WO2018123044A1 - 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体 - Google Patents

計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体 Download PDF

Info

Publication number
WO2018123044A1
WO2018123044A1 PCT/JP2016/089172 JP2016089172W WO2018123044A1 WO 2018123044 A1 WO2018123044 A1 WO 2018123044A1 JP 2016089172 W JP2016089172 W JP 2016089172W WO 2018123044 A1 WO2018123044 A1 WO 2018123044A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
information
light receiving
fluid
Prior art date
Application number
PCT/JP2016/089172
Other languages
English (en)
French (fr)
Inventor
敦也 伊藤
育也 菊池
立石 潔
村上 智也
麻華里 縣
玄紀 安達
Original Assignee
パイオニア株式会社
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 日機装株式会社 filed Critical パイオニア株式会社
Priority to JP2018558627A priority Critical patent/JP6818048B2/ja
Priority to PCT/JP2016/089172 priority patent/WO2018123044A1/ja
Publication of WO2018123044A1 publication Critical patent/WO2018123044A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to a technical field of a measurement device, an information output device, a measurement method, a computer program, and a recording medium that measure light-related information by irradiating light.
  • Patent Documents 1 and 2 disclose a technique in which blood is irradiated with light, and blood characteristics are obtained based on the detected intensity of transmitted light or reflected light at that time.
  • the amount of transmitted light varies exponentially with respect to the optical path length. Therefore, when the thickness of the tube changes, the amount of transmitted light also varies greatly. Therefore, in order to estimate information about blood (for example, hematocrit value) based on the amount of transmitted light, it is required that the thickness of the tube is known.
  • the tube is required to be flexible and flexible, it is difficult to make the tube by precisely controlling the wall thickness.
  • shrinkage may occur in a sterilization process using ultraviolet rays or radiation or a steam sterilization process. For this reason, the thickness of the tube varies depending on the production lot.
  • a measuring apparatus for solving the above-described problems includes an irradiation unit that irradiates light to a first member capable of flowing a fluid therein, and a first unit that receives scattered light scattered by the fluid inside the first member.
  • An information output device for solving the above-described problem is an information output device that outputs first information related to the thickness of a first member capable of flowing a fluid therein, and an irradiation unit that emits light;
  • a light receiving unit capable of detecting the irradiation position of the light irradiated by the irradiation unit, the irradiation position when the first member does not exist on the optical path of the light irradiated by the irradiation unit, and the first member on the optical path
  • an output unit that outputs the first information based on the irradiation position when the fluid does not exist inside the first member.
  • the measurement method for solving the above-described problems includes an irradiation step of irradiating light to a first member capable of flowing a fluid therein, and a first light receiving scattered light scattered by the fluid inside the first member.
  • a computer program for solving the above problems includes an irradiation step of irradiating light to a first member capable of flowing a fluid therein, and a first light receiving scattered light scattered by the fluid inside the first member.
  • a first light receiving step an acquisition step for acquiring first information on the thickness of the first member, and a generation for generating second information on the fluid based on the light receiving signal and the first information in the first light receiving step.
  • the process is executed by a computer.
  • the recording medium for solving the above problem is recorded with the computer program described above.
  • FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3. It is a conceptual diagram which shows the method of calculating tube thickness from the difference in an irradiation position. It is a graph which shows the relationship between transmitted light amount and hematocrit. It is a flowchart which shows the flow of the thickness measurement operation
  • the measurement apparatus includes an irradiation unit that irradiates light to a first member capable of flowing a fluid therein, and a first light reception unit that receives scattered light scattered by the fluid inside the first member.
  • An acquisition unit that acquires first information related to the thickness of the first member, and a generation unit that generates second information related to the fluid based on the light reception signal of the first light receiving unit and the first information. Is provided.
  • light is irradiated from the irradiation unit toward the fluid flowing through the first member.
  • the irradiated light is, for example, laser light, and is irradiated using a Fabry-Perot (FP) laser light source or the like.
  • FP Fabry-Perot
  • Specific examples of the fluid include blood and the like. However, any fluid can be used as long as it includes a scatterer that is flowing in a state where light from the irradiation unit can be irradiated.
  • the light irradiated from the irradiation unit is scattered (transmitted or reflected) in the fluid and then received by the first light receiving unit.
  • the light receiving unit includes, for example, a photodiode, and is configured to detect the intensity of scattered light and output a light reception signal (that is, a signal indicating the intensity of received light).
  • the acquisition unit acquires the first information related to the thickness of the first member (for example, the transparent tube).
  • the first information may be information that directly indicates the thickness of the first member, or information that indicates a value that varies depending on the thickness of the first member (that is, the thickness of the first member). It may be information that indirectly indicates).
  • the generation unit When the light reception signal and the first information of the first light receiving unit are acquired, the generation unit generates second information about the fluid. That is, the generation unit according to the present embodiment generates second information about the fluid based on the first information about the thickness of the first member as well as the light reception signal of the first light receiving unit.
  • An example of the second information is information indicating the concentration of the fluid.
  • the intensity of the light scattered in the fluid changes depending on the state of the fluid. Therefore, information on the fluid can be measured by using the light reception signal of the first light receiving unit.
  • the light reception signal in other words, the light reception intensity
  • the light reception intensity of the first light receiving unit varies greatly depending on the thickness of the first member. For this reason, unless the thickness of the first member is known, it is difficult to accurately generate the second information regarding the fluid.
  • the first information regarding the thickness of the first member is acquired. For this reason, it is possible to generate
  • the measurement apparatus further includes a second light receiving unit capable of detecting an irradiation position of the light irradiated by the irradiation unit, and the acquisition unit detects the irradiation detected by the second light receiving unit.
  • the first information is acquired based on the position.
  • the irradiation position of the light irradiated from the irradiation unit is detected by the second light receiving unit configured to include, for example, PSD (Position Sensitive Detector). And the 1st information regarding the thickness of the 1st member is acquired based on the detected irradiation position. If comprised in this way, the 1st information regarding the thickness of the 1st member will be acquired using the light (namely, the light used in order to generate the 2nd information about a fluid) irradiated from the irradiation part. it can.
  • PSD Position Sensitive Detector
  • the said acquisition part has the said 1st member on the said irradiation position when the said 1st member does not exist on the optical path of the light which the said irradiation part irradiated.
  • the first information may be acquired based on the irradiation position when the fluid is present and the fluid does not exist inside the first member.
  • the light emitted from the irradiation unit goes straight when the first member does not exist, but refracts according to the refractive index of the first member when the first member exists, and the irradiation depends on the thickness. A displacement of position occurs. For this reason, acquiring the 1st information about the thickness of the 1st member based on the difference in the irradiation position with the case where the 1st member exists on the optical path of the light which the irradiation part irradiated, and the case where it does not exist Can do.
  • the aspect which acquires 1st information based on the irradiation position mentioned above it further has a storage part which memorizes the irradiation position when the 1st member does not exist on the optical path, and the acquisition part is in the storage part.
  • the first information is acquired based on the stored irradiation position and the irradiation position when the first member is present on the optical path and the fluid is not present inside the first member. Also good.
  • the irradiation position does not change unless the laser irradiation direction is shifted, the position of the second light receiving unit is shifted, or the beam profile is changed. For this reason, if the irradiation position when there is no first member is stored in the storage unit, it is not necessary to measure each time, and the first information can be acquired more easily.
  • the generation unit receives a light reception signal of the first light reception unit based on the first information, and a light reception signal when the first member has a predetermined thickness. To generate the second information.
  • the light reception signal of the first light receiving unit is corrected to the light reception signal when the first member has a predetermined thickness.
