WO2018121347A1 - 多连接传输能力上报方法、多连接传输方式配置方法、避免重传数据的方法、ue和基站 - Google Patents

多连接传输能力上报方法、多连接传输方式配置方法、避免重传数据的方法、ue和基站 Download PDF

Info

Publication number
WO2018121347A1
WO2018121347A1 PCT/CN2017/117186 CN2017117186W WO2018121347A1 WO 2018121347 A1 WO2018121347 A1 WO 2018121347A1 CN 2017117186 W CN2017117186 W CN 2017117186W WO 2018121347 A1 WO2018121347 A1 WO 2018121347A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
message
pdcp
bearer
rrc connection
Prior art date
Application number
PCT/CN2017/117186
Other languages
English (en)
French (fr)
Inventor
肖芳英
刘仁茂
Original Assignee
夏普株式会社
肖芳英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 肖芳英 filed Critical 夏普株式会社
Priority to US16/475,069 priority Critical patent/US11706611B2/en
Priority to AU2017389025A priority patent/AU2017389025B2/en
Priority to EP17887435.0A priority patent/EP3565367A4/en
Publication of WO2018121347A1 publication Critical patent/WO2018121347A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more particularly, to a method of reporting a multi-connection transmission capability, a method of configuring a multi-connection transmission mode, a method of avoiding transmitting data that has been successfully received, and a corresponding multi-connection transmission support.
  • User equipment and base stations are used to report a multi-connection transmission capability.
  • NTT DOCOMO proposed a new research project on 5G technology standards (see Non-patent literature: RP-160671) :New SID Proposal: Study on New Radio Access Technology), and approved.
  • the goal of the research project is to develop a new wireless (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • NR mainly has three application scenarios: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra reliable and low latency communications
  • the problems involved in multi-connection transmission include how the User Equipment (UE) reports its supported multi-connection transmission capability, and how the base station (eg, gNB or 5G-RAN, or eNB or E-UTRAN) is the UE.
  • Configuring a multi-connection transmission mode how a sender (which may be a UE or a base station) avoids transmitting data that has been successfully received by a receiver (which may be a base station or a UE) (ie, repeatedly transmitting data) becomes a problem to be solved.
  • the present disclosure addresses the above-discussed issues involved in multi-connection transmission, including how a UE reports its supported multi-connection transmission capabilities, how a base station (eg, gNB or 5G-RAN, or eNB or E-UTRAN) configures multi-connection transmission for a UE.
  • a base station eg, gNB or 5G-RAN, or eNB or E-UTRAN
  • the sender which may be the UE or the base station
  • the recipient which may be a base station or a UE.
  • a method performed at a user equipment UE supporting multi-connection transmission comprising: receiving a UE capability inquiry message from a base station, the UE capability inquiry message being used to request a UE to send a UE to access a radio access capability of the network; in response to the received UE capability query message, generating a UE capability information message, where the UE capability information is used to indicate a radio access capability of the UE to the access network, and includes a bearer type supported by the UE And/or a transmission mode; and transmitting the UE capability information message to the base station.
  • a method for performing, at a base station supporting a multi-connection transmission includes: transmitting a UE capability query message to a user equipment UE, where the UE capability query message is used to request a UE to transmit a UE connection a radio access capability of the network; receiving, by the UE, a UE capability information message, where the UE capability information is used to indicate a radio access capability of the UE to the access network, and includes a bearer type and/or a transmission mode supported by the UE; The UE capability information message is configured for the UE to configure a bearer type and/or a transmission mode for multi-connection transmission.
  • a user equipment UE including:
  • a transceiver configured to receive a UE capability query message from the base station, where the UE capability query message is used to request the UE to send the UE to the access network for wireless access;
  • a generating unit configured to generate a UE capability information message, where the UE capability information is used to indicate a radio access capability of the UE to the access network, and include a bearer type supported by the UE, and / or transmission method,
  • the transceiver is further configured to send the UE capability information message to a base station.
  • a base station including:
  • a transceiver configured to send a UE capability query message to the user equipment UE, where the UE capability query message is used to request the UE to send the UE to the access network, and receive the UE capability information message from the UE, where the UE capability information is Used to indicate the radio access capability of the UE to the access network, and includes the bearer type and/or transmission mode supported by the UE;
  • a configuration unit configured to configure, according to the UE capability information message, a bearer type and/or a transmission mode for the multi-connection transmission for the UE.
  • the bearer type supported by the UE includes at least one of the following: a split bearer, a secondary cell group SCG bearer; and a transmission mode supported by the UE includes at least one of the following: data repetition, link selection.
  • the bearer type and/or transmission mode supported by the UE is indicated by at least one cell, wherein
  • Each cell indicates whether the UE supports one of the following combinations of bearer type and transmission mode: split bearer data repetition, split bearer link selection, SCG bearer data repetition, SCG bearer link selection; or
  • Each cell corresponds to a bearer type for indicating whether the corresponding bearer type supports data repetition or link selection;
  • Each cell corresponds to a transmission mode, and is used to indicate whether the corresponding transmission mode supports a separate bearer or an SCG bearer; or
  • Two cells correspond to one bearer type, respectively for indicating whether the corresponding bearer type supports data repetition or link selection;
  • the two cells correspond to one transmission mode, which are respectively used to indicate whether the corresponding transmission mode supports a separate bearer or an SCG bearer.
  • a method performed at a user equipment UE supporting multi-connection transmission comprising: receiving a radio resource control RRC connection reconfiguration message from a base station, the RRC connection reconfiguration message being used for modification RRC connection, and including the bearer type and/or transmission mode configured by the base station for the UE; performing RRC connection reconfiguration according to the received RRC connection reconfiguration message, including configuring the bearer type and/or transmission mode used by the UE for multi-connection transmission And sending an RRC Connection Reconfiguration Complete message to the base station, the RRC Connection Reconfiguration Complete message being used to confirm that the RRC connection reconfiguration is successful.
  • a method performed at a base station supporting multi-connection transmission comprising: configuring, for a user equipment UE, a bearer type and/or a transmission mode for multi-connection transmission; transmitting a radio resource to the UE Controlling an RRC connection reconfiguration message, the RRC connection reconfiguration message is used to modify an RRC connection, and includes the configured bearer type and/or transmission mode; receiving an RRC connection reconfiguration complete message from the UE, the RRC connection reconfiguration is completed The message is used to confirm that the RRC connection reconfiguration is successful.
  • a user equipment UE including:
  • a transceiver configured to receive, by the base station, a radio resource control RRC connection reconfiguration message, where the RRC connection reconfiguration message is used to modify an RRC connection, and includes a bearer type and/or a transmission mode configured by the base station for the UE;
  • a configuration unit configured to perform RRC connection reconfiguration according to the received RRC connection reconfiguration message, including configuring a bearer type and/or a transmission mode used by the UE for the multi-connection transmission;
  • the transceiver is further configured to send an RRC connection reconfiguration complete message to the base station, where the RRC connection reconfiguration complete message is used to confirm that the RRC connection reconfiguration is successful.
  • a base station including:
  • a configuration unit configured to configure, for the user equipment UE, a bearer type and/or a transmission mode for the multi-connection transmission
  • a transceiver configured to send a radio resource control RRC connection reconfiguration message to the UE, where the RRC connection reconfiguration message is used to modify an RRC connection, and includes the configured bearer type and/or transmission mode; and receive an RRC connection weight from the UE And the RRC connection reconfiguration complete message is used to confirm that the RRC connection reconfiguration is successful.
  • the RRC connection reconfiguration message includes at least one of a combination of a bearer type and a transmission mode: split bearer data repetition, split bearer link selection, SCG bearer data repetition, SCG bearer link selection ;or
  • the RRC Connection Reconfiguration message includes at least one bearer type and a cell indicating whether the corresponding bearer type supports data repetition or link selection; or
  • the RRC connection reconfiguration message includes at least one transmission mode and a cell for indicating whether the corresponding transmission mode supports a separate bearer or an SCG bearer; or
  • the RRC Connection Reconfiguration message includes at least one bearer type and a cell indicating whether the configured at least one bearer type supports data repetition or link selection; or
  • the RRC connection reconfiguration message includes at least one transmission mode and a cell for indicating whether the configured at least one transmission mode supports a separate bearer or an SCG bearer.
  • a method for user equipment UE to perform in a data-repeated multi-connection transmission mode includes: encapsulating at least one PDCP service data unit SDU into PDCP protocol data by a packet data convergence protocol PDCP entity Transmitting, by the unit PDU, at least one lower layer entity associated with the PDCP entity; and deleting the successfully transmitted PDCP SDU and its corresponding when the PDCP entity receives an acknowledgement indication that the PDCP SDU is successfully sent from the at least one lower layer entity PDCP PDU.
  • the method further includes: indicating, by the PDCP entity, the at least one other lower layer if the corresponding PDCP PDU has been sent to at least one other lower layer entity of the at least one lower layer entity The entity deletes the corresponding PDCP PDU.
  • a user equipment UE including:
  • At least one lower entity associated with the PDCP entity At least one lower entity associated with the PDCP entity
  • the PDCP entity is configured to: encapsulate at least one PDCP service data unit SDU into a PDCP protocol data unit PDU and send the acknowledgement indication to the at least one lower layer entity; and when receiving, from the at least one lower layer entity, a PDCP SDU transmission success indication Deleting the successfully transmitted PDCP SDU and its corresponding PDCP PDU.
  • the PDCP entity is further configured to: if the corresponding PDCP PDU has been sent to at least one other lower layer entity of the at least one lower layer entity, indicating that the at least one other lower layer entity deletes The corresponding PDCP PDU is described.
  • a method for a base station to perform in a data-repeated multi-connection transmission mode includes: receiving a packet data convergence protocol PDCP status report from a user equipment UE, the PDCP status report being used for Determining, by the base station, a PDCP protocol data unit PDU that the UE has successfully received; generating, according to the received PDCP status report, a downlink data transmission status indication message, where the downlink data transmission status indication message is used to indicate to the at least one other base station that the UE has successfully received a PDCP PDU; and transmitting the downlink data transmission status indication message to at least one other base station.
  • a method for a base station to perform in a data repeating multi-connection transmission mode includes: transmitting a packet data convergence protocol PDCP protocol data unit PDU to at least one other base station; receiving from at least one other base station a downlink data transmission status message, where the downlink data transmission status message is used to indicate a maximum sequence number SN of a PDCP PDU received from the base station and successfully transmitted to the UE in sequence, and a desired buffer of a corresponding radio access bearer Zone size, minimum expected buffer size for the UE, and Xn-U or Xx-U or X2-U packets that at least one other base station considers to be lost and not included in the downlink data transmission status frame sent by the base station And generating, according to the received downlink data transmission status message, a downlink data transmission status indication message, where the downlink data transmission status indication message is used to indicate to the at least one other base station that the UE has successfully received the PDCP PDU; and send to the at least one
  • a base station including:
  • a transceiver configured to receive, from a user equipment UE, a packet data convergence protocol PDCP status report, where the PDCP status report is used to indicate to the base station a PDCP protocol data unit PDU that the UE has successfully received;
  • a generating unit configured to generate, according to the received PDCP status report, a downlink data transmission status indication message, where the downlink data transmission status indication message is used to indicate to the at least one other base station, the PDCP PDU that the UE has successfully received,
  • the transceiver is further configured to send the downlink data transmission status indication message to at least one other base station.
  • a base station including:
  • a transceiver configured to send a packet data convergence protocol PDCP protocol data unit PDU to at least one other base station; receive a downlink data transmission status message from at least one other base station, where the downlink data transmission status message is used to indicate that the base station receives the The maximum sequence number of the PDCP PDU that has been successfully sent to the UE in succession, the expected buffer size of the corresponding radio access bearer, the minimum expected buffer size for the UE, and at least one other base station considered to be lost and not included Xn-U or Xx-U or X2-U data packets in a downlink data transmission status frame transmitted by the base station;
  • a generating unit configured to generate, according to the received downlink data transmission status message, a downlink data transmission status indication message, where the downlink data transmission status indication message is used to indicate to the at least one other base station, the PDCP PDU that the UE has successfully received,
  • the transceiver is further configured to send the downlink data transmission status indication message to at least one other base station.
  • the downlink data transmission status indication message includes content that is a field included in the PDCP status report.
  • the downlink data transmission status indication message includes:
  • the largest PDCP PDU SN that all base stations have successfully transmitted all PDCP PDUs SN that were not successfully transmitted and whose SN is smaller than the largest PDCP PDU SN that all base stations have successfully transmitted.
  • the base station can be configured to configure an appropriate bearer type according to the capability of the UE, and can also avoid repeated transmission of uplink or downlink data.
  • FIG. 1 is a schematic diagram showing repeated transmission of downlink separated bearer data between a base station and a UE;
  • FIG. 2 is a schematic diagram showing repeated transmission of downlink SCG bearer data on a base station side
  • FIG. 3 is a schematic diagram showing downlink downlink bearer link selection transmission between a base station and a UE;
  • FIG. 4 is a schematic diagram showing downlink CNG bearer link selection transmission on a base station side
  • FIG. 5 shows a schematic signal flow diagram of transmitting UE multi-connection transmission capability between a base station and a UE according to a first exemplary embodiment of the present invention
  • FIG. 6 shows a schematic structural block diagram of a UE according to a first exemplary embodiment of the present invention
  • FIG. 7 is a flowchart of a method for reporting multi-connection transmission capability of a UE performed on a UE side according to a first exemplary embodiment of the present invention
  • FIG. 8 is a block diagram showing a schematic configuration of a base station according to first and second exemplary embodiments of the present invention.
  • FIG. 9 is a flowchart showing a method of receiving a multi-connection transmission capability of a UE performed on a base station side according to a first exemplary embodiment of the present invention.
  • FIG. 10 is a schematic signal flow diagram showing multi-connection transmission configuration information of a UE transmitted between a base station and a UE according to a second exemplary embodiment of the present invention.
  • FIG. 11 is a block diagram showing a schematic configuration of a UE according to a second exemplary embodiment of the present invention.
  • FIG. 12 is a flowchart showing a method of transmitting multi-connection transmission configuration information of a UE performed on a UE side according to a second exemplary embodiment of the present invention
  • FIG. 13 is a flowchart showing a method of configuring a multi-connection transmission mode of a UE performed on a base station side according to a second exemplary embodiment of the present invention
  • FIG. 14 shows a schematic signal flow diagram for transmitting a Packet Data Convergence Protocol (PDCP) status report between a base station and a UE and transmitting a downlink data transmission status indication between base stations in accordance with a fourth exemplary embodiment of the present invention
  • PDCP Packet Data Convergence Protocol
  • FIG. 15 is a block diagram showing a schematic configuration of a base station according to fourth and fifth exemplary embodiments of the present invention.
  • 16 is a flowchart showing a method of avoiding transmission of data that has been successfully received, performed on a base station side, according to a fourth exemplary embodiment of the present invention.
  • 17 is a schematic signal flow diagram showing transmission of a downlink data transmission state and a downlink data transmission state indication between base stations according to a fifth embodiment of the present invention.
  • FIG. 18 is a flowchart showing a method of avoiding transmission of data that has been successfully received, performed between base stations, according to a fifth exemplary embodiment of the present invention.
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol.
  • RLC Radio Link Control, radio link control.
  • PDU Protocol data unit.
  • SDU Service data unit.
  • data received from the upper layer or sent to the upper layer is referred to as an SDU
  • data addressed to the lower layer or received from the lower layer is referred to as a PDU
  • the data received by the PDCP entity from the upper layer or the data sent to the upper layer is referred to as a PDCP SDU
  • the data received by the RLC entity from the PDCP entity or the data sent to the PDCP entity is referred to as an RLC SDU (ie, a PDCP PDU).
  • RRC Radio Resource Control, radio resource control.
  • RRC connection state RRC_CONNECTED, when the RRC connection is established, the UE is in the RRC_CONNECTED state.
  • the radio protocol In multiple connections, the radio protocol is located at the MeNB and the SeNB and utilizes the bearers of the MeNB and SeNB resources simultaneously.
  • SCG bearer In multiple connections, the radio protocol is located in the SeNB and utilizes bearers of SeNB resources.
  • MeNB E-UTRAN or LTE
  • MgNB corresponding to 5G-RAN or NR
  • S1-MME control node mobility management entity
  • Secondary base station Secondary eNB, denoted as SeNB (corresponding to E-UTRAN or LTE) or SgNB (corresponding to 5G-RAN or NR).
  • SeNB E-UTRAN or LTE
  • SgNB 5G-RAN or NR
  • the secondary base stations in the present invention are all referred to as SeNBs. It should be noted that all schemes or definitions applicable to the SeNB are also applicable to the SgNB.
  • Primary cell Primary Cell, PCell. A cell operating on the primary frequency on which the UE performs an initial connection setup procedure or initiates a connection re-establishment procedure or is designated as a primary cell in the handover procedure.
