WO2018127238A1 - 信息处理方法及装置 - Google Patents

信息处理方法及装置 Download PDF

Info

Publication number
WO2018127238A1
WO2018127238A1 PCT/CN2018/076476 CN2018076476W WO2018127238A1 WO 2018127238 A1 WO2018127238 A1 WO 2018127238A1 CN 2018076476 W CN2018076476 W CN 2018076476W WO 2018127238 A1 WO2018127238 A1 WO 2018127238A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
data
rlc
information
secondary node
Prior art date
Application number
PCT/CN2018/076476
Other languages
English (en)
French (fr)
Inventor
刘佳敏
许芳丽
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/475,950 priority Critical patent/US11057797B2/en
Publication of WO2018127238A1 publication Critical patent/WO2018127238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an information processing method and apparatus.
  • the nodes on the network side are mostly connected by wire.
  • the eNB evolved Node B
  • the core network node includes an MME (Mobility Management Entity), an S-GW (Serving GateWay), and the like.
  • the source eNB determines that the UE (User Equipment, also referred to as “terminal”) needs to be switched according to the measurement report and the RRM (Radio Resource Management) information.
  • UE User Equipment
  • RRM Radio Resource Management
  • the source eNB initiates a handover request message to the target eNB, and carries necessary information to prepare for handover on the target side;
  • the target eNB performs admission control based on the received E-RAB (Evolved Radio Access Bearer) QoS (Quality of Service) information, configures the requested resource, and reserves the C-RNTI (Cell Radio Network).
  • E-RAB Evolved Radio Access Bearer
  • QoS Quality of Service
  • C-RNTI Cell Radio Network
  • Temporary Identifier, and a possible RACH (Random Access Channel) Preamble (a preamble of the access channel);
  • the target eNB prepares to switch and sends a handover request acknowledgement message to the source eNB.
  • the handover request acknowledgement message includes an RRC (Radio Resource Control) message for performing handover to the UE, and the RRC message includes a new C-RNTI.
  • RRC Radio Resource Control
  • the eNB security algorithm indicates that it may include a dedicated RACH Preamble and other parameters, such as access parameters, SIBs (system information blocks), etc., and the information of the data forwarding channel may be included in the handover request acknowledgement message if necessary.
  • the source eNB receives the handover request acknowledgement message or once the handover command begins transmission on the downlink, the data forwarding process begins;
  • the source eNB sends the RRC connection reconfiguration message transparently transmitted by the target eNB to the UE after performing operations such as integrity protection and encryption;
  • the source eNB sends an SN (Sequence Number) status delivery message to the target eNB, and the message carries the uplink PDCP SN reception of the E-RABs (RLC AM service) that needs to retain the PDCP (Packet Data Convergence Protocol) status.
  • the status and downlink PDCP SN send status information.
  • the uplink PDCP SN receiving state includes at least a bitmap information of a first lost UL (Unordered List) SDU ((Service Data Unit) PDCP SN and a possible out-of-order UL PDCP SN; the downlink PDCP SN transmission status includes The next PDCP SN number assigned by the target eNB to the new SDU;
  • the UE receives the RRC connection reconfiguration signaling including the handover information, synchronizes with the target eNB, and sends the RRC connection reconfiguration complete.
  • a user plane tunnel for data forwarding is established between the source eNB and the target eNB.
  • Each E-RAB that needs to forward data sets up a tunnel for uplink data forwarding and another user downlink data forwarding.
  • user data is forwarded from the source eNB to the target eNB.
  • the source eNB continues to forward the user plane data until the last packet "end marker".
  • the target eNB receives the "end marker" and considers that the forwarding data is completed.
  • the distance between transmission nodes is relatively close, and the frequency of switching and moving between transmission nodes is large.
  • L2 layer 2, ie, the medium access control layer
  • the status of L2 needs to be reset every time the service node is replaced, the user experience is affected on the one hand, and the unnecessary retransmission caused by the reset on the other hand also reduces the system efficiency, because RLC The layer reset will lose some of the transmission information of the RLC layer. For example, some RLC PDUs (protocol data units) are successfully transmitted and obtain a positive acknowledgment from the receiving end, and the RLC PDU does not contain complete high-level data, but a certain segment of the high-level data, which has been successfully transmitted.