  • the “predetermined thickness” is a value set in advance as a reference value for the thickness of the first member, for example, a value corresponding to the average thickness of the first member. ing.
  • the light reception signal of the first light receiving unit can be corrected to a predetermined reference (that is, a reference according to a predetermined thickness). Therefore, no matter what the thickness of the first member is, it is possible to eliminate the influence due to the difference in thickness and generate accurate second information.
  • the generation unit assigns a predetermined reference value to the value of the first information, and Second information is generated.
  • the “predetermined range” is a range set in advance for determining whether or not the first information has been normally acquired, and is a value that can be acquired as the first information (for example, general And a value including a value corresponding to the thickness of the first member. For this reason, when the first information is a value within a predetermined range, the first information is normally acquired. On the other hand, when the first information is not a value within the predetermined range, the first information Can be determined not to be acquired normally.
  • the “predetermined reference value” is a value set in advance as a reference value for the thickness of the first member, and is set as a value corresponding to the average thickness of the first member, for example. Has been. If it does in this way, when 1st information cannot be acquired normally due to an unexpected malfunction etc., it can prevent generating 2nd information as information which shows an abnormal value.
  • the first light receiving unit and the second light receiving unit are configured to include a common light receiving element.
  • the device configuration can be simplified and downsized.
  • ⁇ 8> In the aspect configured to include the common light receiving element described above, when the common light receiving element functions as the first light receiving unit, the common light receiving element functions as the second light receiving unit. Further, an irradiation control means for controlling to output strong light from the irradiation unit may be further provided.
  • an amplifier that amplifies and outputs a light reception signal of the first light receiving unit and the second light receiving unit, and the common light receiving element functions as the first light receiving unit.
  • an amplification control means for controlling the gain of the amplifier to be larger than when the common light receiving element functions as the second light receiving unit may be further provided.
  • the amplified signal is controlled to be relatively small, so that the dynamic range can be prevented from being unnecessarily expanded.
  • the first light receiving unit and the second light receiving unit are arranged at positions to receive the transmitted light that has passed through the fluid, and are reflected by the fluid.
  • the apparatus further includes a third light receiving unit disposed at a position for receiving light, and a second generation unit configured to generate third information related to the fluid based on a light reception signal of the third light receiving unit.
  • both the transmitted light and the reflected light can be received by the light from one irradiation unit.
  • information about different fluids that is, second information and third information.
  • the information output device is an information output device that outputs first information related to the thickness of a first member capable of flowing a fluid therein, an irradiation unit that emits light, and the irradiation unit A light receiving unit capable of detecting the irradiation position of the light irradiated by the light source, the irradiation position when the first member does not exist on the optical path of the light irradiated by the irradiation unit, and the first member existing on the optical path. And an output unit that outputs the first information based on the irradiation position when the fluid does not exist inside the first member.
  • the information output apparatus it is possible to acquire and output the first information related to the thickness of the first member through which the fluid flows by irradiating light from the irradiation unit.
  • the measurement method includes an irradiation step of irradiating light to a first member capable of flowing a fluid therein, and a first light receiving unit that receives scattered light scattered by the fluid inside the first member.
  • the measurement method since the first information related to the thickness of the first member is acquired in the same manner as the measurement apparatus described above, the influence of the thickness of the first member on the measurement result is taken into consideration. Thus, it is possible to accurately generate the second information about the fluid.
  • the computer program according to the present embodiment is a computer program for solving the above-described problem, by an irradiation step of irradiating light to a first member capable of flowing a fluid therein, and a fluid inside the first member. Based on the first light receiving step for receiving the scattered light scattered, the obtaining step for obtaining the first information on the thickness of the first member, the light receiving signal and the first information in the first light receiving step, Causing the computer to execute a generation step of generating second information about the fluid.
  • the influence of the thickness of the first member on the measurement result is taken into consideration. It is possible to generate two information accurately.
  • the recording medium according to the present embodiment records the above-described computer program.
  • the second information regarding the fluid is accurately obtained in consideration of the influence of the thickness of the first member on the measurement result. Can be generated.
  • FIG. 1 is a schematic configuration diagram illustrating the overall configuration of the measurement apparatus according to the first embodiment.
  • the measuring apparatus includes a transmitted light amount measuring unit 10, a thickness measuring unit 20, and a signal processing unit 30.
  • the transmitted light amount measurement unit 10 includes an LD driver 111, a laser diode 121, and a photodiode 131.
  • the LD driver 111 generates a current for driving the laser diode 121.
  • the laser diode 121 is a specific example of the “irradiation unit”, and irradiates the laser beam corresponding to the drive current generated in the LD driver 111 to the tube 200 in which blood flows.
  • the photodiode 131 is a specific example of a “first light receiving unit”, and receives scattered light (mainly transmitted light) scattered by blood among the laser light emitted from the laser diode 121.
  • the photodiode 131 outputs a light reception signal according to the intensity of the received transmitted light.
  • the thickness measuring unit 20 includes an LD driver 112, a laser diode 122, and a PSD 132.
  • the LD driver 112 generates a current for driving the laser diode 122.
  • the laser diode 122 is a specific example of the “irradiation unit” and irradiates the tube 200 with laser light corresponding to the drive current generated in the LD driver 112.
  • the PSD 132 is a specific example of the “second light receiving unit”, and receives the transmitted light refracted by the tube out of the laser light emitted from the laser diode 122.
  • the PSD 132 is configured to output two light reception signals in accordance with the intensity of the transmitted light that has been received. By calculating these two outputs, the laser light irradiation position (where the laser light is located on the PSD 132) is calculated. Whether it has been irradiated).
  • PSD 132 another position detection device may be used instead of the PSD 132.
  • an imaging element such as a photodiode having a light receiving area divided into two or a CCD (Charge-Coupled Device) is used, the irradiation position of the laser beam can be detected.
  • CCD Charge-Coupled Device
  • the signal processing unit 30 includes IV conversion units 141 and 142, amplifiers 151 and 152, an AD conversion unit 160, a signal calculation unit 170, and a storage unit 180.
  • the IV conversion unit 141 converts the light reception signal output from the photodiode 131 into a voltage and outputs the voltage.
  • the IV conversion unit 142 converts the light reception signal output from the PSD 132 into a voltage and outputs the voltage.
  • the amplifier 151 amplifies the voltage output from the IV converter 141 and outputs the amplified voltage.
  • the amplifier 152 amplifies and outputs the voltage output from the IV conversion unit 142.
  • the AD conversion unit 160 quantizes the signals output from the amplifiers 151 and 152 and outputs them as digital signals.
  • the signal calculation unit 170 is a specific example of an “acquisition unit” and a “generation unit”, and is configured to be able to output various information by calculating an input signal.
  • the arithmetic processing executed by the signal arithmetic unit 170 will be described in detail later.
  • the storage unit 180 is configured as a non-volatile memory, for example, and configured to be able to store a part of the detection result of the PSD 132.
  • the processing result of the signal processing unit 30 is output to an external device (for example, a display) not shown.
  • FIG. 2 is a plan view illustrating the configuration of the transmitted light amount measurement unit according to the first embodiment.
  • FIG. 3 is a plan view showing the configuration of the thickness measuring unit according to the first embodiment.
  • 4 is a cross-sectional view taken along line AA ′ of FIG.
  • the transmitted light amount measurement unit 10 is arranged so that the laser diode 121 can irradiate the laser beam obliquely (for example, 3 °) with respect to the tube 200 held by the tube rail 250.
  • a collimator lens 123 for collimating the laser light emitted from the laser diode 121 is disposed between the laser diode 121 and the tube rail 250.
  • the tube rail 250 has a U shape into which the tube 200 can be fitted, and a window for partially passing a laser beam is opened.
  • a photodiode 131 is arranged at the tip of the laser beam, and the amount of light transmitted through the tube 200 filled with blood can be detected.
  • the thickness measuring unit 20 is arranged so that the laser diode 122 can irradiate the laser beam obliquely (for example, 30 °) to the tube 200 held by the tube rail 250.