  • Primary and secondary cells Primary Secondary Cell, PSCell.
  • the SCG cell that the UE is used to perform random access is performed in performing the process of changing the SCG.
  • Secondary cell Secondary Cell, SCell.
  • a cell operating on a secondary frequency that can be configured after the RRC connection is established and can be used to provide additional radio resources.
  • Cell group A group of serving cells associated with a primary base station or a secondary base station in a multiple connection. It should be noted that the cell described in the present disclosure may also be referred to as a set of beam.
  • MCG Master Cell Group
  • the MCG is composed of all serving cells; for a UE configured with multiple connections, the MCG is composed of a subset of serving cells (ie, a group of serving cells associated with the MeNB), including PCell and 0. Or 1 or more SCells.
  • Secondary cell group Secondary Cell Group, SCG.
  • SCG Secondary Cell Group
  • the SCG can contain one PSCell and can also contain one or more SCells.
  • Multi-connection The operation mode of the UE in the RRC connected state, where multiple cell groups are configured, the multiple cell groups include one MCG, one or more SCGs (ie, the UE is connected to multiple base stations). If only one MCG (or MeNB) and one SCG (or SeNB) are configured, it is called dual connectivity. That is, a UE with multiple receivers and/or transmitters in a connected state is configured to use EUTRAN and/or 5G-RAN radio resources provided by a plurality of different schedulers, the scheduler being connected by non-ideal backhaul .
  • the multiple connections described in this disclosure include dual connections.
  • Multi-connection data transmission methods include but are not limited to: data repetition, link selection.
  • Data repetition In the multi-connection mode, data is transmitted in multiple CG serving cells, that is, the same data is transmitted on multiple different bearers (for example, data bearer DRB or signaling bearer SRB).
  • bearers for example, data bearer DRB or signaling bearer SRB.
  • Separate bearer data repetition a data transmission mode or bearer under multiple connections, in which the same data is transmitted on multiple wireless protocols of separate bearers.
  • FIG. 1 is a schematic diagram showing repeated transmission of downlink separated bearer data between a base station and a UE. It should be understood that the same protocol architecture may be adopted for the uplink transmission bearer data repeated transmission between the base station and the UE, except that the data is transmitted from the UE to the base station, that is, the arrow in FIG. 1 is reversed.
  • data such as a Packet Data Convergence Protocol Data Unit (PDCP PDU)
  • PDCP PDU Packet Data Convergence Protocol Data Unit
  • each PDCP PDU is sent to the receiver through multiple RLC entities.
  • Embodiments of the present disclosure may also be extended to other data repetition modes, such as RLC PDU data repetition.
  • the interface between the MeNB and the SeNB can be written as Xn or Xx or X2.
  • the interfaces may be named differently depending on the type of MeNB and SeNB. For example, if the MeNB is an LTE eNB, the SeNB is a gNB, the interface is denoted as Xx, and if the MeNB is a gNB and the SeNB is an eLTE eNB, the interface is denoted as Xn.
  • SCG bearer data repetition a data transmission mode or bearer under multiple connections, in which the same data is transmitted on the MCG bearer and/or multiple SCG bearers, and the same data utilizes MeNB (or MCG) and Resource transmission provided by the SeNB (or SCG).
  • the core network (eg CN or 5G-CN) sends the same data to multiple base stations.
  • Link selection In the multi-connection mode, data is transmitted in a certain serving cell of a certain CG, that is, the same data is transmitted on only one bearer, and each data uses only the resources of the MeNB or the SeNB.
  • Figure 3 shows a schematic diagram of downlink PDCP PDU link selection (the same protocol architecture can be used for the uplink, but data is sent from the UE to the base station).
  • each PDCP PDU In the PDCP PDU link multiple connection mode, each PDCP PDU is sent to the receiver through only one RLC entity.
  • Embodiments of the present disclosure may also be extended to other link selection modes, such as RLC PDU link selection.
  • Separate bearer link selection a data transmission mode or bearer under multiple connections.
  • data is transmitted by using radio resources provided by MeNB (or MCG) and SeNB (or SCG), that is, data is performed each time.
  • MeNB or MCG
  • SeNB or SCG
  • the MeNB selects a wireless protocol transmission located at (or MCG) and SeNB (or SCG).
  • FIG. 3 is a schematic diagram of downlink downlink bearer link selection transmission between a base station and a UE. It should be understood that the same protocol architecture may be adopted for uplink separation bearer link selection transmission between the base station and the UE, except that data is transmitted from the UE to the base station, that is, the arrow in FIG. 3 is reversed. Data, such as PDCP PDUs, are transmitted on a certain wireless protocol that separates bearers, utilizing MeNB or SeNB resources. In the PDCP PDU link multiple connection mode, each PDCP PDU is sent to the receiver through only one RLC entity. Embodiments of the present disclosure may also be extended to other link selection modes, such as RLC PDU link selection.
  • SCG bearer link selection a data transmission mode or bearer under multiple connections.
  • data is transmitted by using a radio resource provided by a MeNB (or MCG) or a SeNB (or SCG), that is, data is performed each time.
  • the core network or gateway selects the wireless protocol transmission located at the MeNB (or MCG).
  • FIG. 4 is a schematic diagram of a downlink SCG bearer link selection transmission on a base station side, where the same data is sent on a configured MCG bearer or a configured SCG bearer.
  • the core network (such as CN or 5G-CN) sends data to one base station (or CG), and different base stations (or CGs) send different data.
  • the PDCP status report is used by the receiving end to report the PDCP SDU reception status to the transmitting end.
  • the PDCP status report includes at least one of the following fields: a field FSM indicating a PDCP sequence number (SN) of the first unreceived PDCP SDU, or one if there is at least one non-sequential received PDCP SDU Bitmap, the bitmap length is the number of PDCP SNs from the first unreceived PDCP SDU to the last unordered PDCP SDU, which does not contain the first unreceived PDCP SDU but contains the last A PDCP SDU that is not received in order.
  • SN PDCP sequence number
  • the size of the PDCP control PDU whose bitmap length satisfies the current byte or counts the PDCP SDU is 8188 bytes. If any condition is satisfied, the bitmap is cut off.
  • the location of the PDCP SDU that is not indicated by the corresponding lower layer in the bitmap is "0".
  • the location corresponding to the PDCP SDU that has been received but decompressed is "0"; the location corresponding to the other PDCP SDU is "1".
  • Some embodiments of the present disclosure take a dual connection as an example, but the technical solution described in the present disclosure is not limited to a dual connectivity scenario, and those skilled in the art can easily expand to a multi-connection scenario.
  • FIG. 5 shows a schematic signal flow diagram of transmitting UE multi-connection transmission capability between a base station and a UE according to a first exemplary embodiment of the present invention.
  • the base station sends a UE capability inquiry message to the UE for requesting transmission of the radio access capability of the UE's E-UTRAN and/or 5G-RAN and/or other RATs.
  • the base station receives a UE capability information message from the UE.
  • the UE capability information message is used to transmit the UE wireless access capability when requested by the E-UTRAN or the 5G-RANUE.
  • FIG. 6 shows a schematic structural block diagram of a UE according to a first exemplary embodiment of the present invention.
  • the UE 610 includes a transceiver 611 and a generating unit 613.
  • the transceiver 611 and generation unit 613 associated with the present invention are shown in the UE 610 of FIG. 6 to avoid obscuring the present invention.
  • the UE according to an embodiment of the present invention further includes other units constituting the UE.
  • the transceiver 611 is configured to: receive a UE capability query message from the base station, where the UE capability query message is used to request the UE to send the UE's wireless access capability to the access network.
  • the generating unit 613 is configured to: generate, in response to the received UE capability query message, a UE capability information message, where the UE capability information is used to indicate a radio access capability of the UE to the access network, and include a bearer supported by the UE. Type and / or transmission method.
  • the transceiver 611 is also configured to transmit the UE capability information message to the base station.
  • FIG. 7 is a flowchart of a method for reporting multi-connection transmission capability of a UE performed on a UE side according to a first exemplary embodiment of the present invention.
  • method 700 includes steps S701-S705, which may be performed by UE 610 shown in FIG.
  • step S701 the transceiver 611 of the UE 610 receives a UE capability query message from the base station, where the UE capability query message is used to request the UE to send the UE's wireless access capability to the access network.
  • step S703 the generating unit 612 of the UE 610 generates a UE capability information message, which is used to indicate the radio access capability of the UE to the access network, and includes the UE, in response to the received UE capability query message.
  • a UE capability information message which is used to indicate the radio access capability of the UE to the access network, and includes the UE, in response to the received UE capability query message.
  • step S705 the transceiver 611 of the UE 610 transmits the UE capability information message to the base station.
  • FIG. 8 shows a schematic structural block diagram of a base station according to a first exemplary embodiment of the present invention.
  • the base station 820 includes a transceiver 821 and a configuration unit 823.
  • transceiver 821 and configuration unit 823 associated with the present invention are shown in base station 820 of FIG. 8 to avoid obscuring the present invention.
  • the base station according to an embodiment of the present invention further includes other units constituting the base station.
  • the transceiver 821 is configured to: send a UE capability query message to the UE, where the UE capability query message is used to request the UE to send the UE to the access network, and receive the UE capability information message from the UE, where the UE capability information is It is used to indicate the radio access capability of the UE to the access network, and includes the bearer type and/or transmission mode supported by the UE.
  • the configuration unit 823 is configured to configure, for the UE according to the UE capability information message, a bearer type and/or a transmission mode for the multi-connection transmission.
  • FIG. 9 is a flowchart showing a method of receiving a multi-connection transmission capability of a UE performed on a base station side according to a first exemplary embodiment of the present invention.
  • method 900 includes steps S901-S905, which may be performed by base station 820 shown in FIG.
  • step S901 the transceiver 821 of the base station 820 sends a UE capability query message to the UE, where the UE capability query message is used to request the UE to send the UE's wireless access capability to the access network.
  • the transceiver 821 of the base station 820 receives a UE capability information message from the UE, where the UE capability information is used to indicate the radio access capability of the UE to the access network, and includes the bearer type and/or transmission mode supported by the UE.
  • step S905 the configuration unit 823 of the base station 820 configures the bearer type and/or transmission mode for the multi-connection transmission for the UE according to the UE capability information message.
  • the UE reports the supported bearer type and transmission mode according to any combination of the bearer type and the transmission mode supported by the E-UTRAN and/or the 5G-RAN system in the multi-connection mode.
  • the bearer types supported by the E-UTRAN and/or the 5G-RAN system include at least one of the following: a split bearer, an SCG bearer; and a transport mode supported by the E-UTRAN and/or the 5G-RAN system includes at least one of the following: data repetition, Link selection.
  • the bearer type supported by the UE may include at least one of a split bearer and an SCG bearer; and the transmission mode supported by the UE may include at least one of data repetition and link selection.
  • the bearer type and/or the transmission mode supported by the UE may be indicated by at least one cell, where each cell indicates whether the UE supports one of the following combinations of the bearer type and the transmission mode in the uplink and/or downlink. : Separate bearer data repetition, separate bearer link selection, SCG bearer data repetition, SCG bearer link selection.
  • the UE supports split bearer data repetition and/or SCG bearer data duplication, indicating support for split bearer data repetition and/or SCG bearer data duplication in the UE capability information message; if the UE supports split bearer link selection and/or SCG The bearer link selection indicates that the UE bearer information message indicates support for split bearer link selection and/or SCG bearer link selection. For example, if the UE supports split bearer data repetition (or SCG bearer data repetition), the corresponding cell value is set to "supported" or "1" or "TRUE", indicating that the UE supports separate bearers in the uplink and/or downlink.
  • the split bearer data repetition only corresponds to uplink or downlink. If the bearer is only applicable to the downlink, a cell may be defined to indicate whether the UE supports the split bearer data repetition in the uplink PDCP data separation; if the configuration is only applicable to the uplink, a cell may be defined to indicate the UE Whether to support the separation of bearer data is repeated in the downlink PDCP data separation.
  • the split bearer link selection only corresponds to uplink or downlink. If the bearer is only applicable to the downlink, a cell may be defined to indicate whether the UE supports the split bearer link selection in the uplink PDCP data separation; if the configuration is only applicable to the uplink, a cell may be defined for indicating Whether the UE supports split bearer link selection is separated in downlink PDCP data.
  • the bearer type and/or the transmission mode supported by the UE may be indicated by at least one cell, and each cell corresponds to one bearer type (separate bearer or SCG bearer, but the bearer of the same bearer type may have One or more), used to indicate whether the corresponding bearer type supports data repetition or link selection.
  • the bearer type supported by the UE may be one or more of the following: a split bearer and an SCG bearer; for each type of bearer, a cell is associated or defined, and the indicated cell is used to indicate whether the bearer of the corresponding type is Support data duplication or link selection.
  • the value of the corresponding cell is set to "duplicate” or "1" or “0” or “setup” or “supported” or “TRUE” Or if the cell does not appear, it indicates that the corresponding split bearer (or SCG bearer) transmits data in a data repetition manner.
  • the value of the corresponding cell is set to "link-selection” or "1" or “0” or “setup” or “supported” or “TRUE” Or if the cell does not appear, it indicates that the corresponding split bearer (or SCG bearer) transmits data for the link selection mode.
  • An example of a cell description is given below:
  • the split bearer only corresponds to uplink or downlink. If the bearer type is only applicable to the downlink, a cell may be defined to indicate whether the UE supports the bearer in the uplink PDCP data separation; if the configuration is only applicable to the uplink, a cell may be defined to indicate the UE. Whether to support the bearer in the downlink PDCP data separation.
  • the bearer type and/or the transmission mode supported by the UE may be indicated by at least one cell, and each cell corresponds to a transmission mode, and is used to indicate whether the corresponding transmission mode supports the separate bearer. Or SCG bearer.
  • the bearer type and/or the transmission mode supported by the UE may be indicated by two cells, where the two cells correspond to one bearer type, and are respectively used to indicate whether the corresponding bearer type supports data repetition or chain. Road choice.
  • the bearer type supported by the UE may be one or more of the following: a split bearer, an SCG bearer. For each type of bearer, two cells are respectively associated or defined, and the cells are respectively used to indicate whether the corresponding bearer supports data repetition and link selection.
  • the value of the corresponding cell is set to "duplicate” or "1" or “setup” or “supported” or “TRUE”. If the UE supports a split bearer (or SCG bearer) in the link selection mode, the value of the corresponding cell is set to "link-selection” or "1" or “setup” or “supported” or “TRUE”.
  • the split bearer only corresponds to uplink or downlink. If the bearer type is only applicable to the downlink, a cell may be defined to indicate whether the UE supports the bearer in the uplink PDCP data separation; if the configuration is only applicable to the uplink, a cell may be defined to indicate the UE. Whether to support the bearer in the downlink PDCP data separation.
  • the bearer type and/or transmission mode supported by the UE may be indicated by two one cells, where the two cells correspond to one transmission mode, respectively, for indicating corresponding transmission mode support.
  • the split bearer is also the SCG bearer.
  • the base station sends an RRC connection reconfiguration message to the UE, where the message is used to modify the RRC connection, and includes the bearer type and/or transmission mode configured by the base station for the UE.
  • the base station receives an RRC Connection Reconfiguration Complete message from the UE, the message being used to confirm that the RRC connection reconfiguration is successful.
  • FIG. 11 shows a schematic structural block diagram of a UE according to a second exemplary embodiment of the present invention.
  • the UE 1110 includes a transceiver 1111 and a configuration unit 1113.
  • transceiver 1111 and configuration unit 1113 associated with the present invention are shown in UE 1110 of FIG. 11 to avoid obscuring the present invention.
  • the UE according to an embodiment of the present invention further includes other units constituting the UE.
  • the transceiver 1111 is configured to receive an RRC connection reconfiguration message from the base station, where the RRC connection reconfiguration message is used to modify the RRC connection, and includes a bearer type and/or a transmission mode configured by the base station for the UE.
  • the configuration unit 1113 is configured to perform RRC connection reconfiguration according to the received RRC connection reconfiguration message, including configuring a bearer type and/or a transmission mode used by the UE for multi-connection transmission.
  • the transceiver 1111 is further configured to: send an RRC Connection Reconfiguration Complete message to the base station, where the RRC Connection Reconfiguration Complete message is used to confirm that the RRC connection reconfiguration is successful.
  • FIG. 12 is a flowchart showing a method of transmitting multi-connection transmission configuration information of a UE performed on a UE side according to a second exemplary embodiment of the present invention.
  • method 1200 includes steps S1201-S1205, which may be performed by UE 1110 shown in FIG.
  • the transceiver 1111 of the UE 1110 receives a radio resource control RRC connection reconfiguration message from the base station, where the RRC connection reconfiguration message is used to modify the RRC connection, and includes the bearer type configured by the base station for the UE and/or transfer method.
  • step S1203 the configuration unit 1113 of the UE 1110 performs RRC connection reconfiguration according to the received RRC connection reconfiguration message, including configuring the bearer type and/or transmission mode used by the UE for multi-connection transmission.
  • step S1203 the transceiver 1111 of the UE 1110 sends an RRC Connection Reconfiguration Complete message to the base station, where the RRC Connection Reconfiguration Complete message is used to confirm that the RRC connection reconfiguration is successful.
  • FIG. 8 A schematic structural block diagram of a base station according to a second exemplary embodiment of the present invention can be seen in FIG.
  • the base station 820 includes a transceiver 821 and a configuration unit 823.
