WO2018121692A1 - 车辆控制方法和装置、以及计算机可读存储介质 - Google Patents

车辆控制方法和装置、以及计算机可读存储介质 Download PDF

Info

Publication number
WO2018121692A1
WO2018121692A1 PCT/CN2017/119538 CN2017119538W WO2018121692A1 WO 2018121692 A1 WO2018121692 A1 WO 2018121692A1 CN 2017119538 W CN2017119538 W CN 2017119538W WO 2018121692 A1 WO2018121692 A1 WO 2018121692A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
level information
control level
speed value
feedback
Prior art date
Application number
PCT/CN2017/119538
Other languages
English (en)
French (fr)
Inventor
卓开阔
胡仁强
王发平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018121692A1 publication Critical patent/WO2018121692A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0014Adaptive controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed

Definitions

  • the present invention relates to the field of vehicle automatic driving technology, and in particular, to a vehicle control method and apparatus, and a computer readable storage medium.
  • automatic control of the vehicle is usually implemented based on classical control algorithms such as PID (proportional-derivative-integral) control or fuzzy logic control.
  • PID proportional-derivative-integral
  • fuzzy logic control takes the current position, current speed, forward target point, vehicle dynamics parameters and other content as input, calculates the command acceleration, and then finds the closest control level and outputs in the vehicle dynamics parameter according to the command acceleration. , control the vehicle to adjust to the corresponding control level.
  • the existing control algorithms can achieve better control effects.
  • the existing control algorithm easily leads to problems such as overshoot of control and frequent switching of control levels, thereby reducing the accuracy of control and parking, and affecting the multiplication. Car comfort.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a vehicle control method capable of improving vehicle control accuracy and ride comfort, and reducing vehicle commissioning and maintenance difficulty.
  • Another object of the present invention is to provide a vehicle control device.
  • Another object of the present invention is to provide a computer readable storage medium.
  • a vehicle control method includes: acquiring a control command outputted by an automatic control system of a vehicle; using a speed value corresponding to the control command as a first speed value, and determining and controlling the command Corresponding control level information; detecting an actual speed value of the vehicle at the current time point and using the actual speed value as the second speed value; comparing the first speed value with the second speed value to obtain a comparison result; Performing feedback adjustment on the control level information corresponding to the control instruction, obtaining feedback control level information and using the feedback adjusted control level information as target control level information; The vehicle is controlled.
  • the vehicle control method obtains a control command outputted by the automatic control system of the vehicle in real time, uses a speed value corresponding to the control command as the first speed value, and determines a control level corresponding to the control instruction.
  • Information detecting the actual speed value of the vehicle at the current time point and using it as the second speed value, comparing the first speed value with the second speed value to obtain a comparison result, corresponding to the control command according to the comparison result.
  • the control level information is feedback adjusted, and the feedback-adjusted control level information is obtained and used as the target control level information, and the vehicle is controlled according to the target control level information.
  • a vehicle control apparatus includes: an acquisition module, configured to acquire a control instruction outputted by an automatic control system of the vehicle; and a determination module configured to use a speed value corresponding to the control instruction as a first speed value, and determining control level information corresponding to the control instruction; a detecting module, configured to detect an actual speed value of the vehicle at the current time point and use the actual speed value as the second speed value; Comparing the first speed value and the second speed value to obtain a comparison result; the adjusting module is configured to perform feedback adjustment on the control level information corresponding to the control instruction according to the comparison result, and obtain the control level information after the feedback adjustment And the feedback-adjusted control level information is used as target control level information; and the control module is configured to control the vehicle according to the target control level information.
  • the vehicle control device acquires a control command outputted by the automatic control system of the vehicle in real time, uses a speed value corresponding to the control command as the first speed value, and determines a control level corresponding to the control command.
  • Information detecting the actual speed value of the vehicle at the current time point and using it as the second speed value, comparing the first speed value with the second speed value to obtain a comparison result, corresponding to the control command according to the comparison result
  • the control level information is feedback adjusted, and the feedback-adjusted control level information is obtained and used as the target control level information, and the vehicle is controlled according to the target control level information.
  • a computer readable storage medium includes computer instructions for causing execution of the above vehicle control method when the computer instructions are executed
  • FIG. 1 is a schematic flow chart of a vehicle control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a vehicle control method according to another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a vehicle control method according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a vehicle control method according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a vehicle control device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a vehicle control device according to another embodiment of the present invention.
  • control of the vehicle is generally discrete control.
  • the input of the control algorithm generally includes the first difference of speed and speed, the second difference of speed, the output is command acceleration, and then the command acceleration is converted into the corresponding control level according to the vehicle dynamics parameter table to realize the control of the vehicle.
  • the command acceleration obtained by the control algorithm is a deceleration of -0.3 m/s 2
  • the control level obtained by querying the vehicle dynamics parameter table according to the current speed and load condition of the vehicle is matched with the command acceleration. 2.
  • the vehicle's air spring sensor is abnormal, the vehicle's load measurement error is caused, and the actual -2 level corresponding deceleration is -0.4m/s 2 , which will result in over-tuning of the vehicle and reduce the accuracy of the vehicle. .
  • the existing control algorithm is easy to cause problems such as control overshoot and frequent switching of control levels, thereby reducing the accuracy of control and parking, and affecting ride comfort. Moreover, the existing control algorithm is difficult to debug and maintain.
  • the present invention proposes a vehicle control method. It can improve vehicle control accuracy and ride comfort, and reduce the difficulty of vehicle commissioning and maintenance.
  • FIG. 1 is a schematic flow chart of a vehicle control method according to an embodiment of the present invention.
  • the vehicle may be, for example, a train, and no limitation is imposed thereon.
  • the vehicle control method includes:
  • the control instruction includes: control level information.
  • control level information can be, for example, the throttle information of the automobile, or can also be, for example, a certain amount of traction, or can also be, for example, a control level within a certain range.
  • control level is in the range of [-7, +7].
  • the control command outputted by the automatic control system of the vehicle when the vehicle is controlled, can be obtained in real time, and the control command outputted by the automatic control system of the vehicle can be obtained in real time, thereby effectively improving the accuracy of the feedback adjustment of the method. Degree, avoiding feedback adjustment delay, providing higher feedback adjustment effect.
  • the method before the real-time acquisition of the control command output by the automatic control system of the vehicle, the method may further include:
  • the feedback adjustment function in the automatic control system of the vehicle may be previously turned on before acquiring the control command outputted by the automatic control system of the vehicle.
  • the user can select the feedback adjustment function in the automatic control system of the vehicle to open or not, thereby effectively improving the flexibility of the method implementation and improving User experience.
  • the speed value corresponding to the control command is a speed value that is adjusted by the automatic control system of the vehicle according to the driving environment of the vehicle, and the preferred speed value is not limited.
  • control level information determined by the automatic control system may be feedback adjusted according to the first speed value to improve the precision of the automatic control system control.
  • the control level determined by the automatic control system can be determined according to the first speed value and the throttle/brake depth information of the vehicle obtained according to the performance table of the searched vehicle. Feedback adjustment of information, because the algorithm is simple and easy to implement, and high reliability, it can save the computing resources consumed by the vehicle control method and improve the execution efficiency of the vehicle control method.