  • a collimator lens 124 for collimating the laser beam emitted from the laser diode 122 is disposed between the laser diode 122 and the tube rail 250.
  • the tube rail 250 has a U shape into which the tube 200 can be fitted, and a window for partially passing a laser beam is opened.
  • a PSD 132 is disposed at the point where the laser beam passes, and the irradiation position of the light transmitted through the tube 200 can be detected.
  • FIG. 5 is a conceptual diagram showing a method for calculating the tube thickness from the difference in irradiation position.
  • the transmitted light is transmitted through the side surface of the tube 200 twice.
  • the description will be made assuming that the transmitted light is transmitted only once.
  • the incident angle of the irradiation light to the tube 200 is ⁇
  • the refraction angle of the irradiation light in the tube 200 is ⁇ ′
  • the refractive index of the tube 200 is n
  • the thickness of the tube 200 is d
  • the tube 200 is The irradiation position of the laser beam on the PSD 132 when no is present. point a, and the irradiation position on the PSD 132 when the tube 200 is present is point b.
  • L and L ′ can be expressed as the following mathematical formulas (2) and (3), respectively.
  • Equation (5) d ⁇ (tan ⁇ tan ⁇ ′) (4)
  • Equation (7) when Equation (7) is substituted into Equation (5), the wall thickness d of the tube 200 can be obtained from ⁇ L, ⁇ , and n.
  • is a constant determined by the design of the device
  • n is a constant determined by the material of the tube 200. Therefore, if the irradiation position a on the PSD 132 when the tube 200 is not present and the irradiation position b on the PSD 132 when the tube 200 is present are measured, the difference ⁇ L is obtained, and the thickness d of the tube 200 is determined. be able to.
  • the irradiation light actually passes through the tube 200 twice on the incident side surface and the opposite side surface of the tube 200.
  • the thickness d of the tube 200 can be obtained in the same manner considering that the thickness of the tube 200 is 2 ⁇ d.
  • FIG. 6 is a graph showing the relationship between the amount of transmitted light and hematocrit.
  • the conversion formula is expressed as the following formula (8).
  • the conversion formula the following polynomial (10) or formula (11) using a logarithm can be used, or the area can be divided by the value of T 0 and a linear expression can be used for each area. it can.
  • ht a n ⁇ T 0 n + a n ⁇ 1 ⁇ T 0 n ⁇ 1 +... + a 0 ⁇ T 0 + a: a n , a n ⁇ 1 ,..., a 0 are constants obtained by experiments ⁇ (10)
  • ht A′ ⁇ B ′ ⁇ Log (T 0 ):
  • a ′ and B ′ are coefficients obtained by experiments (11)
  • the amount of light transmitted through a plurality of tubes 200 having a known thickness dx is measured.
  • correction equation The amount of transmitted light measured by using a tube 200 from these thick dx, wherein the wall thickness is corrected to quantity of transmitted light when measured using a tube 200 is d 0 (hereinafter as "correction equation") is obtained .
  • the correction formula is expressed as the following formula (12), where Tx is the transmitted light amount when the wall thickness is dx and T 0 is the transmitted light amount when the wall thickness is d 0 .
  • T Iin ⁇ 10 ⁇ ( ⁇ ⁇ ⁇ OP) (13)
  • is a constant and OP is the optical path length. Since the optical path length OP is a value obtained by subtracting the thickness d of the tube 200 from the width RL of the tube rail 250, it can be expressed as the following formula (14).
  • T 0 Iin ⁇ 10 ⁇ ⁇ ⁇ ⁇ (RL ⁇ 2 ⁇ d 0 ) ⁇
  • Tx Iin ⁇ 10 ⁇ ⁇ ⁇ ⁇ (RL ⁇ 2 ⁇ dx) ⁇ (16)
  • T 0 / Tx 10 ⁇ [ ⁇ ⁇ ⁇ (RL ⁇ 2 ⁇ d 0 ) ⁇ ⁇ ⁇ ⁇ ⁇ (RL ⁇ 2 ⁇ dx) ⁇ ] (17) If the logarithm of both sides is taken here, the formulas can be arranged as the following formulas (18), (19), and (20).
  • Equation (20) is a specific example of the mathematical formula (12). Equation (20) is merely an example of a correction equation, and any function that can approximate experimentally obtained data may be used. For example, from the same experimental data, the following formula (21) can be used as a correction formula.
  • T 0 (a 2 ⁇ ⁇ d 2 + a 1 ⁇ ⁇ d + a 0 ) (21) In this case, if a 2 , a 1 , and a 0 can be determined, T 0 is obtained.
  • FIG. 7 is a flowchart showing the flow of the thickness measurement operation by the measuring apparatus according to the first embodiment.
  • an irradiation position a (see FIG. 5) when the tube 200 is not present is obtained (step S101). Note that once the irradiation position a is measured, it does not change unless the position of the laser diode 122 is shifted, the position of the PSD 132 is shifted, or the beam profile is changed. Therefore, the irradiation position a is stored in the storage unit 180, and is acquired by reading the stored value thereafter. Next, the irradiation position b (FIG. 5) when the tube 200 is arranged and the tube 200 exists. Reference) is acquired (step S102).
  • the wall thickness d1 of the tube 200 is calculated using the mathematical formulas (5) and (7) (step S103).
  • step S104 it is determined whether or not the calculated wall thickness d1 is within a predetermined range.
  • step S104: YES when the thickness d1 is within the predetermined range (step S104: YES), the calculated thickness d1 is output (step S105).
  • step S104: NO when the wall thickness d1 is not within the predetermined range (step S104: NO), a measurement error is output to prompt remeasurement (step S106).
  • step S106 When re-measurement is performed (step S106: YES), the processing after step S102 is repeated. On the other hand, when the measurement is not performed again (step S106: NO), the reference thickness d0 is output instead of the calculated thickness d1 (step S107).
  • a measurement error may be output and the reference wall thickness d0 may be output when the sum of two outputs from the PSD 132 is equal to or less than a predetermined value. In this way, a measurement error caused by the fact that the inside of the tube 200 is not empty can be suitably determined.
  • FIG. 8 is a flowchart showing the flow of the hematocrit measurement operation by the measuring apparatus according to the first embodiment.
  • the inside of the tube 200 is filled with blood to obtain the transmitted light amount Tx (step S201).
  • the transmitted light quantity Tx to correct the reference transmitted light amount T 0 (step S202).
  • the transmitted light amount T 0 is calculated from Equation (20) using the wall thickness d1 obtained by the wall thickness measurement.
  • the thickness measuring operation is performed before the hematocrit measuring operation, and the thickness of the tube 200 is measured. For this reason, even when the thickness of the tube 200 varies, it is possible to perform correction based on the reference thickness and accurately measure information related to blood.
  • FIG. 9 is a schematic configuration diagram illustrating the overall configuration of the measurement apparatus according to the second embodiment.
  • the second embodiment differs from the first embodiment described above only in part of the configuration and operation, and other parts are substantially the same as those of the first embodiment. For this reason, below, a different part from 1st Example already demonstrated is demonstrated in detail, and description shall be abbreviate
  • the transmitted light amount measurement unit 10 and the wall thickness measurement unit 20 of the first example are configured as one measurement unit 25.
  • the measurement unit 25 includes an LD driver 110, a laser diode 120, and a PSD 132.
  • output is performed only from the PSD 132 to the signal processing unit 30.
  • the signal processing unit 30 is provided with one IV conversion unit 140 and one amplifier 150 each.
  • the measurement unit 25 performs both the thickness measurement operation and the hematocrit measurement operation.
  • the thickness measurement operation is the same as that of the first embodiment, the transmitted light amount Tx is measured not by the photodiode 131 (see FIG. 1) but by the PSD 132 in the hematocrit measurement operation. In this case, the sum of the two outputs of the PSD 132 may be handled as the output of the photodiode 131.
  • the output of the laser diode 120 low during the thickness measurement operation and to set the output of the laser diode 120 high during the hematocrit measurement operation. In this way, the expansion of the dynamic range can be prevented. Alternatively, the same effect can be obtained by setting the gain of the amplifier 150 low during the thickness measurement operation and setting the gain of the amplifier 150 high during the hematocrit measurement operation.
  • the thickness measuring operation and the hematocrit measuring operation can be performed by one optical system, so that the number of parts, the number of assembly steps, and the space saving can be reduced. Can be realized.
  • FIG. 10 is a plan view illustrating the configuration of the measurement unit according to the third embodiment.
  • the third embodiment differs from the first and second embodiments described above only in part of the configuration and operation, and other parts are substantially the same as those in the first and second embodiments. For this reason, below, a different part from the already demonstrated 1st and 2nd Example is demonstrated in detail, and description shall be abbreviate
  • the thickness measuring unit 20 is provided with a photodiode 135 for receiving the reflected light from the tube 200.
  • the photodiode 135 is configured to output a signal indicating the intensity of reflected light.
  • information regarding the transmitted light amount and the reflected light amount can be acquired by one optical system. For this reason, it is possible to measure information related to characteristics (for example, blood flow rate and flow velocity) that are difficult to measure using the transmitted light amount.
  • the measurement apparatus can perform measurement using the amount of reflected light while realizing a reduction in the number of parts, a reduction in assembly man-hours, and space saving.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • An information output device, a measurement method, a computer program, and a recording medium are also included in the technical scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Ecology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