  • transceiver 821 and configuration unit 823 associated with the present invention are shown in base station 820 of FIG. 8 to avoid obscuring the present invention.
  • the base station according to an embodiment of the present invention further includes other units constituting the base station.
  • the configuration unit 823 is configured to configure the UE for the bearer type and/or transmission mode for the multi-connection transmission.
  • the transceiver 821 is configured to: send an RRC connection reconfiguration message to the UE, the RRC connection reconfiguration message is used to modify the RRC connection, and includes the configured bearer type and/or transmission mode; and receive the RRC connection reconfiguration from the UE
  • the completion message, the RRC Connection Reconfiguration Complete message is used to confirm that the RRC connection reconfiguration is successful.
  • FIG. 13 is a flowchart showing a method of configuring a multi-connection transmission mode of a UE performed on a base station side according to a second exemplary embodiment of the present invention.
  • method 1300 includes steps S1301-S1305, which may be performed by base station 820 shown in FIG.
  • step S1301 the configuration unit 823 of the base station 820 configures the bearer type and/or transmission mode for the multi-connection transmission for the UE.
  • step S1303 the transceiver 821 of the base station 820 transmits an RRC Connection Reconfiguration message to the UE, the RRC Connection Reconfiguration message is used to modify the RRC connection, and includes the configured bearer type and/or transmission mode.
  • step S1305 the transceiver 821 of the base station 820 receives an RRC Connection Reconfiguration Complete message from the UE, and the RRC Connection Reconfiguration Complete message is used to confirm that the RRC connection reconfiguration is successful.
  • the RRC Connection Reconfiguration message may include at least one of a bearer type and a combination of transmission modes: split bearer data repetition, split bearer link selection, SCG bearer data repetition, SCG bearer link selection.
  • the RRC Connection Reconfiguration message may include at least one bearer type and a cell indicating whether the corresponding bearer type supports data repetition or link selection.
  • the RRC Connection Reconfiguration message may include at least one transmission mode and a cell for indicating whether the corresponding transmission mode supports a separate bearer or an SCG bearer.
  • the RRC Connection Reconfiguration message includes at least one bearer type and a cell indicating whether the configured at least one bearer type supports data repetition or link selection, that is, in the RRC connection reconfiguration message. All bearers define a cell that is used to indicate whether all bearers configured to support data repetition or link selection.
  • the RRC Connection Reconfiguration message includes at least one transmission mode and a cell for indicating whether the configured at least one transmission mode supports a separate bearer or an SCG bearer.
  • the base station may configure one of the combination modes for the UE according to the combination of the supported bearer type and the transmission mode reported by the UE in the multi-connection mode. Or multiple.
  • the combination of the bearer type and the transmission mode supported by the UE may be one or more of the following: split bearer data repetition, split bearer link selection, SCG bearer data repetition, and SCG bearer link selection.
  • the type of each bearer configured by the base station for the UE may be one of the following: split bearer data repetition, split bearer link selection, SCG bearer data repetition, and SCG bearer link selection.
  • split bearer data repetition split bearer link selection
  • SCG bearer data repetition SCG bearer data repetition
  • SCG bearer link selection SCG bearer link selection
  • the configured classification bearer data repetition (or classification bearer link selection) only corresponds to uplink or downlink. If the configuration is only applicable to the downlink, a cell may be defined for configuring or indicating whether to support split bearer data repetition (or separate bearer link selection) in uplink PDCP data separation; if the configuration is only applicable to uplink, Define a cell to configure whether to support split bearer data repetition (or separate bearer link selection) in downstream PDCP data separation.
  • the base station configures one or more bearer types (for example, the cell drb-Type in the example) and the transmission used by the corresponding bearer for the UE according to the supported bearer type reported by the UE in the multi-connection mode.
  • the mode is data repetition or link selection (for example, the cell drb-Mode in the example).
  • the type of each bearer configured by the base station (E-UTRAN and/or 5G-RAN) for the UE may be one of the following: a split bearer, an SCG bearer.
  • An example of describing a cell is given below:
  • the split bearer only corresponds to uplink or downlink. If the configuration is only applicable to the downlink, you can define a cell to configure or indicate whether the split bearer is supported in the uplink PDCP data separation. If the configuration is only applicable to the uplink, you can define a cell for configuration.
  • the separation bearers are separated in the downlink PDCP data.
  • the base station configures one or more bearers for the UE according to the supported bearer type reported by the UE in the multi-connection mode (for example, the bearer included in the cell drb-ToAddModListSCG in the example) and configures the multi-connection bearer.
  • the transmission method employed is data repetition or link selection, and the transmission mode of the configuration is applicable to all multi-link bearers (for example, the cell scg-Mode in the example).
  • the type of each bearer configured by the base station (E-UTRAN and/or 5G-RAN) for the UE may be one of the following: a split bearer, an SCG bearer.
  • An example of the description cell of the embodiment is given below:
  • the split bearer only corresponds to uplink or downlink. If the configuration is only applicable to the downlink, you can define a cell to configure or indicate whether the split bearer is supported in the uplink PDCP data separation. If the configuration is only applicable to the uplink, you can define a cell for configuration.
  • the separation bearers are separated in the downlink PDCP data.
  • the following description will be made for the case of uplink transmission and downlink transmission, respectively.
  • the UE includes at least one PDCP entity, and each PDCP entity is associated with at least one lower layer entity, i.e., an RLC entity.
  • an RLC entity i.e., an RLC entity
  • a PDCP entity shown by a thick black line and an RLC entity are associated, and a PDCP entity shown by a thin line is associated with an RLC entity.
  • the method for the UE to avoid repeatedly transmitting the data that has been confirmed to be successfully transmitted in the data-repeated multi-connection transmission mode includes:
  • the PDCP entity When the PDCP entity receives an acknowledgment indication that the PDCP SDU is successfully sent from the at least one lower layer entity, deleting the successfully transmitted PDCP SDU and its corresponding PDCP PDU.
  • the PDCP entity instructs the at least one other lower layer entity to delete the corresponding PDCP PDU.
  • the UE uplink data PDCP SDU is encapsulated by the PDCP entity and sent to multiple lower-layer entities (ie, RLC entities), where the multiple lower-layer entities are separated by repeated data transmission (ie, separated bearer data is repeated). Some or all of the RLC entities in the RLC entity (ie, multiple RLC entities to which the PDCP entity is associated). If a certain RLC entity receives a PDCP PDU (or RLC SDU) from the PDCP entity, and the PDCP PDU is successfully transmitted, it indicates that the PDCP PDU of the upper layer (PDCP layer) is successfully transmitted.
  • RLC entities ie, RLC entities
  • RLC entities multiple RLC entities to which the PDCP entity is associated
  • the PDCP entity of the UE When the PDCP entity of the UE receives an indication that the PDCP PDU from a certain RLC entity (referred to as the first RLC entity) is successfully transmitted, the PDCP entity instructs the other RLC entity to delete the successfully transmitted PDCP PDU (or RLC SDU).
  • the other RLC entity is an RLC entity involved in a duplicate bearer or a split bearer data repetition using repeated data transmission or an RLC entity receiving the successfully transmitted PDCP PDU from a PDCP entity, but does not include the first RLC. entity.
  • a certain lower layer entity confirms that the PDCP SDU transmission is successful, the UE should delete the PDCP SDU and the corresponding PDCP PDU.
  • the deletion information is indicated to other lower layer entities, that is, other lower layer entities are instructed to delete the PDCP PDU.
  • the other RLC entity is an RLC entity involved in a duplicate bearer or a split bearer data repetition using repeated data transmission or an RLC entity receiving the successfully transmitted PDCP PDU from a PDCP entity, but does not include the first RLC. entity.
  • the method for the UE to avoid repeatedly transmitting the data that has been confirmed to be successfully transmitted in the data-repeated multi-connection transmission mode includes:
  • a PDCP entity Receiving, by a PDCP entity, at least one PDCP SDU or PDCP PDU from at least one lower layer entity (ie, an RLC entity) associated with the PDCP entity;
  • the PDCP entity confirms that a PDCP SDU is successfully received, indicates to the at least one other RLC entity of the at least one RLC entity that the PDCP SDU or PDCP PDU is successfully received.
  • the other RLC entity indicates that the peer entity in the base station does not perform retransmission
  • the other RLC entity deletes the PDCP SDU or PDCP PDU.
  • the UE when the UE receives the downlink data, when the PDCP entity successfully receives a certain PDCP SDU or PDCP PDU from a certain lower layer entity (ie, the RLC entity), the other lower layer entity (ie, the RLC entity) indicates the PDCP PDU (ie, the RLC). SDU) Received successfully. If in some other lower layer entity, the RLC SDU indicating successful reception or its segment is not successfully received, other lower layer entities may instruct the peer entity not to retransmit the RLC SDU or its segment, ie in the RLC status PDU The RLC SDU or its segments are not included. If some other lower layer entity successfully receives the PDCP PDU or its segment, it does not submit to the upper layer (PDCP), ie deletes the PDCP PDU or its segment.
  • PDCP upper layer
  • a technical solution for avoiding transmitting data that has been successfully received by a base station in downlink transmission in a data-repeated multi-connection transmission mode will be described below with reference to FIGS. 14 to 16 . .
  • FIG. 14 shows a schematic signal flow diagram for transmitting a PDCP status report between a base station and a UE and transmitting a downlink data transmission status indication between base stations in accordance with a fourth exemplary embodiment of the present invention.
  • the base station receives a PDCP status report from the UE, and the PDCP status report is used to indicate to the base station that the UE has successfully received the PDCP protocol data unit PDU.
  • the primary base station sends a downlink data transmission status indication message to the secondary base station to indicate to the secondary base station the PDCP PDU that the UE has successfully received.
  • FIG. 15 is a block diagram showing a schematic configuration of a base station according to a fourth exemplary embodiment of the present invention.
  • the base station 1520 includes a transceiver 1521 and a generating unit 1523.
  • the transceiver 1521 and the generating unit 1523 associated with the present invention are shown in the base station 1520 of FIG. 15 to avoid obscuring the present invention.
  • the base station according to an embodiment of the present invention further includes other units constituting the base station.
  • the transceiver 1521 is configured to receive a PDCP status report from the UE, the PDCP status report for indicating to the base station a PDCP PDU that the UE has successfully received.
  • the generating unit 1523 is configured to: generate, according to the received PDCP status report, a downlink data transmission status indication message, where the downlink data transmission status indication message is used to indicate to the at least one other base station that the UE has successfully received the PDCP PDU.
  • the transceiver 1521 is further configured to transmit the downlink data transmission status indication message to at least one other base station.
  • 16 is a flowchart showing a method of avoiding transmission of data that has been successfully received, performed on a base station side, according to a fourth exemplary embodiment of the present invention.
  • method 1600 includes steps S1601-S1605, which may be performed by base station 1520 shown in FIG.
  • step S1601 the transceiver 1521 of the base station 1520 receives a PDCP status report from the UE, the PDCP status report being used to indicate to the base station the PDCP protocol data unit PDU that the UE has successfully received.
  • step S1603 the generating unit 1523 of the base station 1520 generates a downlink data transmission status indication message according to the received PDCP status report, where the downlink data transmission status indication message is used to indicate to the at least one other base station the PDCP PDU that the UE has successfully received.
  • step S1605 the transceiver 1521 of the base station 1520 transmits the downlink data transmission status indication message to at least one other base station (secondary base station).
  • method 1600 can include the following steps (not shown):
  • the transceiver 1521 of the base station 1520 transmits an RRC connection reconfiguration message to the UE, the message including parameters or cells for configuring a period in which the UE transmits a PDCP status report;
  • the transceiver 1521 of the base station 1520 receives an RRC Connection Reconfiguration Complete message from the UE.
  • the status reporting timer is used for the UE to trigger a status report for the multi-connection bearer.
  • the value may be configured by the base station by using RRC signaling, and the PDCP entity of the UE constructs a PDCP status report after processing the PDCP PDU received from different lower layer entities (ie, the RLC entity), and submits the status report as the first PDCP PDU to the The underlying entity transmits.
  • the downlink data transmission status indication message contains content that is one or more fields included in the PDCP status report.
  • the primary base station (MeNB) may transmit the status report received from the UE to the secondary base station (SeNB).
  • the downlink data transmission status indication message includes: a maximum PDCP PDU that has been successfully transmitted (that is, a maximum PDCP PDU that the UE has successfully received), all unsuccessfully sent, and the sequence number is less than successful.
  • the PDCP PDU SN of the largest PDCP PDU sent by the SN that is, the PDCP PDU SN that the UE did not confirm successful reception and the sequence number is less than the maximum successfully received PDCP PDU SN).
  • the downlink data transmission status indication message includes: a maximum PDCP PDU that all base stations (including the primary base station and the secondary base station) have successfully sent, all unsuccessfully transmitted, and the SN is smaller than the maximum PDCP PDU that all base stations have successfully transmitted.
  • PDCP PDU SN of the SN includes: a maximum PDCP PDU that all base stations (including the primary base station and the secondary base station) have successfully sent, all unsuccessfully transmitted, and the SN is smaller than the maximum PDCP PDU that all base stations have successfully transmitted.
  • the signal flow diagram shown in FIG. 14 further includes signaling j (shown in broken lines), and the secondary base station sends a downlink data transmission status message to the primary base station, where the downlink data transmission status message includes the following content:
  • the downlink data transmission status message does not include (d).
  • FIG. 17 shows a schematic signal flow diagram for transmitting a downlink data transmission state and a downlink data transmission state indication between base stations according to a fifth exemplary embodiment of the present invention.
  • the primary base station receives a downlink data transmission status message from one or more secondary base stations.
  • the message contains the following:
  • the downlink data transmission status message does not include (d).
  • the primary base station sends a downlink data transmission status indication message to one or more secondary base stations. If it is a dual connection, it is a secondary base station.
  • FIG. 15 A schematic structural block diagram of a base station according to a fifth exemplary embodiment of the present invention can be referred to FIG.
  • the base station 1520 includes a transceiver 1521 and a generating unit 1523.
  • the transceiver 1521 and the generating unit 1523 associated with the present invention are shown in the base station 1520 of FIG. 15 to avoid obscuring the present invention.
  • the base station according to an embodiment of the present invention further includes other units constituting the base station.
  • the transceiver 1521 is configured to: transmit a PDCP PDU to at least one other base station; receive a downlink data transmission status message from the at least one other base station, the downlink data transmission status message being used to indicate receipt from the base station
  • the generating unit 1523 is configured to: generate, according to the received downlink data transmission status message, a downlink data transmission status indication message, where the downlink data transmission status indication message is used to indicate to the at least one other base station that the UE has successfully received the PDCP PDU.
  • the transceiver 1521 is further configured to transmit the downlink data transmission status indication message to at least one other base station.
  • FIG. 18 is a flowchart showing a method of avoiding transmission of data that has been successfully received, performed between base stations, according to a fifth exemplary embodiment of the present invention.
  • method 1800 includes steps S1801-S1807, which may be performed by base station 1520 shown in FIG.
  • step S1801 the transceiver 1521 of the base station 1520 transmits a PDCP PDU to at least one other base station (secondary base station).
  • the transceiver 1521 of the base station 1520 receives a downlink data transmission status message from at least one other base station, where the downlink data transmission status message is used to indicate the PDCP received from the base station and successfully transmitted to the UE in sequence.
  • step S1805 the generating unit 1523 of the base station 1520 generates a downlink data transmission status indication message according to the received downlink data transmission status message, where the downlink data transmission status indication message is used to indicate to the at least one other base station that the UE has successfully received the PDCP. PDU.
  • step S1807 the transceiver 1521 of the base station 1520 transmits the downlink data transmission status indication message to at least one other base station.
  • the downlink data transmission status indication message contains content that is one or more fields included in the PDCP status report.
  • the primary base station (MeNB) may transmit the status report received from the UE to the secondary base station (SeNB).
  • the downlink data transmission status indication message includes: a maximum PDCP PDU that has been successfully transmitted (that is, a maximum PDCP PDU that the UE has successfully received), all unsuccessfully sent, and the sequence number is less than successful.
  • the PDCP PDU SN of the largest PDCP PDU sent by the SN that is, the PDCP PDU SN that the UE did not confirm successful reception and the sequence number is less than the maximum successfully received PDCP PDU SN).
  • the program running on the device according to the present invention may be a program that causes a computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (e.g., random access memory RAM), a hard disk drive (HDD), a non-volatile memory (e.g., flash memory), or other memory system.
  • a volatile memory e.g., random access memory RAM
  • HDD hard disk drive
  • non-volatile memory e.g., flash memory
  • a program for realizing the functions of the embodiments of the present invention can be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present invention may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that have replaced existing integrated circuits due to advances in semiconductor technology.
  • the present invention is not limited to the above embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了上报多连接传输能力的方法、配置多连接传输方式的方法、避免重复传输数据的方法、以及相应的支持多连接传输的用户设备和基站。所述上报多连接传输能力的方法包括:从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及向基站发送所述UE能力信息消息。