  • the current time point may be updated in real time, and the actual speed value of the vehicle is obtained in real time based on the updated current time point, thereby realizing automatic feedback adjustment throughout the entire driving process of the vehicle, further ensuring The control accuracy of the automatic control system.
  • the first speed value and the second speed value may be further compared, and a comparison result is obtained.
  • the comparison result may be, for example, a difference between the first speed value and the second speed value, or the comparison result may also be, for example, a ratio between the first speed value and the second speed value, which is not limited thereto. .
  • the feedback adjustment can be implemented according to the comparison result, and since the second speed value is the actual speed value of the vehicle at the current time point, therefore, the feedback adjustment is simultaneously considered.
  • the actual driving situation of the vehicle and the change of the throttle/brake depth can be obtained by searching the performance table of the vehicle, so that the comparison result has strong referenceability, further ensuring the reliability and applicability of the method.
  • S15 Perform feedback adjustment on the control level information corresponding to the control instruction according to the comparison result, obtain feedback-adjusted control level information, and use the feedback-adjusted control level information as the target control level information.
  • control level information corresponding to the control instruction is feedback adjusted, and the specific process of obtaining the feedback adjusted control level information as the target control level information will be given in the subsequent content, in order to avoid After all, it will not be explained in detail here.
  • the vehicle is directly controlled according to the target control level information, and the vehicle control accuracy and the ride comfort can be improved.
  • the vehicle control method obtains the control value outputted by the automatic control system of the vehicle in real time, uses the speed value corresponding to the control command as the first speed value, and determines the control level information corresponding to the control instruction, and detects Comparing the actual speed value of the vehicle at the current time point and using it as the second speed value, comparing the first speed value with the second speed value to obtain a comparison result, and the control level corresponding to the control instruction according to the comparison result
  • the information is feedback-adjusted, and the feedback-adjusted control level information is obtained and used as the target control level information, and the vehicle is controlled according to the target control level information.
  • FIG. 3 is a schematic flow chart of a vehicle control method according to another embodiment of the present invention.
  • step S15 includes:
  • step S151 If the comparison result is that the first speed value is smaller than the second speed value, the control level information of the preset level lower than the control level information corresponding to the control instruction is used as the intermediate control level information, and step S153 is performed.
  • the preset amplitude is level 1 or other, and no limitation is imposed thereon.
  • the results are further analyzed. If the comparison result is that the first speed value is smaller than the second speed value, the control level information of the control level information corresponding to the control instruction is lower than the preset level and is used as the intermediate control level information.
  • Example 1 The comparison result is the difference between the first speed value and the second speed value.
  • the first speed value is 96 km/h
  • the second speed value is 101 km/h
  • the control level information corresponding to the control command is +5 level. Comparing the first speed value with the second speed value, and the obtained comparison result is -5km/h, that is, the first speed value is smaller than the second speed value, then the obtained intermediate control level bit information is corresponding to the control instruction
  • the control level information is lower by one level, that is, the intermediate control level information is +4 level.
  • Example 2 The comparison result is the ratio of the first speed value to the second speed value.
  • the first speed value is 96 km/h
  • the second speed value is 101 km/h
  • the control level information corresponding to the control command is +5 level. Comparing the first speed value with the second speed value, the obtained comparison result is about 0.95, less than 1, that is, the first speed value is smaller than the second speed value, then the acquired intermediate control level bit information corresponds to the control instruction
  • the control level information is lower by one level, that is, the intermediate control level information is +4 level.
  • step S152 If the comparison result is that the first speed value is greater than the second speed value, the control level information corresponding to the control level information corresponding to the control instruction is higher than the preset level control information and is used as the intermediate control level information, and step S153 is performed. .
  • the preset amplitude is level 1 or other, and no limitation is imposed thereon.
  • control level information if the comparison result of the first speed value and the second speed value is that the first speed value is greater than the second speed value, acquiring the control level information corresponding to the control instruction is higher than the preset amplitude. Control level information and use it as intermediate control level information.
  • Example 1 The comparison result is the difference between the first speed value and the second speed value.
  • the first speed value is 96 km/h
  • the second speed value is 93 km/h
  • the control level information corresponding to the control command is +5 level. Comparing the first speed value with the second speed value, and the obtained comparison result is +3km/h, that is, the first speed value is greater than the second speed value, then the acquired intermediate control level information is corresponding to the control instruction.
  • the control level information is 1 level higher, that is, the intermediate control level information is +6 level.
  • Example 2 The comparison result is the ratio of the first speed value to the second speed value.
  • the first speed value is 96 km/h
  • the second speed value is 93 km/h
  • the control level information corresponding to the control command is +5 level.
  • the first speed value is compared with the second speed value, and the obtained comparison result is about 1.03, which is greater than 1, that is, the first speed value is greater than the second speed value, then the obtained intermediate control level information corresponds to the control instruction.
  • the control level information is 1 level higher, that is, the intermediate control level information is +6 level.
  • S153 Perform feedback adjustment on the control level information corresponding to the control instruction according to the intermediate control level information, obtain feedback control level information, and use the feedback adjusted control level information as the target control level information.
  • the intermediate control level information may be directly used as the target control level information, or may also refer to the steps in the following FIG. 4 embodiment, according to the middle.
  • the control level information is feedback-adjusted to the control level information corresponding to the control instruction, and then the feedback-adjusted control level information is obtained and used as the target control level information, and the control level information is feedback-adjusted according to the intermediate control level information. It can make the feedback adjustment more precise and further ensure the accuracy of feedback adjustment.
  • step S153 may further include:
  • S1531 Acquire an acceleration change value of the intermediate control level bit information with respect to the control level information corresponding to the control instruction.
  • the acceleration change value of the intermediate control level information relative to the control level information corresponding to the control instruction may be acquired according to the intermediate control level.
  • the acceleration change value may be a difference between an acceleration corresponding to the intermediate control level information and an acceleration corresponding to the control level information corresponding to the control instruction, or a proportional value, which is not limited thereto.
  • the acceleration change value can be obtained by searching the vehicle dynamics parameter table.
  • the relative value of the dynamic parameter is not the absolute value. Realizing the feedback adjustment of the automatic control system can avoid large deviations in the automatic control process, reduce the calculation error caused by the individual differences of the vehicles, and further ensure the accuracy of the feedback adjustment.
  • a difference between the two may be further obtained according to the first speed value and the second speed value for use in the automatic control system.
  • the parameter calculation avoids large deviations in the automatic control process, thereby ensuring the accuracy of feedback adjustment.
  • S1533 Perform feedback adjustment on the control level information corresponding to the control instruction according to the difference value and the acceleration change value, and obtain the control level information after the feedback adjustment.
  • the control level information corresponding to the control instruction is further performed according to the difference value and the acceleration change value. Feedback adjustment.