  • RLC PDUs protocol data units
  • the segmentation information is not retained, which is equivalent to the retransmission of the entire high-level data at the target node, which includes the segments that have been successfully transmitted, resulting in redundant retransmissions, which is not conducive to system efficiency and user experience. .
  • the technical problem to be solved by the present disclosure is to provide an information processing method and apparatus, which can ensure that the UE moves quickly between nodes, improves the experience of switching between nodes, and improves the data transmission efficiency of the network.
  • an information processing method which is applied to a first node, and the method includes:
  • the first node receives an indication message on the network side, where the indication message indicates that the user equipment under the first node is switched to the second node;
  • the first node negotiates with the second node to reserve radio link layer control protocol RLC state information of all bearers of the user equipment and cache data, so that the second node is the user based on the retained information.
  • the device provides a connected data service.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the stack is located at the main control node
  • the RLC and other protocol stacks are respectively located at the first secondary node and the second secondary node.
  • the receiving, by the first node, the indication message on the network side includes:
  • the first secondary node forwards the RLC status information and the cached data of all the bearers of the user equipment to the second secondary node.
  • the method further includes:
  • the first secondary node immediately triggers the current receiving state and forms a new status report, and sends the new status report to the user equipment, where the status report includes the highest value ACK_SN of the SN of the data packet that has been correctly received by the uplink,
  • the status report also includes SN or segmentation information for all packets that have not been successfully received within the ACK_SN.
  • the first secondary node forwards, by using the primary control node, RLC status information and cache data of all bearers of the user equipment to The second secondary node.
  • the RLC status information includes acknowledge mode AM status information
  • the AM status information includes one or more of the following information: the sequence number SN of the next data packet to be transmitted, the next SN confirming the successful transmission of the data packet, and the polling configuration information.
  • the configuration information of the Poll includes one or more of the following information: a Poll is triggered every preset number of SNs or a preset number of bytes, and the number of SNs or bytes accumulated at the current time from the last Poll trigger is last. The highest SN number recorded when the Poll is triggered;
  • the AM status information includes one or more of the following information: the highest value or the highest value of the SN of all correctly received data packets in sequence plus one, and the received SN of the data packet in the receiving window is the highest.
  • the value or the highest value is incremented by one, and the highest or highest value of the SN that can be included in the status report is incremented by one;
  • the AM status information includes the first SN of the data packet that has been sent but has not obtained the peer ARQ ACK acknowledgement, and the corresponding bit stream, the bit stream indicates from the data packet, and thereafter each Whether the sent packet receives an ARQ ACK confirmation;
  • the AM status information includes: an SN corresponding to the first unreceived data packet and a corresponding bit stream, the bit stream indicating the reception status of each data packet from the data packet thereafter .
  • the cached data includes cached data that needs to be forwarded in the AM mode
  • the cached data that needs to be forwarded in the AM mode includes: all the packets that have been sent but not received the ARQ ACK or all the packets that are sent from the first but not received the ARQ ACK packet, and all a packet that is not sent but cached in the send buffer;
  • the cached data that needs to be forwarded in the AM mode includes: all the packets in the receive buffer.
  • the cached data that needs to be forwarded in the AM mode further includes the number of times that all the transmitted data packets are sent;
  • the cached data that needs to be forwarded in the AM mode further includes the segmentation information of the part of the data packet.
  • segmentation information is in the form of SO+LI, where SO indicates a starting position of the portion in the data packet, and LI is length information of the portion;
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet.
  • the RLC status information includes non-acknowledgment mode UM status information
  • the UM status information includes the SN of the next data packet to be sent
  • the UM status information includes the highest or highest value of the SN of the received data packet minus one.
  • the cached data includes cached data that needs to be forwarded in the UM mode
  • the cached data that needs to be forwarded in the UM mode includes: all unsent packets; or the cached data that needs to be forwarded in the UM mode includes: all unsent packets and sent but not received HARQ ACK packet;
  • the cached data that needs to be forwarded in the UM mode includes: a data packet that has not been detected by the reordering timer.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node, a PDCP protocol stack and an RLC_H protocol.
  • the stack is located at the primary control node, and the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node.