計測装置は、内部に流体を流すことが可能な第1部材(200)に光を照射する照射部(121,122)と、第1部材の内部の流体によって散乱された散乱光を受光する第1受光部(131)と、第1部材の厚さに関する第1情報を取得する取得部(170)と、第1受光部の受光信号及び第1情報に基づいて、流体に関する第2情報を生成する生成部(170)とを備える。これにより、第1部材の肉厚によらずに、流体に関する情報を正確に計測することが可能である。

Description

計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体
 本発明は、光を照射して流体に関する情報を計測する計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体の技術分野に関する。
 この種の装置として、流体に光を照射すると共に散乱光を受光して、流体の濃度や流量及び流速等を測定するものが知られている。例えば特許文献1及び2では、血液に光を照射して、その際の透過光や反射光の検出強度に基づいて、血液の特性を求めるという技術が開示されている。
特表2003-508143号公報 特開平11-104114号公報
 血液は、例えば透明なチューブを流れており、計測用の光はチューブを介して血液に照射される。このため、血液を透過する透過光の光路長は、チューブの肉厚に応じて変化することになる。
 ここで特に、透過光の光量は、光路長に対して指数関数的に変化する。よって、チューブの肉厚が変化すると、透過光の光量も大きく変動する。従って、透過光量に基づいて血液に関する情報(例えば、ヘマトクリット値)を推定するためには、チューブの肉厚が既知であることが求められる。
 しかしながら、チューブは屈曲性のある柔軟なものであることが要求されるため、肉厚を精密に制御して作成することが難しい。また、血液を流すチューブでは特に、紫外線や放射線を用いた滅菌や蒸気滅菌工程において収縮が生じてしまうことがある。このため、製造ロットなどによってチューブの肉厚にばらつきが生じてしまう。
 この結果、特許文献1及び2に記載されているように、透過光量に基づいて血液に関する情報を計測しようとすると、チューブの肉厚のばらつきの影響を受けて、計測結果が大きく変わってしまうという技術的問題点が生ずる。
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、流体に関する情報を正確に測定可能な計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体を提供することを課題とする。
 上記課題を解決するための計測装置は、内部に流体を流すことが可能な第1部材に光を照射する照射部と、前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光部と、前記第1部材の厚さに関する第1情報を取得する取得部と、前記第1受光部の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成部とを備える。
 上記課題を解決するための情報出力装置は、内部に流体を流すことが可能な第1部材の厚さに関する第1情報を出力する情報出力装置であって、光を照射する照射部と、前記照射部が照射した光の照射位置を検出可能な受光部と、前記照射部が照射した光の光路上に前記第1部材が存在しない場合の前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を出力する出力部とを備える。
 上記課題を解決するための計測方法は、内部に流体を流すことが可能な第1部材に光を照射する照射工程と、前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光工程と、前記第1部材の厚さに関する第1情報を取得する取得工程と、前記第1受光工程の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成工程とを含む。
 上記課題を解決するためのコンピュータプログラムは、内部に流体を流すことが可能な第1部材に光を照射する照射工程と、前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光工程と、前記第1部材の厚さに関する第1情報を取得する取得工程と、前記第1受光工程の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成工程とをコンピュータに実行させる。
 上記課題を解決するための記録媒体は、上述したコンピュータプログラムが記録されている。
第1実施例に係る計測装置の全体構成を示す概略構成図である。 第1実施例に係る透過光量測定部の構成を示す平面図である。 第1実施例に係る肉厚測定部の構成を示す平面図である。 図3のA-A’線断面図である。 照射位置の違いからチューブ肉厚を算出する方法を示す概念図である。 透過光量とヘマトクリットとの関係を示すグラフである。 第1実施例に係る計測装置による肉厚測定動作の流れを示すフローチャートである。 第1実施例に係る計測装置によるヘマトクリット測定動作の流れを示すフローチャートである。 第2実施例に係る計測装置の全体構成を示す概略構成図である。 第3実施例に係る測定部の構成を示す平面図である。
 <1>
 本実施形態に係る計測装置は、内部に流体を流すことが可能な第1部材に光を照射する照射部と、前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光部と、前記第1部材の厚さに関する第1情報を取得する取得部と、前記第1受光部の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成部とを備える。
 本実施形態に係る計測装置の動作時には、照射部から第1部材の内部を流れる流体に向けて光が照射される。なお、照射される光は、例えばレーザ光であり、ファブリペロー型(FP)レーザ光源等を用いて照射される。また、流体の具体例としては血液等が挙げられるが、照射部からの光を照射可能な状態で流れている散乱体を含むものであれば計測対象となり得る。
 照射部から照射された光は、流体において散乱(透過又は反射)された後に、第1受光部において受光される。受光部は、例えばフォトダイオードを含んで構成されており、散乱光の強度を検出して、受光信号(即ち、受光した光の強度を示す信号)を出力可能に構成されている。
 ここで本実施形態では特に、取得部によって第1部材(例えば、透明チューブ)の厚さに関する第1情報が取得される。第1情報は、第1部材の厚さを直接的に示す情報であってもよいし、第1部材の厚さに依存して変動するような値を示す情報(即ち、第1部材の厚さを間接的に示す情報)であってもよい。
 第1受光部の受光信号及び第1情報が取得されると、生成部により流体に関する第2情報が生成される。即ち、本実施形態に係る生成部は、第1受光部の受光信号だけでなく、第1部材の厚さに関する第1情報に基づいて、流体に関する第2情報を生成する。なお、第2情報の一例としては、流体の濃度を示す情報が挙げられる。
 流体において散乱された光は、流体の状態に応じて強度が変化する。よって、第1受光部の受光信号を利用すれば、流体に関する情報を計測することができる。一方で、第1受光部の受光信号(言い換えれば、受光強度)は、第1部材の厚さによっても大きく変化する。このため、第1部材の厚さが既知でなければ、流体に関する第2情報を正確に生成することは難しい。
 しかるに本実施形態では、上述したように第1部材の厚さに関する第1情報が取得される。このため、第1部材の厚さが計測結果に与える影響を考慮して、流体に関する第2情報を正確に生成することが可能である。
 <2>
 本実施形態に係る計測装置の一態様では、前記照射部が照射した光の照射位置を検出可能な第2受光部を更に備え、前記取得部は、前記第2受光部で検出された前記照射位置に基づいて、前記第1情報を取得する。
 この態様によれば、例えばPSD(Position Sensitive Detector)等を含んで構成される第2受光部によって、照射部から照射された光の照射位置が検出される。そして、検出した照射位置に基づいて、第1部材の厚さに関する第1情報が取得される。このように構成すれば、照射部から照射された光(即ち、流体に関する第2情報を生成するために用いる光)を利用して、第1部材の厚さに関する第1情報を取得することができる。
 <3>
 上述した照射位置を検出可能な態様では、前記取得部は、前記照射部が照射した光の光路上に前記第1部材が存在しない場合の前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を取得してもよい。