  • control level information corresponding to the control instruction is feedback-adjusted according to the difference value and the acceleration change value, and the feedback-adjusted control level information is obtained, including: a difference between the first speed value and the second speed value.
  • the ratio between the change value and the acceleration change value is used as an input of a PID controller or a fuzzy logic controller of the automatic control system of the vehicle; and the control level information outputted by the automatic control system based on the input is used as feedback-controlled control level information.
  • t the ratio of the difference between the first speed value and the second speed value and the acceleration change value
  • the automatic control system By inputting the ratio of the difference between the first speed value and the second speed value to the acceleration change value, inputting to the automatic control system as an input parameter of the PID controller or the fuzzy logic controller of the automatic control system of the vehicle to the control level
  • the bit information is adjusted. Since the acceleration change value between adjacent control level positions can ensure the consistency during the running of the vehicle, the vehicle performance deviation and the individual difference can be greatly reduced, and the adverse effects on the automatic control system can be greatly reduced, and the debugging and maintenance can be reduced.
  • the difficulty further ensures the applicability of the method.
  • control level information corresponding to the control instruction is feedback-adjusted according to the difference value and the acceleration change value, and the feedback-adjusted control level information is obtained, and further includes: determining, according to a ratio between the difference value and the acceleration change value.
  • the step increment of the control level information corresponding to the control instruction ; superimposing the control level information corresponding to the control instruction according to the level increment, and using the superposed control level information as the feedback adjusted control level information.
  • the step increment of the control level information corresponding to the ratio is obtained, and the step increment and control are performed.
  • the result obtained by superimposing the control level information corresponding to the instruction is used as the control level information after the feedback adjustment, and the vehicle control precision and the ride comfort can be further ensured by considering the control level information and the level increment corresponding to the control instruction.
  • S1534 The feedback level information of the feedback adjustment is used as the target control level information.
  • control level information corresponding to the control instruction is feedback adjusted according to the difference value and the acceleration change value, and the feedback control level information is used as the target control level information to control the vehicle. , can further ensure vehicle control accuracy.
  • the first speed value is equal to the second speed value
  • feedback adjustment is not performed on the control level information corresponding to the control instruction
  • the control vehicle is driven by the control level information corresponding to the control instruction
  • the second speed value feedback adjustment of the control level information is not performed, thereby further ensuring the stability of the vehicle operation and the comfort of riding.
  • the vehicle control method when the first speed value is smaller than the second speed value, acquires control level information lower than the preset level of the control level information and uses it as the intermediate control level information.
  • the control level information that is higher than the preset level of the control level information is acquired and used as the intermediate control level information, and the control corresponding to the control instruction is controlled according to the intermediate control level information.
  • the level information is feedback adjusted, and the feedback level information is obtained as the target control level information; and when the first speed value is equal to the second speed value, the control level information corresponding to the control instruction is not fed back. Adjustment can further improve the accuracy of vehicle control and reduce the difficulty of debugging and maintenance.
  • FIG. 5 is a schematic structural view of a vehicle control device according to an embodiment of the present invention.
  • the vehicle control device 50 includes an acquisition module 510, a determination module 520, a detection module 530, a comparison module 540, an adjustment module 550, and a control module 560. among them,
  • the obtaining module 510 is configured to acquire a control instruction output by the automatic control system of the vehicle.
  • the determining module 520 is configured to use a speed value corresponding to the control instruction as the first speed value, and determine control level information corresponding to the control instruction.
  • the detecting module 530 is configured to detect an actual speed value of the vehicle at the current time point and use the actual speed value as the second speed value.
  • the comparison module 540 is configured to compare the first speed value and the second speed value to obtain a comparison result.
  • the adjustment module 550 is configured to perform feedback adjustment on the control level information corresponding to the control instruction according to the comparison result, obtain feedback control level information, and use the feedback adjusted control level information as the target control level information.
  • the control module 560 is configured to control the vehicle according to the target control level information.
  • the vehicle control device 50 further includes:
  • the opening module 500 is configured to turn on a feedback adjustment function in the automatic control system of the vehicle before acquiring the control command outputted by the automatic control system of the vehicle in real time.
  • the adjustment module 550 includes:
  • the processing sub-module 5501 is configured to, when the comparison result is that the first speed value is smaller than the second speed value, use the control level information of the control level information corresponding to the control instruction to be lower than the preset level as the intermediate control level information.
  • the processing sub-module 5501 is further configured to use, as the intermediate control level information, the control level information that is higher than the control level information corresponding to the control instruction by the preset amplitude when the comparison result is that the first speed value is greater than the second speed value. .
  • the preset amplitude is 1 level.
  • the feedback adjustment sub-module 5502 is configured to perform feedback adjustment on the control level information corresponding to the control instruction according to the intermediate control level information when the comparison result is that the first speed value is less than or greater than the second speed value
  • the feedback level information is obtained by feedback and the adjusted control level information is fed back as the target control level information.
  • the feedback adjustment sub-module 5502 is further configured to use the control level information corresponding to the control instruction as the target control level information when the comparison result is that the first speed value is equal to the second speed value.
  • the feedback adjustment submodule 5502 includes:
  • the first obtaining unit 55021 is configured to acquire an acceleration change value of the intermediate level information of the intermediate control level information relative to the control level information corresponding to the control instruction.
  • the second obtaining unit 55022 is configured to acquire a difference between the first speed value and the second speed value.
  • the feedback adjusting unit 55023 is configured to perform feedback adjustment on the control level information corresponding to the control instruction according to the difference value and the acceleration change value, to obtain the control level information after the feedback adjustment.
  • the feedback adjustment unit 55023 is configured to:
  • the control level information output by the automatic control system based on the input is used as feedback control level information.
  • the feedback adjustment unit 55023 is further configured to:
  • control level information corresponding to the control instruction is superimposed according to the level increment, and the superposed control level information is used as the feedback adjusted control level information.
  • the processing unit 55024 is configured to use the feedback-adjusted control level information as the target control level information.
  • the vehicle control device obtains the control value outputted by the automatic control system of the vehicle in real time, uses the speed value corresponding to the control command as the first speed value, and determines the control level information corresponding to the control command, and detects Comparing the actual speed value of the vehicle at the current time point and using it as the second speed value, comparing the first speed value with the second speed value to obtain a comparison result, and the control level corresponding to the control instruction according to the comparison result
  • the information is feedback-adjusted, and the feedback-adjusted control level information is obtained and used as the target control level information, and the vehicle is controlled according to the target control level information.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Feedback Control In General (AREA)

