WO2018123106A1 - 駆動装置、及び、投写型映像表示装置 - Google Patents

駆動装置、及び、投写型映像表示装置 Download PDF

Info

Publication number
WO2018123106A1
WO2018123106A1 PCT/JP2017/021086 JP2017021086W WO2018123106A1 WO 2018123106 A1 WO2018123106 A1 WO 2018123106A1 JP 2017021086 W JP2017021086 W JP 2017021086W WO 2018123106 A1 WO2018123106 A1 WO 2018123106A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
drive
concentration
housing
gas
Prior art date
Application number
PCT/JP2017/021086
Other languages
English (en)
French (fr)
Inventor
直也 北出
真 伊豫田
奈央子 山下
学 近山
敦志 久保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP17885756.1A priority Critical patent/EP3540511B1/en
Priority to JP2018558650A priority patent/JP6811382B2/ja
Publication of WO2018123106A1 publication Critical patent/WO2018123106A1/ja
Priority to US16/449,981 priority patent/US10965920B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/148Reducing friction, adhesion, drag
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1406Reducing the influence of the temperature
    • G11B33/1413Reducing the influence of the temperature by fluid cooling
    • G11B33/142Reducing the influence of the temperature by fluid cooling by air cooling
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1446Reducing contamination, e.g. by dust, debris
    • G11B33/1466Reducing contamination, e.g. by dust, debris sealing gaskets

