for example, by image processing of SEM (scanning electron microscope) photographs of the second particles. At this time, the sphericity of 100 particles randomly selected is obtained, and the average value is obtained.
  • lithium-containing transition metal oxide of the first particles examples include Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b Ni 1-b O 2 , Li a Co b M 1-b O. c, Li a Ni 1-b M b O c, Li a Mn 2 O 4, Li a Mn 2-b M b O 4, LiMePO 4, Li 2 MePO 4 F can be mentioned.
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B.
  • Me includes at least a transition element (for example, includes at least one selected from the group consisting of Mn, Fe, Co, and Ni).
  • a 0 to 1.2
  • b 0 to 0.9
  • c 2.0 to 2.3.
  • a value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging.
  • the lithium-containing transition metal oxide preferably contains Ni from the viewpoint of increasing the capacity.
  • Ni an alkali component tends to remain. Therefore, the effect of taking in the alkali component by the second particles becomes remarkable.
  • Ni in the range where x is 0.8 or more, the capacity can be increased.
  • Co in the range where y is 0.2 or less, stability of the crystal structure of the lithium-containing transition metal oxide can be enhanced while maintaining a high capacity.
  • Al in the range where z is 0.1 or less, the thermal stability of the lithium-containing transition metal oxide can be enhanced while maintaining the output characteristics.
  • the lithium-containing transition metal oxide of the first particles and the metal oxide of the second particles contain the same kind of transition metal as main components.
  • the metal oxide of the second particle is, for example, Ni, Co, Mn, Al, Ti, Fe, Mo, W, Cu, Zn, Sn, Ta, V, as well as the lithium-containing transition metal oxide of the first particle. And at least one selected from the group consisting of Zr, Nb, Mg, Ga, In, La, and Ce.
  • a metal oxide contains Ni, and it is more preferable that Ni, Co, and Al are included.
  • the movement of the alkali component from the first particle to the second particle is not hindered. Incorporation of alkali components by means of is easy. Moreover, since the side reaction in a battery is suppressed by using the raw material of a 1st particle
  • transition metal contained in the metal oxide is the main component means that the ratio (molar ratio) of the transition metal is the largest among the metal elements contained in the metal oxide.
  • That the transition metal contained in the lithium-containing transition metal oxide is the main component means that the ratio (molar ratio) of the transition metal is the largest among the metal elements other than lithium contained in the lithium-containing transition metal oxide. means.
  • the positive electrode preferably contains a mixture of first particles and second particles.
  • the first particles and the second particles are preferably dispersed substantially uniformly and mixed with each other.
  • the second particles can efficiently take in the alkali component remaining on the surface of the first particles.
  • the average particle diameter P1 of the first particles and the average particle diameter P2 of the second particles are expressed by the relational expression: 0.8 ⁇ P2 / P1 ⁇ 1.2 It is preferable to satisfy.
  • P2 / P1 is within the above range, the first particles and the second particles are likely to be mixed with each other, and the second particles are appropriately present around the first particles, so that the alkali remaining on the surface of the first particles.
  • the second particles can efficiently incorporate the components.
  • the average particle diameter of the first particles is preferably 2 to 30 ⁇ m.
  • the average particle diameter of the first particles is 2 ⁇ m or more, the specific surface area of the first particles (positive electrode active material) is not excessively increased, and elution of the alkali component can be suppressed.
  • the average particle size of the first particles is 30 ⁇ m or less, the utilization factor of the first particles (positive electrode active material) can be sufficiently increased.
  • the average particle size of the second particles is preferably 2 to 35 ⁇ m.
  • grain means the median diameter in the particle size distribution of a volume reference
  • the positive electrode preferably contains 0.03 to 0.3 parts by mass of the second particles per 100 parts by mass of the first particles.
  • the content of the second particles in the positive electrode is 0.03 parts by mass or more per 100 parts by mass of the first particles, the effect of incorporating the alkali component by the second particles can be sufficiently enhanced.
  • the content of the second particles in the positive electrode exceeds 0.3 parts by mass per 100 parts by mass of the first particles, the capacity may decrease. Since the amount of the second particles to be included in the positive electrode may be small, it does not affect the filling amount (positive electrode capacity) of the positive electrode active material (first particles) in the positive electrode.
  • the mixture of the first particles and the second particles can be obtained, for example, by mixing the second particles with a dispersion medium to form a dispersion, then adding the first particles to the dispersion, and then drying the mixture. It can.
  • a dispersion medium for example, water is used as the dispersion medium.
  • the second particle is a metal oxide
  • the second particle can be produced by the following method, for example.
  • an aqueous solution containing a predetermined metal element for example, an aqueous sulfuric acid solution
  • an aqueous sodium hydroxide solution is dropped into the aqueous solution to obtain a precipitate.
  • the precipitate is removed by filtration, washed and dried. Then, it grind
  • a metal hydroxide is fired under a predetermined condition in air or in an oxygen atmosphere (first firing) to obtain a metal oxide (second particle).
  • the temperature of the first firing is, for example, 500 to 1200 ° C.
  • the first firing time is, for example, 10 to 24 hours.
  • the sphericity of the second particles can be controlled, for example, by changing the stirring speed when the precipitate is generated.