Description

多连接传输能力上报方法、多连接传输方式配置方法、避免重传数据的方法、UE和基站 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及上报多连接传输能力的方法、配置多连接传输方式的方法、避免发送已被成功接收的数据的方法、以及相应的支持多连接传输的用户设备和基站。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。NR主要有三个应用场景:增强的移动宽带通信(Enhanced mobile broadband:eMBB)、大规模机器类通信(massive Machine type communication:mMTC)和超可靠低延迟通信(Ultra reliable and low latency communications:URLLC)。
在2016年10月召开的3GPP RAN2#96次会议上达成为满足URLLC对可靠性的要求,对多连接(包括双连接)进行研究。
然而,对于多连接传输所涉及的问题,包括用户设备(User Equipment,UE)如何上报其所支持的多连接传输能力、基站(例如gNB或5G-RAN、或eNB或E-UTRAN)如何为UE配置多连接传输方式、发送方(可以是UE或基站)如何避免发送已被接收方(可以是基站或UE)成功接收的数据(即,重复传输数据),成为亟待解决的问题。
发明内容
本公开致力于解决多连接传输所涉及的上述问题,包括UE如何上报其所支持的多连接传输能力、基站(例如gNB或5G-RAN、或eNB或 E-UTRAN)如何为UE配置多连接传输方式、发送方(可以是UE或基站)如何避免发送已被接收方(可以是基站或UE)成功接收的数据。
根据本公开的一方面,提供了一种在支持多连接传输的用户设备UE处执行的方法,包括:从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及向基站发送所述UE能力信息消息。
根据本公开的另一方面,提供了一种在支持多连接传输的基站处执行的方法,包括:向用户设备UE发送UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;从UE接收UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及根据所述UE能力信息消息,为UE配置用于多连接传输的承载类型和/或传输方式。
根据本公开的另一方面,提供了一种用户设备UE,包括:
收发机,用于从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;以及
生成单元,用于响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式,
所述收发机还用于向基站发送所述UE能力信息消息。
根据本公开的另一方面,提供了一种基站,包括:
收发机,用于向用户设备UE发送UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;以及从UE接收UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及
配置单元,用于根据所述UE能力信息消息,为UE配置用于多连接传输的承载类型和/或传输方式。
在一示例性实施例中,UE所支持的承载类型包括以下至少一种:分离承载、辅小区组SCG承载;以及UE所支持的传输方式包括以下至少一种:数据重复、链路选择。
在一示例性实施例中,UE所支持的承载类型和/或传输方式以至少一个信元指示,其中
每个信元指示UE是否支持承载类型和传输方式的以下组合之一:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择;或
每个信元对应于一个承载类型,用于指示对应的承载类型是否支持数据重复或链路选择;或
每个信元对应于一个传输方式,用于指示对应的传输方式是否支持分离承载或SCG承载;或
两个信元对应于一个承载类型,分别用于指示对应的承载类型支持数据重复还是链路选择;或
两个信元对应于一个传输方式,分别用于指示对应的传输方式支持分离承载还是SCG承载。
根据本公开的另一方面,提供了一种在支持多连接传输的用户设备UE处执行的方法,包括:从基站接收无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式;根据接收到的RRC连接重配置消息来执行RRC连接重配置,包括配置UE用于多连接传输的承载类型和/或传输方式;以及向基站发送RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
根据本公开的另一方面,提供了一种在支持多连接传输的基站处执行的方法,包括:为用户设备UE配置用于多连接传输的承载类型和/或传输方式;向UE发送无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含所配置的承载类型和/或传输方式;从UE接收RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
根据本公开的另一方面,提供了一种用户设备UE,包括:
收发机,用于从基站接收无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式;以及
配置单元,用于根据接收到的RRC连接重配置消息来执行RRC连接 重配置,包括配置UE用于多连接传输的承载类型和/或传输方式;
所述收发机还用于向基站发送RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
根据本公开的另一方面,提供了一种基站,包括:
配置单元,用于为用户设备UE配置用于多连接传输的承载类型和/或传输方式;以及
收发机,用于向UE发送无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含所配置的承载类型和/或传输方式;以及从UE接收RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
在一示例性实施例中,所述RRC连接重配置消息包含承载类型和传输方式的以下组合中的至少一个:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择;或
所述RRC连接重配置消息包含至少一个承载类型和用于指示对应的承载类型支持数据重复还是链路选择的信元;或
所述RRC连接重配置消息包含至少一个传输方式和用于指示对应的传输方式支持分离承载还是SCG承载的信元;或
所述RRC连接重配置消息包含至少一个承载类型和用于指示所配置的至少一个承载类型支持数据重复还是链路选择的信元;或
所述RRC连接重配置消息包含至少一个传输方式和用于指示所配置的至少一个传输方式支持分离承载还是SCG承载的信元。
根据本公开的另一方面,提供了一种用户设备UE在数据重复的多连接传输方式下执行的方法,包括:通过分组数据汇聚协议PDCP实体将至少一个PDCP服务数据单元SDU封装为PDCP协议数据单元PDU发送给与所述PDCP实体相关联的至少一个下层实体;以及当所述PDCP实体从至少一个下层实体接收PDCP SDU发送成功的确认指示时,删除所述发送成功的PDCP SDU及其对应的PDCP PDU。
在一示例性实施例中,所述方法还包括:如果所述对应的PDCP PDU已经发送至所述至少一个下层实体中的至少一个其他下层实体,通过所述PDCP实体指示所述至少一个其他下层实体删除所述对应的PDCP PDU。
根据本公开的另一方面,提供了一种用户设备UE,包括:
分组数据汇聚协议PDCP实体;以及
与所述PDCP实体相关联的至少一个下层实体,
其中所述PDCP实体用于:将至少一个PDCP服务数据单元SDU封装为PDCP协议数据单元PDU发送给与所述至少一个下层实体;以及当从至少一个下层实体接收PDCP SDU发送成功的确认指示时,删除所述发送成功的PDCP SDU及其对应的PDCP PDU。
在一示例性实施例中,所述PDCP实体还用于:如果所述对应的PDCP PDU已经发送至所述至少一个下层实体中的至少一个其他下层实体,指示所述至少一个其他下层实体删除所述对应的PDCP PDU。
根据本公开的另一方面,提供了一种基站在数据重复的多连接传输方式下执行的方法,包括:从用户设备UE接收分组数据汇聚协议PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP协议数据单元PDU;根据接收到的PDCP状态报告,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU;以及向至少一个其他基站发送所述下行数据传输状态指示消息。
根据本公开的另一方面,提供了一种基站在数据重复的多连接传输方式下执行的方法,包括:向至少一个其他基站发送分组数据汇聚协议PDCP协议数据单元PDU;从至少一个其他基站接收下行数据传输状态消息,所述下行数据传输状态消息用于指示从所述基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号SN、相应的无线接入承载的期望缓冲区大小、针对所述UE的最小期望缓冲区大小、以及至少一个其他基站认为丢失且未包含在所述基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包;根据接收到的下行数据传输状态消息,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU;以及向至少一个其他基站发送所述下行数据传输状态指示消息。
根据本公开的另一方面,提供了一种基站,包括:
收发机,用于从用户设备UE接收分组数据汇聚协议PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP协议数据单元PDU;以及
生成单元,用于根据接收到的PDCP状态报告,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU,
所述收发机还用于向至少一个其他基站发送所述下行数据传输状态指示消息。
根据本公开的另一方面,提供了一种基站,包括:
收发机,用于向至少一个其他基站发送分组数据汇聚协议PDCP协议数据单元PDU;从至少一个其他基站接收下行数据传输状态消息,所述下行数据传输状态消息用于指示从所述基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号、相应的无线接入承载的期望缓冲区大小、针对所述UE的最小期望缓冲区大小、以及至少一个其他基站认为丢失且未包含在所述基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包;以及
生成单元,用于根据接收到的下行数据传输状态消息,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU,
其中所述收发机还用于向至少一个其他基站发送所述下行数据传输状态指示消息。
在一示例性实施例中,所述下行数据传输状态指示消息包含的内容为包含在PDCP状态报告中的字段。
在一示例性实施例中,所述下行数据传输状态指示消息包含的内容为:
UE已成功接收的最大PDCP PDU的序列号SN、所有未成功接收且SN小于UE已成功接收的最大PDCP PDU SN的PDCP PDU SN;或
所有基站已成功发送的最大PDCP PDU SN、所有未成功发送且SN小于所有基站已成功发送的最大PDCP PDU SN的PDCP PDU SN。
根据本公开的技术方案,可以使得基站根据UE的能力配置合适的承载类型,还可以避免上行或下行数据的重复传输。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了基站与UE之间进行下行分离承载数据重复传输的示意图;
图2示出了基站侧的下行SCG承载数据重复传输的示意图;
图3示出了基站与UE之间进行下行分离承载链路选择传输的示意图;
图4示出了基站侧的下行SCG承载链路选择传输的示意图;
图5示出了根据本发明第一示例性实施例的在基站和UE之间传输UE多连接传输能力的示意性信号流图;
图6示出了根据本发明第一示例性实施例的UE的示意性结构框图;
图7示出了根据本发明第一示例性实施例的在UE侧执行的上报UE的多连接传输能力的方法流程图;
图8示出了根据本发明第一和第二示例性实施例的基站的示意性结构框图;
图9示出了根据本发明第一示例性实施例的在基站侧执行的接收UE的多连接传输能力的方法流程图;
图10示出了根据本发明第二示例性实施例的在基站和UE之间传输UE的多连接传输配置信息的示意性信号流图;
图11示出了根据本发明第二示例性实施例的UE的示意性结构框图;
图12示出了根据本发明第二示例性实施例的在UE侧执行的传输UE的多连接传输配置信息的方法流程图;
图13示出了根据本发明第二示例性实施例的在基站侧执行的配置UE的多连接传输方式的方法流程图;
图14示出了根据本发明第四示例性实施例的在基站和UE之间传输分组数据汇聚协议(PDCP)状态报告以及在基站之间传输下行数据传输状态指示的示意性信号流图;
图15示出了根据本发明第四和第五示例性实施例的基站的示意性结构框图;
图16示出了根据本发明第四示例性实施例的在基站侧执行的避免发送已被成功接收的数据的方法流程图;
图17示出了根据本发明第五实施例在基站之间传输下行数据传输状态和下行数据传输状态指示的示意性信号流图;以及
图18示出了根据本发明第五示例性实施例的在基站之间执行的避免发送已被成功接收的数据的方法流程图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。
RLC:Radio Link Control,无线链路控制。
PDU:协议数据单元。
SDU:服务数据单元。
本公开中,将从上层接收或发往上层的数据称为SDU,发往下层或从下层接收的数据称为PDU。例如,PDCP实体从上层接收的数据或发往上层的数据称为PDCP SDU;RLC实体从PDCP实体接收到的数据或发往PDCP实体的数据称为RLC SDU(也就是PDCP PDU)。
RRC:Radio Resource Control,无线资源控制。
RRC连接态:RRC_CONNECTED,当RRC连接建立后,UE处于RRC_CONNECTED状态。
分离承载:在多连接中,无线协议位于MeNB和SeNB且同时利用MeNB和SeNB资源的承载。
SCG承载:在多连接中,无线协议位于SeNB中且利用SeNB资源的承载。
主基站:Master eNB,记为MeNB(对应E-UTRAN或LTE)或MgNB(对应5G-RAN或NR)。在多连接中,至少终止于处理UE与核心网间交互的控制节点移动管理实体(记为S1-MME)的基站。本发明中主基站均记为MeNB,需要说明的是,所有适用于MeNB的方案或定义也适用于MgNB。
辅基站:Secondary eNB,记为SeNB(对应E-UTRAN或LTE)或SgNB(对应5G-RAN或NR)。在多连接中,不作为MeNB,为UE额外的无线资源 的基站。本发明中辅基站均记为SeNB,需要说明的是,所有适用于SeNB的方案或定义也适用于SgNB。
主小区:Primary Cell,PCell。工作在主频率上的小区,UE在其上执行初始连接建立过程或发起连接重建过程或在切换过程中被指定为主小区的小区。
主辅小区:Primary Secondary Cell,PSCell。在执行改变SCG的过程中指示UE用于执行随机接入的SCG小区。
辅小区:Secondary Cell,SCell。工作在辅频率上的小区,所述小区可在RRC连接建立之后配置且可用于提供额外的无线资源。
小区组:Cell Group,在多连接中,关联到主基站或辅基站的一组服务小区。需要说明的是,本公开所述的小区也可以称为光束集(a set of beam)。
主小区组:Master Cell Group,MCG。对于未配置多连接的UE,MCG由所有的服务小区组成;对于配置了多连接的UE,MCG由服务小区的子集组成(即关联到MeNB的一组服务小区),其中包含PCell和0个或1个或多个SCell。
辅小区组:Secondary Cell Group,SCG。在多连接中,与SeNB关联的一组服务小区。SCG可以包含一个PSCell,还可以包含一个或多个SCell
多连接:处于RRC连接态下UE的操作模式,配置了多个小区组,所述多个小区组包括一个MCG,一个或多个SCG(即UE连接到多个基站)。如果只配置了一个MCG(或MeNB)和一个SCG(或SeNB),则称为双连接。即处于连接态的具有多个接收机和/或发送机的UE被配置为使用由多个不同的调度器提供的EUTRAN和/或5G-RAN无线资源,所述调度器通过non-ideal backhaul连接。本公开所述的多连接包括双连接。多连接数据传输方式包括但不限于:数据重复,链路选择。
数据重复:在多连接方式下,数据在多个CG的服务小区进行传输,即相同的数据在多个不同的承载(例如,数据承载DRB或信令承载SRB)上发送。