Definitions

  • the present disclosure relates to a drive device such as a wavelength conversion device including a phosphor wheel used as a light source of a projection display apparatus.
  • Patent Document 1 discloses a projector including a light source device capable of efficiently cooling a wavelength conversion element.
  • the present disclosure provides a driving device in which a gas is sealed in a housing that accommodates a driving object, and the driving device that can determine the concentration of the gas.
  • a drive device includes a housing in which a gas having a lower density than air is enclosed, a drive object accommodated in the housing, a drive unit that drives the drive object, A current detection unit that detects a current value flowing through the drive unit when the drive object is driven by the drive unit, and a concentration of the gas inside the housing is determined based on the detected current value.
  • a determination unit .
  • the drive device in the present disclosure can determine the concentration of gas.
  • FIG. 1 is a diagram showing an optical system of the projection display apparatus according to the first embodiment.
  • FIG. 2 is an external perspective view of the driving apparatus according to the first embodiment.
  • FIG. 3 is a block diagram showing a functional configuration of the projection display apparatus according to the first embodiment.
  • FIG. 4 is a first diagram showing the relationship between the concentration of helium inside the housing and the current value of the drive unit when the phosphor wheel is rotating.
  • FIG. 5 is a second diagram showing the relationship between the concentration of helium inside the housing and the current value of the drive unit when the phosphor wheel is rotating.
  • FIG. 6 is a flowchart of the operation of the drive device according to the first embodiment.
  • FIG. 7 is a flowchart of another operation example 1 of the drive device according to the first embodiment.
  • FIG. 8 is a flowchart of another operation example 2 of the drive device according to the first embodiment.
  • FIG. 9 is a flowchart of Operation Example 1 of the projection display apparatus according to the first embodiment.
  • FIG. 10 is a flowchart of Operation Example 2 of the projection display apparatus according to Embodiment 1.
  • FIG. 11 is an external perspective view of a phosphor wheel having fins.
  • FIG. 12 is a first diagram for explaining a modified example of the housing.
  • FIG. 13 is a second diagram for explaining a modified example of the housing.
  • FIG. 14 is a third diagram for explaining a modified example of the housing.
  • FIG. 15 is a fourth diagram for explaining a modified example of the housing.
  • FIG. 16 is a diagram illustrating the posture of the driving device in the outer casing.
  • FIG. 17 is an external perspective view of the hard disk drive according to the second embodiment.
  • FIG. 1 is a diagram showing an optical system of the projection display apparatus according to the first embodiment.
  • the projection display apparatus 300 according to Embodiment 1 is a high-intensity type projector capable of projecting light of about 20000 lumens, for example. Specifically, the projection display apparatus 300 is used for projection mapping and the like. Note that the projection display apparatus 300 may be a low-luminance projector for home use.
  • the projection display apparatus 300 includes a driving device 10 and a laser beam irradiation unit 20.
  • the drive device 10 includes a housing 11, a phosphor wheel 12 accommodated in the housing 11, a drive unit 13 that rotationally drives the phosphor wheel 12 about the rotation axis J, a current detection unit 14, and a control unit 15. And a heat sink 16 and a lens 18.
  • the laser beam irradiation unit 20 includes a laser driving unit 101 and blue laser diodes 101a, 101b, and 101c.
  • the projection display apparatus 300 further includes collimating lenses 102a, 102b, and 102c, a lens 103, a lens 104, and a diffusion plate 105.
  • the projection display apparatus 300 includes a dichroic mirror 106, a lens 107, and a rod integrator 116.
  • the projection display apparatus 300 includes blue laser diodes 201a and 201b, collimating lenses 202a and 202b, a lens 203, a diffusion plate 204, and a lens 205.
  • the projection display apparatus 300 includes a lens 308, a lens 309, a mirror 310, a mirror 311, a light modulation element 312, and a projection lens 313.
  • the projection display apparatus 300 also includes an outer casing 301 that accommodates the above-described components, and cooling fans 304 a and 304 b disposed in the outer casing 301.
  • the laser beam irradiation unit 20 emits blue light for exciting the phosphor layer 12b included in the phosphor wheel 12. In other words, the laser light irradiation unit 20 irradiates the phosphor wheel 12 with laser light.
  • the laser beam irradiation unit 20 includes a laser driving unit 101 and blue laser diodes 101a, 101b, and 101c.
  • the laser driver 101 is realized by a circuit (integrated circuit), for example.
  • the laser driving unit 101 supplies power to the blue laser diodes 101a, 101b, and 101c, thereby causing the blue laser diodes 101a, 101b, and 101c to emit light.
  • the blue light emitted from the blue laser diodes 101a, 101b, and 101c is collimated by the collimating lenses 102a, 102b, and 102c, and then converged by the lens 103 and the lens 104 constituting the afocal system.
  • the blue light converged by the lens 103 and the lens 104 is diffused by being incident on the diffusion plate 105 and is incident on the dichroic mirror 106.
  • the dichroic mirror 106 has a characteristic of transmitting blue light and reflecting light having a light emission color other than blue light. Therefore, the blue light that has entered the dichroic mirror 106 from the diffusion plate 105 passes through the dichroic mirror 106, further passes through the lens 107 and the lens 18, and then enters the phosphor layer 12 b of the phosphor wheel 12.
  • the phosphor wheel 12 is rotated around the rotation axis J by the drive unit 13. Therefore, it is avoided that blue light is intensively applied to one point of the phosphor layer 12b, and deterioration of the phosphor particles contained in the phosphor layer 12b due to heat generated by the blue light irradiation is suppressed.
  • the yellow phosphor particles in the phosphor layer 12b are excited by blue light and emit yellow light.
  • the yellow light is reflected by the reflection film provided on the first main surface (surface on which the phosphor layer 12 b is formed) of the substrate 12 a included in the phosphor wheel 12 and is incident on the dichroic mirror 106.
  • the dichroic mirror 106 reflects light having a light emission color other than blue light. Further, the dichroic mirror 106 is disposed with an inclination of 45 degrees with respect to the optical axis of the incident light. Therefore, the yellow light incident on the dichroic mirror 106 is reflected and bent 90 degrees, enters the lens 115, and then enters the rod integrator 116.
  • the blue laser diodes 201a and 201b respectively emit blue light, and the emitted blue light is collimated by the collimating lenses 202a and 202b, respectively.
  • the collimated blue light is collected by the lens 203 and then substantially collimated by the diffusion plate 204.
  • the substantially parallel blue light passes through the lens 205, the dichroic mirror 106, and the lens 107 in this order, and then enters the rod integrator 116.
  • the light emitted from the rod integrator 116 passes through the lens 308 and the lens 309 constituting the relay optical system, is reflected by the mirror 310 and the mirror 311 and enters the light modulation element 312.
  • the light modulation element 312 modulates the light emitted from the phosphor layer 12b based on the video signal in accordance with the laser light irradiated by the blue laser diodes 101a, 101b, and 101c.
  • the modulated light is incident on the projection lens 313.
  • the projection lens 313 projects the light modulated by the light modulation element 312 onto, for example, a screen. As a result, an image is displayed on the screen.
  • a reflection type image element such as a micromirror array or a reflection type liquid crystal panel (LCOS) is used as the light modulation element 312.
  • a transmissive image element such as a transmissive liquid crystal panel may be used as the light modulation element 312.
  • FIG. 2 is an external perspective view of the driving device 10.
  • FIG. 3 is a block diagram showing a functional configuration of the projection display apparatus.
  • the second housing 11 b is removed from the housing 11 in order to show the internal structure of the driving device 10.
  • the heat sink 16 is not shown.
  • the driving device 10 includes a housing 11, a phosphor wheel 12, a driving unit 13, a current detection unit 14, a control unit 15, a heat sink 16, and a lens 18. And a storage unit 19.
  • the housing 11 houses a phosphor wheel 12, a drive unit 13, a current detection unit 14, a control unit 15, a storage unit 19, and the like.
  • the casing 11 is made of metal such as aluminum, but may be made of resin.
  • casing 11 is a substantially flat cylindrical shape, the shape of the housing
  • the housing 11 is separated into a first housing 11a and a second housing 11b (shown in FIG. 2) in order to accommodate the phosphor wheel 12 and the like inside.
  • the first casing 11a and the second casing 11b are fixed after the phosphor wheel 12 and the like are accommodated therein.
  • the fixing method may be a fixing member such as a screw, or may be welding. Fixing by a fixing member such as a screw and fixing by welding may be used in combination.
  • the housing 11 has a gas injection port 17a and an exhaust port 17b, and a gas having a lower density than air is enclosed in the housing 11 after the phosphor wheel 12 and the like are accommodated therein through the gas injection port 17a.
  • the gas having a density lower than that of air is specifically helium, but may be other gas such as nitrogen or hydrogen.
  • the gas having a lower density than air may be a mixed gas of a plurality of gases. Specifically, for example, if helium 50% and nitrogen 50% are configured, the average density is 0.402 kg / m 3 , 0 ° C. 1 atm, and the air density (1.293 kg / m 3 , 0 ° C. 1 atm) Lower than.
  • the mixed gas may contain a gas having a higher density than air. Specifically, if the composition is 80% helium and 20% oxygen having higher density than air, the average density is 0.285 kg / m 3 and 0 ° C. 1 atm, and the density of air (1.293 kg / m 3 , 0 ° C. 1 atm).
  • the gas used for mixed gas and its distribution are not restricted to these.
  • the drive part 13 can rotate the fluorescent substance wheel 12 efficiently.
  • helium is a gas having a higher thermal conductivity than air.
  • the heat dissipation of the phosphor wheel 12 (phosphor layer 12b) can be enhanced by enclosing the casing 11 with a gas having a higher thermal conductivity than air.
  • the gas inlet 17a and the exhaust port 17b may be integrated. That is, the gas inlet 17a may also serve as the exhaust port 17b, and the exhaust port 17b may also serve as the gas inlet 17a. Moreover, after gas is enclosed, the gas inlet 17a and the exhaust port 17b are covered with a metal plate etc., for example, and the said metal plate and the housing
  • the heat sink 16 is a heat radiating member for enhancing the heat dissipation of the housing 11 (the phosphor wheel 12 housed inside the housing 11).
  • the heat sink 16 is erected on a side portion of the housing 11 (a portion forming an inner peripheral surface that does not face either of the two main surfaces of the substrate 12a).
  • the heat sink 16 is a plurality of fins and protrudes inside and outside the housing 11.
  • the heat sink 16 is formed of metal, for example.
  • the heat sink 16 may be separate from the casing 11 or may be formed integrally with the casing 11.
  • the projection display apparatus 300 includes cooling fans 304 a and 304 b that send wind toward the heat sink 16. According to the cooling fans 304a and 304b, the heat dissipation of the housing 11 (the phosphor wheel 12 accommodated in the housing 11) is further enhanced.
  • the lens 18 is a lens for condensing light on the phosphor layer 12 b of the phosphor wheel 12 inside the housing 11.
  • the lens 18 is disposed inside the housing 11 so as to close the opening for guiding the blue light emitted from the laser light irradiation unit 20.
  • the space between the lens 18 and the second housing 11b is closed by thermosetting resin or welding.
  • the phosphor wheel 12 is an example of an object to be driven, and is an optical member used for the light source of the projection display apparatus 300.
  • the phosphor wheel 12 includes a substrate 12a and a phosphor layer 12b.
  • the substrate 12a is a disc-shaped substrate with the rotation axis J as the center.
  • the shape of the substrate 12a in plan view is a circle.