  • the BET specific surface area of the second particles can be controlled, for example, by changing the stirring speed and the firing temperature when the precipitate is generated.
  • the kind and composition ratio of the metal element contained in the metal oxide of the second particle are the same as the kind and composition ratio of the metal element other than lithium contained in the lithium-containing transition metal oxide (first particle). Is preferred.
  • the metal oxide of the second particle can be used for the synthesis of the lithium-containing transition metal oxide (production of the first particle), which is advantageous in terms of productivity.
  • the ratio P2 / P1 of the average particle size P1 of the first particles to the average particle size P2 of the second particles can be easily adjusted within the range of 0.8 to 1.2.
  • the first particles can be produced, for example, by the following method.
  • the metal oxide (second particle) Add lithium hydroxide, lithium carbonate, lithium oxide, etc. to the metal oxide (second particle) to obtain a mixture.
  • the second particles having a first firing temperature of 500 to 800 ° C.
  • the mixture is fired under a predetermined condition in an oxygen atmosphere (second firing) to obtain a lithium-containing transition metal oxide (first particle).
  • the temperature of the second baking is, for example, 500 to 850 ° C.
  • the second firing time is, for example, 10 to 24 hours.
  • the first particles may be washed with water and then dried.
  • the nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which the positive electrode mixture is dispersed in a dispersion medium to the surface of the positive electrode current collector and drying it. You may roll the coating film after drying as needed.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode mixture includes the first particles (positive electrode active material) and the second particles (metal oxide, etc.) and a binder as essential components, and a conductive agent and / or a thickener as optional components. Can be included.
  • resin materials for example, fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride (PVDF); polyolefin resins such as polyethylene and polypropylene; polyamide resins such as aramid resin; polyimide resins such as polyimide and polyamideimide Acrylic resins such as polyacrylic acid, polymethyl acrylate and ethylene-acrylic acid copolymer; vinyl resins such as polyacrylonitrile and polyvinyl acetate; polyvinylpyrrolidone; polyethersulfone; styrene-butadiene copolymer rubber (SBR) Examples thereof include rubber-like materials. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • PVDF polytetrafluoroethylene and polyvinylidene fluoride
  • polyamide resins such as aramid resin
  • polyimide resins such as polyimide and polyamideimide
  • Acrylic resins such as polyacrylic acid, polymethyl
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; carbon blacks such as acetylene black; conductive fibers such as carbon fiber and metal fiber; carbon fluoride; metal powder such as aluminum; Examples include conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; and organic conductive materials such as phenylene derivatives. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the thickener examples include carboxymethylcellulose (CMC) and modified products thereof (including salts such as Na salt), cellulose derivatives such as methylcellulose (cellulose ether and the like), and polymers of a polymer having vinyl acetate units such as polyvinyl alcohol. And polyether (polyalkylene oxide such as polyethylene oxide). These may be used individually by 1 type and may be used in combination of 2 or more type.
  • CMC carboxymethylcellulose
  • modified products thereof including salts such as Na salt
  • cellulose derivatives such as methylcellulose (cellulose ether and the like
  • polymers of a polymer having vinyl acetate units such as polyvinyl alcohol.
  • polyether polyalkylene oxide such as polyethylene oxide
  • the positive electrode current collector a non-porous conductive substrate (metal foil or the like) or a porous conductive substrate (mesh body, net body, punching sheet or the like) is used.
  • the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the thickness of the positive electrode current collector is not particularly limited, but is, for example, 3 to 50 ⁇ m.
  • the dispersion medium is not particularly limited, and examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof. .
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer can be formed by applying a negative electrode slurry in which the negative electrode mixture is dispersed in a dispersion medium to the surface of the negative electrode current collector and drying it. You may roll the coating film after drying as needed.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode mixture includes a negative electrode active material as an essential component, and can include a binder, a conductive agent, and / or a thickener as optional components.
  • the negative electrode active material includes, for example, a carbon material that electrochemically occludes and releases lithium ions.
  • the carbon material include graphite, graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), and the like. Of these, graphite is preferable because it has excellent charge / discharge stability and low irreversible capacity.
  • Graphite means a material having a graphite-type crystal structure, and includes, for example, natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like.
  • a carbon material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode current collector a non-porous conductive substrate (metal foil or the like) or a porous conductive substrate (mesh body, net body, punching sheet or the like) is used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 50 ⁇ m and more preferably 5 to 20 ⁇ m from the viewpoint of the balance between the strength and weight reduction of the negative electrode.
  • the binder, the thickener, and the dispersion medium the same ones as exemplified for the positive electrode can be used.
  • the conductive agent those similar to those exemplified for the positive electrode can be used except for graphite.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 2 mol / L.
  • the nonaqueous electrolyte may contain a known additive.
  • non-aqueous solvent for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester or the like is used.
  • cyclic carbonate examples include propylene carbonate (PC) and ethylene carbonate (EC).
  • chain carbonate examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • lithium salt examples include a lithium salt of a chlorine-containing acid (LiClO 4 , LiAlCl 4 , LiB 10 Cl 10 and the like), a lithium salt of a fluorine-containing acid (LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3). LiCF 3 CO 2 ), lithium salt of fluorine-containing acid imide (LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 ), lithium halide (LiCl, LiBr, LiI, etc.) can be used.