  • the receiving, by the first node, the indication message on the network side includes:
  • the first secondary node resets the RLC_L layer and the following protocol stack entities.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the first node negotiates with the second node to reserve all bearers of the user equipment.
  • RLC status information and cached data include:
  • the first evolved base station sends a handover preparation command to the second evolved base station, and asks whether the second evolved base station agrees to perform layer two state maintenance;
  • the first evolved base station performs an operation of maintaining a layer two state, otherwise the first evolved base station performs a PDCP protocol stack entity Perform state forwarding to reset the remaining protocol stack entities.
  • the operation of the first evolved base station to perform the hold layer two state includes:
  • the first evolved base station forwards the state and data of the RLC layer to the second evolved base station;
  • the security parameter needs to be updated, it is determined according to the security algorithm whether the PDCP protocol data unit PDU of the received fragment can be successfully decrypted, and if successfully decrypted, the first evolved base station sends all received PDCP PDU segments to the PDCP.
  • the layer decrypts, recovers the PDCP service data unit SDU segment, and forwards the recovered segment to the second evolved base station; if the decryption cannot be successfully performed, the first evolved base station deletes the received PDCP PDU segmentation, recorded at the RLC layer as the entire PDCP PDU is lost and the state of the RLC layer is updated, the cache associated with the PDCP PDU segment is deleted, and the new RLC layer state and remaining data are forwarded to the second Evolved base station.
  • An embodiment of the present disclosure further provides an information processing method, which is applied to a second node, where the method includes:
  • the second node negotiates with the first node to retain radio bearer layer control protocol RLC state information of all bearers of the user equipment and cache data, and the user equipment switches from the first node to the second node ;
  • the second node provides the user equipment with a connected data service based on the retained information.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the stack is located at the main control node
  • the RLC and other protocol stacks are respectively located at the first secondary node and the second secondary node
  • the second node negotiates with the first node to reserve all the user equipments.
  • the RLC status information and cached data carried include:
  • the second secondary node receives RLC status information and cache data of all bearers of the user equipment sent by the first secondary node;
  • the second secondary node stores state variables and information of all bearers of the user equipment according to the RLC status information and the cached data.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node, a PDCP protocol stack and an RLC_H protocol.
  • the stack is located at the master node
  • the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node
  • the second node negotiates with the first node to reserve the RLC status of all bearers of the user equipment.
  • Information and cached data include:
  • the second secondary node reconstructs RLC_L and the following protocol stack entities, and initializes each protocol stack entity that is built.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the second node negotiates with the first node to reserve RLC status of all bearers of the user equipment.
  • Information and cached data include:
  • the second evolved base station returns handover feedback signaling to the first evolved base station, indicating whether to agree to perform layer two state maintenance.
  • the embodiment of the present disclosure further provides an information processing method, which is applied to a user equipment, and the method includes:
  • the user equipment receives an indication message sent by the network side, where the indication message indicates that the user equipment is switched from the first node to the second node, and the indication message carries an indication field about layer 2 information processing;
  • the user equipment processes the layer 2 information according to the indication message to switch from the first node to the second node.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node, a PDCP protocol stack and an RLC_H protocol.
  • the stack is located at the main control node, and the protocol stacks of the RLC_L layer and the following are respectively located at the first secondary node and the second secondary node, and the user equipment processes the layer 2 information according to the indication message, including:
  • the user equipment resets all physical protocol layers and all protocol stack entities below;
  • the user equipment directly determines that the data receiving Gap of the RLC is performing reordering detection is packet loss, no longer waits, and resets the reordering timer and updates the variable of the reordering record, and determines all the Gaps in the receiving queue at this time. For packet loss, update the maximum value of the SN included in the status report to the highest value of the SN of the currently received data packet or add 1;
  • the user equipment feeds back a status report to the network side, where the status report carries the SN highest value ACK_SN of the received data packet, and carries all SN lists that are determined to be lost packets;
  • the user equipment maintains all states of the PDCP protocol stack entity.