 照射部から照射された光は、第1部材が存在しない場合には直進するが、第1部材が存在している場合には第1部材の屈折率に応じ屈折し、厚さに依存した照射位置の変位が生ずる。このため、照射部が照射した光の光路上に第1部材が存在する場合と、存在しない場合とでの照射位置の違いに基づいて、第1部材の厚さに関する第1情報を取得することができる。
 <4>
 上述した照射位置に基づいて第1情報を取得する態様では、前記光路上に前記第1部材が存在しない場合の前記照射位置を記憶する記憶部を更に備え、前記取得部は、前記記憶部に記憶された前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を取得してもよい。
 第1部材が存在しない場合の照射位置は、一度測定した後は、レーザの照射方向がずれたり、第2受光部の位置がずれたり、ビームプロファイルが変わったりしない限りは変化しない。このため、第1部材が存在しない場合の照射位置を記憶部で記憶しておけば、その都度測定する必要がなくなり、より容易に第1情報を取得することが可能となる。
 <5>
 本実施形態に係る計測装置の他の態様では、前記生成部は、前記第1情報に基づいて、前記第1受光部の受光信号を前記第1部材が所定の厚さである場合の受光信号に補正して、前記第2情報を生成する。
 この態様によれば、第1受光部の受光信号が、第1部材が所定の厚さである場合の受光信号に補正される。なお、ここでの「所定の厚さ」は、第1部材の厚さの基準となる値として予め設定される値であり、例えば第1部材の平均的な厚さに応じた値として設定されている。
 上述した補正によれば、第1受光部の受光信号を所定の基準(即ち、所定の厚さに応じた基準)に補正することができる。よって、第1部材の厚さがどのような値であったとしても、厚さの違いによる影響を排除して、正確な第2情報を生成することが可能である。
 <6>
 本実施形態に係る計測装置の他の態様では、前記生成部は、前記第1情報が所定の範囲内の値でない場合に、所定の基準値を前記第1情報の値に代入して、前記第2情報を生成する。
 この態様によれば、第2情報が生成される前に、第1情報が所定の範囲内の値であるか否かが判定される。なお、ここでの「所定の範囲」とは、第1情報が正常に取得されたか否かを判定するために予め設定された範囲であり、第1情報として取得され得る値(例えば、一般的な第1部材の厚さに応じた値)を含む範囲として設定される。このため、第1情報が所定の範囲内の値である場合には、第1情報が正常に取得されており、一方で第1情報が所定の範囲内の値でない場合には、第1情報が正常に取得されていないことを判定できる。
 本態様では、第1情報が所定の範囲内の値でない場合(即ち、第1情報が正常に取得されていない場合)には、取得された第1情報に所定の基準値が代入されて、第2情報が生成される。なお、ここでの「所定の基準値」とは、第1部材の厚さの基準となる値として予め設定される値であり、例えば第1部材の平均的な厚さに応じた値として設定されている。このようにすれば、予期せぬ不具合等に起因して第1情報を正常に取得できなかった場合に、第2情報が異常な値を示す情報として生成されてしまうことを防止できる。
 <7>
 本実施形態に係る計測装置の他の態様では、前記第1受光部及び前記第2受光部は共通の受光素子を含んで構成されている。
 この態様によれば、第1受光部及び第2受光部の構成を共通化することで、装置構成の簡単化や小型化を実現することができる。
 <8>
 上述した共通の受光素子を含んで構成される態様では、前記共通の受光素子を前記第1受光部として機能させる場合には、前記共通の受光素子を前記第2受光部として機能させる場合よりも、前記照射部から強い光を出力するように制御する照射制御手段を更に備えてもよい。
 この場合、共通の受光素子が第2受光部として機能する場合には、比較的弱い光が照射部から出力されるため、ダイナミックレンジが不必要に拡大されてしまうことを防止できる。
 <9>
 或いは共通の受光素子を含んで構成される態様では、前記第1受光部及び前記第2受光部の受光信号を増幅して出力する増幅器と、前記共通の受光素子を前記第1受光部として機能させる場合には、前記共通の受光素子を前記第2受光部として機能させる場合よりも、前記増幅器のゲインを大きくするように制御する増幅制御手段を更に備えてもよい。
 この場合、共通の受光素子が第2受光部として機能する場合には、増幅後の信号が比較的小さく制御されるため、ダイナミックレンジが不必要に拡大されてしまうことを防止できる。
 <10>
 本実施形態に係る計測装置の他の態様では、前記第1受光部及び前記第2受光部は、前記流体を透過した透過光を受光する位置に配置されており、前記流体で反射された反射光を受光する位置に配置された第3受光部と、前記第3受光部の受光信号に基づいて、前記流体に関する第3情報を生成する第2の生成部とを更に備える。
 この態様によれば、1つの照射部からの光によって、透過光及び反射光の両方を受光することができる。これにより、互いに異なる流体に関する情報(即ち、第2情報及び第3情報)を夫々生成することが可能である。
 <11>
 本実施形態に係る情報出力装置は、内部に流体を流すことが可能な第1部材の厚さに関する第1情報を出力する情報出力装置であって、光を照射する照射部と、前記照射部が照射した光の照射位置を検出可能な受光部と、前記照射部が照射した光の光路上に前記第1部材が存在しない場合の前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を出力する出力部とを備える。
 本実施形態に係る情報出力装置によれば、照射部から光を照射することで、流体が流れる第1部材の厚さに関する第1情報を取得し、出力することができる。
 <12>
 本実施形態に係る計測方法は、内部に流体を流すことが可能な第1部材に光を照射する照射工程と、前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光工程と、前記第1部材の厚さに関する第1情報を取得する取得工程と、前記第1受光工程の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成工程とを含む。
 本実施形態に係る計測方法によれば、上述した計測装置と同様に、第1部材の厚さに関する第1情報が取得されるため、第1部材の厚さが計測結果に与える影響を考慮して、流体に関する第2情報を正確に生成することが可能である。
 なお、本実施形態に係る計測方法においても、上述した本実施形態に係る計測装置における各種態様と同様の各種態様を採ることが可能である。
 <13>
 本実施形態に係るコンピュータプログラムは、上記課題を解決するためのコンピュータプログラムは、内部に流体を流すことが可能な第1部材に光を照射する照射工程と、前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光工程と、前記第1部材の厚さに関する第1情報を取得する取得工程と、前記第1受光工程の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成工程とをコンピュータに実行させる。
 本実施形態に係るコンピュータプログラムによれば、上述した本実施形態に係る計測方法と同様の工程を実行させることで、第1部材の厚さが計測結果に与える影響を考慮して、流体に関する第2情報を正確に生成することが可能である。
 なお、本実施形態に係るコンピュータプログラムにおいても、上述した本実施形態に係る計測装置における各種態様と同様の各種態様を採ることが可能である。
 <14>
 本実施形態に係る記録媒体は、上述したコンピュータプログラムが記録されている。
 本実施形態に係る記録媒体によれば、上述した本実施形態に係るコンピュータプログラムを実行させることで、第1部材の厚さが計測結果に与える影響を考慮して、流体に関する第2情報を正確に生成することが可能である。
 本実施形態に係る計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。
 以下では、図面を参照して計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体の実施例について詳細に説明する。
 <第1実施例>
 第1実施例に係る計測装置について、図1から図8を参照して説明する。なお、以下では、計測装置が血液のヘマトクリットを測定する装置として構成される場合を例にとり説明を進める。
 <全体構成>
 先ず、図1を参照して、本実施例に係る計測装置の全体構成について説明する。図1は、第1実施例に係る計測装置の全体構成を示す概略構成図である。
 図1において、本実施例に係る計測装置は、透過光量測定部10と、肉厚測定部20と、信号処理部30とを備えて構成されている。