  • a lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the separator has a high ion permeability and appropriate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefin such as polypropylene and polyethylene is preferable.
  • the nonaqueous electrolyte secondary battery there is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a nonaqueous electrolyte are accommodated in an exterior body.
  • an electrode group in which a positive electrode and a negative electrode are wound via a separator and a nonaqueous electrolyte are accommodated in an exterior body.
  • another form of electrode group such as a stacked electrode group in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the nonaqueous electrolyte secondary battery may have any form such as a cylindrical type, a square type, a coin type, a button type, and a laminate type.
  • FIG. 1 is a schematic perspective view in which a part of a rectangular nonaqueous electrolyte secondary battery according to an embodiment of the present invention is cut away.
  • the battery includes a bottomed rectangular battery case 6, an electrode group 9 accommodated in the battery case 6, and a nonaqueous electrolyte (not shown).
  • the electrode group 9 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between these and prevents direct contact.
  • the electrode group 9 is formed by winding a negative electrode, a positive electrode, and a separator around a flat core and extracting the core.
  • One end of the negative electrode lead 11 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • One end of the positive electrode lead 14 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the negative electrode lead 11 is electrically connected to a negative electrode terminal 13 provided on the sealing plate 5.
  • the other end of the positive electrode lead 14 is electrically connected to the battery case 6 that also serves as a positive electrode terminal.
  • a resin frame 4 that separates the electrode group 9 from the sealing plate 5 and separates the negative electrode lead 11 from the battery case 6 is disposed above the electrode group 9. The opening of the battery case 6 is sealed with a sealing plate 5.
  • Nickel sulfate hexahydrate (NiSO 4 ⁇ 6H 2 O), cobalt sulfate heptahydrate (CoSO 4 ⁇ 7H 2 O), and aluminum sulfate hexadecahydrate (Al 2 (SO 4 ) 3 ⁇ 16H 2 O) was mixed so that the atomic ratio of Ni, Co, and Al was 0.91: 0.06: 0.03 and dissolved in water.
  • a sodium hydroxide aqueous solution was dropped into the mixed aqueous solution to obtain a precipitate. The precipitate was removed by filtration, washed and dried.
  • metal hydroxide Ni 0.91 Co 0.06 Al 0.03 ( OH) 2
  • the metal hydroxide was baked at 600 ° C. for 12 hours in an oxygen atmosphere to obtain a metal oxide (Ni 0.91 Co 0.06 Al 0.03 O) (second particle) having an average particle size of about 10 ⁇ m.
  • Lithium hydroxide was added to the metal oxide (Ni 0.91 Co 0.06 Al 0.03 O) (second particle) obtained above, and then calcined at 700 ° C. for 12 hours in an oxygen atmosphere. In this way, a lithium-containing transition metal oxide (LiNi 0.91 Co 0.06 Al 0.03 O 2 ) (first particle) having an average particle diameter of about 10 ⁇ m was obtained.
  • the second particles obtained above were dispersed in water to obtain a dispersion of second particles.
  • the first particles (positive electrode active material) obtained above were put into this dispersion and stirred, and then a mixture of the first particles and the second particles was taken out by filtration and dried.
  • the amount of the second particles was 0.03 parts by mass per 100 parts by mass of the first particles.
  • Graphite powder (average particle size 20 ⁇ m), sodium carboxymethylcellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed at a mass ratio of 97.5: 1: 1.5, and water was added. Thereafter, the mixture was stirred using a mixer (manufactured by Primix, TK Hibismix) to prepare a negative electrode slurry. Next, after applying a negative electrode slurry on the surface of the copper foil, drying the coating film, and rolling, a negative electrode having a negative electrode mixture layer having a density of 1.5 g / cm 3 formed on both sides of the copper foil. Produced.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a tab was attached to each electrode, and a positive electrode and a negative electrode were spirally wound through a separator so that the tab was positioned on the outermost peripheral portion, thereby preparing an electrode group.
  • a separator a polyethylene microporous film having a thickness of 20 ⁇ m was used.
  • the electrode group was inserted into an aluminum laminate film outer package and vacuum dried at 105 ° C. for 2 hours, and then a non-aqueous electrolyte was injected to seal the opening of the outer package, and the non-aqueous electrolyte secondary battery was Obtained.
  • ⁇ Comparative Example 1> In the production of the positive electrode, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that only the first particles were used instead of the mixture of the first particles and the second particles.
  • Examples 2 to 5 and Comparative Examples 2 to 5> In the process of producing the second particles, the sphericity of the second particles was changed to the values shown in Table 1 by changing the stirring speed when a sodium hydroxide aqueous solution was dropped to obtain a precipitate. In the process of producing the second particles, by changing the sodium hydroxide concentration and stirring speed when dropping the sodium hydroxide aqueous solution to obtain a precipitate, and the firing temperature when firing the metal hydroxide, The specific surface area of the second particles was changed to the values shown in Table 1.
  • Example 1 Except for the above, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • the density of the battery was measured using the Archimedes method, and the amount of gas generated was determined from the amount of change in the density of the battery.