  • the shape in plan view is, in other words, the shape when viewed from a direction perpendicular to the first main surface (second main surface) of the substrate 12a.
  • the diameter of the substrate 12a is, for example, about 8 cm, but is not particularly limited.
  • the drive unit 13 (the rotor of the drive unit 13) is connected to the center of the substrate 12a.
  • the rotation axis J passes through the center (center position) of the substrate 12a, and the substrate 12a is rotated around the rotation axis J by the drive unit 13.
  • the substrate 12a is formed of, for example, a metal having good thermal conductivity such as aluminum or stainless steel. Further, a sapphire substrate or the like may be used as the substrate 12a.
  • the phosphor layer 12b is provided on the first main surface of the substrate 12a.
  • the phosphor layer 12b is made of a resin material containing a large number of yellow phosphor particles.
  • the yellow phosphor particles are, for example, YAG-based yellow phosphor particles.
  • the base material of the resin material is, for example, a silicone resin having translucency and thermosetting properties.
  • the phosphor layer 12b is formed by such a resin material being screen-printed on the first main surface of the substrate 12a and then heat-cured in a heating furnace.
  • the phosphor layer 12b may be bonded to the first main surface of the substrate 12a after being molded by a mold or the like.
  • a reflective film may be provided on the first main surface of the substrate 12a.
  • the phosphor layer 12b has an annular shape along the circumferential direction of the disc-shaped substrate 12a in plan view.
  • the phosphor layer 12b is provided, for example, on the peripheral portion of the first main surface of the substrate 12a.
  • the width of the phosphor layer 12b in the radial direction is constant. Even when the substrate 12a is not a disk-shaped substrate, the phosphor layer 12b is provided in an annular shape.
  • the driving unit 13 rotationally drives the phosphor wheel 12 based on the control of the control unit 15.
  • the drive unit 13 is, for example, an outer rotor type motor, but is not particularly limited.
  • the drive unit 13 operates at a constant voltage, and the current flowing through the drive unit 13 varies according to the rotational speed of the rotor of the drive unit 13.
  • the drive unit 13 is housed in the housing 11, but may not be housed in the housing 11. It suffices that at least a part of the drive unit 13 (for example, a part of the rotor) is accommodated in the housing 11.
  • the current detector 14 detects the current flowing through the drive unit 13.
  • the current detection unit 14 detects a current value flowing through the drive unit 13 when the phosphor wheel 12 is driven by the drive unit 13.
  • the current detection unit 14 is realized by, for example, a current detection circuit (an integrated circuit for current detection).
  • the current detection unit 14 may be realized as a part of the control unit 15.
  • the current detection unit 14 is housed inside the housing 11, but may be disposed outside the housing 11.
  • the control unit 15 controls the drive unit 13.
  • the control unit 15 is realized by a microcomputer, for example.
  • the microcomputer is a one-chip semiconductor integrated circuit having a ROM, a RAM storing a program, a processor (CPU) for executing the program, a timer, an input / output circuit including an A / D converter and a D / A converter, and the like. is there.
  • the control unit 15 may be realized by a processor or a dedicated circuit.
  • the control unit 15 may be realized by a combination of two or more of a processor, a microcomputer, and a dedicated circuit.
  • the control unit 15 is housed inside the housing 11, but may be disposed outside the housing 11.
  • control unit 15 includes a drive control unit 15a and a determination unit 15b.
  • the drive control unit 15 a controls the drive unit 13 by outputting a control signal to the drive unit 13.
  • the drive control unit 15a controls the drive unit 13 based on the determination result of the helium concentration by the determination unit 15b. That is, the drive unit 13 drives the phosphor wheel 12 based on the determination result of the helium concentration by the determination unit 15b.
  • the determination unit 15b determines the concentration of helium in the housing 11 based on the current value detected by the current detection unit 14. For example, the determination unit 15b determines whether or not the concentration of helium is equal to or higher than a predetermined concentration.
  • the determination unit 15 b outputs the determination result to the control unit 15.
  • the determination unit 15b may further output the determination result to a device arranged outside the drive device 10.
  • the device arranged outside the driving device 10 is, for example, the laser light irradiation unit 20 or the notification unit 30.
  • the storage unit 19 is a storage device that stores a program executed by the control unit 15 and table information used for determining the concentration of helium.
  • the storage unit 19 is realized by a semiconductor memory or the like.
  • the storage unit 19 may be built in the control unit 15.
  • the storage unit 19 is housed inside the housing 11, but may be disposed outside the housing 11.
  • the housing 11 is sealed so that helium sealed inside does not leak to the outside.
  • the first housing 11a and the second housing 11b formed of metal are welded, for example.
  • the space between the lens 18 and the second housing 11b is closed by thermosetting resin or welding.
  • the gas inlet 17a and the exhaust port 17b are covered with, for example, a metal plate after helium is sealed, and the metal plate and the housing 11 are welded.
  • casing 11b, the lens 18, the gas inlet 17a, and the exhaust port 17b is block
  • the amount of helium enclosed in the housing 11 may gradually decrease.
  • FIG. 4 is a diagram showing the relationship between the concentration of helium in the housing 11 and the current value of the drive unit 13 when the phosphor wheel 12 is rotating at 7000 rpm.
  • FIG. 5 is a diagram illustrating the relationship between the concentration of helium in the housing 11 and the current value of the drive unit 13 when the phosphor wheel 12 is rotating at 9000 rpm.
  • the determination unit 15b includes the table information, the rotation speed of the phosphor wheel 12 (the drive amount of the drive target) obtained from the drive control unit 15a, and the current value of the drive unit 13 detected by the current detection unit 14. Based on the above, it is possible to determine (estimate) a decrease in the concentration of helium inside the housing 11.
  • the determination unit 15b is based on the table information and the current value of the drive unit 13 detected by the current detection unit 14.
  • the concentration of helium inside the housing 11 can be determined (estimated). That is, the determination unit 15b can determine (estimate) the concentration of helium in the housing 11 based on fluctuations in the current flowing through the drive unit 13 when the phosphor wheel 12 rotates at the same rotation speed. .
  • the drive control unit 15a can control the drive unit 13 according to the concentration of helium determined by the determination unit 15b. .
  • FIG. 6 is a flowchart of the operation of the driving device 10.
  • the drive unit 13 rotationally drives the phosphor wheel 12 based on the control of the drive control unit 15a (S11). For example, the drive unit 13 rotationally drives the phosphor wheel 12 at a constant rotation speed (predetermined rotation speed).
  • the current detection unit 14 detects the value of the current flowing through the drive unit 13 when the phosphor wheel 12 is rotationally driven by the drive unit 13 (S12).
  • the determination unit 15b determines the concentration of gas inside the housing 11 based on the detected current value (S13). As described above, the table information stored in the storage unit 19 is used to determine the concentration of helium. Specifically, the determination unit 15b determines whether or not the current value detected by the current detection unit 14 is greater than or equal to a predetermined value in order to determine whether or not the gas concentration inside the housing 11 is a predetermined concentration. Determine whether.
  • the predetermined concentration is, for example, 50%, and the predetermined value is a current value associated with the helium concentration of 50% in the table information, but is not particularly limited.
  • the predetermined concentration (predetermined value) may be appropriately determined empirically or experimentally.
  • the drive control unit 15a controls the drive unit 13 so that the rotational speed of the phosphor wheel 12 is set to be higher than the constant rotational speed. (S14). That is, when the determination unit 15b determines that the helium concentration is lower than the predetermined concentration, the driving unit 13 is faster than the phosphor wheel 12 when the helium concentration is determined to be equal to or higher than the predetermined concentration. Drive.
  • the drive unit 13 continues to rotationally drive the phosphor wheel 12 at the constant rotational speed.
  • FIG. 7 is a flowchart of another operation example 1 of the driving device 10.
  • the description will be focused on differences from the operation shown in FIG.
  • the drive control unit 15a controls the drive unit 13 to rotate the rotation speed of the phosphor wheel 12. Is made lower than the predetermined rotational speed (S15). That is, when the determination unit 15b determines that the helium concentration is lower than the predetermined concentration, the driving unit 13 is slower than the phosphor wheel 12 when the helium concentration is determined to be equal to or higher than the predetermined concentration. Drive.
  • the operation example 1 it is possible to suppress the power consumption of the drive unit 13 that increases due to the decrease in the concentration of helium. Further, when the drive unit 13 is disposed in the housing 11, if the concentration of helium decreases, the heat dissipation of the drive unit 13 itself deteriorates. However, the drive unit 13 is reduced by reducing the rotation speed of the phosphor wheel 12. Heat generation is suppressed. That is, the temperature of the drive unit 13 can be lowered.
  • FIG. 8 is a flowchart of another operation example 2 of the driving device 10.
  • the driving device 10 is forcibly stopped, so that the occurrence of a malfunction due to the continuous use of the driving device 10 even after the helium concentration is reduced is suppressed.
  • the phosphor wheel 12 is prevented from being completely deteriorated by heat.
  • the driving device 10 is forcibly stopped, for example, maintenance for injecting helium into the casing 11 of the driving device 10 again is performed. Thereby, the user can reuse the drive device 10 without exchanging the phosphor wheel 12.
  • the determination unit 15b may output the determination result to a component included in the projection display apparatus 300 disposed outside the drive device 10. Thereby, the projection display apparatus 300 can perform an operation (for example, an operation related to heat dissipation) according to the concentration of helium in the housing 11 of the driving device 10.
  • the determination unit 15b may output the determination result to the laser light irradiation unit 20.
  • the projection display apparatus 300 can control the output of the laser light according to the concentration of helium inside the housing 11 of the driving device 10.
  • FIG. 9 is a flowchart of operation example 1 of such a projection display apparatus 300. In the following description of the operation example 1 and the operation example 2 of the projection display apparatus 300, the description is focused on differences from the operation examples of the driving apparatus described so far.
  • the laser light irradiation unit 20 reduces the output of the laser light (S17). That is, the laser beam irradiation unit 20 outputs the laser beam output when the determination unit 15b determines that the helium concentration is lower than the predetermined concentration, compared to when the helium concentration is determined to be equal to or higher than the predetermined concentration. Reduce.
  • the projection display apparatus 300 includes a notification unit 30 in addition to the driving device 10 and the laser light irradiation unit 20. Therefore, as shown in FIG. 10, when the determination unit 15b determines that the helium concentration is lower than a predetermined concentration, the notification unit 30 may notify the user.
  • FIG. 10 is a flowchart of Operation Example 2 of such a projection display apparatus 300.
  • the notification unit 30 when the determination unit 15b determines that the helium concentration is lower than the predetermined concentration (Yes in S13), the notification unit 30 notifies the user (warning) ( S18).