  • the status report further includes segmentation information of the lost portion of the received data packet, the segmentation information is in the form of SO+LI, where SO indicates the start position of the lost portion in the data packet, and LI is the lost data packet. Length information to request retransmission of the missing portion;
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the user equipment processing the layer 2 information according to the indication message includes:
  • the user equipment When the indication message carries an indication that the RLC is not reset, the user equipment does not reset the RLC protocol stack entity;
  • the user equipment reserves the PDCP and the RLC protocol stack entity, resets the MAC and the following protocol stack entities, treats all received Gits as packet loss, and feeds back the status report;
  • the user equipment determines whether the non-complete PDCP PDU data can be decrypted according to the security algorithm, and if the non-complete PDCP PDU data cannot be decrypted, all the received data are deleted, and the deleted data is corresponding.
  • the RLC PDU or the PDU segment therein is regarded as a packet loss, and is recorded as a NACK in the status record, and the data in the RLC cache is deleted;
  • the user equipment sends the partially received data to the PDCP layer for decryption operation, and if the decryption is successful, the RLC PDU corresponding to the successfully decrypted data or the PDU segment therein is regarded as correct.
  • Receive mark ACK in the status update, delete the data in the RLC cache.
  • An embodiment of the present disclosure further provides an information processing apparatus, which is applied to a first node, where the apparatus includes:
  • a receiving module configured to receive an indication message on the network side, where the indication message indicates that the user equipment under the first node is switched to the second node;
  • a processing module configured to negotiate with the second node to retain radio bearer layer control protocol RLC state information of all bearers of the user equipment, and cache data, so that the second node is the user based on the retained information
  • the device provides a connected data service.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the stack is located at the main control node
  • the RLC and other protocol stacks are respectively located at the first secondary node and the second secondary node.
  • the receiving module is specifically configured to receive an indication message sent by the master control node
  • the processing module is specifically configured to forward the RLC status information and the cached data of all the bearers of the user equipment to the second secondary node.
  • the device further includes:
  • a sending module configured to immediately trigger a current receiving state and form a new status report, and send the new status report to the user equipment, where the status report includes a highest value ACK_SN of the SN of the data packet that has been correctly received by the uplink,
  • the status report also includes SN or segmentation information for all packets that have not been successfully received within the ACK_SN.
  • the processing module is specifically configured to forward, by using the direct interface, all the RLC status information and the cached data of the user equipment to the second secondary node;
  • the processing module is specifically configured to forward, by using the primary control node, RLC status information and cache data of all bearers of the user equipment. To the second secondary node.
  • the RLC status information includes acknowledge mode AM status information
  • the AM status information includes one or more of the following information: the sequence number SN of the next data packet to be transmitted, the next SN confirming the successful transmission of the data packet, and the polling configuration information.
  • the configuration information of the Poll includes one or more of the following information: a Poll is triggered every preset number of SNs or a preset number of bytes, and the number of SNs or bytes accumulated at the current time from the last Poll trigger is last. The highest SN number recorded when the Poll is triggered;
  • the AM status information includes one or more of the following information: the highest value or the highest value of the SN of all correctly received data packets in sequence plus one, and the received SN of the data packet in the receiving window is the highest.
  • the value or the highest value is incremented by one, and the highest or highest value of the SN that can be included in the status report is incremented by one;
  • the AM status information includes the first SN of the data packet that has been sent but has not obtained the peer ARQ ACK acknowledgement, and the corresponding bit stream, the bit stream indicates from the data packet, and thereafter each Whether the sent packet receives an ARQ ACK confirmation;
  • the AM status information includes: an SN corresponding to the first unreceived data packet and a corresponding bit stream, the bit stream indicating the reception status of each data packet from the data packet thereafter .
  • the cached data includes cached data that needs to be forwarded in the AM mode
  • the cached data that needs to be forwarded in the AM mode includes: all the packets that have been sent but not received the ARQ ACK or all the packets that are sent from the first but not received the ARQ ACK packet, and all a packet that is not sent but cached in the send buffer;
  • the cached data that needs to be forwarded in the AM mode includes: all the packets in the receive buffer.
  • the cached data that needs to be forwarded in the AM mode further includes the number of times that all the transmitted data packets are sent;
  • the cached data that needs to be forwarded in the AM mode further includes the segmentation information of the part of the data packet.
  • segmentation information is in the form of SO+LI, where SO indicates a starting position of the portion in the data packet, and LI is length information of the portion;
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet.