  • gas generation was suppressed by using the second particles having a small amount of gas generation and having a specific sphericity and specific surface area.
  • the amount of gas generation increased in the battery of the comparative example.
  • Examples 6 to 9 A nonaqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 1 except that the content of the second particles (amount per 100 parts by mass of the first particles) was changed to the values shown in Table 2. The evaluation results are shown in Table 2.
  • the nonaqueous electrolyte secondary battery of the present invention is useful as a main power source for mobile communication devices, portable electronic devices and the like.
  • Frame 5 Sealing plate 6: Battery case 9: Electrode group 11: Negative electrode lead 13: Negative electrode terminal 14: Positive electrode lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池用正極は、第1粒子と第2粒子とを含む。第1粒子は、電気化学的に活性な正極活物質であり、正極活物質は、リチウム含有遷移金属酸化物を含む。第2粒子は、電気化学的に不活性な金属酸化物であり、第2粒子のBET比表面積が、10~100m2/gであり、第2粒子の球形度が、0.8以上である。

Description

非水電解質二次電池用正極および非水電解質二次電池
 本発明は、主として、非水電解質二次電池の正極の改良に関する。
 近年、非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。
 非水電解質二次電池の正極活物質には、例えば、Ni、Co、およびAlを含むリチウム含有遷移金属酸化物が用いられる(特許文献1参照)。
特開平8-213015号公報
 リチウム含有遷移金属酸化物の表面には、リチウム含有遷移金属酸化物の合成に用いたアルカリ成分が残存することがある。このアルカリ成分は、周囲の水分や炭酸ガスと反応して、炭酸リチウムなどを生成する。炭酸リチウムなどの生成物は、非水電解質二次電池の充放電時および高温保存時に分解して炭酸ガスを発生させる。特に、Niを主成分として含むリチウム含有遷移金属酸化物では、アルカリ成分が残存し易く、炭素ガスが発生し易い。炭素ガスの発生量が多くなると、電池の膨れ等の不具合が生じる。
 以上に鑑み、本開示の一局面の非水電解質二次電池用正極は、第1粒子と第2粒子とを含む。前記第1粒子は、電気化学的に活性な正極活物質であり、前記正極活物質は、リチウム含有遷移金属酸化物を含む。前記第2粒子は、電気化学的に不活性な金属酸化物であり、前記第2粒子のBET比表面積が、10~100m2/gであり、前記第2粒子の球形度が、0.8以上である。
 本開示の別の局面の非水電解質二次電池は、上記の正極と、負極と、非水電解質とを備える。
 本開示によれば、非水電解質二次電池の充放電時および高温保存時のガス発生が抑制される正極を得ることができる。
本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 本発明の実施形態に係る非水電解質二次電池用正極は、第1粒子と第2粒子とを含む。第1粒子は、電気化学的に活性な正極活物質であり、正極活物質は、リチウム含有遷移金属酸化物を含む。第2粒子は、電気化学的に不活性な金属酸化物である。充放電反応に寄与しない不活性な金属酸化物は、ほとんどアルカリ成分を含まない。
 第2粒子のBET比表面積が、10~100m2/gであり、第2粒子の球形度が、0.8以上である。このような第2粒子は多孔質であり、アルカリ成分を取り込むために適度なサイズ(例えば、平均孔径が10~100nm)の孔を有する。また、このような第2粒子では、第2粒子の外部に露出する部分の表面積が比較的小さく、第2粒子の内部(孔内)の表面積が比較的大きい。
 上記の第2粒子は、第1粒子の表面に残留するアルカリ成分を、当該第2粒子の内部(孔内)に取り込み易い。第2粒子がアルカリ成分を取り込むことで、充放電時および高温保存時のガス発生を抑制することができる。
 第2粒子のBET比表面積が10m2/g未満である場合、第2粒子の内部(孔内)の表面積が小さくなり、第2粒子が適度なサイズの孔を十分に有しないため、第2粒子がアルカリ成分を取り込みにくくなる。
 第2粒子のBET比表面積が100m2/g超である場合、第2粒子の内部に細孔が形成されにくく、外部に露出する粒子表面の寄与が大きくなる。よって、第2粒子の内部(孔内)にアルカリ成分を取り込みにくくなる。また、正極の作製で用いる正極スラリーの粘度調整が困難になることがある。
 第2粒子のBET比表面積が、10~100m2/gの範囲であっても、第2粒子の球形度が0.8未満である場合、第2粒子の形状が複雑になり、第2粒子の内部に細孔が形成されにくく、外部に露出する粒子表面の寄与が大きくなる。よって、第2粒子の内部(孔内)にアルカリ成分を取り込みにくくなる。
 ガス発生が更に抑制されるため、第2粒子のBET比表面積が40~75m2/gであり、第2粒子の球形度は0.9以上であることが好ましい。
 なお、第2粒子の球形度は、4πS/La 2(ただし、Sは第2粒子の正投影像の面積、Laは第2粒子の正投影像の周囲長)で表される。第2粒子の球形度は、例えば、第2粒子のSEM(走査電子顕微鏡)写真の画像処理により測定することができる。このとき、無作為に選び出した任意の100個の粒子の球形度を求め、その平均値を求める。