 透過光量測定部10は、LDドライバ111と、レーザダイオード121と、フォトダイオード131とを備えている。LDドライバ111は、レーザダイオード121を駆動するための電流を発生する。レーザダイオード121は、「照射部」の一具体例であり、LDドライバ111において発生された駆動電流に応じたレーザ光を、その内部に血液が流れるチューブ200に対して照射する。フォトダイオード131は、「第1受光部」の一具体例であり、レーザダイオード121から照射されたレーザ光のうち、血液で散乱された散乱光(主に、透過光)を受光する。フォトダイオード131は、受光した透過光の強度に応じて受光信号を出力する。
 肉厚測定部20は、LDドライバ112と、レーザダイオード122と、PSD132とを備えている。LDドライバ112は、レーザダイオード122を駆動するための電流を発生する。レーザダイオード122は、「照射部」の一具体例であり、LDドライバ112において発生された駆動電流に応じたレーザ光を、チューブ200に対して照射する。PSD132は、「第2受光部」の一具体例であり、レーザダイオード122から照射されたレーザ光のうち、チューブで屈折された透過光を受光する。PSD132は、受光した透過光の強度に応じて2つの受光信号を出力するように構成されており、これら2つの出力を演算することで、レーザ光の照射位置(PSD132のどの位置にレーザ光が照射されたか)を検出することができる。
 なお、PSD132に代えて、他の位置検出デバイスを利用してもよい。例えば、受光エリアが2つに分割されたフォトダイオードや、CCD(Charge Coupled Device)等の撮像素子を用いた場合でも、レーザ光の照射位置を検出することができる。
 信号処理部30は、IV変換部141、142と、増幅器151,152と、AD変換部160と、信号演算部170と、記憶部180とを備えている。IV変換部141は、フォトダイオード131から出力された受光信号を電圧に変換して出力する。IV変換部142は、PSD132から出力された受光信号を電圧に変換して出力する。増幅器151は、IV変換部141から出力された電圧を増幅して出力する。増幅器152は、IV変換部142から出力された電圧を増幅して出力する。AD変換部160は、増幅器151、152から出力された信号を量子化して、デジタル信号として出力する。信号演算部170は、「取得部」及び「生成部」の一具体例であり、入力された信号を演算して各種情報を出力可能に構成されている。信号演算部170が実行する演算処理については後に詳述する。記憶部180は、例えば不揮発性のメモリとして構成されており、PSD132の検出結果の一部を記憶可能に構成されている。
 信号処理部30の処理結果は、図示せぬ外部装置(例えば、ディスプレイ等)に出力される。
 <測定部の配置>
 次に、透過光量測定部10及び肉厚測定部20の各部の配置について、図2から図4を参照して詳細に説明する。図2は、第1実施例に係る透過光量測定部の構成を示す平面図である。図3は、第1実施例に係る肉厚測定部の構成を示す平面図である。図4は、図3のA-A’線断面図である。
 図2に示すように、透過光量測定部10は、チューブレール250に保持されたチューブ200に対して、レーザダイオード121が斜め(例えば、3°)からレーザ光を照射できるように配置されている。レーザダイオード121とチューブレール250との間には、レーザダイオード121から出射されたレーザ光をコリメートするためのコリメータレンズ123が配置されている。チューブレール250は、チューブ200を嵌め込むことが可能なU字型になっており、部分的にレーザ光を通すための窓が開いている。レーザ光が抜ける先にはフォトダイオード131が配置されており、血液で満たされたチューブ200を透過した光量を検出できる構成になっている。
 図3及び図4に示すように、肉厚測定部20は、チューブレール250に保持されたチューブ200に対して、レーザダイオード122が斜め(例えば、30°)からレーザ光を照射できるように配置されている。レーザダイオード122とチューブレール250との間には、レーザダイオード122から出射されたレーザ光をコリメートするためのコリメータレンズ124が配置されている。チューブレール250は、チューブ200を嵌め込むことが可能なU字型になっており、部分的にレーザ光を通すための窓が開いている。レーザ光が抜ける先にはPSD132が配置されており、チューブ200を透過した光の照射位置を検出できる構成になっている。
 なお、透過光量測定部10については断面図がないが、概ね図4に示す肉厚測定部20と同様の位置関係となる。
 <肉厚測定の原理>
 次に、PSD132を用いた肉厚測定の原理について、図5を参照して詳細に説明する。図5は、照射位置の違いからチューブ肉厚を算出する方法を示す概念図である。なお、図3及び図4に示すように、透過光はチューブ200の側面を2回透過することになるが、ここでは簡単のため、1回だけ透過するものとして説明する。
 図5に示すように、照射光のチューブ200への入射角をθ、照射光のチューブ200での屈折角をθ’、チューブ200の屈折率をn、チューブ200の肉厚をd、チューブ200が存在しない場合のPSD132上のレーザ光の照射位置を点a、チューブ200が存在している場合のPSD132上の照射位置を点bとする。
 この時、点aと点bとの差をΔLとし、図のようにL、L'を設定すると、これらの関係は下記数式(1)のように表される。
  ΔL=(L-L') ・・・(1)
 ここで、L、L'は、それぞれ下記数式(2)、(3)のように表すことができる。
  L=d・tanθ ・・・(2)
  L'=d・tanθ' ・・・(3)
 これら数式(2)、(3)を数式(1)に代入すると、下記数式(4)が得られる。
  ΔL=d・(tanθ-tanθ') ・・・(4)
 次に、数式(4)をdについて解くと、下記数式(5)が得られる。
  d=ΔL/(tanθ-tanθ') ・・・(5)
 また、屈折の法則により、θ、θ'、及びnの間には、下記数式(6)の関係が成立し、この数式(6)を変形すると、下記数式(7)が得られる。
  sinθ/sinθ’=n ・・・(6)
  θ’=arcsin((sinθ)/n) ・・・(7)
 この結果、数式(5)に数式(7)を代入すると、チューブ200の肉厚dは、ΔL、θ、nから求めることができる。ここで、θは機器の設計で決まる定数であり、nはチューブ200の材質によって決まる定数である。よって、チューブ200が存在しない場合のPSD132上の照射位置a、及びチューブ200が存在する場合のPSD132上の照射位置bを測定すれば、その差分ΔLが求まり、チューブ200の肉厚dを決定することができる。
 なお、すでに述べたように、実際にはチューブ200の入射側の側面と、反対側の側面とで、照射光は2回チューブ200を透過する。この場合のチューブ200の肉厚dは、チューブ200の厚みが2×dとなることを考慮すれば、同様に求めることができる。
 <事前準備>
 次に、実際の測定動作を開始する前に実施すべき事前準備について、図6を参照して詳細に説明する。図6は、透過光量とヘマトクリットとの関係を示すグラフである。
 まず、既知の肉厚d0のチューブ200を用いて、複数の既知の血液濃度(ヘマトクリット)で得られた透過光量を測定しておけば、透過光量からヘマトクリットへ換算するための式(以下、適宜「換算式」)が求まる。
 透過光量をT、求めるヘマトクリットをhtとすれば、換算式は下記数式(8)のように表される。
  ht=f(T) ・・・(8)
 図6に示すように、数式(8)の関数fは、具体的には、透過光量Tが多いほど、ヘマトクリットhtが高くなるようなものとなる。本願発明者の実験によれば、数式(8)の具体例は、下記数式(9)のようになることが分かっている。
  ht=A×T^-B ・・・(9)
 なお、牛血液を用いた実験では、A=800、B=0.33という結果が得られている。ただし、これらの値は、レーザダイオード131、132の出力や、増幅器151、152のゲイン、或いは使用するAD変換部160によって異なるため、あくまで一例である。
 また、換算式としては、下記多項式(10)や対数を使った数式(11)を用いることもできるし、或いはTの値により領域を分割して、領域毎に1次式を用いることもできる。
  ht=a・T +an-1・T n-1+・・・+a0・T+a:a、an-1、・・・、a0は実験により求まる定数 ・・・(10)
  ht=A'-B'×Log(T):A'、B'は実験により求まる係数 ・・・(11)
 次に、既知の血液濃度(ヘマトクリット)の血液を用いて、複数の既知の肉厚dxのチューブ200における透過光量を測定しておく。これらから肉厚dxのチューブ200を用いて計測した透過光量を、肉厚がdであるチューブ200を用いて計測した場合の透過光量に補正する式(以下、適宜「補正式」)が求まる。補正式は、肉厚dxのときの透過光量をTx、肉厚dのときの透過光量をTとすると、下記数式(12)のように表される。