Abstract

一种车辆控制方法和装置,该方法包括获取车辆的自动控制系统输出的控制指令;将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息;检测在当前时间点时车辆的实际速度值作为第二速度值;将第一速度值和第二速度值进行比对,得到比对结果;根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将反馈调节后的控制级位信息作为目标控制级位信息;根据目标控制级位信息对车辆进行控制。

Description

车辆控制方法和装置、以及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为2016112549199,申请日为2016年12月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及车辆自动驾驶技术领域,尤其涉及一种车辆控制方法和装置,以及一种计算机可读存储介质。
背景技术
现有的车辆自动驾驶技术中,通常基于PID(比例-微分-积分)控制或模糊逻辑控制等经典控制算法实现车辆的自动控制。现有的控制算法以当前位置、当前速度、前方目标点、车辆动力学参数等内容为输入,计算获得命令加速度,进而根据命令加速度,在车辆动力学参数中查找最接近的控制级位并输出,控制车辆调整至相应的控制级位。
对于空载车辆或者动力学性能稳定的车辆来说,现有的控制算法能够实现较好的控车效果。然而,当车辆在不同的载荷,或者车辆牵引、制动性能发生变化时,现有的控制算法容易导致控制超调、控制级位切换频繁等问题,进而降低控车和停车精确度,影响乘车舒适度。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种车辆控制方法,能够提高车辆控制精度和乘车舒适度,降低车辆调试和维护难度。
本发明的另一个目的在于提出一种车辆控制装置。
本发明的另一个目的在于提出一种计算机可读存储介质。
为达到上述目的,本发明第一方面实施例提出的车辆控制方法,包括:获取车辆的自动控制系统输出的控制指令;将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息;检测在当前时间点时车辆的实际速度值并将实际速度值作为第二速度值;将第一速度值和第二速度值进行比对,得到比对结果;根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级 位信息作为目标控制级位信息;根据目标控制级位信息对车辆进行控制。
本发明第一方面实施例提出的车辆控制方法,通过实时获取车辆的自动控制系统输出的控制指令,将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息,检测在当前时间点上车辆的实际速度值并将其作为第二速度值,将第一速度值和第二速度值进行比对,得到比对结果,根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将其作为目标控制级位信息,根据目标控制级位信息对车辆进行控制。由此,能够提高车辆控制精度和乘车舒适度,降低车辆调试和维护难度。
为达到上述目的,本发明第二方面实施例提出的车辆控制装置,包括:获取模块,用于获取车辆的自动控制系统输出的控制指令;确定模块,用于将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息;检测模块,用于检测在当前时间点时车辆的实际速度值并将实际速度值作为第二速度值;比对模块,用于将第一速度值和第二速度值进行比对,得到比对结果;调节模块,用于根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息;控制模块,用于根据目标控制级位信息对车辆进行控制。
本发明第二方面实施例提出的车辆控制装置,通过实时获取车辆的自动控制系统输出的控制指令,将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息,检测在当前时间点上车辆的实际速度值并将其作为第二速度值,将第一速度值和第二速度值进行比对,得到比对结果,根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将其作为目标控制级位信息,根据目标控制级位信息对车辆进行控制。由此,能够提高车辆控制精度和乘车舒适度,降低车辆调试和维护难度。
为达到上述目的,本发明第三方面实施例提出的计算机可读存储介质,包括计算机指令,当所述计算机指令被执行时,使得执行上述的车辆控制方法
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一实施例提出的车辆控制方法的流程示意图;
图2是本发明另一实施例提出的车辆控制方法的流程示意图;
图3是本发明又一实施例提出的车辆控制方法的流程示意图;
图4是本发明再一实施例提出的车辆控制方法的流程示意图;
图5是本发明一实施例提出的车辆控制装置的结构示意图;
图6是本发明另一实施例提出的车辆控制装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
现有的自动驾驶技术中,对车辆的控制一般为离散式控制。控制算法的输入一般包括速度、速度的一次差分、速度的二次差分,输出为命令加速度,再根据车辆动力学参数表将命令加速度转换为相应的控制级位以实现对车辆的控制。
然而,车辆载荷不匹配或车辆自身的加速度偏差较大时,很容易导致车辆动力学参数与实际不匹配的问题。比如,经过控制算法计算获得的命令加速度为-0.3m/s 2的减速度,并根据车辆的当前速度和载荷状况查询车辆动力学参数表获得的与该命令加速度相匹配的控制级位为-2。然而,当车辆的空气弹簧传感器异常时,导致车辆对载荷的测量错误,实际-2级位对应减速度为-0.4m/s 2,这将导致对车辆的控制超调,降低控车精确度。
另外,对于大型、大批量的车辆控制而言,难以保证线路上所有车辆动力学参数的一致性。由于车辆是复杂的包含机械、电子的大型被控对象,而且,随着机械磨损等外部环境的变化,单个车辆的动力学参数容易出现偏差,难以保证车辆的动力学参数的绝对值不发生偏移,进而导致车辆的载荷补偿效果出现偏差。由于现有的控制算法,为了达到更好的控车效果,需要对车辆定期保养,以保证动力学参数的一致性;或者为每列车准备一套特殊的控制算法参数并根据车辆性能的变化实时调整,调试和维护工作量巨大。
因此,现有的控车算法容易导致控制超调、控制级位切换频繁等问题,进而降低控车和停车精确度,影响乘车舒适度。而且,现有的控车算法调试和维护难度大。
为了解决现有控车算法在车辆动力学参数特性发生偏差时导致的车辆超调、切换频繁、稳态偏差,以及调试和维护难度大的问题,本发明提出了一种车辆控制方法,该方法能够提高车辆控制精度和乘车舒适度,降低车辆调试和维护难度。
图1是本发明一实施例提出的车辆控制方法的流程示意图。
在本发明的实施例中,该车辆可以例如为列车,对此不作限制。
如图1所示,该车辆控制方法,包括:
S11:获取车辆的自动控制系统输出的控制指令。
其中,该控制指令中包括:控制级位信息。
可以理解的是,根据车辆中自动控制系统的工作原理,控制级位信息可以例如为汽车的油门信息,或者也可以例如为一定大小的牵引力,或者也可以例如为某一范围内的控制级位,比如控制级位在[-7,+7]范围内。
在本发明的实施例中,在对车辆进行控制时,可以实时获取车辆的自动控制系统输出的控制指令,通过实时获取车辆的自动控制系统输出的控制指令,能够有效提升该方法反馈调节的精准度,避免反馈调节产生延迟,提供较高的反馈调节效果。
在一些实施例中,如图2所示,在实时获取车辆的自动控制系统输出的控制指令之前,还可以包括:
S10:开启车辆的自动控制系统中的反馈调节功能。