  • the notification unit 30 may notify the user that the helium concentration has decreased, or may notify the user that maintenance such as replenishment of helium is necessary for the driving device 10.
  • the notification unit 30 is, for example, a sound output device including a speaker, and notifies the user by emitting a warning sound (for example, a beep sound) from the speaker.
  • the notification unit 30 may be a display device including a display that displays characters or images, and may notify the user by displaying characters or images on the display.
  • the specific aspect of the notification part 30 is not specifically limited.
  • the user can recognize that the concentration of helium in the housing 11 has decreased (the maintenance of the drive device 10 is necessary).
  • the above operation example is an example.
  • the cooling fan control unit (not shown) that controls the cooling fans 304a and 304b has a helium concentration equal to or higher than the predetermined concentration.
  • the cooling fan may be rotated at a faster speed than when it is determined.
  • the image processing device when an image processing device (for example, an integrated circuit for image processing) that controls the light modulation element 312 is accommodated in the housing 11, the image processing device performs light based on the determination result of the determination unit 15 b.
  • the modulation element 312 may be controlled. For example, when the determination unit 15b determines that the helium concentration is lower than a predetermined concentration, the image processing apparatus may reduce the resolution of the image of the video signal output to the light modulation element 312 or the video signal. The frame rate may be lowered.
  • the determination unit 15b determines that the helium concentration is lower than the first predetermined concentration
  • the notification unit 30 notifies the user
  • the determination unit 15b determines that the helium concentration is lower than the second predetermined concentration.
  • the drive unit 13 may stop driving the phosphor wheel 12.
  • the second predetermined concentration is a concentration lower than the first predetermined concentration.
  • the driving device 10 may include a temperature measurement unit that measures the temperature inside the housing 11.
  • the helium concentration and the current value may be further associated with the temperature.
  • the determination unit 15b uses the temperature inside the housing 11 in addition to the table information, the rotation speed of the phosphor wheel 12, and the current value of the driving unit 13, thereby determining the helium inside the housing 11.
  • the density can be determined (estimated) with high accuracy.
  • the temperature measuring unit is a thermometer having a temperature measuring element such as a thermistor or a thermocouple, for example.
  • the phosphor wheel 12 may further include fins erected on the substrate 12a.
  • FIG. 11 is an external perspective view of the phosphor wheel 12 having fins (a view of the phosphor wheel 12 viewed from the second main surface side). According to the fin 12c as shown in FIG. 11, since the drag force by the gas when the phosphor wheel 12 rotates increases, the fluctuation of the current value of the drive unit 13 when helium decreases is significant. Therefore, the determination unit 15b can determine (estimate) the concentration of helium in the housing 11 with high accuracy.
  • such a fin 12c is good to arrange
  • FIGS. 14 and 15 are external perspective views.
  • the heat sink 16 is erected on the bottom of the housing 11 (the portion that forms a surface facing the second main surface of the substrate 12a (the main surface on which the phosphor layer 12b is not formed)). May be. Further, the heat sink 16 may be erected on both the bottom portion of the housing 11 and the side portion of the housing 11. Thus, the arrangement and number of the heat sinks 16 with respect to the housing 11 are not particularly limited. The shape of the heat sink 16 is not limited.
  • the inner surface of the corner portion 11c where the side portion where the exhaust port 17b is provided and the bottom portion are connected is a convex curved surface (R surface) toward the outside. Also good. Thereby, when helium is inject
  • the housing 11 is not limited to a substantially flat cylindrical shape.
  • the casing 11 may have a flat, substantially rectangular parallelepiped shape, as in the casing 11d shown in FIG. 14 and the casing 11e shown in FIG.
  • the housing 11d and the housing 11e are different in the arrangement of the heat sink 16a.
  • positioning and the number of the heat sinks 16a are not specifically limited.
  • the driving device 10 is disposed in the outer casing 301.
  • helium has a density lower than that of air, it accumulates vertically in the housing 11. That is, even if helium in the housing 11 decreases, helium remains in the vertically upper portion of the housing 11.
  • FIG. 16 is a diagram illustrating the posture of the driving device 10 in the outer casing 301.
  • the projection display apparatus 300 includes a bottom plate 303 provided with legs 302 for placing the projection display apparatus 300 on a desk or the like.
  • the drive device 10 may be arranged in a posture in which a portion near the lens 18 (a peripheral portion of the exhaust port 17 b) of the side portion of the housing 11 faces the side opposite to the bottom plate 303.
  • the position where the laser light of the phosphor layer 12b is irradiated is positioned vertically upward, so that helium is reduced. Even so, the position of the phosphor layer 12b irradiated with the laser light is likely to come into contact with helium. Therefore, deterioration of the heat dissipation of the phosphor wheel 12 when helium is reduced is suppressed.
  • the driving device 10 drives the housing 11 in which a gas having a lower density than air is enclosed, the phosphor wheel 12 accommodated in the housing 11, and the phosphor wheel 12.
  • Drive unit 13 current detection unit 14 that detects a current value that flows through drive unit 13 when phosphor wheel 12 is driven by drive unit 13, and housing 11 based on the detected current value.
  • the determination part 15b which determines the density
  • the phosphor wheel 12 is an example of a driving object.
  • the gas is, for example, helium.
  • Such a driving device 10 can drive the phosphor wheel 12 (the driving object) according to the gas concentration.
  • the gas may have a higher thermal conductivity than air.
  • the drive unit 13 may drive the phosphor wheel 12 based on the determination result of the gas concentration by the determination unit 15b.
  • Such a driving device 10 can drive the phosphor wheel 12 (drive object) based on the determination result of the gas concentration by the determination unit 15b.
  • the driving unit 13 is slower than the phosphor wheel 12 when the gas concentration is determined to be equal to or higher than the predetermined concentration. May be driven.
  • the drive unit 13 is faster than the phosphor wheel 12 when the gas concentration is determined to be equal to or higher than the predetermined concentration. May be driven.
  • the driving unit 13 may stop driving the phosphor wheel 12 when the determination unit 15b determines that the gas concentration is lower than the predetermined concentration.
  • the projection display apparatus 300 includes a housing 11 in which a gas having a density lower than that of air is enclosed, a phosphor wheel 12 accommodated in the housing 11, and the phosphor wheel 12 being driven to rotate.
  • a drive unit 13 that detects the current value flowing through the drive unit 13 while the phosphor wheel 12 is being driven, and the concentration of gas inside the housing 11 is determined based on the detected current value.
  • a determination unit 15b a determination unit 15b.
  • Such a projection display apparatus 300 can drive the phosphor wheel 12 (drive object) according to the gas concentration.
  • the projection display apparatus 300 may further include a laser light irradiation unit 20 that irradiates the phosphor wheel 12 with laser light.
  • the laser light irradiation unit 20 may lower the output of the laser light than when it is determined that the gas concentration is equal to or higher than the predetermined concentration.
  • the projection display apparatus 300 may further include a notification unit 30 that notifies the user when the determination unit 15b determines that the gas concentration is lower than a predetermined concentration.
  • Such a notification unit 30 can notify the user that the concentration of helium in the housing 11 has decreased (maintenance of the drive device 10 is necessary).
  • the phosphor wheel 12 is exemplified as the driving object, but the driving object is not limited to the phosphor wheel 12.
  • the driving object may be, for example, a hard disk. That is, the present disclosure can be applied to a hard disk drive.
  • FIG. 17 is an external perspective view of the hard disk drive according to the second embodiment.
  • the hard disk drive 400 includes a housing 411, a hard disk 412, a drive unit 413, a current detection unit 414, a control unit 415 (determination unit), and a magnetic head 416.
  • the housing 411 includes a main body 411a that houses a hard disk 412, a driving unit 413, a current detection unit 414, a control unit 415, a magnetic head 416, and the like, and a lid 411b of the main body 411a.
  • the casing 411 is specifically formed of a metal such as aluminum, but may be formed of a resin.
  • casing 411 is a flat substantially rectangular parallelepiped shape.
  • the casing 411 is filled (filled) with a gas (for example, helium) having a density lower than that of air. Helium is injected from a gas inlet 417a provided in the lid 411b. After the housing 411 is filled with helium, the gas inlet 417a is closed.
  • a gas for example, helium
  • the hard disk 412 is an example of an object to be driven, and is rotationally driven by the drive unit 413.
  • the drive unit 413 is a motor that rotationally drives the hard disk 412.
  • the current detection unit 414 is substantially the same component as the current detection unit 14 of the first embodiment, and detects the current value flowing through the drive unit 413 when the hard disk 412 is driven by the drive unit 413.
  • the control unit 415 is substantially the same component as the control unit 15 of the first embodiment, determines the concentration of helium inside the housing 11 based on the current value detected by the current detection unit 414, and And the drive part 413 is controlled.
  • the magnetic head 416 writes data to the hard disk 412 and reads data from the hard disk 412.
  • the storage unit 419 is a storage device that stores a program executed by the control unit 415, table information used for determining the concentration of helium, and the like.
  • the storage unit 419 is realized by a semiconductor memory or the like.
  • the hard disk drive 400 as described above can determine the concentration of helium based on the current flowing through the drive unit 413, and can control, for example, the rotational speed of the hard disk 412 based on the determination result.
  • the drive unit 413 and the drive unit 13 described in the first embodiment are both motors that rotationally drive the drive target.
  • the present disclosure can also be applied to a driving device including an actuator other than a motor such as a piezoelectric element (an actuator that performs driving other than rotational driving) as a driving unit. That is, the present disclosure can be applied to all drive devices including a drive unit (drive mechanism) such as an actuator.
  • the components such as the control unit may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the order of the plurality of processes in the flowchart described in the above embodiment is an example.
  • the order of the plurality of processes may be changed, and some of the plurality of processes may be executed in parallel.
  • the comprehensive or specific aspect of the present disclosure is not limited to the driving device or the projection display apparatus, and may be realized as a system or a method.
  • the comprehensive or specific aspect of the present disclosure may be realized by a recording medium such as an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • the present disclosure may be realized as the determination method (estimation method) of the gas concentration in the casing described in the above embodiment. Further, the present disclosure may be realized as a program for causing a computer to execute the determination method (estimation method), or may be realized as a non-temporary recording medium on which the program is recorded.
  • the present disclosure can be applied to a phosphor wheel driving device, a hard disk drive, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