分离承载数据重复:一种多连接下的数据发送方式或承载,在所述发送方式中,相同的数据在分离承载的多个无线协议上发送。
图1示出了基站与UE之间进行下行分离承载数据重复传输的示意图。应理解,对于基站与UE之间进行上行分离承载数据重复传输可以采用同样 的协议架构,只是数据从UE发送到基站,即,将图1中的箭头反向即可。如图1所示,数据,例如分组数据汇聚协议协议数据单元(PDCP PDU),在分离承载的多个无线协议(对应于与同一PDCP实体相关联的多个RLC实体)上发送,利用MeNB和一个或多个SeNB资源。在PDCP PDU数据重复多连接方式下,每个PDCP PDU经过多个RLC实体发送给接收方。本公开所述实施方式也可以扩展到其他数据重复方式,例如,RLC PDU数据重复。MeNB和SeNB间的接口可以记为Xn或Xx或X2。根据MeNB和SeNB的不同类型,所述接口可以采用不同命名。例如,如果MeNB为LTE eNB,SeNB为gNB,则所述接口记为Xx;如果MeNB为gNB,SeNB为eLTE eNB,则所述接口记为Xn。
SCG承载数据重复:一种多连接下的数据发送方式或承载,在所述发送方式中,相同的数据在MCG承载和/或多个SCG承载上发送,相同的数据利用MeNB(或MCG)和SeNB(或SCG)提供的资源传输。
图2示出了基站侧的下行SCG承载数据重复传输的示意图,相同数据在配置的MCG承载和/或配置的一个或多个SCG承载上发送。核心网(例如CN或5G-CN)将相同的数据发送到多个基站。
链路选择:在多连接方式下,数据在配置的某个CG的某个服务小区进行传输,即相同的数据只在一个承载上发送,每个数据只利用MeNB或SeNB的资源。图3示出了下行PDCP PDU链路选择的示意图(上行可采用同样的协议架构,但是数据从UE发送到基站)。在PDCP PDU链路选择多连接方式下,每个PDCP PDU只经过一个RLC实体发送给接收方。本公开所述实施方式也可以扩展到其他链路选择方式,例如,RLC PDU链路选择。
分离承载链路选择:一种多连接下的数据发送方式或承载,在所述发送方式中,利用MeNB(或MCG)和SeNB(或SCG)提供的无线资源传输数据,即在每次进行数据传输时,MeNB选择位于(或MCG)和SeNB(或SCG)的无线协议传输。
图3示出了基站与UE之间进行下行分离承载链路选择传输的示意图。应理解,对于基站与UE之间进行上行分离承载链路选择传输可以采用同样的协议架构,只是数据从UE发送到基站,即,将图3中的箭头反向即可。数据,例如PDCP PDU,在分离承载的某个无线协议上发送,利用MeNB或SeNB资源。在PDCP PDU链路选择多连接方式下,每个PDCP PDU只 经过一个RLC实体发送给接收方。本公开所述实施方式也可以扩展到其他链路选择方式,例如,RLC PDU链路选择。
SCG承载链路选择:一种多连接下的数据发送方式或承载,在所述发送方式中,利用MeNB(或MCG)或SeNB(或SCG)提供的无线资源传输数据,即在每次进行数据传输时,核心网或网关选择位于MeNB(或MCG)的无线协议传输。
图4示出了基站侧的下行SCG承载链路选择传输的示意图,相同数据在配置的MCG承载或配置的某个SCG承载上发送。核心网(例如CN或5G-CN)将数据发送到一个基站(或CG),不同基站(或CG)发送不同的数据。
PDCP状态报告:PDCP状态报告用于接收端向发送端报告PDCP SDU接收情况。PDCP状态报告包含以下至少一个字段:用于指示第一个未接收到的PDCP SDU的PDCP序列号(sequence number,SN)的字段FSM、如果存在至少一个非按序接收的PDCP SDU,则包含一个位图,位图长度为从第一个未接收到的PDCP SDU开始到最后一个未按序接收的PDCP SDU的PDCP SN的个数,其中不包含第一个未接收到的PDCP SDU但包含最后一个未按序接收的PDCP SDU。位图长度满足填满当前字节或将PDCP SDU计算在内的PDCP控制PDU的大小为8188字节,满足任一条件则位图截止。将位图中对应所有下层未指示接收到的PDCP SDU的位置为“0”,可选的,将已接收但解压失败的PDCP SDU对应的位置为“0”;将其他PDCP SDU对应的位置为“1”。
本公开部分实施例以双连接为例,但本公开所述的技术方案并不限于双连接场景,本领域技术人员可以容易地扩展到多连接场景。
以下将参照图5至图9,对根据本公开的第一示例性实施例的在基站和UE之间传输UE多连接传输能力的技术方案进行描述。
图5示出了根据本发明第一示例性实施例的在基站和UE之间传输UE多连接传输能力的示意性信号流图。
如图5所示,在信令a中,基站向UE发送UE能力查询消息,所述消息用于请求传输UE的E-UTRAN和/或5G-RAN和/或其他RAT的无线访问 能力。在信令b中,基站接收到来自UE的UE能力信息消息。所述UE能力信息消息用于在E-UTRAN或5G-RANUE请求时,传输UE无线访问能力。
图6示出了根据本发明第一示例性实施例的UE的示意性结构框图。如图6所示,UE 610包括收发机611和生成单元613。本领域技术人员应理解,在图6的UE 610中仅示出了与本发明相关的收发机611和生成单元613,以避免混淆本发明。然而,本领域技术人员应理解,尽管未在图6中示出,但是根据本发明实施例的UE还包括构成UE的其他单元。
收发机611被配置为:从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力。
生成单元613被配置为:响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式。
收发机611还被配置为:向基站发送所述UE能力信息消息。
图7示出了根据本发明第一示例性实施例的在UE侧执行的上报UE的多连接传输能力的方法流程图。
如图7所示,方法700包括步骤S701-S705,其可由图6所示的UE 610来执行。
具体地,在步骤S701,UE 610的收发机611从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力。
在步骤S703,UE 610的生成单元612响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式。
在步骤S705,UE 610的收发机611向基站发送所述UE能力信息消息。
图8示出了根据本发明第一示例性实施例的基站的示意性结构框图。如图8所示,基站820包括收发机821和配置单元823。本领域技术人员应理解,在图8的基站820中仅示出了与本发明相关的收发机821和配置单元823,以避免混淆本发明。然而,本领域技术人员应理解,尽管未在图8中示出,但是根据本发明实施例的基站还包括构成基站的其他单元。
收发机821被配置为:向UE发送UE能力查询消息,所述UE能力查 询消息用于请求UE发送UE对接入网的无线访问能力;以及从UE接收UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式。
配置单元823被配置为:根据所述UE能力信息消息,为UE配置用于多连接传输的承载类型和/或传输方式。
图9示出了根据本发明第一示例性实施例的在基站侧执行的接收UE的多连接传输能力的方法流程图。
如图9所示,方法900包括步骤S901-S905,其可由图8所示的基站820来执行。
具体地,在步骤S901,基站820的收发机821向UE发送UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力。
在步骤S903,基站820的收发机821从UE接收UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式。
在步骤S905,基站820的配置单元823根据所述UE能力信息消息,为UE配置用于多连接传输的承载类型和/或传输方式。
在一个实施例中,根据多连接方式下E-UTRAN和/或5G-RAN系统支持的承载类型和传输方式的任意组合方式,UE上报其所支持的承载类型和传输方式。E-UTRAN和/或5G-RAN系统支持的承载类型包括以下至少一种:分离承载、SCG承载;以及E-UTRAN和/或5G-RAN系统支持的传输方式包括以下至少一种:数据重复、链路选择。相应地,UE所支持的承载类型可以包括分离承载和SCG承载中的至少一个;以及UE所支持的传输方式可以包括数据重复和链路选择中的至少一个。
在一实施方式中,UE所支持的承载类型和/或传输方式可以通过至少一个信元指示,其中每个信元指示UE是否在上行和/或下行支持承载类型和传输方式的以下组合之一:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择。
例如,UE如果支持分离承载数据重复和/或SCG承载数据重复,则在UE能力信息消息中指示支持分离承载数据重复和/或SCG承载数据重复;UE如果支持分离承载链路选择和/或SCG承载链路选择,则UE能力信息 消息中指示支持分离承载链路选择和/或SCG承载链路选择。例如,如果UE支持分离承载数据重复(或SCG承载数据重复),则将对应的信元值设置为“supported”或“1”或“TRUE”,表示UE在上行和/或下行中支持分离承载数据重复(或SCG承载数据重复);如果UE支持分离承载链路选择(或SCG承载链路选择),则将对应的信元值设置为“supported”或“1”或“TRUE”表示UE在上行和/或下行中分离承载链路选择(或SCG承载链路选择)。下面给出信元描述示例:
Figure PCTCN2017117186-appb-000001
可选地,所述分离承载数据重复只对应上行或下行。如果所述承载只适用于下行,可以定义一个信元,用于指示UE是否支持分离承载数据重复在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于指示UE是否支持分离承载数据重复在下行PDCP数据分离。
可选地,所述分离承载链路选择只对应上行或下行。如果所述承载只适用于下行,可以定义一个信元,用于指示UE是否支持分离承载链路选择在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于指示UE是否支持分离承载链路选择在下行PDCP数据分离。
在另一实施方式中,UE所支持的承载类型和/或传输方式可以通过至少一个信元指示,每个信元对应于一个承载类型(分离承载或SCG承载,但是同一承载类型的承载可以有一个或多个),用于指示对应的承载类型是否支持数据重复或链路选择。换言之,UE所支持的承载类型可以为以下一种或多种:分离承载、SCG承载;对每种类型的承载,分别关联或定义一个信元,所示信元用于指示对应类型的承载是否支持数据重复或链路选择。
例如,如果UE支持数据重复模式下的分离承载(或SCG承载),则将对应信元的值设置为“duplicate”或“1”或“0”或“setup”或“supported”或“TRUE”或如果所述信元不出现,则表示对应分离承载(或SCG承载)为数据重复方式发送数据。如果UE支持链路选择模式下的分离承载(或SCG承载),则将对应信元的值设置为“link-selection”或“1”或“0”或“setup”或“supported”或“TRUE”或如果所述信元不出现,则表示对应分离承载(或 SCG承载)为链路选择方式发送数据。下面给出信元描述示例:
Figure PCTCN2017117186-appb-000002
可选地,所述分离承载只对应上行或下行。如果所述承载类型只适用于下行,可以定义一个信元,用于指示UE是否支持所述承载在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于指示UE是否支持所述承载在下行PDCP数据分离。
类似地,在另一实施方式中,UE所支持的承载类型和/或传输方式可以通过至少一个信元指示,每个信元对应于一个传输方式,用于指示对应的传输方式是否支持分离承载或SCG承载。
在另一实施方式中,UE所支持的承载类型和/或传输方式可以通过两个信元指示,这两个信元对应于一个承载类型,分别用于指示对应的承载类型支持数据重复还是链路选择。换言之,UE支持的承载类型可以为以下一种或多种:分离承载、SCG承载。对每种类型的承载,分别关联或定义两个信元,所述信元分别用于指示对应的承载是否支持数据重复和链路选择。
例如,如果UE支持数据重复模式下的分离承载(或SCG承载),则将对应信元的值设置为“duplicate”或“1”或“setup”或“supported”或“TRUE”。如果UE支持链路选择模式下的分离承载(或SCG承载),则将对应信元的值设置为“link-selection”或“1”或“setup”或“supported”或“TRUE”。下面给出描述信元的三个示例:
示例一:
Figure PCTCN2017117186-appb-000003
示例二:
Figure PCTCN2017117186-appb-000004
示例三:
Figure PCTCN2017117186-appb-000005
可选地,所述分离承载只对应上行或下行。如果所述承载类型只适用于下行,可以定义一个信元,用于指示UE是否支持所述承载在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于指示UE是否支持所述承载在下行PDCP数据分离。
类似地,在另一实施方式中,UE所支持的承载类型和/或传输方式可以通过两个一个信元指示,这两个信元对应于一个传输方式,分别用于指示对应的传输方式支持分离承载还是SCG承载。
以下将参照图8、图10至图12,对根据本公开的第二示例性实施例的在基站和UE之间传输UE的多连接传输配置信息的技术方案进行描述。
如图10所示,在信令c中,基站向UE发送RRC连接重配置消息,所述消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式。在信令d中,基站接收到来自UE的RRC连接重配置完成消息,所述消息用于确认RRC连接重配置成功。
图11示出了根据本发明第二示例性实施例的UE的示意性结构框图。如图11所示,UE 1110包括收发机1111和配置单元1113。本领域技术人员应理解,在图11的UE 1110中仅示出了与本发明相关的收发机1111和配置单元1113,以避免混淆本发明。然而,本领域技术人员应理解,尽管未在图11中示出,但是根据本发明实施例的UE还包括构成UE的其他单元。
收发机1111被配置为:从基站接收RRC连接重配置消息,所述RRC 连接重配置消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式。
配置单元1113被配置为:根据接收到的RRC连接重配置消息来执行RRC连接重配置,包括配置UE用于多连接传输的承载类型和/或传输方式。
收发机1111还被配置为:向基站发送RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
图12示出了根据本发明第二示例性实施例的在UE侧执行的传输UE的多连接传输配置信息的方法流程图。
如图12所示,方法1200包括步骤S1201-S1205,其可由图11所示的UE 1110来执行。
具体地,在步骤S1201,UE 1110的收发机1111从基站接收无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式。
在步骤S1203,UE 1110的配置单元1113根据接收到的RRC连接重配置消息来执行RRC连接重配置,包括配置UE用于多连接传输的承载类型和/或传输方式。
在步骤S1203,UE 1110的收发机1111向基站发送RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
根据本发明第二示例性实施例的基站的示意性结构框图可以参见图8。如图8所示,基站820包括收发机821和配置单元823。本领域技术人员应理解,在图8的基站820中仅示出了与本发明相关的收发机821和配置单元823,以避免混淆本发明。然而,本领域技术人员应理解,尽管未在图8中示出,但是根据本发明实施例的基站还包括构成基站的其他单元。
配置单元823被配置为:为UE配置用于多连接传输的承载类型和/或传输方式。
收发机821被配置为:向UE发送RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含所配置的承载类型和/或传输方式;以及从UE接收RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
图13示出了根据本发明第二示例性实施例的在基站侧执行的配置UE的多连接传输方式的方法流程图。
如图13所示,方法1300包括步骤S1301-S1305,其可由图8所示的基站820来执行。
具体地,在步骤S1301,基站820的配置单元823为UE配置用于多连接传输的承载类型和/或传输方式。
在步骤S1303,基站820的收发机821向UE发送RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含所配置的承载类型和/或传输方式。