 第1粒子のリチウム含有遷移金属酸化物としては、例えば、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-b2、LiaCob1-bc、LiaNi1-bbc、LiaMn24、LiaMn2-bb4、LiMePO4、Li2MePO4Fが挙げられる。ここで、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、およびBよりなる群から選択される少なくとも1種である。Meは、少なくとも遷移元素を含む(例えば、Mn、Fe、Co、Niよりなる群から選択される少なくとも1種を含む)。a=0~1.2、b=0~0.9、c=2.0~2.3である。なお、リチウムのモル比を示すa値は、活物質作製直後の値であり、充放電により増減する。
 リチウム含有遷移金属酸化物は、高容量化の観点からは、Niを含むことが好ましい。ただし、Niを含むリチウム含有遷移金属酸化物では、アルカリ成分が残存し易い。よって、第2粒子によりアルカリ成分を取り込む効果も顕著になる。
 Niを含むリチウム含有遷移金属酸化物の中では、LiaNixCoyAlz2(但し、0≦a≦1.2、0.8≦x<1.0、0<y≦0.2、0<z≦0.1、x+y+z=1)が好ましい。xが0.8以上の範囲でNiを含むことで、高容量化できる。yが0.2以下の範囲でCoを含むことで、高容量を維持しつつ、リチウム含有遷移金属酸化物の結晶構造の安定性を高めることができる。zが0.1以下の範囲でAlを含むことで、出力特性を維持しつつ、リチウム含有遷移金属酸化物の熱安定性を高めることができる。
 第2粒子の金属酸化物には、第1粒子の原料となる酸化物を用いることが好ましい。この場合、第1粒子のリチウム含有遷移金属酸化物および第2粒子の金属酸化物は、互いに同種の遷移金属を主成分として含む。第2粒子の金属酸化物は、第1粒子のリチウム含有遷移金属酸化物と同様に、例えば、Ni、Co、Mn、Al、Ti、Fe、Mo、W、Cu、Zn、Sn、Ta、V、Zr、Nb、Mg、Ga、In、La、およびCeよりなる群から選択される少なくとも1種を含む。中でも、金属酸化物は、Niを含むことが好ましく、Ni、CoおよびAlを含むことがより好ましい。
 第1粒子と第2粒子とが、同じ化学的性質を有する同種の遷移金属を主成分として含む場合、第1粒子から第2粒子へのアルカリ成分の移動が阻害されることなく、第2粒子によるアルカリ成分の取り込みが容易に行われる。また、第1粒子の原料を用いることにより、電池内での副反応が抑制されるため、安定な充放電特性が得られやすい。
 なお、金属酸化物に含まれる遷移金属が主成分であるとは、金属酸化物に含まれる金属元素の中で当該遷移金属の割合(モル比率)が最も大きいことを意味する。リチウム含有遷移金属酸化物に含まれる遷移金属が主成分であるとは、リチウム含有遷移金属酸化物に含まれるリチウム以外の金属元素の中で当該遷移金属の割合(モル比率)が最も大きいことを意味する。
 正極は、第1粒子と第2粒子の混合物を含むことが好ましい。正極中において、第1粒子および第2粒子は、略均一に分散し、互いに混ざり合っていることが好ましい。第1粒子の周囲に第2粒子が適度に存在することで、第1粒子の表面に残留するアルカリ成分を第2粒子が効率良く取り込むことができる。
 第1粒子の平均粒径P1と、第2粒子の平均粒径P2とが、関係式:
  0.8≦P2/P1≦1.2
を満たすことが好ましい。P2/P1が上記範囲内である場合、第1粒子と第2粒子とが互いに混ざり合い易く、第1粒子の周囲に第2粒子が適度に存在するため、第1粒子の表面に残留するアルカリ成分を第2粒子が効率良く取り込むことができる。
 第1粒子の平均粒径は、2~30μmであることが好ましい。第1粒子の平均粒径が2μm以上であると、第1粒子(正極活物質)の比表面積が過度に大きくなることがなく、アルカリ成分の溶出を抑制することができる。一方、第1粒子の平均粒径が30μm以下であると、第1粒子(正極活物質)の利用率を十分に高めることができる。
 第2粒子の平均粒径は、2~35μmであることが好ましい。第2粒子の平均粒径が、上記範囲内である場合、第1粒子と第2粒子とが均質に混在しやすくなり、第1粒子の表面に残留するアルカリ成分を第2粒子が効率良く取り込むことができる。なお、上記の第1粒子および第2粒子の平均粒径は、体積基準の粒度分布におけるメジアン径を意味する。
 正極は、第2粒子を、第1粒子100質量部あたり0.03~0.3質量部含むことが好ましい。正極中の第2粒子の含有量が、第1粒子100質量部あたり0.03質量部以上であれば、第2粒子によるアルカリ成分を取り込む効果を十分に高めることができる。ただし、正極中の第2粒子の含有量が第1粒子100質量部あたり0.3質量部を超えると容量が低下することがある。正極に含ませる第2粒子の量は少なくて良いため、正極中の正極活物質(第1粒子)の充填量(正極容量)に影響を及ぼすことがない。
 第1粒子と第2粒子の混合物は、例えば、第2粒子を分散媒と混合して分散液とした後、分散液に第1粒子を投入し、その後、混合物を乾燥させれば得ることができる。分散媒には、例えば、水が用いられる。
 第2粒子が金属酸化物である場合、第2粒子は、例えば、以下の方法で作製することができる。
 所定の金属元素を含む水溶液(例えば、硫酸水溶液)を撹拌しながら、当該水溶液に水酸化ナトリウム水溶液を滴下し、沈殿物を得る。沈殿物をろ過により取り出した後、洗浄し、乾燥させる。その後、粉砕し、所定の金属元素を含む金属水酸化物を得る。金属水酸化物を、空気中または酸素雰囲気下において、所定の条件で焼成し(第1焼成)、金属酸化物(第2粒子)を得る。第1焼成の温度は、例えば、500~1200℃である。第1焼成の時間は、例えば、10~24時間である。
 第2粒子の球形度は、例えば、沈殿物を生成させる際の撹拌速度を変えることにより制御することができる。第2粒子のBET比表面積は、例えば、沈殿物を生成させる際の撹拌速度や焼成温度を変えることにより制御することができる。
 第2粒子の金属酸化物に含まれる金属元素の種類およびその組成比が、リチウム含有遷移金属酸化物(第1粒子)に含まれるリチウム以外の金属元素の種類およびその組成比と同じであることが好ましい。この場合、第2粒子の金属酸化物は、リチウム含有遷移金属酸化物の合成(第1粒子の作製)にも利用することができ、生産性の面で有利である。また、第1粒子の平均粒径P1と、第2粒子の平均粒径P2との比:P2/P1を、0.8~1.2の範囲内に容易に調整することができる。
 第2粒子の金属酸化物に含まれる金属元素の種類およびその組成比が、リチウム含有遷移金属酸化物(第1粒子)に含まれるリチウム以外の金属元素の種類およびその組成比と同じである場合、第1粒子は、例えば、以下の方法で作製することができる。
 金属酸化物(第2粒子)に水酸化リチウム、炭酸リチウム、酸化リチウムなどを加え、混合物を得る。このときの第2粒子は、第1焼成の温度が500~800℃であるものを使用することが好ましい。その混合物を、酸素雰囲気下において、所定の条件で焼成し(第2焼成)、リチウム含有遷移金属酸化物(第1粒子)を得る。第2焼成の温度は、例えば、500~850℃である。第2焼成の時間は、例えば、10~24時間である。第2焼成後は、第1粒子を水などで洗浄した後、乾燥してもよい。