在本发明的实施例中,为了实现对车辆的自动控制,在获取车辆的自动控制系统输出的控制指令之前,还可以预先开启车辆的自动控制系统中的反馈调节功能。
进一步地,在本发明的实施例中,可以根据车辆驾驶用户的个性化需求,由该用户选择开启或者不开启车辆的自动控制系统中的反馈调节功能,能够有效提升方法实施的灵活性,提升用户使用体验度。
S12:将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息。
在本发明的实施例中,控制指令对应的速度值为该车辆的自动控制系统根据车辆驾驶环境所确定的,对该车辆的速度值进行调节的,较佳速度值,对此不作限制。
在本发明的实施例中,可以根据该第一速度值对自动控制系统确定的控制级位信息进行反馈调节,以提升自动控制系统控制的精准度。
通过直接将与控制指令对应的速度值作为第一速度值,可根据该第一速度值并根据查找车辆的性能表格所获得的车辆的油门/刹车深度信息来对自动控制系统确定的控制级位信息进行反馈调节,由于算法简单易实现,且可靠性高,因而可以节约车辆控制方法所耗的计算资源,提升该车辆控制方法的执行效率。
S13:检测在当前时间点时车辆的实际速度值并将实际速度值作为第二速度值。
在本发明的实施例中,还可以检测当前时间点时车辆的实际速度值,并将其作为第二速度值。
进一步地,也可以在车辆行驶的过程中,实时对当前时间点进行更新,并基于更新后的当前时间点实时获取车辆的实际速度值,实现在整个车辆行驶过程中全程自动反馈调节,进 一步保障了自动控制系统的控制精准度。
S14:将第一速度值和第二速度值进行比对,得到比对结果。
在本发明的实施例中,在获取了第一速度值和第二速度值之后,可以进一步将第一速度值和第二速度值进行比对,并获得比对结果。
其中,比对结果可以例如为第一速度值和第二速度值之间的差值,或者,比对结果也可以例如为第一速度值和第二速度值之间的比值,对此不作限制。
通过将第一速度值和第二速度值进行比对,可以根据比对结果实现反馈调节,且由于第二速度值为在当前时间点上车辆的实际速度值,因此,在反馈调节时同时考虑的车辆实际的驾驶情况且无需通过查找车辆的性能表格即可得到油门/刹车深度的变化信息,使得该比对结果具有较强的可参考性,进一步保障了方法的可靠性和适用性。
S15:根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将反馈调节后的控制级位信息作为目标控制级位信息。
需要说明的是,根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息作为目标控制级位信息的具体过程将在后续内容中给出,为避免赘余,此处不作详细说明。
S16:根据目标控制级位信息对车辆进行控制。
在本发明的实施例中,直接根据目标控制级位信息对车辆进行控制,能够提高车辆控制精度和乘车舒适度。
本发明实施例提出的车辆控制方法,通过实时获取车辆的自动控制系统输出的控制指令,将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息,检测在当前时间点上车辆的实际速度值并将其作为第二速度值,将第一速度值和第二速度值进行比对,得到比对结果,根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将其作为目标控制级位信息,根据目标控制级位信息对车辆进行控制。由此,能够提高车辆控制精度和乘车舒适度,降低车辆调试和维护难度。
图3是本发明又一实施例提出的车辆控制方法的流程示意图。
如图3所示,基于上述实施例,步骤S15包括:
S151:若比对结果为第一速度值小于第二速度值,则将比控制指令对应的控制级位信息低预设幅值的控制级位信息作为中间控制级位信息,并执行步骤S153。
具体的,预设幅值为1级或者也可以为其它,对此不作限制。
在本发明的实施例中,在得到第一速度值和第二速度值的比对结果之后,进一步对比对结果进行分析。若比对结果为第一速度值小于第二速度值,则获取比控制指令对应的控制级 位信息低预设幅值的控制级位信息并作为中间控制级位信息。
示例一:比对结果为第一速度值与第二速度值的差值。
假设第一速度值为96km/h,第二速度值为101km/h,控制指令对应的控制级位信息为+5级。将第一速度值与第二速度值进行比对,得到的比对结果为-5km/h,即第一速度值小于第二速度值,那么,获取的中间控制级位信息比控制指令对应的控制级位信息低1级,即中间控制级位信息为+4级。
示例二:比对结果为第一速度值与第二速度值的比值。
假设第一速度值为96km/h,第二速度值为101km/h,控制指令对应的控制级位信息为+5级。将第一速度值与第二速度值进行比对,得到的比对结果约为0.95,小于1,即第一速度值小于第二速度值,那么,获取的中间控制级位信息比控制指令对应的控制级位信息低1级,即中间控制级位信息为+4级。
通过根据第一速度值和第二速度值的比对结果将控制级位调整至中间控制级位信息,以根据中间控制级位信息实现对控制级位的反馈调节,进一步保障了自动控制系统的控制精准度。
S152:若比对结果为第一速度值大于第二速度值,则将比控制指令对应的控制级位信息高预设幅值的控制级位信息并作为中间控制级位信息,并执行步骤S153。
具体的,预设幅值为1级或者也可以为其它,对此不作限制。
在本发明的实施例中,若第一速度值与第二速度值的比对结果为第一速度值大于第二速度值,则获取比控制指令对应的控制级位信息高预设幅值的控制级位信息,并将其作为中间控制级位信息。
示例一:比对结果为第一速度值与第二速度值的差值。
假设第一速度值为96km/h,第二速度值为93km/h,控制指令对应的控制级位信息为+5级。将第一速度值与第二速度值进行比对,得到的比对结果为+3km/h,即第一速度值大于第二速度值,那么,获取的中间控制级位信息比控制指令对应的控制级位信息高1级,即中间控制级位信息为+6级。
示例二:比对结果为第一速度值与第二速度值的比值。
假设第一速度值为96km/h,第二速度值为93km/h,控制指令对应的控制级位信息为+5级。将第一速度值与第二速度值进行比对,得到的比对结果约为1.03,大于1,即第一速度值大于第二速度值,那么,获取的中间控制级位信息比控制指令对应的控制级位信息高1级,即中间控制级位信息为+6级。
通过根据第一速度值和第二速度值的比对结果将控制级位调整至中间控制级位信息,以 根据中间控制级位信息实现对控制级位的反馈调节,进一步保障了自动控制系统的控制精准度。
S153:根据中间控制级位信息对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将反馈调节后的控制级位信息作为目标控制级位信息。
在本发明的实施例中,在获得了中间控制级位信息之后,可以直接将中间控制级位信息作为目标控制级位信息,或者,也可以参见下述图4实施例中的步骤,根据中间控制级位信息对控制指令对应的控制级位信息进行反馈调节,进而得到反馈调节后的控制级位信息并作为目标控制级位信息,通过根据中间控制级位信息对控制级位信息进行反馈调节,能够使反馈调节更精确,进一步保障反馈调节的精准度。
在一些实施例中,如图4所示,步骤S153还可以包括:
S1531:获取中间控制级位信息相对于控制指令对应的控制级位信息的加速度变化值。
在本发明的实施例中,在获取的中间控制级位信息之后,可以根据中间控制级位获取中间控制级位信息相对于控制指令对应的控制级位信息的加速度变化值。
其中,加速度变化值可以是中间控制级位信息对应的加速度与控制指令对应的控制级位信息对应的加速度之间的差值,或者,比例值,对此不作限制。
具体的,可以通过查找车辆动力学参数表获取加速度变化值。
举例而言,假设控制指令对应的控制级位信息为+5级,中间控制级位信息为+6级。通过查询车辆动力学参数表可知,+5级对应的加速度值为+0.6m/s 2,+6级对应的加速度值为+0.7m/s 2,因此,中间控制级位信息相对于控制指令对应的控制级位信息之间的加速度变化值为+0.1m/s 2