駆動対象物を収容する筐体内に気体が封入された駆動装置であって、当該気体の濃度を判定することができる駆動装置を提供する。駆動装置(10)は、内部に空気よりも密度の低い気体が封入された筐体と、筐体の内部に収容された蛍光体ホイール(12)を駆動する駆動部(13)と、駆動部(13)に流れる電流値を検知する電流検知部(14)と、検知された電流値に基づいて、筐体内部の気体の濃度を判定する判定部(15b)とを備える。

Description

駆動装置、及び、投写型映像表示装置
 本開示は、投写型映像表示装置の光源として使用される蛍光体ホイールを含む波長変換装置などの駆動装置に関する。
 従来、スクリーンに映像を投写することができる投写型映像表示装置が知られている。このような投写型映像表示装置として、特許文献1には、波長変換素子の効率的な冷却が可能な光源装置を備えるプロジェクタが開示されている。
特開2015-230354号公報
 本開示は、駆動対象物を収容する筐体内に気体が封入された駆動装置であって、当該気体の濃度を判定することができる駆動装置等を提供する。
 本開示における駆動装置は、内部に空気よりも密度の低い気体が封入された筐体と、前記筐体の内部に収容された駆動対象物と、前記駆動対象物を駆動する駆動部と、前記駆動部によって前記駆動対象物が駆動されているときに前記駆動部に流れる電流値を検知する電流検知部と、検知された電流値に基づいて、前記筐体内部の前記気体の濃度を判定する判定部とを備える。
 本開示における駆動装置は、気体の濃度を判定することができる。
図1は、実施の形態1に係る投写型映像表示装置の光学系を示す図である。 図2は、実施の形態1に係る駆動装置の外観斜視図である。 図3は、実施の形態1に係る投写型映像表示装置の機能構成を示すブロック図である。 図4は、蛍光体ホイールが回転しているときの、筐体内部のヘリウムの濃度と駆動部の電流値との関係を示す第1の図である。 図5は、蛍光体ホイールが回転しているときの、筐体内部のヘリウムの濃度と駆動部の電流値との関係を示す第2の図である。 図6は、実施の形態1に係る駆動装置の動作のフローチャートである。 図7は、実施の形態1に係る駆動装置の他の動作例1のフローチャートである。 図8は、実施の形態1に係る駆動装置の他の動作例2のフローチャートである。 図9は、実施の形態1に係る投写型映像表示装置の動作例1のフローチャートである。 図10は、実施の形態1に係る投写型映像表示装置の動作例2のフローチャートである。 図11は、フィンを有する蛍光体ホイールの外観斜視図である。 図12は、筐体の変形例を説明するための第1の図である。 図13は、筐体の変形例を説明するための第2の図である。 図14は、筐体の変形例を説明するための第3の図である。 図15は、筐体の変形例を説明するための第4の図である。 図16は、外郭筐体内の駆動装置の姿勢を示す図である。 図17は、実施の形態2に係るハードディスクドライブの外観斜視図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
 (実施の形態1)
 [投写型映像表示装置の構成]
 まず、実施の形態1に係る投写型映像表示装置の構成について説明する。図1は、実施の形態1に係る投写型映像表示装置の光学系を示す図である。
 実施の形態1に係る投写型映像表示装置300は、例えば、20000ルーメン程度の光を投写することができる高輝度タイプのプロジェクタである。投写型映像表示装置300は、具体的には、プロジェクションマッピングなどに用いられる。なお、投写型映像表示装置300は、家庭用の低輝度タイプのプロジェクタであってもよい。
 図1に示されるように、投写型映像表示装置300は、駆動装置10と、レーザ光照射部20とを備える。駆動装置10は、筐体11と、筐体11に収容される蛍光体ホイール12と、蛍光体ホイール12を回転軸J回りに回転駆動する駆動部13と、電流検知部14と、制御部15と、ヒートシンク16と、レンズ18とを備える。レーザ光照射部20は、レーザ駆動部101と、青色レーザダイオード101a、101b、101cとを備える。
 投写型映像表示装置300は、その他に、コリメートレンズ102a、102b、102cと、レンズ103と、レンズ104と、拡散板105とを備える。投写型映像表示装置300は、ダイクロイックミラー106と、レンズ107と、ロッドインテグレータ116とを備える。投写型映像表示装置300は、青色レーザダイオード201a、201bと、コリメートレンズ202a、202bと、レンズ203と、拡散板204と、レンズ205とを備える。投写型映像表示装置300は、レンズ308と、レンズ309と、ミラー310と、ミラー311と、光変調素子312と、投写レンズ313とを備える。また、投写型映像表示装置300は、以上の構成要素を収容する外郭筐体301と、外郭筐体301内に配置される冷却ファン304a、304bも備える。
 レーザ光照射部20は、蛍光体ホイール12が備える蛍光体層12bを励起するための青色光を出射する。言い換えれば、レーザ光照射部20は、蛍光体ホイール12にレーザ光を照射する。レーザ光照射部20は、レーザ駆動部101と、青色レーザダイオード101a、101b、101cとを備える。レーザ駆動部101は、例えば、回路(集積回路)によって実現される。
 レーザ光照射部20においては、レーザ駆動部101が青色レーザダイオード101a、101b、101cに電力を供給することにより、青色レーザダイオード101a、101b、101cに光を出射させる。青色レーザダイオード101a、101b、101cが出射した青色光は、コリメートレンズ102a、102b、102cでそれぞれコリメートされた後、アフォーカル系を構成するレンズ103及びレンズ104で収束される。レンズ103及びレンズ104で収束された青色光は、拡散板105に入射することによって拡散され、ダイクロイックミラー106に入射する。
 ダイクロイックミラー106は、青色光を透過し、青色光以外の発光色を有する光を反射する特性を有する。したがって、拡散板105からダイクロイックミラー106に入射した青色光は、ダイクロイックミラー106を透過し、レンズ107及びレンズ18をさらに透過した後、蛍光体ホイール12の蛍光体層12bに入射する。
 このとき、蛍光体ホイール12は、駆動部13によって回転軸J回りに回転されている。したがって、蛍光体層12bの一点に集中的に青色光が照射されることが回避され、青色光の照射による発熱によって蛍光体層12bに含まれる蛍光体粒子が劣化することが抑制される。
 蛍光体層12b中の黄色蛍光体粒子は、青色光によって励起され黄色光を発する。黄色光は、蛍光体ホイール12が有する基板12aの第1主面(蛍光体層12bが形成される面)に設けられた反射膜によって反射され、ダイクロイックミラー106に入射する。
 上述のように、ダイクロイックミラー106は、青色光以外の発光色を有する光を反射する。また、ダイクロイックミラー106は、入射光の光軸に対して45度傾斜して配置されている。したがって、ダイクロイックミラー106に入射した黄色光は、反射されて90度曲がり、レンズ115に入射した後、ロッドインテグレータ116に入射する。
 一方で、青色レーザダイオード201a、201bは、青色光をそれぞれ出射し、出射された青色光は、コリメートレンズ202a、202bでそれぞれコリメートされる。コリメートされた青色光は、レンズ203によって集光された後、拡散板204によって略平行化される。略平行化された青色光は、レンズ205、ダイクロイックミラー106、及び、レンズ107をこの順に透過した後、ロッドインテグレータ116に入射する。
 このように、ロッドインテグレータ116には、黄色光及び青色光が混ざることによって得られる白色光が入射する。なお、ロッドインテグレータ116に代えて、矩形状のレンズからなるレンズアレイが用いられてもよい。
 ロッドインテグレータ116から出射した光は、リレー光学系を構成するレンズ308及びレンズ309を通過した後、ミラー310、及び、ミラー311で反射されて光変調素子312に入射する。
 光変調素子312は、青色レーザダイオード101a、101b、101cによって照射されたレーザ光に応じて蛍光体層12bから発せられる光を映像信号に基づいて変調する。変調された光は、投写レンズ313に入射する。投写レンズ313は、光変調素子312によって変調された光を、例えば、スクリーンに投写する。この結果、スクリーンに映像が表示される。
 なお、図1に示される光学系では、光変調素子312として、マイクロミラーアレイ、または、反射型液晶パネル(LCOS:Liquid Crystal On Silicon)などの反射型の映像素子が用いられている。しかしながら、光変調素子312としては、透過型液晶パネルなどの透過型の映像素子が用いられてもよい。
 [駆動装置の構成]
 次に、駆動装置10の具体的な構成について図1に加えて図2及び図3をさらに参照しながら説明する。図2は、駆動装置10の外観斜視図である。図3は、投写型映像表示装置の機能構成を示すブロック図である。なお、図2では、駆動装置10の内部構造を示すために、筐体11のうち第2筐体11bが取り外されている。また、図2では、ヒートシンク16の図示が省略されている。
 図1~図3に示されるように、駆動装置10は、筐体11と、蛍光体ホイール12と、駆動部13と、電流検知部14と、制御部15と、ヒートシンク16と、レンズ18と、記憶部19とを備える。
 筐体11は、蛍光体ホイール12、駆動部13、電流検知部14、制御部15、及び、記憶部19などを収容する。筐体11は、具体的には、アルミニウムなどの金属によって形成されるが、樹脂によって形成されてもよい。筐体11は、略扁平円柱状であるが、筐体11の形状は、特に限定されない。なお、筐体11は、内部に蛍光体ホイール12等を収容するために、第1筐体11a及び第2筐体11b(図2に図示)に分離される。第1筐体11a及び第2筐体11bは、内部に蛍光体ホイール12等が収容された後、固定される。固定の方法は、ねじ等の固定部材によってもよいし、溶接によってもよい。ねじ等の固定部材による固定と、溶接による固定を併用してもよい。
 筐体11は、気体注入口17a及び排気口17bを有し、蛍光体ホイール12等が収容された後の筐体11の内部には、気体注入口17aを通じて空気よりも密度の低い気体が封入される。空気よりも密度の低い気体は、具体的には、ヘリウムであるが、窒素または水素などのその他の気体であってもよい。また、空気よりも密度の低い気体は、複数の気体の混合気体でもよい。具体的には、例えば、ヘリウム50%、窒素50%という構成にすれば、平均密度が0.402kg/m、0℃ 1atmとなり、空気の密度(1.293kg/m、0℃ 1atm)よりも低くなる。混合気体には、空気よりも密度の高い気体が含まれていてもよい。具体的には、ヘリウム80%と、空気よりも密度の高い酸素20%との構成にすれば、平均密度が0.285kg/m、0℃ 1atmとなり、空気の密度(1.293kg/m、0℃ 1atm)よりも低くなる。なお、混合気体に使用する気体やその配分はこれらに限らない。気体注入口17aを通じて筐体11の内部にヘリウムが注入されると、筐体11内部の空気は排気口17bから押し出される。気体注入口17a及び排気口17bは、筐体11にヘリウムが充填された状態で塞がれる。
 このように、筐体11に空気よりも密度の低い気体が充填されることで、蛍光体ホイール12が回転しているときの気体による抗力が低減される。このため、駆動部13は、蛍光体ホイール12を効率的に回転させることができる。
 また、気体による抗力が低減されることにより、蛍光体ホイールを回転させた時の騒音を低減させることができる。
 なお、ヘリウムは、空気よりも熱伝導率が高い気体である。このように、筐体11内に空気よりも熱伝導率が高い気体が封入されることにより、蛍光体ホイール12(蛍光体層12b)の放熱性を高めることができる。
 また、気体注入口17a及び排気口17bは一体であってもよい。つまり、気体注入口17aが排気口17bを兼ねてもよいし、排気口17bが気体注入口17aを兼ねてもよい。また、気体注入口17a及び排気口17bは、気体が封入された後、例えば、金属板等で覆われ、当該金属板と筐体11とが溶接される。
 ヒートシンク16は、筐体11(筐体11内部に収容された蛍光体ホイール12)の放熱性を高めるための放熱部材である。ヒートシンク16は、筐体11の側部(基板12aの2つの主面のいずれとも対向しない内周面を形成する部分)に立設されている。ヒートシンク16は、複数のフィンであり、筐体11の内部及び外部に突出している。ヒートシンク16は、例えば、金属によって形成される。ヒートシンク16は、筐体11と別体であってもよいし、筐体11と一体的に形成されてもよい。
 なお、投写型映像表示装置300は、ヒートシンク16に向けて風を送る冷却ファン304a、304bを備える。冷却ファン304a、304bによれば、筐体11(筐体11内部に収容された蛍光体ホイール12)の放熱性がさらに高められる。
 レンズ18は、筐体11内部の蛍光体ホイール12の蛍光体層12bに光を集光するためのレンズである。レンズ18は、筐体11内部にレーザ光照射部20が出射した青色光を導くための開口を塞ぐように配置される。レンズ18と第2筐体11bとの間は、熱硬化樹脂や、溶接等の接合により塞がれている。
 蛍光体ホイール12は、駆動対象物の一例であって、投写型映像表示装置300の光源に使用される光学部材である。蛍光体ホイール12は、基板12aと、蛍光体層12bとを有する。
 基板12aは、回転軸Jを中心とした円盤状の基板である。言い換えれば、基板12aの平面視における形状は、円形である。なお、平面視における形状とは、言い換えれば、基板12aの第1主面(第2主面)に垂直な方向から見た場合の形状である。基板12aの直径は、例えば、8cm程度であるが、特に限定されない。
 また、基板12aの中央には、駆動部13(駆動部13のロータ)が接続される。基板12aの中心(中心位置)には、回転軸Jが通り、基板12aは、駆動部13によって回転軸J回りに回転される。基板12aは、例えば、アルミニウムまたはステンレスなどの熱伝導性の良好な金属によって形成される。また、基板12aとしてサファイア基板などが用いられてもよい。