 次に、本発明の実施形態に係る非水電解質二次電池について説明する。非水電解質二次電池は、正極と、負極と、非水電解質とを備える。
 [正極]
 正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 正極合剤は、必須成分として、上記の第1粒子(正極活物質)および第2粒子(金属酸化物など)と、結着剤とを含み、任意成分として導電剤および/または増粘剤などを含むことができる。
 結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;アラミド樹脂などのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体などのアクリル樹脂;ポリアクリルニトリル、ポリ酢酸ビニルなどのビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 導電剤としては、例えば、天然黒鉛や人造黒鉛などの黒鉛;アセチレンブラックなどのカーボンブラック類;炭素繊維や金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。正極集電体の厚さは、特に限定されないが、例えば、3~50μmである。
 分散媒としては、特に制限されないが、例えば、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。
 [負極]
 負極は、例えば、負極集電体と、負極集電体の表面に形成された負極合剤層とを具備する。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極合剤は、必須成分として負極活物質を含み、任意成分として、結着剤、導電剤、および/または増粘剤などを含むことができる。
 負極活物質は、例えば、電気化学的にリチウムイオンを吸蔵および放出する炭素材料を含む。炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1~50μmが好ましく、5~20μmがより望ましい。
 結着剤、増粘剤、および分散媒としては、正極について例示したものと同様のものが使用できる。また、導電剤としては、黒鉛を除き、正極について例示したものと同様のものが使用できる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩とを含む。非水電解質におけるリチウム塩の濃度は、例えば、0.5~2mol/Lである。非水電解質は、公知の添加剤を含有してもよい。
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 [セパレータ]
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図1は、本発明の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース6と、電池ケース6内に収容された電極群9および非水電解質(図示せず)とを備えている。電極群9は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群9は、負極、正極、およびセパレータは、平板状の巻芯を中心にして捲回され、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード11の一端が溶接などにより取り付けられている。正極の正極集電体には、正極リード14の一端が溶接などにより取り付けられている。負極リード11の他端は、封口板5に設けられた負極端子13に電気的に接続される。正極リード14の他端は、正極端子を兼ねる電池ケース6に電気的に接続される。電極群9の上部には、電極群9と封口板5とを隔離するとともに負極リード11と電池ケース6とを隔離する樹脂製の枠体4が配置されている。そして、電池ケース6の開口部は、封口板5で封口される。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <実施例1>
 [第2粒子の作製]
 硫酸ニッケル六水和物(NiSO4・6H2O)と、硫酸コバルト七水和物(CoSO4・7H2O)と、硫酸アルミニウム十六水和物(Al2(SO43・16H2O)とを、NiとCoとAlとの原子比が0.91:0.06:0.03となるように混合し、水に溶解させた。次いで、得られた混合水溶液を所定の撹拌速度で撹拌しながら、当該混合水溶液に水酸化ナトリウム水溶液を滴下し、沈殿物を得た。沈殿物をろ過により取り出した後、洗浄し、乾燥させた。その後、粉砕し、平均粒径約10μmの金属水酸化物(Ni0.91Co0.06Al0.03(OH)2)を得た。金属水酸化物を、酸素雰囲気下において、600℃で12時間焼成することにより、平均粒径約10μmの金属酸化物(Ni0.91Co0.06Al0.03O)(第2粒子)を得た。
 [第1粒子の作製]
 上記で得られた金属酸化物(Ni0.91Co0.06Al0.03O)(第2粒子)に、水酸化リチウムを添加した後、酸素雰囲気下において、700℃で12時間焼成した。このようにして、平均粒径約10μmのリチウム含有遷移金属酸化物(LiNi0.91Co0.06Al0.032)(第1粒子)を得た。
 [第1粒子と第2粒子の混合物の作製]
 上記で得られた第2粒子を水に分散させて、第2粒子の分散液を得た。この分散液中に上記で得られた第1粒子(正極活物質)を投入し、撹拌した後、ろ過により第1粒子と第2粒子の混合物を取り出し、乾燥させた。第2粒子の量は、第1粒子100質量部あたり0.03質量部とした。
 [正極の作製]
 上記で得られた第1粒子と第2粒子の混合物と、アセチレンブラックと、ポリフッ化ビニリデンとを、95:2.5:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cm3の正極合剤層が形成された正極を作製した。
 [負極の作製]
 黒鉛粉末(平均粒径20μm)と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)とを、97.5:1:1.5の質量比で混合し、水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。次に、銅箔の表面に負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に、密度1.5g/cm3の負極合剤層が形成された負極を作製した。
 [非水電解液の調製]