在步骤S1305,基站820的收发机821从UE接收RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
在一个实施方式中,RRC连接重配置消息可以包含承载类型和传输方式的以下组合中的至少一个:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择。
在另一实施方式中,RRC连接重配置消息可以包含至少一个承载类型和用于指示对应的承载类型支持数据重复还是链路选择的信元。
在另一实施方式中,RRC连接重配置消息可以包含至少一个传输方式和用于指示对应的传输方式支持分离承载还是SCG承载的信元。
在另一实施方式中,RRC连接重配置消息包含至少一个承载类型和用于指示所配置的至少一个承载类型支持数据重复还是链路选择的信元,也就是说,为RRC连接重配置消息中的所有承载定义一个信元,所述信元用于指示所配置的所有承载支持数据重复还是链路选择。
在另一实施方式中,RRC连接重配置消息包含至少一个传输方式和用于指示所配置的至少一个传输方式支持分离承载还是SCG承载的信元。
在一个实施例中,基站(E-UTRAN和/或5G-RAN)可以根据多连接方式下UE上报的其所支持的承载类型和传输方式的组合方式,为UE配置所述组合方式中的一个或多个。
在一个实施方式中,UE支持的承载类型和传输方式的组合方式可以为以下一种或多种:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择。基站为UE配置的每个承载的类型可以为以下之一:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择。具体可参考长期演进LTE所定义的双连接方式中承载的配置方式。下面给出描述信元的示例:
Figure PCTCN2017117186-appb-000006
可选地,所述配置的分类承载数据重复(或分类承载链路选择)只对应上行或下行。如果所述配置只适用于下行,可以定义一个信元,用于配置或指示是否支持分离承载数据重复(或分离承载链路选择)在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于配置是否支持分离承载数据重复(或分离承载链路选择)在下行PDCP数据分离。
在另一实施方式中,根据多连接方式下UE上报的其所支持的承载类型,基站为UE配置一个或多个承载类型(例如,示例中的信元drb-Type)及对应承载采用的传输方式为数据重复或链路选择(例如,示例中的信元drb-Mode)。基站(E-UTRAN和/或5G-RAN)为UE配置的每个承载的类型可以为以下之一:分离承载、SCG承载。下面给出描述信元的示例:
Figure PCTCN2017117186-appb-000007
可选地,所述分离承载只对应上行或下行。如果所述配置只适用于下行,可以定义一个信元,用于配置或指示是否支持分离承载在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于配置是否支持分离承载在下行PDCP数据分离。
在再一个实施例中,根据多连接方式下UE上报的其所支持的承载类型,基站为UE配置一个或多个承载(例如,示例中信元drb-ToAddModListSCG所包含的承载)及配置多连接承载采用的传输方式为数据重复或链路选择,所述配置的传输方式适用于所有多链接承载(例如,示例中信元scg-Mode)。基站(E-UTRAN和/或5G-RAN)为UE配置的每个承载的类型可以为以下之一:分离承载、SCG承载。下面给出所述实施例描述信元的示例:
Figure PCTCN2017117186-appb-000008
可选地,所述分离承载只对应上行或下行。如果所述配置只适用于下行,可以定义一个信元,用于配置或指示是否支持分离承载在上行PDCP数据分离;如果所述配置只适用于上行,可以定义一个信元,用于配置是否支持分离承载在下行PDCP数据分离。
以下将对根据本公开的第三示例性实施例的在UE侧执行的避免发送已被成功接收的数据的技术方案进行描述。
根据本公开第三示例性实施例的在UE处于数据重复的多连接传输方式下,以下将分别针对上行传输和下行传输的情况进行描述。
上行传输
参照图1(由于描述的是上行传输,其数据传输方向应与图1中的箭头方向相反),UE包括至少一个PDCP实体,每个PDCP实体至少关联一个 下层实体,即,RLC实体。在图1给出的示例中,以黑粗线示出的PDCP实体和RLC实体(例如3个,但不限于此)相关联,以细线示出的PDCP实体和RLC实体相关联。
在上行传输中,UE在数据重复的多连接传输方式下避免重复传输已被确认成功发送的数据的方法包括:
通过PDCP实体将至少一个PDCP SDU封装为PDCP PDU发送给与所述PDCP实体相关联的至少一个下层实体;以及
当所述PDCP实体从至少一个下层实体接收PDCP SDU发送成功的确认指示时,删除所述发送成功的PDCP SDU及其对应的PDCP PDU。
如果所述对应的PDCP PDU已经发送至所述至少一个下层实体中的至少一个其他下层实体,通过所述PDCP实体指示所述至少一个其他下层实体删除所述对应的PDCP PDU。
具体地,UE上行数据PDCP SDU经过PDCP实体封装后发送给多个下层实体(即RLC实体),所述多个下层实体是采用重复数据传输的分离承载(即,分离承载数据重复)所涉及的RLC实体中的部分或全部RLC实体(即,所述PDCP实体所关联到的多个RLC实体)。如果某个RLC实体接收到来自PDCP实体的PDCP PDU(或称RLC SDU),且所述PDCP PDU发送成功,则指示上层(PDCP层)所述PDCP PDU发送成功。当UE的PDCP实体接收到来自某个RLC实体(称为第一RLC实体)的PDCP PDU发送成功的指示,PDCP实体指示其他RLC实体删除所述已成功发送的PDCP PDU(或RLC SDU)。所述其他RLC实体是多连接下采用重复数据传输的分离承载或分离承载数据重复所涉及的RLC实体或从PDCP实体接收到所述已成功发送的PDCP PDU的RLC实体,但不包含第一RLC实体。换言之,当某个下层实体(RLC实体)确认PDCP SDU传送成功,UE应当删除所述PDCP SDU及对应的PDCP PDU。如果所述PDCP PDU已经递交给其他下层(RLC层),将所述删除信息指示给其他下层实体,即指示其他下层实体删除所述PDCP PDU。所述其他RLC实体是多连接下采用重复数据传输的分离承载或分离承载数据重复所涉及的RLC实体或从PDCP实体接收到所述已成功发送的PDCP PDU的RLC实体,但不包含第一RLC实体。
下行传输
在下行传输中,UE在数据重复的多连接传输方式下避免重复传输已被确认成功发送的数据的方法包括:
通过PDCP实体从与所述PDCP实体相关联的至少一个下层实体(即,RLC实体)接收至少一个PDCP SDU或PDCP PDU;以及
当所述PDCP实体确认成功接收到一个PDCP SDU时,向所述至少一个RLC实体中的至少一个其他RLC实体指示这个PDCP SDU或PDCP PDU被成功接收。
如果至少一个其他RLC实体之一未从基站成功接收已被成功接收的这个PDCP SDU或PDCP PDU,则这个其他RLC实体指示在基站中的对等实体不执行重传;
如果至少一个其他RLC实体之一也成功接收到已被成功接收的这个PDCP SDU或PDCP PDU,则这个其他RLC实体删除这个PDCP SDU或PDCP PDU。
具体地,当UE接收下行数据时,当PDCP实体从某个下层实体(即RLC实体)成功接收到某个PDCP SDU或PDCP PDU,指示其他下层实体(即RLC实体)所述PDCP PDU(即RLC SDU)接收成功。如果在某个其他下层实体中,所述指示成功接收的RLC SDU或其分段未成功接收,其他下层实体可以指示对等实体不重传所述RLC SDU或其分段,即在RLC状态PDU中不包含所述RLC SDU或其分段。如果某个其他下层实体成功接收所述PDCP PDU或其分段,则不递交到上层(PDCP),即删除所述PDCP PDU或其分段。
以下将参照图14至图16,对根据本公开的第四示例性实施例的在数据重复的多连接传输方式下基站在下行传输中执行的避免发送已被成功接收的数据的技术方案进行描述。
图14示出了根据本发明第四示例性实施例的在基站和UE之间传输PDCP状态报告以及在基站之间传输下行数据传输状态指示的示意性信号流图。
如图14所示,在信令e中,基站(或MeNB或MCG)接收到来自UE的PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP协议数据单元PDU。在信令f中,主基站向辅基站发送下行数 据传输状态指示消息,用于向辅基站指示UE已成功接收的PDCP PDU。
图15示出了根据本发明第四示例性实施例的基站的示意性结构框图。如图15所示,基站1520包括收发机1521和生成单元1523。本领域技术人员应理解,在图15的基站1520中仅示出了与本发明相关的收发机1521和生成单元1523,以避免混淆本发明。然而,本领域技术人员应理解,尽管未在图15中示出,但是根据本发明实施例的基站还包括构成基站的其他单元。
在第四实施例中,收发机1521被配置为:从UE接收PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP PDU。
生成单元1523被配置为:根据接收到的PDCP状态报告,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU。
收发机1521还被配置为:向至少一个其他基站发送所述下行数据传输状态指示消息。
图16示出了根据本发明第四示例性实施例的在基站侧执行的避免发送已被成功接收的数据的方法流程图。
如图16所示,方法1600包括步骤S1601-S1605,其可由图15所示的基站1520来执行。
具体地,在步骤S1601,基站1520的收发机1521从UE接收PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP协议数据单元PDU。
在步骤S1603,基站1520的生成单元1523根据接收到的PDCP状态报告,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU。
在步骤S1605,基站1520的收发机1521向至少一个其他基站(辅基站)发送所述下行数据传输状态指示消息。
可选地,方法1600可以包括以下步骤(未示出):
基站1520的收发机1521向UE发送RRC连接重配置消息,所述消息包含用于配置UE发送PDCP状态报告的周期的参数或信元;以及
基站1520的收发机1521接收到来自UE的RRC连接重配置完成消息。
在UE端,当PDCP状态报告条件被触发,例如:接收到上层(或基站) 查询(polling)或状态报告计时器到期,所述状态报告计时器是用于UE为多连接承载触发状态报告,其取值可由基站通过RRC信令配置,UE的PDCP实体在处理从不同下层实体(即RLC实体)接收的PDCP PDU后构造PDCP状态报告,将所述状态报告作为第一个PDCP PDU递交给下层实体进行传输。
在一个实施例中,下行数据传输状态指示消息包含的内容为包含在PDCP状态报告中的一个或多个字段。此时,主基站(MeNB)可以将接收到来自UE的状态报告发送给辅基站(SeNB)。
在另一个实施例中,下行数据传输状态指示消息包含的内容为:已成功发送的最大PDCP PDU SN(也就是UE已成功接收的最大PDCP PDU SN)、所有未成功发送且序列号小于已成功发送的最大PDCP PDU SN的PDCP PDU SN(也就是UE未确认成功接收且序列号小于最大已成功接收的PDCP PDU SN的PDCP PDU SN)。
可选地,下行数据传输状态指示消息包含的内容为:所有基站(包含主基站和辅基站)已成功发送的最大PDCP PDU SN、所有未成功发送且SN小于所有基站已成功发送的最大PDCP PDU SN的PDCP PDU SN。
可选地,图14所示的信号流图还包括信令j(以虚线示出),辅基站向主基站发送下行数据传输状态消息,所述下行数据传输状态消息包含以下内容:
(a)从主基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号(可以为PDCP SN);
(b)相应的无线接入承载的期望缓冲区大小;
(c)针对所述UE的最小期望缓冲区大小;以及
(d)辅基站认为丢失且未包含在当前向主基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包。
此外,在决定不再使用下行用户数据传输过程时,下行数据传输状态消息不包括(d)。
需要说明的是,信令f和信令j的执行不分先后。
以下将参照图15、图17至图18,对根据本公开的第五示例性实施例的在数据重复的多连接传输方式下在下行传输中基站之间执行的避免发送 已被成功接收的数据的技术方案进行描述。
图17示出了根据本发明第五示例性实施例的在基站之间传输下行数据传输状态和下行数据传输状态指示的示意性信号流图。
如图17所示,在信令g中,主基站接收到来自一个或多个辅基站的下行数据传输状态消息。所述消息包含以下内容:
(a)从主基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号(可以为PDCP SN);
(b)相应的无线接入承载的期望缓冲区大小;
(c)针对所述UE的最小期望缓冲区大小;以及
(d)辅基站认为丢失且未包含在当前向主基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包。
此外,在决定不再使用下行用户数据传输过程时,下行数据传输状态消息不包括(d)。
在信令h中,主基站向一个或多个辅基站发送下行数据传输状态指示消息。如果为双连接,则为一个辅基站。
根据本发明第五示例性实施例的基站的示意性结构框图可以参照图15。如图15所示,基站1520包括收发机1521和生成单元1523。本领域技术人员应理解,在图15的基站1520中仅示出了与本发明相关的收发机1521和生成单元1523,以避免混淆本发明。然而,本领域技术人员应理解,尽管未在图15中示出,但是根据本发明实施例的基站还包括构成基站的其他单元。
在第五实施例中,收发机1521被配置为:向至少一个其他基站发送PDCP PDU;从至少一个其他基站接收下行数据传输状态消息,所述下行数据传输状态消息用于指示从所述基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号、相应的无线接入承载的期望缓冲区大小、针对所述UE的最小期望缓冲区大小、以及至少一个其他基站认为丢失且未包含在所述基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包。
生成单元1523被配置为:根据接收到的下行数据传输状态消息,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU。
收发机1521还被配置为:向至少一个其他基站发送所述下行数据传输状态指示消息。
图18示出了根据本发明第五示例性实施例的在基站之间执行的避免发送已被成功接收的数据的方法流程图。
如图18所示,方法1800包括步骤S1801-S1807,其可由图15所示的基站1520来执行。
具体地,在步骤S1801,基站1520的收发机1521向至少一个其他基站(辅基站)发送PDCP PDU。
在步骤S1803,基站1520的收发机1521从至少一个其他基站接收下行数据传输状态消息,所述下行数据传输状态消息用于指示从所述基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号SN、相应的无线接入承载的期望缓冲区大小、针对所述UE的最小期望缓冲区大小、以及至少一个其他基站认为丢失且未包含在所述基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包。
在步骤S1805,基站1520的生成单元1523根据接收到的下行数据传输状态消息,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU。
在步骤S1807,基站1520的收发机1521向至少一个其他基站发送所述下行数据传输状态指示消息。
在一个实施例中,下行数据传输状态指示消息包含的内容为包含在PDCP状态报告中的一个或多个字段。此时,主基站(MeNB)可以将接收到来自UE的状态报告发送给辅基站(SeNB)。
在另一个实施例中,下行数据传输状态指示消息包含的内容为:已成功发送的最大PDCP PDU SN(也就是UE已成功接收的最大PDCP PDU SN)、所有未成功发送且序列号小于已成功发送的最大PDCP PDU SN的PDCP PDU SN(也就是UE未确认成功接收且序列号小于最大已成功接收的PDCP PDU SN的PDCP PDU SN)。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬 盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (21)