 基板12aの第1主面には、蛍光体層12bが設けられる。蛍光体層12bは、多数の黄色蛍光体粒子を含む樹脂材料からなる。黄色蛍光体粒子は、例えば、YAG系の黄色蛍光体粒子である。樹脂材料の基材は、例えば、透光性及び熱硬化性を有するシリコーン樹脂である。蛍光体層12bは、このような樹脂材料が基板12aの第1主面にスクリーン印刷された後、加熱炉で加熱硬化されることによって形成される。なお、蛍光体層12bは、金型などによって成形された後、基板12aの第1主面に接着されてもよい。また、図1~図3では図示されないが、基板12aの第1主面には、反射膜が設けられてもよい。
 蛍光体層12bは、平面視において、円盤状の基板12aの周方向に沿う円環状である。蛍光体層12bは、例えば、基板12aの第1主面の周縁部に設けられる。また、実施の形態1では、蛍光体層12bの径方向における幅は、一定である。なお、基板12aが円盤状の基板ではない場合にも、蛍光体層12bは円環状に設けられる。
 駆動部13は、制御部15の制御に基づいて蛍光体ホイール12を回転駆動する。駆動部13は、例えば、アウターロータ型のモータであるが、特に限定されない。駆動部13は、定電圧で動作し、駆動部13に流れる電流は、駆動部13のロータの回転数に応じて変動する。なお、駆動部13は、筐体11の内部に収容されるが、筐体11の内部に収容されなくてもよい。駆動部13は、少なくとも一部(例えば、ロータの一部)が筐体11内部に収容されればよい。
 電流検知部14は、駆動部13に流れる電流を検知する。電流検知部14は、例えば、駆動部13によって蛍光体ホイール12が駆動されているときに駆動部13に流れる電流値を検知する。電流検知部14は、具体的には、例えば、電流検知回路(電流検知用の集積回路)によって実現される。電流検知部14は、制御部15の一部として実現されてもよい。なお、電流検知部14は、筐体11の内部に収容されるが、筐体11の外部に配置されてもよい。
 制御部15は、駆動部13を制御する。制御部15は、例えば、マイクロコンピュータによって実現される。マイクロコンピュータは、プログラムが格納されたROM、RAM、プログラムを実行するプロセッサ(CPU)、タイマ、A/D変換器やD/A変換器を含む入出力回路等を有する1チップの半導体集積回路である。制御部15は、プロセッサまたは専用回路によって実現されてもよい。制御部15は、プロセッサ、マイクロコンピュータ、及び専用回路のうち2つ以上の組み合わせによって実現されてもよい。なお、制御部15は、筐体11の内部に収容されるが、筐体11の外部に配置されてもよい。
 制御部15は、具体的には、駆動制御部15aと、判定部15bとを備える。駆動制御部15aは、駆動部13に制御信号を出力することにより、駆動部13を制御する。駆動制御部15aは、例えば、判定部15bによるヘリウムの濃度の判定結果に基づいて駆動部13を制御する。つまり、駆動部13は、判定部15bによるヘリウムの濃度の判定結果に基づいて蛍光体ホイール12を駆動する。
 判定部15bは、電流検知部14によって検知された電流値に基づいて、筐体11内部のヘリウムの濃度を判定する。判定部15bは、例えば、ヘリウムの濃度が所定濃度以上であるか否かを判定する。判定部15bは、判定結果を制御部15に出力する。判定部15bは、さらに、判定結果を駆動装置10の外部に配置された装置に出力してもよい。駆動装置10の外部に配置された装置は、例えば、レーザ光照射部20または通知部30である。
 記憶部19は、制御部15によって実行されるプログラム、及び、ヘリウムの濃度の判定に用いられるテーブル情報等が記憶される記憶装置である。記憶部19は、半導体メモリなどによって実現される。なお、記憶部19は、制御部15に内蔵されてもよい。なお、記憶部19は、筐体11の内部に収容されるが、筐体11の外部に配置されてもよい。
 [駆動装置の動作]
 先述のように、筐体11は、内部に封入されたヘリウムが外に漏れないように密閉されている。例えば、金属によって形成された第1筐体11a及び第2筐体11bは、例えば、溶接されている。レンズ18と第2筐体11bとの間は、熱硬化樹脂や、溶接等の接合により塞がれている。また、気体注入口17a及び排気口17bは、ヘリウムが封入された後、例えば、金属板等で覆われ、当該金属板と筐体11とが溶接される。これにより、第1筐体11a、第2筐体11b、レンズ18、気体注入口17a、及び排気口17bの隙間が塞がれ、筐体11が密閉される。
 しかしながら、駆動装置10が長期間使用されると、筐体11内部に封入されたヘリウムの量が徐々に減少してしまう場合がある。
 ここで、筐体11内に封入されたヘリウムの量が減ると、筐体11内の空気の割合が多くなり、蛍光体ホイール12が回転しているときの気体による抗力が大きくなる。このため、蛍光体ホイール12を同一の回転数で回転させる場合には、筐体11内に封入されたヘリウムの量が多いほど、駆動部13に流れる電流の電流値は小さくなる。つまり、駆動部13の消費電力は低くなる。図4は、蛍光体ホイール12が7000rpmで回転しているときの、筐体11内部のヘリウムの濃度と駆動部13の電流値との関係を示す図である。図5は、蛍光体ホイール12が9000rpmで回転しているときの、筐体11内部のヘリウムの濃度と駆動部13の電流値との関係を示す図である。
 図4及び図5に示されるような、蛍光体ホイール12の回転数、駆動部13の電流値、及び、筐体11内部のヘリウムの濃度の関係性を示す情報は、例えば、テーブル情報としてあらかじめ記憶部19に記憶されている。そうすると、判定部15bは、当該テーブル情報と、駆動制御部15aから得られる蛍光体ホイール12の回転数(駆動対象物の駆動量)と、電流検知部14によって検知された駆動部13の電流値とに基づいて、筐体11内部のヘリウムの濃度の低下を判定(推定)することができる。
 なお、駆動装置10の通常の使用状態において、回転数が一定で変動しない場合には、判定部15bは、テーブル情報と、電流検知部14によって検知された駆動部13の電流値とに基づいて筐体11内部のヘリウムの濃度を判定(推定)することができる。つまり、判定部15bは、蛍光体ホイール12が同じ回転数で回転しているときの駆動部13に流れる電流の変動に基づいて筐体11内のヘリウムの濃度を判定(推定)することができる。
 このように、判定部15bによって筐体11内部のヘリウムの濃度が判定されれば、駆動制御部15aは、判定部15bによって判定されたヘリウムの濃度に応じて駆動部13を制御することができる。
 例えば、筐体11内にヘリウムのように熱伝導率が空気よりも高い気体が封入されている場合には、気体の減少とともに蛍光体ホイール12の放熱性が悪化する懸念がある。この場合、駆動部13は、筐体11内のヘリウムの濃度が減少すると、蛍光体ホイール12の回転数を増大させて蛍光体ホイール12を空冷してもよい。図6は、駆動装置10の動作のフローチャートである。
 駆動部13は、駆動制御部15aの制御に基づいて蛍光体ホイール12を回転駆動する(S11)。駆動部13は、例えば、一定の回転数(所定の回転数)で蛍光体ホイール12を回転駆動する。電流検知部14は、駆動部13によって蛍光体ホイール12が回転駆動されているときに駆動部13に流れる電流値を検知する(S12)。
 判定部15bは、検知された電流値に基づいて、筐体11内部の気体の濃度を判定する(S13)。上述のように、ヘリウムの濃度の判定には、記憶部19に記憶されたテーブル情報が用いられる。判定部15bは、具体的には、筐体11内部の気体の濃度が所定濃度であるか否かを判定するために、電流検知部14によって検知された電流値が所定値以上であるか否かを判定する。所定濃度は、例えば、50%であり、所定値は、テーブル情報においてヘリウムの濃度50%に対応付けられた電流値であるが、特に限定されない。所定濃度(所定値)は、経験的または実験的に適宜定められればよい。
 判定部15bによってヘリウムの濃度が所定よりも低いと判定された場合(S13でYes)、駆動制御部15aは、駆動部13を制御して蛍光体ホイール12の回転数を上記一定の回転数よりも上げる(S14)。つまり、駆動部13は、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、ヘリウムの濃度が所定濃度以上であると判定された場合よりも速い速度で蛍光体ホイール12を駆動する。
 一方、判定部15bによってヘリウムの濃度が所定濃度以上であると判定された場合(S13でNo)、駆動部13は、引き続き、上記一定の回転数で蛍光体ホイール12を回転駆動する。
 以上のような動作によれば、ヘリウムの濃度が減少することによる蛍光体ホイール12の放熱性の低下を、回転数の増加による空冷によって補うことができる。
 [他の動作例]
 次に、駆動装置10の他の動作例について説明する。図7は、駆動装置10の他の動作例1のフローチャートである。なお、以下の他の動作例1及び動作例2の説明では、図6に示される動作との相違点を中心に説明が行われる。
 他の動作例1では、判定部15bによってヘリウムの濃度が所定よりも低いと判定された場合(S13でYes)、駆動制御部15aは、駆動部13を制御して蛍光体ホイール12の回転数を上記一定の回転数よりも下げる(S15)。つまり、駆動部13は、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、ヘリウムの濃度が所定濃度以上であると判定された場合よりも遅い速度で蛍光体ホイール12を駆動する。
 動作例1によれば、ヘリウムの濃度の減少によって増加する駆動部13の消費電力を抑制することができる。また、駆動部13が筐体11内に配置される場合、ヘリウムの濃度が減少すると、駆動部13自体の放熱性が悪化するが、蛍光体ホイール12の回転数が下げられることで駆動部13の発熱が抑制される。つまり、駆動部13の温度を下げることができる。
 また、図8に示されるように、判定部15bによってヘリウムの濃度が所定よりも低いと判定された場合(S13でYes)、駆動制御部15aは、駆動部13を制御して蛍光体ホイール12の回転を停止させてもよい(S16)。つまり、駆動部13は、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、蛍光体ホイール12の駆動を停止する。図8は、駆動装置10の他の動作例2のフローチャートである。
 動作例2によれば、駆動装置10が強制的に停止されることにより、ヘリウムの濃度が減少した後も駆動装置10が継続的に使用されることによる不具合の発生が抑制される。例えば、熱により蛍光体ホイール12が完全に劣化することが抑制される。駆動装置10が強制的に停止された後には、例えば、駆動装置10の筐体11にヘリウムを再度注入するメンテナンスが行われる。これにより、ユーザは、蛍光体ホイール12を交換することなく駆動装置10を再使用することができる。
 [投写型映像表示装置の動作例]
 また、判定部15bは、判定結果を駆動装置10の外部に配置された、投写型映像表示装置300が備える構成要素に出力してもよい。これにより、投写型映像表示装置300は、駆動装置10の筐体11内部のヘリウムの濃度に応じた動作(例えば、放熱に関する動作)を行うことができる。
 例えば、判定部15bは、判定結果をレーザ光照射部20に出力してもよい。この場合、投写型映像表示装置300は、駆動装置10の筐体11内部のヘリウムの濃度に応じてレーザ光の出力を制御することができる。図9は、このような投写型映像表示装置300の動作例1のフローチャートである。なお、以下の投写型映像表示装置300の動作例1及び動作例2の説明では、これまでに説明された駆動装置の動作例との相違点を中心に説明が行われる。
 投写型映像表示装置300の動作例1では、判定部15bによってヘリウムの濃度が所定よりも低いと判定された場合(S13でYes)、レーザ光照射部20は、レーザ光の出力を下げる(S17)。つまり、レーザ光照射部20は、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、ヘリウムの濃度が所定濃度以上であると判定された場合よりもレーザ光の出力を低下させる。
 これにより、蛍光体層12bの励起発光が抑制されるため、蛍光体層12bの発熱が抑制される。したがって、ヘリウムの濃度が減少することによる蛍光体ホイール12の放熱性の低下を、蛍光体層12bの発熱の抑制によって補うことができる。なお、ロッドインテグレータ116に入射する白色光の色味を維持するため、レーザ光照射部20(青色レーザダイオード101a、101b、101c)のレーザ光の出力が低下される場合、青色レーザダイオード201a、201bからのレーザ光の出力も合わせて低下される。
 また、上記図3に示されるように、投写型映像表示装置300は、駆動装置10及びレーザ光照射部20に加えて、通知部30を備える。そこで、図10に示されるように、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、通知部30がユーザに通知を行ってもよい。図10は、このような投写型映像表示装置300の動作例2のフローチャートである。
 投写型映像表示装置300の動作例2では、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合(S13でYes)、通知部30は、ユーザに通知(警告)を行う(S18)。通知部30は、ヘリウムの濃度が低下したことをユーザに通知してもよいし、駆動装置10にヘリウムの補充等のメンテナンスが必要であることをユーザに通知してもよい。
 通知部30は、例えば、スピーカを含む出音装置であり、スピーカから警告音(例えば、ビープ音)を発することにより、ユーザに通知を行う。また、通知部30は、文字または画像を表示するディスプレイを含む表示装置であってもよく、ディスプレイに文字または画像を表示することにより、ユーザに通知を行ってもよい。このように、通知部30の具体的態様は、特に限定されない。
 このような通知部30によれば、ユーザは筐体11内部のヘリウムの濃度が低下したこと(駆動装置10のメンテナンスが必要であること)を認識することができる。
 [その他の動作例]
 なお、上記の動作例は一例である。例えば、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、冷却ファン304a、304bを制御する冷却ファン制御部(図示せず)は、ヘリウムの濃度が所定濃度以上であると判定された場合よりも速い速度で冷却ファンを回転させてもよい。