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で含む混合溶媒にLiPF6を1.0mol/L濃度で溶解して非水電解液を調製した。
 [非水電解質二次電池の作製]
 各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。セパレータには、厚さ20μmのポリエチレン製の微多孔質フィルムを用いた。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、非水電解液を注入し、外装体の開口部を封止して、非水電解質二次電池を得た。
 <比較例1>
 正極の作製において、第1粒子および第2粒子の混合物の代わりに、第1粒子のみを用いた以外、実施例1と同様に非水電解質二次電池を作製した。
 <実施例2~5および比較例2~5>
 第2粒子を作製する過程において、水酸化ナトリウム水溶液を滴下して沈殿物を得る際の撹拌速度を変化させることにより、第2粒子の球形度を表1に示す値に変えた。第2粒子を作製する過程において、水酸化ナトリウム水溶液を滴下して沈殿物を得る際の水酸化ナトリウム濃度および撹拌速度と、金属水酸化物を焼成する際の焼成温度とを変化させることにより、第2粒子の比表面積を表1に示す値に変えた。
 上記以外、実施例1と同様に非水電解質二次電池を作製した。
 実施例および比較例の各電池、および各電池の正極で用いた第2粒子について、以下の評価を行った。
 [評価]
 (A)第2粒子の球形度の測定
 第2粒子の球形度は、SEM(走査電子顕微鏡)写真の画像処理により測定した。このとき、無作為に選び出した任意の100個の粒子の球形度を求め、その平均値を求めた。
 (B)第2粒子の比表面積の測定
 BET法を用いて、第2粒子の比表面積を測定した。
 (C)高温保存時のガス発生量の測定
 各電池について、1.0It(800mA)の電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの電圧で電流が1/20It(40mA)になるまで定電圧充電を行った。充電後の各電池を、85℃の環境下で、12時間放置した。
 充電後(放置前)および放置後の各電池について、アルキメデス法を用いて電池の密度を測定し、電池の密度の変化量よりガス発生量を求めた。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例の電池では、ガス発生量が少なく、特定の球形度および比表面積を有する第2粒子を用いることにより、ガス発生が抑制された。一方、比較例の電池では、ガス発生量が多くなった。
 <実施例6~9>
 第2粒子の含有量(第1粒子100質量部あたりの量)を、表2に示す値に変えた以外、実施例1と同様に非水電解質二次電池を作製し、評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 第2粒子の含有量が、第1粒子100質量部あたり0.03質量部以上である実施例1、7~9の電池では、特にガス発生が抑制された。
 本発明の非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
4:枠体
5:封口板
6:電池ケース
9:電極群
11:負極リード
13:負極端子
14:正極リード

Claims (9)

  1.  第1粒子と第2粒子とを含み、
     前記第1粒子は、電気化学的に活性な正極活物質であり、
     前記正極活物質は、リチウム含有遷移金属酸化物を含み、
     前記第2粒子は、電気化学的に不活性な金属酸化物であり、
     前記第2粒子のBET比表面積が、10~100m2/gであり、
     前記第2粒子の球形度が、0.8以上である、非水電解質二次電池用正極。
  2.  前記リチウム含有遷移金属酸化物および前記金属酸化物は、互いに同種の遷移金属を主成分として含む、請求項1に記載の非水電解質二次電池用正極。
  3.  前記リチウム含有遷移金属酸化物は、Niを含む、請求項1または2に記載の非水電解質二次電池用正極。
  4.  前記金属酸化物は、Niを含む、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極。
  5.  前記第1粒子の平均粒径P1と、前記第2粒子の平均粒径P2とが、関係式:
      0.8≦P2/P1≦1.2
    を満たす、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極。
  6.  前記第1粒子の平均粒径P1は、2~30μmである、請求項1~5のいずれか1項に記載の非水電解質二次電池用正極。
  7.  前記第2粒子の平均粒径P2は、2~35μmである、請求項1~6のいずれか1項に記載の非水電解質二次電池用正極。
  8.  前記第2粒子を、前記第1粒子100質量部あたり0.03~0.3質量部含む、請求項1~7のいずれか1項に記載の非水電解質二次電池用正極。
  9.  請求項1~8のいずれか1項に記載の正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2017/045239 2016-12-28 2017-12-18 非水電解質二次電池用正極および非水電解質二次電池 WO2018123671A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/472,512 US20200099050A1 (en) 2016-12-28 2017-12-18 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2018559058A JP6964280B2 (ja) 2016-12-28 2017-12-18 非水電解質二次電池用正極および非水電解質二次電池
CN201780071645.6A CN109983601B (zh) 2016-12-28 2017-12-18 非水电解质二次电池用正极及非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256407 2016-12-28
JP2016256407 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123671A1 true WO2018123671A1 (ja) 2018-07-05

Family

ID=62707359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045239 WO2018123671A1 (ja) 2016-12-28 2017-12-18 非水電解質二次電池用正極および非水電解質二次電池