由于控制级位信息之间的加速度差值不容易发生偏移,通过获取中间控制级位信息相对于控制指令对应的控制级位信息的加速度变化值,由动力学参数的相对值而非绝对值实现对自动控制系统的反馈调节,能够避免在自动控制过程中出现较大的偏差,降低车辆个体差异带来的计算误差,进一步保障反馈调节的精准度。
S1532:获取第一速度值和第二速度值之间的差值。
在本发明的实施例中,在获取了第一速度值和第二速度值之后,还可以进一步根据第一速度值和第二速度值获取两者之间的差值,以用于自动控制系统的参数计算,避免在自动控制过程中出现较大的偏差,进而保障反馈调节的精准度。
S1533:根据差值和加速度变化值对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息。
在本发明的实施例中,在获取了第一速度值、第二速度值之间的差值,以及加速度变化 值之后,进一步根据差值和加速度变化值对控制指令对应的控制级位信息进行反馈调节。
一些实施例中,根据差值和加速度变化值对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息,包括:将第一速度值与第二速度值的差值和加速度变化值之间的比值作为车辆的自动控制系统的PID控制器或模糊逻辑控制器的输入;将自动控制系统基于输入而输出的控制级位信息作为反馈调节后的控制级位信息。
其中,第一速度值与第二速度值之间的差值和加速度变化值的比值称为回归时间,记为t,表示如下:
Figure PCTCN2017119538-appb-000001
通过将第一速度值和第二速度值之间的差值与加速度变化值的比值,作为车辆的自动控制系统的PID控制器或模糊逻辑控制器的输入参数输入至自动控制系统以对控制级位信息进行调节,由于相邻控制级位间的加速度变化值能够在车辆行驶过程中保证一致性,因而,能够大大降低车辆性能偏差以及个体差异对自动控制系统造成的不利影响,降低调试和维护难度,进一步保障了方法的适用性。
一些实施例中,根据差值和加速度变化值对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息,还包括:根据差值和加速度变化值之间的比值确定控制指令对应的控制级位信息的级位增量;根据级位增量对控制指令对应的控制级位信息进行叠加,并将叠加后的控制级位信息作为反馈调节后的控制级位信息。
通过将第一速度值与第二速度值的差值和速度变化值的比值输入至车辆的自动控制系统,获得比值对应的控制级位信息的级位增量,并将级位增量与控制指令对应的控制级位信息叠加后获得的结果作为反馈调节后的控制级位信息,通过考虑控制指令对应的控制级位信息和级位增量,能够进一步保障车辆控制精度和乘车舒适度。
S1534:将反馈调节后的控制级位信息作为目标控制级位信息。
在本发明的实施例中,根据差值和加速度变化值对控制指令对应的控制级位信息进行反馈调节,并将反馈调节后的控制级位信息作为目标控制级位信息,以对车辆进行控制,能够进一步保障车辆控制精度。
S154:若比对结果为第一速度值等于第二速度值,则将控制指令对应的控制级位信息作为目标控制级位信息,即不对控制指令对应的控制级位信息进行反馈调节。
在本发明的实施例中,如果第一速度值等于第二速度值,则不对控制指令对应的控制级位信息进行反馈调节,控制车辆以控制指令对应的控制级位信息进行行驶,通过在第一速度值等于第二速度值时,不对控制级位信息进行反馈调节,进一步保障了车辆运行的稳定性和 乘车的舒适度。
本发明实施例提出的车辆控制方法,通过在第一速度值小于第二速度值时,获取比控制级位信息低预设幅值的控制级位信息并将其作为中间控制级位信息,当第一速度值大于第二速度值时,获取比控制级位信息高预设幅值的控制级位信息并将其作为中间控制级位信息,并根据中间控制级位信息对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将其作为目标控制级位信息;而当第一速度值等于第二速度值时,不对控制指令对应的控制级位信息进行反馈调节,能够进一步提高车辆控制的精度,降低调试和维护难度。
为了实现上述实施例,本发明还提出了一种车辆控制装置,图5是本发明一实施例提出的车辆控制装置的结构示意图。
如图5所示,该车辆控制装置50包括:获取模块510、确定模块520、检测模块530、比对模块540、调节模块550,以及控制模块560。其中,
获取模块510,用于获取车辆的自动控制系统输出的控制指令。
确定模块520,用于将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息。
检测模块530,用于检测在当前时间点时车辆的实际速度值并将实际速度值作为第二速度值。
比对模块540,用于将第一速度值和第二速度值进行比对,得到比对结果。
调节模块550,用于根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将反馈调节后的控制级位信息作为目标控制级位信息。
控制模块560,用于根据目标控制级位信息对车辆进行控制。
一些实施例中,如图6所示,该车辆控制装置50还包括:
开启模块500,用于在实时获取车辆的自动控制系统输出的控制指令之前,开启车辆的自动控制系统中的反馈调节功能。
具体的,调节模块550,包括:
处理子模块5501,用于在比对结果为第一速度值小于第二速度值时,将比控制指令对应的控制级位信息低预设幅值的控制级位信息作为中间控制级位信息。
处理子模块5501,还用于在比对结果为第一速度值大于第二速度值时,将比控制指令对应的控制级位信息高预设幅值的控制级位信息作为中间控制级位信息。
其中,预设幅值为1级。
反馈调节子模块5502,用于在所述比对结果为所述第一速度值小于或大于所述第二速度 值时,根据中间控制级位信息对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并反馈调节后的控制级位信息作为目标控制级位信息。
反馈调节子模块5502,还用于在比对结果为第一速度值等于第二速度值时,将控制指令对应的控制级位信息作为目标控制级位信息。
具体的,反馈调节子模块5502,包括:
第一获取单元55021,用于获取中间控制级位信息相对于控制指令对应的控制级位信息的加速度变化值。
第二获取单元55022,用于获取第一速度值和第二速度值之间的差值。
反馈调节单元55023,用于根据差值和加速度变化值对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息。
具体的,反馈调节单元55023用于:
将差值和加速度变化值之间的比值作为车辆的自动控制系统的PID控制器或模糊逻辑控制器的输入;
将自动控制系统基于输入而输出的控制级位信息作为反馈调节后的控制级位信息。
具体的,反馈调节单元55023还用于:
根据差值和加速度变化值之间的比值确定控制指令对应的控制级位信息的级位增量;
根据级位增量对控制指令对应的控制级位信息进行叠加,并将叠加后的控制级位信息作为反馈调节后的控制级位信息。
处理单元55024,用于将反馈调节后的控制级位信息作为目标控制级位信息。
需要说明的是,前述图1-图4实施例中对车辆控制方法实施例的解释说明也适用于本实施例的车辆控制装置,其实现原理类似,此处不再赘述。
本发明实施例提出的车辆控制装置,通过实时获取车辆的自动控制系统输出的控制指令,将与控制指令对应的速度值作为第一速度值,并确定与控制指令对应的控制级位信息,检测在当前时间点上车辆的实际速度值并将其作为第二速度值,将第一速度值和第二速度值进行比对,得到比对结果,根据比对结果对控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将其作为目标控制级位信息,根据目标控制级位信息对车辆进行控制。由此,能够提高车辆控制精度和乘车舒适度,降低车辆调试和维护难度。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或 更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种车辆控制方法,其特征在于,包括以下步骤:
    获取车辆的自动控制系统输出的控制指令;
    将与所述控制指令对应的速度值作为第一速度值,并确定与所述控制指令对应的控制级位信息;
    检测在当前时间点时所述车辆的实际速度值并将所述实际速度值作为第二速度值;
    将所述第一速度值和所述第二速度值进行比对,得到比对结果;
    根据所述比对结果对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息;
    根据所述目标控制级位信息对所述车辆进行控制。
  2. 如权利要求1所述的车辆控制方法,其特征在于,所述根据所述比对结果对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息,包括:
    若所述比对结果为所述第一速度值小于所述第二速度值,则将比所述控制指令对应的控制级位信息低预设幅值的控制级位信息作为中间控制级位信息,并根据所述中间控制级位信息对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息;
    若所述比对结果为所述第一速度值大于所述第二速度值,则将比所述控制指令对应的控制级位信息高所述预设幅值的控制级位信息作为中间控制级位信息,并根据所述中间控制级位信息对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息;
    若所述比对结果为所述第一速度值等于所述第二速度值,则将所述控制指令对应的控制级位信息作为目标控制级位信息。
  3. 如权利要求2所述的车辆控制方法,其特征在于,所述预设幅值为1级。
  4. 如权利要求2所述的车辆控制方法,其特征在于,所述根据所述中间控制级位信息对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息作为目标控制级位信息,包括:
    获取所述中间控制级位信息相对于所述控制指令对应的控制级位信息的加速度变化值;
    获取所述第一速度值和所述第二速度值之间的差值;
    根据所述差值和所述加速度变化值对所述控制指令对应的控制级位信息进行反馈调节, 得到反馈调节后的控制级位信息;
    将所述反馈调节后的控制级位信息作为所述目标控制级位信息。
  5. 如权利要求4所述的车辆控制方法,其特征在于,所述根据所述差值和所述加速度变化值对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息,包括:
    将所述差值和所述加速度变化值之间的比值作为所述车辆的自动控制系统的比例-微分-积分控制器或模糊逻辑控制器的输入;
    将所述自动控制系统基于所述输入而输出的控制级位信息作为所述反馈调节后的控制级位信息。
  6. 如权利要求4所述的车辆控制方法,其特征在于,所述根据所述差值和所述加速度变化值对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息,包括:
    根据所述差值和所述加速度变化值之间的比值确定所述控制指令对应的控制级位信息的级位增量;
    根据所述级位增量对所述控制指令对应的控制级位信息进行叠加,并将叠加后的控制级位信息作为所述反馈调节后的控制级位信息。
  7. 如权利要求1所述的车辆控制方法,其特征在于,在所述实时获取所述车辆的自动控制系统输出的控制指令之前,还包括:
    开启所述车辆的自动控制系统中的反馈调节功能。
  8. 一种车辆控制装置,其特征在于,包括:
    获取模块,用于获取车辆的自动控制系统输出的控制指令;
    确定模块,用于将与所述控制指令对应的速度值作为第一速度值,并确定与所述控制指令对应的控制级位信息;
    检测模块,用于检测在当前时间点时所述车辆的实际速度值并将所述实际速度值作为第二速度值;
    比对模块,用于将所述第一速度值和所述第二速度值进行比对,得到比对结果;
    调节模块,用于根据所述比对结果对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息;
    控制模块,用于根据所述目标控制级位信息对所述车辆进行控制。
  9. 如权利要求8所述的车辆控制装置,其特征在于,所述调节模块,包括:
    处理子模块,用于在所述比对结果为所述第一速度值小于所述第二速度值时,将比所述控制指令对应的控制级位信息低预设幅值的控制级位信息作为中间控制级位信息;
    所述处理子模块,还用于在所述比对结果为所述第一速度值大于所述第二速度值时,将比所述控制指令对应的控制级位信息高所述预设幅值的控制级位信息作为中间控制级位信息;
    反馈调节子模块,用于在所述比对结果为所述第一速度值小于或大于所述第二速度值时,根据所述中间控制级位信息对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息并将所述反馈调节后的控制级位信息作为目标控制级位信息;
    所述反馈调节子模块,还用于在所述比对结果为所述第一速度值等于所述第二速度值时,将所述控制指令对应的控制级位信息作为目标控制级位信息。
  10. 如权利要求9所述的车辆控制装置,其特征在于,所述预设幅值为1级。
  11. 如权利要求9所述的车辆控制装置,其特征在于,所述反馈调节子模块,包括:
    第一获取单元,用于获取所述中间控制级位信息相对于所述控制指令对应的控制级位信息的加速度变化值;
    第二获取单元,用于获取所述第一速度值和所述第二速度值之间的差值;
    反馈调节单元,用于根据所述差值和所述加速度变化值对所述控制指令对应的控制级位信息进行反馈调节,得到反馈调节后的控制级位信息;
    处理单元,用于将所述反馈调节后的控制级位信息作为所述目标控制级位信息。
  12. 如权利要求11所述的车辆控制装置,其特征在于,所述反馈调节单元,用于:
    将所述差值和所述加速度变化值之间的比值作为所述车辆的自动控制系统的比例-微分-积分控制器或模糊逻辑控制器的输入;
    将所述自动控制系统基于所述输入而输出的控制级位信息作为所述反馈调节后的控制级位信息。
  13. 如权利要求11所述的车辆控制装置,其特征在于,所述反馈调节单元,还用于:
    根据所述差值和所述加速度变化值之间的比值确定所述控制指令对应的控制级位信息的级位增量;
    根据所述级位增量对所述控制指令对应的控制级位信息进行叠加,并将叠加后的控制级位信息作为所述反馈调节后的控制级位信息。
  14. 如权利要求8所述的车辆控制装置,其特征在于,还包括:
    开启模块,用于在所述实时获取所述车辆的自动控制系统输出的控制指令之前,开启所述车辆的自动控制系统中的反馈调节功能。
  15. 一种计算机可读存储介质,包括计算机指令,当所述计算机指令被执行时,使得执行根据权利要求1-7中任一项所述的车辆控制方法。
PCT/CN2017/119538 2016-12-30 2017-12-28 车辆控制方法和装置、以及计算机可读存储介质 WO2018121692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611254919.9 2016-12-30
CN201611254919.9A CN107878448B (zh) 2016-12-30 2016-12-30 车辆控制方法和装置