 また、筐体11内に光変調素子312を制御する画像処理装置(例えば、画像処理用の集積回路など)が収容されている場合、画像処理装置は、判定部15bの判定結果に基づいて光変調素子312を制御してもよい。画像処理装置は、例えば、判定部15bによってヘリウムの濃度が所定濃度よりも低いと判定された場合に、光変調素子312に出力する映像信号の画像の解像度を下げてもよいし、当該映像信号のフレームレートを下げてもよい。
 また、投写型映像表示装置300の動作において、上記ステップS13~S18の各処理、冷却ファン制御部が行う上記処理、及び、画像処理装置が行う上記処理のうち2つ以上の処理が組み合わされてもよい。例えば、判定部15bによってヘリウムの濃度が第1所定濃度よりも低いと判定された場合、通知部30がユーザに通知を行い、判定部15bによってヘリウムの濃度が第2所定濃度よりも低いと判定された場合、駆動部13は、蛍光体ホイール12の駆動を停止してもよい。第2所定濃度は、第1所定濃度よりも低い濃度である。
 [気体の濃度の判定精度の向上]
 空気及びヘリウムなどの気体は、温度によって密度が変動する。したがって、筐体11内部の濃度をより高い精度で計測するために、駆動装置10は、筐体11内部の温度を計測する温度計測部を備えてもよい。また、テーブル情報においては、ヘリウムの濃度及び電流値が温度にさらに対応付けられていてもよい。
 これにより、判定部15bは、上記テーブル情報、蛍光体ホイール12の回転数、及び、駆動部13の電流値に加えて、筐体11内部の温度を用いることにより、筐体11内部のヘリウムの濃度を高い精度で判定(推定)することができる。なお、温度計測部は、例えば、サーミスタまたは熱電対などの温度計測素子を有する温度計である。
 また、蛍光体ホイール12は、基板12aに立設したフィンをさらに有してもよい。図11は、フィンを有する蛍光体ホイール12の外観斜視図(蛍光体ホイール12を第2主面側から見た図)である。図11に示されるようなフィン12cによれば、蛍光体ホイール12が回転するときの気体による抗力が増加するため、ヘリウムが減少したときの駆動部13の電流値の変動が顕著になる。したがって、判定部15bは、筐体11内部のヘリウムの濃度を高い精度で判定(推定)することができる。
 なお、このようなフィン12cは、蛍光体ホイール12が回転したときにフィン12cによる風が蛍光体層12b側(外周側)に向かうように配置されるとよい。これにより、蛍光体ホイール12の放熱性を高めることができる。
 [筐体の変形例]
 上記実施の形態で説明された筐体11の形状等は、一例である。筐体11の具体的態様は、特に限定されない。以下、筐体11の変形例について説明する。図12~図15は、筐体11の変形例を説明するための図である。なお、図12及び図13は、模式断面図であり、図14及び図15は、外観斜視図である。
 図12に示されるように、ヒートシンク16は、筐体11の底部(基板12aの第2主面(蛍光体層12bが形成されていない主面)と対向する面を形成する部分)に立設されてもよい。また、ヒートシンク16は、筐体11の底部及び筐体11の側部の両方に立設されてもよい。このように、筐体11に対するヒートシンク16の配置及び数は特に限定されない。ヒートシンク16の形状についても限定されない。
 また、図13に示されるように、排気口17bが設けられる側部と底部とが接続されている角部11cの内面は、外側に向かって凸状の湾曲面(R面)となっていてもよい。これにより、気体注入口17aからヘリウムを注入した場合に、筐体11内部の空気が抜けやすくなる。言い換えれば、筐体11内部に空気が溜まりにくくなる。なお、このような効果を得るためには、少なくとも排気口17b側の角部の内面が湾曲面にされればよい。
 また、筐体11は、略扁平円柱状に限定されない。筐体11は、図14に示される筐体11d及び図15に示される筐体11eのように、扁平な略直方体状であってもよい。なお、筐体11d及び筐体11eは、ヒートシンク16aの配置が異なる。このように、筐体11が扁平な略直方体状である場合も、ヒートシンク16aの配置及び数は特に限定されない。
 [外郭筐体内の駆動装置の姿勢]
 図1を用いて説明したように、駆動装置10は、外郭筐体301内に配置される。ここで、ヘリウムは空気よりも密度が小さいため筐体11内では鉛直上方に溜まる。つまり、筐体11の内部のヘリウムが減少したとしても、筐体11内部の鉛直上方にはヘリウムが残ることとなる。
 一方で、ヘリウムは、空気よりも熱伝導性が高い。このため、蛍光体ホイール12の発熱源である蛍光体層12bの放熱性を高めるために、駆動装置10は、ヘリウムが減少したとしても蛍光体層12bがヘリウムに接触しやすい姿勢で外郭筐体301内に配置されるとよい。図16は、外郭筐体301内の駆動装置10の姿勢を示す図である。
 図16に示されるように、投写型映像表示装置300は、投写型映像表示装置300を机等に載置するための脚302が設けられた底板303を有する。駆動装置10は、筐体11の側部のうちレンズ18寄りの部分(排気口17bの周辺部分)が底板303と反対側を向く姿勢で配置されるとよい。
 これにより、投写型映像表示装置300の通常の姿勢(脚302が机等に着いた姿勢)において、蛍光体層12bのレーザ光が照射される位置が鉛直上方に位置するため、ヘリウムが減少したとしても蛍光体層12bのレーザ光が照射される位置がヘリウムに接触しやすくなる。したがって、ヘリウムが減少したときの蛍光体ホイール12の放熱性の悪化が抑制される。
 [効果等]
 以上説明したように、駆動装置10は、内部に空気よりも密度の低い気体が封入された筐体11と、筐体11の内部に収容された蛍光体ホイール12と、蛍光体ホイール12を駆動する駆動部13と、駆動部13によって蛍光体ホイール12が駆動されているときに駆動部13に流れる電流値を検知する電流検知部14と、検知された電流値に基づいて、筐体11内部の気体の濃度を判定する判定部15bとを備える。蛍光体ホイール12は、駆動対象物の一例である。気体は、例えば、ヘリウムである。
 このような駆動装置10は、気体の濃度に応じて蛍光体ホイール12(駆動対象物)を駆動することができる。
 また、気体は、空気よりも熱伝導率が高くてもよい。
 これにより、筐体11内部の蛍光体ホイール12(駆動対象物)の放熱性を高めることができる。
 また、駆動部13は、判定部15bによる気体の濃度の判定結果に基づいて蛍光体ホイール12を駆動してもよい。
 このような駆動装置10は、判定部15bによる気体の濃度の判定結果に基づいて蛍光体ホイール12(駆動対象物)を駆動することができる。
 また、駆動部13は、判定部15bによって気体の濃度が所定濃度よりも低いと判定された場合に、気体の濃度が所定濃度以上であると判定された場合よりも遅い速度で蛍光体ホイール12を駆動してもよい。
 これにより、気体の濃度の減少によって増加する駆動部13の消費電力を抑制することができる。
 また、駆動部13は、判定部15bによって気体の濃度が所定濃度よりも低いと判定された場合に、気体の濃度が所定濃度以上であると判定された場合よりも速い速度で蛍光体ホイール12を駆動してもよい。
 これにより、気体が空気よりも高い熱伝導率を有する場合には、気体の濃度が減少することによる蛍光体ホイール12の放熱性の低下を、回転速度(回転数)の増加による空冷によって補うことができる。
 また、駆動部13は、判定部15bによって気体の濃度が所定濃度よりも低いと判定された場合に、蛍光体ホイール12の駆動を停止してもよい。
 これにより、気体の濃度が減少した後も駆動装置10が継続的に使用されることによる不具合の発生が抑制される。
 また、投写型映像表示装置300は、内部に空気よりも密度の低い気体が封入された筐体11と、筐体11の内部に収容された蛍光体ホイール12と、蛍光体ホイール12を回転駆動する駆動部13と、蛍光体ホイール12を駆動中に駆動部13に流れる電流値を検知する電流検知部14と、検知された電流値に基づいて、筐体11内部の気体の濃度を判定する判定部15bとを備える。
 このような投写型映像表示装置300は、気体の濃度に応じて蛍光体ホイール12(駆動対象物)を駆動することができる。
 また、投写型映像表示装置300は、さらに、蛍光体ホイール12にレーザ光を照射するレーザ光照射部20を備えてもよい。レーザ光照射部20は、気体の濃度が所定濃度よりも低いと判定された場合に、気体の濃度が所定濃度以上であると判定された場合よりもレーザ光の出力を低下させてもよい。
 これにより、蛍光体ホイール12(蛍光体層12b)の励起発光が抑制されるため、蛍光体ホイール12の発熱が抑制される。したがって、気体の濃度が減少することによる蛍光体ホイール12の放熱性の低下を、蛍光体ホイール12の発熱の抑制によって補うことができる。
 また、投写型映像表示装置300は、さらに、判定部15bによって気体の濃度が所定濃度よりも低いと判定された場合にユーザに通知を行う通知部30を備えてもよい。
 このような通知部30によれば、ユーザに筐体11内部のヘリウムの濃度が低下したこと(駆動装置10のメンテナンスが必要であること)を通知することができる。
 (実施の形態2)
 例えば、上記実施の形態では、蛍光体ホイール12が駆動対象物として例示されたが、駆動対象物は、蛍光体ホイール12に限定されない。駆動対象物は、例えば、ハードディスクであってもよい。つまり、本開示は、ハードディスクドライブにも適用できる。図17は、実施の形態2に係るハードディスクドライブの外観斜視図である。
 図17に示されるように、ハードディスクドライブ400は、筐体411と、ハードディスク412と、駆動部413と、電流検知部414と、制御部415(判定部)と、磁気ヘッド416とを備える。
 筐体411は、ハードディスク412、駆動部413、電流検知部414、制御部415、及び、磁気ヘッド416などを収容する本体部411aと、本体部411aの蓋411bとを有する。筐体411は、具体的には、アルミニウムなどの金属によって形成されるが、樹脂によって形成されてもよい。筐体411は、扁平な略直方体状である。筐体411の内部には、空気よりも密度の低い気体(例えば、ヘリウム)が封入(充填)されている。ヘリウムは、蓋411bに設けられた気体注入口417aから注入され、筐体411内にヘリウムが充填された後、気体注入口417aは塞がれる。
 ハードディスク412は、駆動対象物の一例であって、駆動部413によって回転駆動される。駆動部413は、ハードディスク412を回転駆動するモータである。
 電流検知部414は、実施の形態1の電流検知部14と実質的に同一の構成要素であり、駆動部413によってハードディスク412が駆動されているときに駆動部413に流れる電流値を検知する。
 制御部415は、実施の形態1の制御部15と実質的に同一の構成要素であり、電流検知部414によって検知された電流値に基づいて、筐体11内部のヘリウムの濃度を判定し、かつ、駆動部413を制御する。
 磁気ヘッド416は、ハードディスク412へのデータの書き込み及びハードディスク412からのデータの読み出しを行う。
 記憶部419は、制御部415によって実行されるプログラム、及び、ヘリウムの濃度の判定に用いられるテーブル情報等が記憶される記憶装置である。記憶部419は、半導体メモリなどによって実現される。
 以上説明したようなハードディスクドライブ400は、駆動部413に流れる電流に基づいてヘリウムの濃度を判定し、例えば、判定結果に基づいてハードディスク412の回転数等を制御することができる。
 なお、駆動部413、及び、上記実施の形態1で説明された駆動部13は、いずれも駆動対象物を回転駆動するモータである。しかしながら、本開示は、圧電素子などのモータ以外のアクチュエータ(回転駆動以外の駆動を行うアクチュエータ)を駆動部として備える駆動装置にも適用できる。つまり、本開示は、アクチュエータなどの駆動部(駆動機構)を備える駆動装置全般に適用できる。
 (その他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態をまとめて説明する。
 上記実施の形態において、制御部などの構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記実施の形態において説明されたフローチャートにおける複数の処理の順序は一例である。複数の処理の順序は、変更されてもよいし、複数の処理のうち一部の処理が並行して実行されてもよい。
 また、本開示の包括的または具体的な態様は、駆動装置または投写型映像表示装置に限定されるものではなく、システムまたは方法として実現されてもよい。また、本開示の包括的または具体的な態様は、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。
 例えば、本開示は、上記実施の形態で説明された筐体内の気体の濃度の判定方法(推定方法)として実現されてもよい。また、本開示は、上記判定方法(推定方法)をコンピュータに実行させるためのプログラムとして実現されてもよいし、当該プログラムが記録された非一時的な記録媒体として実現されてもよい。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、蛍光体ホイールの駆動装置、及び、ハードディスクドライブなどに適用できる。
 10 駆動装置
 11,11d,11e,411 筐体
 11a 第1筐体
 11b 第2筐体
 11c 角部
 12 蛍光体ホイール
 12a 基板
 12b 蛍光体層
 12c フィン
 13,413 駆動部
 14,414 電流検知部
 15,415 制御部
 15a 駆動制御部
 15b 判定部
 16,16a ヒートシンク
 17a,417a 気体注入口
 17b 排気口
 18,103,104,107,115,203,205,308,309 レンズ
 19 記憶部
 20 レーザ光照射部
 30 通知部
 101 レーザ駆動部
 101a,101b,101c,201a,201b 青色レーザダイオード
 102a,102b,102c,202a,202b コリメートレンズ
 105,204 拡散板
 106 ダイクロイックミラー
 116 ロッドインテグレータ
 300 投写型映像表示装置
 301 外郭筐体
 302 脚
 303 底板
 304a,304b 冷却ファン
 310,311 ミラー
 312 光変調素子
 313 投写レンズ
 400 ハードディスクドライブ
 412 ハードディスク
 416 磁気ヘッド
 419 記憶部