Country Status (4)

Country Link
US (1) US20200099050A1 (ja)
JP (1) JP6964280B2 (ja)
CN (1) CN109983601B (ja)
WO (1) WO2018123671A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342112A (zh) * 2019-08-30 2022-04-12 松下电器产业株式会社 非水电解质二次电池
JPWO2021153399A1 (ja) * 2020-01-30 2021-08-05

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355056A (ja) * 1991-05-30 1992-12-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004327212A (ja) * 2003-04-24 2004-11-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2005093371A (ja) * 2003-09-19 2005-04-07 Toshiba Corp 非水電解質二次電池
JP2017065975A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法
JP2017091697A (ja) * 2015-11-05 2017-05-25 トヨタ自動車株式会社 高性能リチウムイオン二次電池用正極の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101562686B1 (ko) * 2008-03-28 2015-10-22 도다 고교 가부시끼가이샤 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
JP6101583B2 (ja) * 2013-07-05 2017-03-22 日立マクセル株式会社 非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355056A (ja) * 1991-05-30 1992-12-09 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004327212A (ja) * 2003-04-24 2004-11-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2005093371A (ja) * 2003-09-19 2005-04-07 Toshiba Corp 非水電解質二次電池
JP2017065975A (ja) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法
JP2017091697A (ja) * 2015-11-05 2017-05-25 トヨタ自動車株式会社 高性能リチウムイオン二次電池用正極の製造方法

Also Published As

Publication number Publication date
JPWO2018123671A1 (ja) 2019-10-31
US20200099050A1 (en) 2020-03-26
JP6964280B2 (ja) 2021-11-10
CN109983601B (zh) 2022-07-26
CN109983601A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
US10553862B2 (en) Positive electrode active material for secondary battery and secondary battery
JP5899442B2 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP6860278B2 (ja) リチウム二次電池用正極活物質、その製造方法、これを含む正極およびリチウム二次電池
WO2018101072A1 (ja) 負極材料および非水電解質二次電池
JP4985524B2 (ja) リチウム二次電池
CN107636869B (zh) 二次电池用正极活性物质
WO2018181158A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7113301B2 (ja) 正極活物質、および、電池
WO2018179934A1 (ja) 負極材料および非水電解質二次電池
WO2020031869A1 (ja) 非水電解質二次電池
JP2023001306A (ja) リチウム二次電池用電極
US8586247B2 (en) Positive electrode active material comprising an agglomeration of at least two primary particles for lithium battery and lithium battery using the same
JP6964280B2 (ja) 非水電解質二次電池用正極および非水電解質二次電池
JP7054863B2 (ja) 非水電解質二次電池用正極および非水電解質二次電池
JPWO2019065196A1 (ja) 非水電解質二次電池
JP6468025B2 (ja) 非水系リチウム二次電池
JP7352900B2 (ja) 非水電解質二次電池
CN110892569B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
JP4158212B2 (ja) リチウム二次電池の製造方法およびリチウム二次電池用正極活物質の製造方法
KR101595605B1 (ko) 그래핀을 포함하는 이차전지용 슬러리 및 이를 포함하는 이차전지
WO2019167610A1 (ja) 非水電解質二次電池
WO2019150902A1 (ja) 非水電解質二次電池、電解液および非水電解質二次電池の製造方法
CN113597686A (zh) 非水电解液二次电池用负极及非水电解液二次电池
JPWO2019150901A1 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
WO2022070650A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886345

Country of ref document: EP

Kind code of ref document: A1