Publications (1)

Publication Number Publication Date
WO2018121692A1 true WO2018121692A1 (zh) 2018-07-05

Family

ID=61769276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119538 WO2018121692A1 (zh) 2016-12-30 2017-12-28 车辆控制方法和装置、以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN107878448B (zh)
WO (1) WO2018121692A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108860146B (zh) * 2018-06-11 2020-03-17 浙江国自机器人技术有限公司 一种双驱车辆的速度控制方法、系统及相关装置
CN109747651B (zh) * 2018-12-27 2021-08-06 东软睿驰汽车技术(沈阳)有限公司 一种车辆控制方法、装置及系统
CN112744263B (zh) * 2019-10-31 2022-10-18 比亚迪股份有限公司 发车级位自动调整方法和车载控制器
CN111554103B (zh) * 2020-05-15 2021-10-29 河南科技大学 基于模糊控制的车辆速度控制方法、装置及车速控制系统
CN114056386B (zh) * 2020-07-30 2023-08-08 比亚迪股份有限公司 车速控制方法及装置,存储介质及车辆
CN114104038A (zh) * 2020-08-28 2022-03-01 比亚迪股份有限公司 列车控制方法、计算机设备及存储介质
CN115214726A (zh) * 2021-04-19 2022-10-21 比亚迪股份有限公司 车辆停车控制方法及装置
CN113085963B (zh) * 2021-04-22 2021-09-14 西南交通大学 列车控制级位的动态调控方法及其动态调控装置
CN115042836B (zh) * 2022-04-28 2023-09-08 中车青岛四方车辆研究所有限公司 基于牵引制动融合的冲动限制控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240547A (ja) * 2005-03-04 2006-09-14 Toshiba Corp 電車走行シミュレータ
CN101941450A (zh) * 2010-08-26 2011-01-12 北京交通大学 列车工况转换控制方法及系统
CN104590333A (zh) * 2014-12-11 2015-05-06 中国北车集团大连机车研究所有限公司 一种铁路列车智能操纵优化控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702564B2 (en) * 2010-12-09 2014-04-22 GM Global Technology Operations LLC Electro-hydraulic control system and method for a dual clutch transmission
JP2014159766A (ja) * 2013-02-19 2014-09-04 Denso Corp 移動体用制御システム
CN104470139B (zh) * 2014-12-11 2017-10-31 大连海事大学 一种隧道照明闭环反馈控制方法
CN105620448B (zh) * 2016-03-16 2019-08-09 株洲南车时代电气股份有限公司 一种轨道交通电驱液压制动控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240547A (ja) * 2005-03-04 2006-09-14 Toshiba Corp 電車走行シミュレータ
CN101941450A (zh) * 2010-08-26 2011-01-12 北京交通大学 列车工况转换控制方法及系统
CN104590333A (zh) * 2014-12-11 2015-05-06 中国北车集团大连机车研究所有限公司 一种铁路列车智能操纵优化控制系统

Also Published As

Publication number Publication date
CN107878448A (zh) 2018-04-06
CN107878448B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2018121692A1 (zh) 车辆控制方法和装置、以及计算机可读存储介质
EP3718846A1 (en) Cruise control method and system for electric vehicle, vehicle, controller, and storage medium
CN109229098A (zh) 一种用于控制车辆自适应巡航车距的方法及车用跟随行驶控制装置
KR101371464B1 (ko) 차속 자동 제어 시스템 및 방법
US20150081084A1 (en) Numerical control device
CN109747651B (zh) 一种车辆控制方法、装置及系统
CN107850887A (zh) S型曲线规划方法、装置及数控机床
US20160332634A1 (en) Apparatus and method of estimating road slope using gravitational acceleration sensor
CN110901639B (zh) 车辆的减速度控制方法和装置
CN109747652B (zh) 一种车辆控制方法、装置及系统
CN104114431A (zh) 用于驱动马达的转速调节的调节系统
CN104139778A (zh) 一种混合动力汽车工作模式控制方法
CN109398472A (zh) 转向角调节器
CN107676186B (zh) 一种发动机扭矩控制方法
KR20130021985A (ko) 차량의 곡률 반경 추정 방법 및 그 장치
JP2008278645A (ja) 自動列車運転装置および自動列車運転のシミュレーション装置
JP2022543799A (ja) 検査台及び検査台で検査動作を実施する方法
KR20130042140A (ko) 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치
Lee et al. A unified framework of adaptive cruise control for speed limit follower and curve speed control function
US20200047762A1 (en) Braking force control device
CN109709794A (zh) 一种适用于运动控制器的控制方法
JP2013053910A (ja) 動力伝達系の試験装置
US11733702B2 (en) Unmanned following vehicle
US11866045B2 (en) Automatic test object driving device, automatic test object driving method, and test object testing system
CN110886732B (zh) 一种基于plc的多级多缸液压同步控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887309

Country of ref document: EP

Kind code of ref document: A1