  1. 一种在支持多连接传输的用户设备UE处执行的方法,包括:
    从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;
    响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及
    向基站发送所述UE能力信息消息。
  2. 一种在支持多连接传输的基站处执行的方法,包括:
    向用户设备UE发送UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;
    从UE接收UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及根据所述UE能力信息消息,为UE配置用于多连接传输的承载类型和/或传输方式。
  3. 一种用户设备UE,包括:
    收发机,用于从基站接收UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;以及
    生成单元,用于响应于接收到的所述UE能力查询消息,生成UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式,
    所述收发机还用于向基站发送所述UE能力信息消息。
  4. 一种基站,包括:
    收发机,用于向用户设备UE发送UE能力查询消息,所述UE能力查询消息用于请求UE发送UE对接入网的无线访问能力;以及从UE接收UE能力信息消息,所述UE能力信息用于指示UE对接入网的无线访问能力,并且包含UE所支持的承载类型和/或传输方式;以及
    配置单元,用于根据所述UE能力信息消息,为UE配置用于多连接传输的承载类型和/或传输方式。
  5. 根据权利要求1或2所述的方法或根据权利要求3所述的UE或根 据权利要求4所述的基站,其中UE所支持的承载类型包括以下至少一种:分离承载、辅小区组SCG承载;以及UE所支持的传输方式包括以下至少一种:数据重复、链路选择。
  6. 根据权利要求5所述的方法或UE或基站,其中UE所支持的承载类型和/或传输方式以至少一个信元指示,其中
    每个信元指示UE是否支持承载类型和传输方式的以下组合之一:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择;或
    每个信元对应于一个承载类型,用于指示对应的承载类型是否支持数据重复或链路选择;或
    每个信元对应于一个传输方式,用于指示对应的传输方式是否支持分离承载或SCG承载;或
    两个信元对应于一个承载类型,分别用于指示对应的承载类型支持数据重复还是链路选择;或
    两个信元对应于一个传输方式,分别用于指示对应的传输方式支持分离承载还是SCG承载。
  7. 一种在支持多连接传输的用户设备UE处执行的方法,包括:
    从基站接收无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式;
    根据接收到的RRC连接重配置消息来执行RRC连接重配置,包括配置UE用于多连接传输的承载类型和/或传输方式;以及
    向基站发送RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
  8. 一种在支持多连接传输的基站处执行的方法,包括:
    为用户设备UE配置用于多连接传输的承载类型和/或传输方式;
    向UE发送无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含所配置的承载类型和/或传输方式;
    从UE接收RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
  9. 一种用户设备UE,包括:
    收发机,用于从基站接收无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含基站为UE配置的承载类型和/或传输方式;以及
    配置单元,用于根据接收到的RRC连接重配置消息来执行RRC连接重配置,包括配置UE用于多连接传输的承载类型和/或传输方式;
    所述收发机还用于向基站发送RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
  10. 一种基站,包括:
    配置单元,用于为用户设备UE配置用于多连接传输的承载类型和/或传输方式;以及
    收发机,用于向UE发送无线资源控制RRC连接重配置消息,所述RRC连接重配置消息用于修改RRC连接,并且包含所配置的承载类型和/或传输方式;以及从UE接收RRC连接重配置完成消息,所述RRC连接重配置完成消息用于确认RRC连接重配置成功。
  11. 根据权利要求7或8所述的方法或根据权利要求9所述的UE或根据权利要求10所述的基站,其中
    所述RRC连接重配置消息包含承载类型和传输方式的以下组合中的至少一个:分离承载数据重复、分离承载链路选择、SCG承载数据重复、SCG承载链路选择;或
    所述RRC连接重配置消息包含至少一个承载类型和用于指示对应的承载类型支持数据重复还是链路选择的信元;或
    所述RRC连接重配置消息包含至少一个传输方式和用于指示对应的传输方式支持分离承载还是SCG承载的信元;或
    所述RRC连接重配置消息包含至少一个承载类型和用于指示所配置的至少一个承载类型支持数据重复还是链路选择的信元;或
    所述RRC连接重配置消息包含至少一个传输方式和用于指示所配置的至少一个传输方式支持分离承载还是SCG承载的信元。
  12. 一种用户设备UE在数据重复的多连接传输方式下执行的方法,包括:
    通过分组数据汇聚协议PDCP实体将至少一个PDCP服务数据单元SDU封装为PDCP协议数据单元PDU发送给与所述PDCP实体相关联的至 少一个下层实体;以及
    当所述PDCP实体从至少一个下层实体接收PDCP SDU发送成功的确认指示时,删除所述发送成功的PDCP SDU及其对应的PDCP PDU。
  13. 根据权利要求12所述的方法,还包括:
    如果所述对应的PDCP PDU已经发送至所述至少一个下层实体中的至少一个其他下层实体,通过所述PDCP实体指示所述至少一个其他下层实体删除所述对应的PDCP PDU。
  14. 一种用户设备UE,包括:
    分组数据汇聚协议PDCP实体;以及
    与所述PDCP实体相关联的至少一个下层实体,
    其中所述PDCP实体用于:将至少一个PDCP服务数据单元SDU封装为PDCP协议数据单元PDU发送给与所述至少一个下层实体;以及当从至少一个下层实体接收PDCP SDU发送成功的确认指示时,删除所述发送成功的PDCP SDU及其对应的PDCP PDU。
  15. 根据权利要求14所述的UE,其中
    所述PDCP实体还用于:如果所述对应的PDCP PDU已经发送至所述至少一个下层实体中的至少一个其他下层实体,指示所述至少一个其他下层实体删除所述对应的PDCP PDU。
  16. 一种基站在数据重复的多连接传输方式下执行的方法,包括:
    从用户设备UE接收分组数据汇聚协议PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP协议数据单元PDU;
    根据接收到的PDCP状态报告,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU;以及
    向至少一个其他基站发送所述下行数据传输状态指示消息。
  17. 一种基站在数据重复的多连接传输方式下执行的方法,包括:
    向至少一个其他基站发送分组数据汇聚协议PDCP协议数据单元PDU;
    从至少一个其他基站接收下行数据传输状态消息,所述下行数据传输状态消息用于指示从所述基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号SN、相应的无线接入承载的期望缓冲区大小、针对所述UE的最小期望缓冲区大小、以及至少一个其他基站认为丢失且未包含在所 述基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包;
    根据接收到的下行数据传输状态消息,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU;以及
    向至少一个其他基站发送所述下行数据传输状态指示消息。
  18. 一种基站,包括:
    收发机,用于从用户设备UE接收分组数据汇聚协议PDCP状态报告,所述PDCP状态报告用于向所述基站指示UE已成功接收的PDCP协议数据单元PDU;以及
    生成单元,用于根据接收到的PDCP状态报告,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU,
    所述收发机还用于向至少一个其他基站发送所述下行数据传输状态指示消息。
  19. 一种基站,包括:
    收发机,用于向至少一个其他基站发送分组数据汇聚协议PDCP协议数据单元PDU;从至少一个其他基站接收下行数据传输状态消息,所述下行数据传输状态消息用于指示从所述基站接收到并已成功按序发送给所述UE的PDCP PDU的最大序列号、相应的无线接入承载的期望缓冲区大小、针对所述UE的最小期望缓冲区大小、以及至少一个其他基站认为丢失且未包含在所述基站发送的下行数据传输状态帧中的Xn-U或Xx-U或X2-U数据包;以及
    生成单元,用于根据接收到的下行数据传输状态消息,生成下行数据传输状态指示消息,所述下行数据传输状态指示消息用于向至少一个其他基站指示UE已成功接收的PDCP PDU,
    其中所述收发机还用于向至少一个其他基站发送所述下行数据传输状态指示消息。
  20. 根据权利要求16或17所述的方法或18或19所述的基站,其中所述下行数据传输状态指示消息包含的内容为包含在PDCP状态报告中的字段。
  21. 根据权利要求16或17所述的方法或18或19所述的基站,其中 所述下行数据传输状态指示消息包含的内容为:
    UE已成功接收的最大PDCP PDU的序列号SN、所有未成功接收且SN小于UE已成功接收的最大PDCP PDU SN的PDCP PDU SN;或
    所有基站已成功发送的最大PDCP PDU SN、所有未成功发送且SN小于所有基站已成功发送的最大PDCP PDU SN的PDCP PDU SN。
PCT/CN2017/117186 2016-12-30 2017-12-19 多连接传输能力上报方法、多连接传输方式配置方法、避免重传数据的方法、ue和基站 WO2018121347A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/475,069 US11706611B2 (en) 2016-12-30 2017-12-19 Method for reporting multi-connection transmission capability, method for configuring multi-connection transmission mode, method for preventing retransmission of data, UE and base station
AU2017389025A AU2017389025B2 (en) 2016-12-30 2017-12-19 Method for reporting multi-connection transmission capability, method for configuring multi-connection transmission mode, method for preventing retransmission of data, UE and base station
EP17887435.0A EP3565367A4 (en) 2016-12-30 2017-12-19 METHOD FOR REPORTING MULTIPLE-CONNECTION TRANSFERABILITY, METHOD FOR CONFIGURATION OF A MULTI-CONNECTION TRANSFER MODE, METHOD FOR PREVENTING RE-TRANSFER OF DATA, USER DEVICE AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611271047.7A CN108617029B (zh) 2016-12-30 2016-12-30 无线承载配置方法、及相应的ue和基站
CN201611271047.7 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018121347A1 true WO2018121347A1 (zh) 2018-07-05