  T=g(Δd、Tx)  Δd=(d-dx) ・・・(12)
 以下では、数式(12)の具体例を求める。一般に入射光Iinに対して透過光Tは、下記数式(13)のように表される。
  T=Iin×10^(-α×OP) ・・・(13)
 なお、αは定数、OPは光路長である。光路長OPは、チューブレール250の幅RLからチューブ200の肉厚dを引いた値となるので、下記数式(14)のように表すことができる。
  OP=(RL-2×d) ・・・(14)
 ここで、チューブの肉厚がdの場合及びdxの場合を考えると、下記数式(15)及び(16)が得られる。
  T=Iin×10^{-α×(RL-2×d)} ・・・(15)
  Tx=Iin×10^{-α×(RL-2×dx)} ・・・(16)
 次に、数式(15)を数式(16)で割り算すると、下記数式(17)が得られる。
  T/Tx=10^[{-α×(RL-2×d)}-{-α×(RL-2×dx)}] ・・・(17)
 ここで両辺対数を取ると、下記数式(18)、(19)、(20)のように式を整理できる。
  Log(T)-Log(Tx)=-2×α(dx-d) ・・・(18)
  Log(T)=Log(Tx)+2×α×Δd ・・・(19)
  T=10^(Log(Tx)+2×α×Δd) ・・・(20)
 この数式(20)が、上記数式(12)の具体例である。なお、数式(20)は、あくまで補正式の一例であり、実験的に求めたデータを近似できる関数であればよい。例えば、同じ実験データから、下記数式(21)を補正式とすることもできる。
  T=(a×Δd+a×Δd+a) ・・・(21)
 この場合、a、a、aを決定できれば、Tが求まる。
 <肉厚測定動作の流れ>
 次に、チューブ200の肉厚を測定する肉厚測定動作の流れについて、図7を参照して詳細に説明する。図7は、第1実施例に係る計測装置による肉厚測定動作の流れを示すフローチャートである。
 図7に示すように、肉厚測定動作時には、まずチューブ200が存在しない場合の照射位置a(図5参照)を取得する(ステップS101)。なお、照射位置aは、1度測定すれば、その後レーザダイオード122の位置がずれたり、PSD132の位置がずれたり、ビームプロファイルが変わったりしない限り変わらない。このため、照射位置aは記憶部180に保存され、以降は保存された値を読み出すことで取得される
 次に、チューブ200を配置して、チューブ200が存在する場合の照射位置b(図5参照)を取得する(ステップS102)。
 照射位置a及びbを取得したら、数式(5)、(7)を利用して、チューブ200の肉厚d1を算出する(ステップS103)。
 次に、算出した肉厚d1が、所定範囲内であるか否かを判定する(ステップS104)。ここで、肉厚d1が所定範囲内である場合には(ステップS104:YES)、算出した肉厚d1を出力する(ステップS105)。一方で、肉厚d1が所定範囲内でない場合には(ステップS104:NO)、測定エラーを出力し再測定を促す(ステップS106)。
 再測定する場合には(ステップS106:YES)、ステップS102以降の処理を再び繰り返す。一方、再測定しない場合には(ステップS106:NO)、算出した肉厚d1に代えて、基準肉厚d0を出力する(ステップS107)。
 なお、図7には記載していないが、PSD132からの2つの出力の和が所定値以下となった場合も、測定エラーを出力して、基準肉厚d0を出力するようにしてもよい。このようにすれば、チューブ200内が空でないことに起因する計測エラーを好適に判別できる。
 ちなみに、肉厚d1に代えて基準肉厚d0を出力する場合、肉厚測定機能をキャンセルしたのと同等になる。この場合、測定精度は多少悪化する可能性があるが、測定を続けることが可能となる。
 <ヘマトクリット測定動作の流れ>
 次に、血液のヘマトクリットを測定するヘマトクリット測定動作の流れについて、図8を参照して詳細に説明する。図8は、第1実施例に係る計測装置によるヘマトクリット測定動作の流れを示すフローチャートである。
 図8に示すように、ヘマトクリット測定動作時には、まずチューブ200の内部を血液で満たして、透過光量Txを取得する(ステップS201)。
 次に、透過光量Txを、基準透過光量Tに補正する(ステップS202)。具体的には、肉厚測定によって求めた肉厚d1を用いて、数式(20)から透過光量Tを算出する。
 次に、補正されたT0を用いて、数式(9)からヘマトクリットhtを算出し(ステップS203)、算出した結果を出力する(ステップS204)。
 以上説明したように、第1実施例に係る計測装置によれば、ヘマトクリット測定動作の前に肉厚測定動作が実行され、チューブ200の肉厚が測定される。このため、チューブ200の肉厚にばらつきが生じているような場合においても、基準となる肉厚に基づいた補正を行い、正確に血液に関する情報を計測することが可能である。
 <第2実施例>
 次に、第2実施例に係る計測装置について、図9を参照して説明する。図9は、第2実施例に係る計測装置の全体構成を示す概略構成図である。
 なお、第2実施例は、上述した第1実施例と比べて一部の構成及び動作が異なるのみであり、その他の部分については第1実施例と概ね同様である。このため、以下では、既に説明した第1実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。
 図9に示すように、第2実施例に係る計測装置は、第1実施例の透過光量測定部10及び肉厚測定部20が、1つの測定部25として構成されている。測定部25は、LDドライバ110と、レーザダイオード120と、PSD132とを備えて構成されている。なお、第2実施形態ではPSD132のみから信号処理部30へ出力が行われる。このため、信号処理部30には、IV変換部140及び増幅器150がそれぞれ1つずつ設けられている。
 第2実施例に係る計測装置では、測定部25が、肉厚測定動作及びヘマトクリット測定動作の両方を実行する。肉厚測定動作については第1実施例と同様であるが、ヘマトクリット測定動作については、フォトダイオード131(図1参照)ではなく、PSD132で透過光量Txが測定されることになる。この場合、PSD132の2つの出力の和をフォトダイオード131の出力として扱えばよい。
 また、肉厚測定動作時にはレーザダイオード120の出力を低く設定し、ヘマトクリット測定動作時にはレーザダイオード120の出力を高く設定することが好ましい。このようにすれば、ダイナミックレンジの拡大を防止することができる。或いは、肉厚測定動作時には増幅器150のゲインを低く設定し、ヘマトクリット測定動作時には増幅器150のゲインを高く設定することでも同様の効果が得られる。
 以上説明したように、第2実施例に係る計測装置では、1つの光学系によって肉厚測定動作及びヘマトクリット測定動作を行うことができるため、部品点数の削減、組み立て工数の削減、省スペース化を実現することができる。
 <第3実施例>
 次に、第3実施例に係る計測装置について、図10を参照して説明する。図10は、第3実施例に係る測定部の構成を示す平面図である。
 なお、第3実施例は、上述した第1及び第2実施例と比べて一部の構成及び動作が異なるのみであり、その他の部分については第1及び第2実施例と概ね同様である。このため、以下では、既に説明した第1及び第2実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。
 図10に示すように、第3実施例に係る計測装置では、肉厚測定部20に、チューブ200からの反射光を受光するためのフォトダイオード135が設けられている。フォトダイオード135は、反射光の強度を示す信号を出力可能に構成されている。
 このように構成すれば、1つの光学系によって、透過光量及び反射光量に関する情報を取得できる。このため、透過光量を用いて測定することが難しい特性(例えば、血液の流量や流速)に関する情報を測定することができる。
 以上説明したように、第3実施例に係る計測装置では、部品点数の削減、組み立て工数の削減、省スペース化を実現しつつ、反射光量を用いた測定が可能である。
 なお、上述した各実施形態では、血液に関する情報を計測する装置について説明したが、流体の散乱光から計測可能な情報であれば、本実施形態と同様の構成で計測可能である。
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体もまた本発明の技術的範囲に含まれるものである。
 10 透過光量測定部
 20 肉厚測定部
 25 測定部
 30 信号処理部
 110,111,112 LDドライバ
 120,121,122 レーザダイオード
 123,124 コリメータレンズ
 131,135 フォトダイオード
 132 PSD
 140,141,142 IV変換部
 150,151,152 増幅器
 160 AD変換部
 170 信号演算部
 180 記憶部