Claims (9)

  1.  内部に空気よりも密度の低い気体が封入された筐体と、
     前記筐体の内部に収容された駆動対象物と、
     前記駆動対象物を駆動する駆動部と、
     前記駆動部によって前記駆動対象物が駆動されているときに前記駆動部に流れる電流値を検知する電流検知部と、
     検知された電流値に基づいて、前記筐体内部の前記気体の濃度を判定する判定部と、を備える、
    駆動装置。
  2.  前記気体は、空気よりも熱伝導率が高い、
    請求項1に記載の駆動装置。
  3.  前記駆動部は、前記判定部による前記気体の濃度の判定結果に基づいて前記駆動対象物を駆動する、
    請求項1または2に記載の駆動装置。
  4.  前記駆動部は、前記判定部によって前記気体の濃度が所定濃度よりも低いと判定された場合に、前記気体の濃度が前記所定濃度以上であると判定された場合よりも遅い速度で前記駆動対象物を駆動する、
     請求項3に記載の駆動装置。
  5.  前記駆動部は、前記判定部によって前記気体の濃度が所定濃度よりも低いと判定された場合に、前記気体の濃度が前記所定濃度以上であると判定された場合よりも速い速度で前記駆動対象物を駆動する、
    請求項3に記載の駆動装置。
  6.  前記駆動部は、前記判定部によって前記気体の濃度が所定濃度よりも低いと判定された場合に、前記駆動対象物の駆動を停止する、
    請求項3に記載の駆動装置。
  7.  内部に空気よりも密度の低い気体が封入された筐体と、
     前記筐体の内部に収容された蛍光体ホイールと、
     前記蛍光体ホイールを回転駆動する駆動部と、
     前記蛍光体ホイールを駆動中に前記駆動部に流れる電流値を検知する電流検知部と、
     検知された電流値に基づいて、前記筐体内部の前記気体の濃度を判定する判定部と、を備える、
    投写型映像表示装置。
  8.  さらに、前記蛍光体ホイールにレーザ光を照射するレーザ光照射部を備え、
     前記レーザ光照射部は、前記気体の濃度が所定濃度よりも低いと判定された場合に、前記気体の濃度が前記所定濃度以上であると判定された場合よりも前記レーザ光の出力を低下させる、
    請求項7に記載の投写型映像表示装置。
  9.  さらに、前記判定部によって前記気体の濃度が所定濃度よりも低いと判定された場合にユーザに通知を行う通知部を備える、
    請求項7に記載の投写型映像表示装置。
PCT/JP2017/021086 2016-12-28 2017-06-07 駆動装置、及び、投写型映像表示装置 WO2018123106A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17885756.1A EP3540511B1 (en) 2016-12-28 2017-06-07 Drive device and projection-type image display device
JP2018558650A JP6811382B2 (ja) 2016-12-28 2017-06-07 駆動装置、及び、投写型映像表示装置
US16/449,981 US10965920B2 (en) 2016-12-28 2019-06-24 Drive device and projection-type image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256893 2016-12-28
JP2016-256893 2016-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/449,981 Continuation US10965920B2 (en) 2016-12-28 2019-06-24 Drive device and projection-type image display device

Publications (1)

Publication Number Publication Date
WO2018123106A1 true WO2018123106A1 (ja) 2018-07-05

Family

ID=62707186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021086 WO2018123106A1 (ja) 2016-12-28 2017-06-07 駆動装置、及び、投写型映像表示装置

Country Status (4)

Country Link
US (1) US10965920B2 (ja)
EP (1) EP3540511B1 (ja)
JP (1) JP6811382B2 (ja)
WO (1) WO2018123106A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964354B1 (en) 2018-04-19 2021-03-30 Seagate Technology Llc Oxidizing or reducing atmosphere for heat-assisted magnetic recording
JP7485890B2 (ja) * 2019-12-06 2024-05-17 ミツミ電機株式会社 表示装置におけるレーザの制御方法
US11539371B1 (en) * 2021-09-27 2022-12-27 Qualcomm Incorporated Digital-to-analog converter (DAC) calibration using error DACs
CN116300280A (zh) * 2021-12-21 2023-06-23 中强光电股份有限公司 波长转换模块与投影装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535647A (ja) * 2001-07-09 2004-11-25 シーゲイト テクノロジー エルエルシー 低密度気体を含んだディスク・ドライブの漏れを早期に検出するシステム
JP2006085776A (ja) * 2004-09-14 2006-03-30 Sony Corp 磁気記録媒体のドライブ装置及び電子装置
JP2009140524A (ja) * 2007-12-03 2009-06-25 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置およびその制御方法
JP2013025248A (ja) * 2011-07-25 2013-02-04 Seiko Epson Corp 蛍光体層の温度測定方法、光源装置及びプロジェクター
JP2015230354A (ja) 2014-06-04 2015-12-21 セイコーエプソン株式会社 光源装置、およびプロジェクター
WO2016147226A1 (ja) * 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 筐体、蛍光体ホイール装置、投影装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819517B2 (en) 2001-07-31 2004-11-16 Seagate Technology Llc Disc drive servo track writer gas leak detector and method
WO2003043012A1 (en) * 2001-11-13 2003-05-22 Seagate Technology Llc Disc drive gas supply system
JP4358700B2 (ja) * 2004-07-28 2009-11-04 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ ディスク装置及びその製造方法
JP4940161B2 (ja) 2008-02-01 2012-05-30 株式会社日立製作所 磁気ディスク装置
US20170125067A1 (en) * 2015-10-28 2017-05-04 HGST Netherlands B.V. Gas leak detection in data storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535647A (ja) * 2001-07-09 2004-11-25 シーゲイト テクノロジー エルエルシー 低密度気体を含んだディスク・ドライブの漏れを早期に検出するシステム
JP2006085776A (ja) * 2004-09-14 2006-03-30 Sony Corp 磁気記録媒体のドライブ装置及び電子装置
JP2009140524A (ja) * 2007-12-03 2009-06-25 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置およびその制御方法
JP2013025248A (ja) * 2011-07-25 2013-02-04 Seiko Epson Corp 蛍光体層の温度測定方法、光源装置及びプロジェクター
JP2015230354A (ja) 2014-06-04 2015-12-21 セイコーエプソン株式会社 光源装置、およびプロジェクター
WO2016147226A1 (ja) * 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 筐体、蛍光体ホイール装置、投影装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540511A4

Also Published As

Publication number Publication date
EP3540511B1 (en) 2022-05-04
EP3540511A4 (en) 2019-12-11
US20190313065A1 (en) 2019-10-10
JP6811382B2 (ja) 2021-01-13
JPWO2018123106A1 (ja) 2019-10-31
US10965920B2 (en) 2021-03-30
EP3540511A1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
US10965920B2 (en) Drive device and projection-type image display device
US9983467B2 (en) Phosphor wheel and projection-type image display device
JP6617274B2 (ja) 蛍光体ホイール装置、蛍光体ホイール装置収納筐体、および投写型映像表示装置
JP6745486B2 (ja) 蛍光体ホイール、及び、投写型映像表示装置
JP6402893B2 (ja) 光学ホイール装置及び投影装置
JP5936056B2 (ja) 回転ホイール、光源装置、プロジェクタ、及び、回転ホイールの製造方法
JP5527059B2 (ja) 光源装置およびプロジェクター
JP5804130B2 (ja) 光源装置およびプロジェクター
JP6281131B2 (ja) 光変換装置およびこれを備えた投射型表示装置
US9915858B2 (en) Cooling device and projection-type image display apparatus
JP2007240645A (ja) 光学装置及びプロジェクタ
JP2017116935A (ja) 蛍光体ホイール装置、照明装置、及び投写型映像表示装置
JP5440864B2 (ja) 発光ユニット及びプロジェクタ
WO2018159536A1 (ja) 蛍光体ホイールおよびこれを備えた蛍光体ホイール装置、光変換装置、投射型表示装置
JP2015194716A (ja) 冷却装置、プロジェクター
US11036121B2 (en) Wavelength conversion device and projection-type display apparatus
JP2012078707A (ja) 光源装置及びプロジェクター
JP5835607B2 (ja) 光源用拡散ホイール、光源装置、及び、プロジェクタ
WO2017098705A1 (ja) 蛍光体ホイール装置、およびこれを備えた光変換装置、投射型表示装置
JP6589534B2 (ja) 波長変換装置、照明装置およびプロジェクター
JP4838397B1 (ja) 画像表示装置
JP2012155003A (ja) プロジェクター、及びプロジェクター制御方法
JP4891453B1 (ja) 画像表示装置
JP4761004B1 (ja) 画像表示装置
JP2017021223A (ja) プリズム冷却装置、及び投写型映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017885756

Country of ref document: EP

Effective date: 20190613

NENP Non-entry into the national phase

Ref country code: DE