Family

ID=62706919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117186 WO2018121347A1 (zh) 2016-12-30 2017-12-19 多连接传输能力上报方法、多连接传输方式配置方法、避免重传数据的方法、ue和基站

Country Status (5)

Country Link
US (1) US11706611B2 (zh)
EP (1) EP3565367A4 (zh)
CN (1) CN108617029B (zh)
AU (1) AU2017389025B2 (zh)
WO (1) WO2018121347A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067960A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of protocol data units
WO2020063438A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 一种协调重复传输的方法
WO2020063852A1 (zh) * 2018-09-27 2020-04-02 维沃移动通信有限公司 终端设备能力信息处理方法、终端设备及网络侧设备
WO2020147137A1 (en) * 2019-01-16 2020-07-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for managing user equipment capability information
CN111586624A (zh) * 2019-02-18 2020-08-25 中国移动通信有限公司研究院 一种终端能力的确定方法、装置和计算机可读存储介质
WO2021003700A1 (en) 2019-07-10 2021-01-14 Zte Corporation Multi-link communications of a wireless network
US11228960B2 (en) 2018-11-12 2022-01-18 Nokia Technologies Oy Efficient signaling in multi-connectivity scenarios

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616909B (zh) * 2017-01-05 2023-11-10 华为技术有限公司 数据传输方法及装置
CN116527199A (zh) 2017-01-13 2023-08-01 三星电子株式会社 无线通信系统中的终端和第一基站及其方法
CN108631980B (zh) * 2017-03-24 2021-03-05 电信科学技术研究院 数据传输方法、终端、网络侧设备和计算机可读存储介质
CN108810899A (zh) * 2017-04-28 2018-11-13 维沃移动通信有限公司 完整性检测方法、终端及网络侧设备
CN108809542B (zh) * 2017-05-05 2021-04-20 华为技术有限公司 一种数据传输的处理方法和装置
WO2018232559A1 (zh) * 2017-06-19 2018-12-27 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
EP4307588A3 (en) * 2017-06-20 2024-02-28 Apple Inc. Devices and methods for flow-control triggering and feedback
AU2017427054A1 (en) * 2017-08-11 2020-01-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Control method, node, and computer storage medium
JP7088205B2 (ja) * 2017-10-25 2022-06-21 富士通株式会社 無線通信システム、基地局、移動局および無線通信方法
EP3709688A4 (en) * 2017-11-29 2020-12-09 Xiaomi Communications Co., Ltd METHOD AND DEVICE FOR UPDATING THE TRANSFERABILITY
WO2019158525A1 (en) * 2018-02-15 2019-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Joint transmissions of data in a wireless communication system using a non-orthogonal multiple access transmission scheme
KR20200049493A (ko) * 2018-10-26 2020-05-08 주식회사 케이티 차량 통신을 수행하는 방법 및 그 장치
EP3876582B1 (en) * 2018-11-21 2023-07-26 Huawei Technologies Co., Ltd. Retransmission in advance of to-be-transmitted data packets in a dual connectivity scenario, upon failure of the secondary link
CN111417110A (zh) * 2019-01-04 2020-07-14 大唐移动通信设备有限公司 一种基于nsa的小区配置方法及装置
CN111490837B (zh) * 2019-01-25 2021-11-19 华为技术有限公司 用于重配目标小区的方法及装置
CN113475024B (zh) 2019-03-22 2023-03-21 华为技术有限公司 通信方法、装置、设备、系统及存储介质
US11412419B2 (en) * 2019-04-19 2022-08-09 Qualcomm Incorporated Communications during handover procedure
CN112187414B (zh) 2019-07-04 2022-05-24 华为技术有限公司 指示数据传输情况的方法和装置
KR20210152853A (ko) * 2020-06-09 2021-12-16 삼성전자주식회사 이중접속 네트워크에서 패킷을 재전송하는 방법 및 장치
US20220201786A1 (en) * 2020-12-18 2022-06-23 Mediatek Inc. Methods and apparatus to reduce packet latency in multi-leg transmission
WO2023000177A1 (en) * 2021-07-20 2023-01-26 Nec Corporation Method, device and computer readable medium for communication
WO2024026628A1 (en) * 2022-08-01 2024-02-08 Zte Corporation Methods and devices for user equipment transmitting user equipment information
WO2024039189A1 (ko) * 2022-08-17 2024-02-22 삼성전자 주식회사 무선 통신 시스템에서 pdcp sdu 폐기를 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741668A (zh) * 2004-08-23 2006-03-01 大唐移动通信设备有限公司 无线网络控制器选择用户终端切换方式的方法
CN1838816A (zh) * 2005-03-24 2006-09-27 华为技术有限公司 一种获知用户终端设备是否能支持异频硬切换的方法
CN101557634A (zh) * 2008-04-09 2009-10-14 大唐移动通信设备有限公司 一种用户设备能力信息的上报和使用方法、系统和装置
CN102638900A (zh) * 2011-02-15 2012-08-15 电信科学技术研究院 一种连接建立方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10362590B2 (en) * 2013-09-26 2019-07-23 Kt Corporation Method for transmitting uplink data and apparatus for same
US10172179B2 (en) * 2013-11-01 2019-01-01 Samsung Electronics Co., Ltd. Method and apparatus for reconfiguring a bearer
US10433176B2 (en) * 2013-11-11 2019-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Discarding a duplicate protocol data unit associated with a data transmission via a first signaling radio bearer or a second signaling radio bearer
US9967784B2 (en) * 2014-03-21 2018-05-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving signal in mobile communication system supporting a plurality of carriers
JP2018507627A (ja) * 2015-01-29 2018-03-15 華為技術有限公司Huawei Technologies Co.,Ltd. 無線ベアラ再構成方法、無線ベアラ確立方法、ユーザ機器、および基地局
JP6425800B2 (ja) * 2015-04-10 2018-11-21 京セラ株式会社 ユーザ端末、通信方法及びプロセッサ
WO2017140361A1 (en) * 2016-02-18 2017-08-24 Nokia Solutions And Networks Oy Uplink selection for wireless network based on network cell weight and link-specific weight for wireless links
WO2017171202A1 (ko) * 2016-03-27 2017-10-05 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
KR20180050015A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선통신시스템에서 고신뢰 저지연 통신을 위한 데이터 송수신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741668A (zh) * 2004-08-23 2006-03-01 大唐移动通信设备有限公司 无线网络控制器选择用户终端切换方式的方法
CN1838816A (zh) * 2005-03-24 2006-09-27 华为技术有限公司 一种获知用户终端设备是否能支持异频硬切换的方法
CN101557634A (zh) * 2008-04-09 2009-10-14 大唐移动通信设备有限公司 一种用户设备能力信息的上报和使用方法、系统和装置
CN102638900A (zh) * 2011-02-15 2012-08-15 电信科学技术研究院 一种连接建立方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP) RAN#71, March 2016 (2016-03-01)
See also references of EP3565367A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067960A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of protocol data units
WO2020063852A1 (zh) * 2018-09-27 2020-04-02 维沃移动通信有限公司 终端设备能力信息处理方法、终端设备及网络侧设备
RU2767521C1 (ru) * 2018-09-27 2022-03-17 Виво Мобайл Комьюникэйшн Ко., Лтд. Способ обработки информации о возможностях оконечного устройства, оконечное и сетевое устройства
WO2020063438A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 一种协调重复传输的方法
US11228960B2 (en) 2018-11-12 2022-01-18 Nokia Technologies Oy Efficient signaling in multi-connectivity scenarios
WO2020147137A1 (en) * 2019-01-16 2020-07-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for managing user equipment capability information
CN111586624A (zh) * 2019-02-18 2020-08-25 中国移动通信有限公司研究院 一种终端能力的确定方法、装置和计算机可读存储介质
WO2021003700A1 (en) 2019-07-10 2021-01-14 Zte Corporation Multi-link communications of a wireless network
EP3997955A4 (en) * 2019-07-10 2022-07-20 ZTE Corporation MULTI-LINK COMMUNICATIONS OF A WIRELESS NETWORK

Also Published As

Publication number Publication date
AU2017389025A8 (en) 2019-08-29
US20190327607A1 (en) 2019-10-24
CN108617029B (zh) 2023-05-12
EP3565367A4 (en) 2020-08-05
US11706611B2 (en) 2023-07-18
AU2017389025B2 (en) 2022-03-31
AU2017389025A1 (en) 2019-08-01
CN108617029A (zh) 2018-10-02
EP3565367A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2018121347A1 (zh) 多连接传输能力上报方法、多连接传输方式配置方法、避免重传数据的方法、ue和基站
WO2019134529A1 (zh) 用户设备和相关方法
US11395365B2 (en) Method and system for handling PDCP operation in wireless communication system
JP6336069B2 (ja) 移動中の二重接続におけるueの効率的状況報告
WO2018171546A1 (zh) 用户设备和基站处执行的方法及相应的设备
WO2018171738A1 (zh) 切换的方法和设备
US9999028B2 (en) Data transmission method, base station, and user equipment
KR102293998B1 (ko) Tcp/ip를 고려한 데이터 처리 방법
WO2018127238A1 (zh) 信息处理方法及装置
KR102341420B1 (ko) 스위칭 방법, 액세스 네트워크 장치 및 단말 장치
US20160234851A1 (en) Data transmission apparatus and method
US20200112885A1 (en) Handover control method and apparatus
KR20180090658A (ko) 이동통신 시스템에서 다중 연결을 사용한 핸드오버 시 보안 키를 처리하는 방법 및 장치
WO2016138798A1 (zh) 一种在切换程序中传输数据的方法、装置和系统
WO2015117537A1 (zh) 由辅基站和主基站执行的通信方法以及相应的基站
WO2020088472A1 (zh) 通信方法及装置
WO2019019133A1 (zh) 命令指示方法及装置、信息交互方法及装置
WO2019028893A1 (zh) 数据传输的方法及相关设备
WO2018127220A1 (zh) 一种数据转发方法及装置
WO2018141181A1 (zh) 数据传输方法及装置
JP2017510161A (ja) ある範囲のシーケンスナンバーの確認
TWI807527B (zh) 降低多分支傳輸中封包延遲的方法和裝置
WO2018201473A1 (zh) 激活命令的确认装置、数据传输模式的上报装置及方法
WO2018059148A1 (zh) 一种数据转发的方法及其设备
WO2020151648A1 (zh) 适配实体和rlc实体的无线通信方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017389025

Country of ref document: AU

Date of ref document: 20171219

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017887435

Country of ref document: EP

Effective date: 20190730