Claims (14)

  1.  内部に流体を流すことが可能な第1部材に光を照射する照射部と、
     前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光部と、
     前記第1部材の厚さに関する第1情報を取得する取得部と、
     前記第1受光部の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成部と
     を備えることを特徴とする計測装置。
  2.  前記照射部が照射した光の照射位置を検出可能な第2受光部を更に備え、
     前記取得部は、前記第2受光部で検出された前記照射位置に基づいて、前記第1情報を取得する
     ことを特徴とする請求項1に記載の計測装置。
  3.  前記取得部は、前記照射部が照射した光の光路上に前記第1部材が存在しない場合の前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を取得することを特徴とする請求項2に記載の計測装置。
  4.  前記光路上に前記第1部材が存在しない場合の前記照射位置を記憶する記憶部を更に備え、
     前記取得部は、前記記憶部に記憶された前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を取得する
     ことを特徴とする請求項3に記載の計測装置。
  5.  前記生成部は、前記第1情報に基づいて、前記第1受光部の受光信号を前記第1部材が所定の厚さである場合の受光信号に補正して、前記第2情報を生成することを特徴とする請求項1から4のいずれか一項に記載の計測装置。
  6.  前記生成部は、前記第1情報が所定の範囲内の値でない場合に、所定の基準値を前記第1情報の値に代入して、前記第2情報を生成することを特徴とする請求項1から5のいずれか一項に記載の計測装置。
  7.  前記第1受光部及び前記第2受光部は共通の受光素子を含んで構成されていることを特徴とする請求項1から6のいずれか一項に記載の計測装置。
  8.  前記共通の受光素子を前記第1受光部として機能させる場合には、前記共通の受光素子を前記第2受光部として機能させる場合よりも、前記照射部から強い光を出力するように制御する照射制御手段を更に備えることを特徴とする請求項7に記載の計測装置。
  9.  前記第1受光部及び前記第2受光部の受光信号を増幅して出力する増幅器と、
     前記共通の受光素子を前記第1受光部として機能させる場合には、前記共通の受光素子を前記第2受光部として機能させる場合よりも、前記増幅器のゲインを大きくするように制御する増幅制御手段を更に備える
     ことを特徴とする請求項7に記載の計測装置。
  10.  前記第1受光部及び前記第2受光部は、前記流体を透過した透過光を受光する位置に配置されており、
     前記流体で反射された反射光を受光する位置に配置された第3受光部と、
     前記第3受光部の受光信号に基づいて、前記流体に関する第3情報を生成する第2の生成部と
     を更に備えることを特徴とする請求項1から9のいずれか一項に記載の計測装置。
  11.  内部に流体を流すことが可能な第1部材の厚さに関する第1情報を出力する情報出力装置であって、
     光を照射する照射部と、
     前記照射部が照射した光の照射位置を検出可能な受光部と、
     前記照射部が照射した光の光路上に前記第1部材が存在しない場合の前記照射位置と、前記光路上に前記第1部材が存在しており前記第1部材内部に前記流体が存在しない場合の前記照射位置とに基づいて、前記第1情報を出力する出力部と
     を備えることを特徴とする情報出力装置。
  12.  内部に流体を流すことが可能な第1部材に光を照射する照射工程と、
     前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光工程と、
     前記第1部材の厚さに関する第1情報を取得する取得工程と、
     前記第1受光工程の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成工程と
     を含むことを特徴とする計測方法。
  13.  内部に流体を流すことが可能な第1部材に光を照射する照射工程と、
     前記第1部材の内部の流体によって散乱された散乱光を受光する第1受光工程と、
     前記第1部材の厚さに関する第1情報を取得する取得工程と、
     前記第1受光工程の受光信号及び前記第1情報に基づいて、前記流体に関する第2情報を生成する生成工程と
     をコンピュータに実行させることを特徴とするコンピュータプログラム。
  14.  請求項13に記載のコンピュータプログラムが記録されていることを特徴とする記録媒体。
PCT/JP2016/089172 2016-12-28 2016-12-28 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体 WO2018123044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018558627A JP6818048B2 (ja) 2016-12-28 2016-12-28 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体
PCT/JP2016/089172 WO2018123044A1 (ja) 2016-12-28 2016-12-28 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/089172 WO2018123044A1 (ja) 2016-12-28 2016-12-28 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2018123044A1 true WO2018123044A1 (ja) 2018-07-05

Family

ID=62710970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089172 WO2018123044A1 (ja) 2016-12-28 2016-12-28 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体

Country Status (2)

Country Link
JP (1) JP6818048B2 (ja)
WO (1) WO2018123044A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055626A (ja) * 1998-08-06 2000-02-25 Nanotemu:Kk 板厚測定方法およびその装置
JP2002005631A (ja) * 2000-06-16 2002-01-09 Sumitomo Metal Ind Ltd 板体特性測定方法、及び板体特性測定装置
JP2003508143A (ja) * 1999-09-08 2003-03-04 オプトク・アクチボラゲット ヘモグロビンを含む血液特性を測定する方法及び装置
JP2006516330A (ja) * 2003-01-06 2006-06-29 オプテイスカン・バイオメデイカル・コーポレーシヨン 試薬を使用しない全血ブドウ糖計測器用の試料要素

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268163A1 (en) * 2010-11-30 2014-09-18 Thomas E. Milner Methods and Apparatus Related to Multi Wavelength Photothermal Optical Coherence Tomography
IT1404208B1 (it) * 2011-02-28 2013-11-15 Gerresheimer Pisa Spa Metodo e dispositivo di misura dello spessore di un oggetto trasparente su linee di produzione automatica
WO2016092681A1 (ja) * 2014-12-11 2016-06-16 愛知時計電機株式会社 血流センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055626A (ja) * 1998-08-06 2000-02-25 Nanotemu:Kk 板厚測定方法およびその装置
JP2003508143A (ja) * 1999-09-08 2003-03-04 オプトク・アクチボラゲット ヘモグロビンを含む血液特性を測定する方法及び装置
JP2002005631A (ja) * 2000-06-16 2002-01-09 Sumitomo Metal Ind Ltd 板体特性測定方法、及び板体特性測定装置
JP2006516330A (ja) * 2003-01-06 2006-06-29 オプテイスカン・バイオメデイカル・コーポレーシヨン 試薬を使用しない全血ブドウ糖計測器用の試料要素

Also Published As

Publication number Publication date
JPWO2018123044A1 (ja) 2019-10-31
JP6818048B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
US8447012B2 (en) Radiation inspection apparatus
KR102132519B1 (ko) 라이다 시스템 및 그의 동작 방법
US20140303473A1 (en) Object information acquiring apparatus and control method thereof
KR101697867B1 (ko) 스캐닝 촬상 시스템들
US20110199240A1 (en) Photoelectric encoder
JP2019533153A5 (ja)
JP4996043B2 (ja) 光波距離測定方法及び光波距離測定装置
BR112014007122B1 (pt) sistema para a detecção e/ou qualificação in vitro por fluorometria de pelo menos um analito em uma amostra de fluido
JP5354707B2 (ja) レーザ装置
JP2016512383A5 (ja)
WO2018123044A1 (ja) 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体
KR101557878B1 (ko) 유동 유체의 스루풋을 결정하기 위한 방법 및 장치
JP2008082862A (ja) ガス濃度測定装置及びガス濃度測定方法
KR20210052550A (ko) 농도 측정 장치
JP2011503591A5 (ja)
WO2016013242A1 (ja) 距離測定装置及び距離測定方法
JP7064167B2 (ja) 光学計測装置及び光学計測方法
US20230182231A1 (en) Thermal radiation light detection device and laser processing device
JP5300586B2 (ja) レーザ変位計
TWI617384B (zh) 聚光點檢測裝置
JP6880513B2 (ja) 光学計測装置及び光学計測方法
JP6872450B2 (ja) レーザ変位計と、それを用いたレーザ超音波検査装置
US10139263B2 (en) Method to calibrate disposable cartridge cuvette thickness in-situ
JP5057962B2 (ja) 光学式変位測定器
JP2008232156A (ja) 温度センサ付き軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925871

Country of ref document: EP

Kind code of ref document: A1