  • the RLC status information includes non-acknowledgment mode UM status information
  • the UM status information includes the SN of the next data packet to be sent
  • the UM status information includes the highest or highest value of the SN of the received data packet minus one.
  • the cached data includes cached data that needs to be forwarded in the UM mode
  • the cached data that needs to be forwarded in the UM mode includes: all unsent packets; or the cached data that needs to be forwarded in the UM mode includes: all unsent packets and sent but not received HARQ ACK packet;
  • the cached data that needs to be forwarded in the UM mode includes: a data packet that has not been detected by the reordering timer.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node, a PDCP protocol stack and an RLC_H protocol.
  • the stack is located at the primary control node, and the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node.
  • the receiving module is specifically configured to receive an indication message sent by the master control node
  • the processing module is specifically configured to reset the RLC_L layer and the following protocol stack entities.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the processing module includes:
  • a sending unit configured to send a handover preparation command to the second evolved base station, to query whether the second evolved base station agrees to perform layer two state maintenance
  • An execution unit configured to perform a hold layer two state operation if the second evolved base station agrees to perform layer two state hold in the handover feedback signaling, otherwise, the PDCP protocol stack entity performs state forwarding, and the remaining protocol stack is reset. entity.
  • execution unit is specifically configured to determine whether the security parameter can remain unchanged
  • the security parameter needs to be updated, it is determined according to the security algorithm whether the PDCP protocol data unit PDU of the received fragment can be successfully decrypted. If the decryption is successful, all the received PDCP PDU segments are sent to the PDCP layer for decryption, and the PDCP is recovered. Serving the data unit SDU segment, and forwarding the recovered segment to the second evolved base station; if the decryption is not successful, deleting the received PDCP PDU segment, and recording the entire PDCP PDU loss at the RLC layer And updating the state of the RLC layer, deleting the buffer related to the PDCP PDU segment, and forwarding the new RLC layer state and remaining data to the second evolved base station.
  • An embodiment of the present disclosure further provides an information processing apparatus, which is applied to a second node, where the apparatus includes:
  • a switching module configured to negotiate with the first node to retain radio bearer layer control protocol RLC state information and cache data of all bearers of the user equipment, where the user equipment is to switch from the first node to the second node ;
  • a data transmission module configured to provide the user equipment with a connected data service based on the retained information.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the packet data convergence protocol PDCP protocol The stacking module is located at the main control node, and the RLC and other protocol stacks are located at the first secondary node and the second secondary node respectively, and the switching module includes:
  • a receiving unit configured to receive RLC status information and cache data of all bearers of the user equipment sent by the first secondary node
  • a storage unit configured to store state variables and information of all bearers of the user equipment according to the RLC status information and the cached data.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node, a PDCP protocol stack and an RLC_H protocol.
  • the stack is located at the primary control node, and the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node.
  • the switching module is specifically configured to reconstruct the RLC_L and the following protocol stack entities, and initialize each of the constructed protocol stack entities.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the switching module includes:
  • a receiving unit configured to receive a handover preparation command sent by the first evolved base station, where the handover preparation command asks whether to agree to perform layer two state maintenance
  • a sending unit configured to return, to the first evolved base station, handover feedback signaling, to indicate whether to agree to perform layer two state maintenance.
  • the embodiment of the present disclosure further provides an information processing apparatus, which is applied to a user equipment, and the apparatus includes:
  • a receiving module configured to receive an indication message sent by the network side, where the indication message indicates that the user equipment is switched from the first node to the second node, and the indication message carries an indication field about layer 2 information processing;
  • a switching module configured to process the layer 2 information according to the indication message, to switch from the first node to the second node.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node, a PDCP protocol stack and an RLC_H protocol.
  • the stack is located at the primary control node, and the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node.
  • the switching module is specifically configured to reset all physical stack layers and all protocol stack entities below;
  • the data receiving Gap that the RLC is performing reordering detection directly determines that the packet is lost, no longer waits, and resets the reordering timer and updates the variable of the reordering record, and all the Gaps in the receiving queue are determined as packet loss at this time. Updating the maximum value of the SN included in the status report to the highest value of the SN of the currently received data packet or adding 1;
  • the status report carries the SN highest value ACK_SN of the received data packet, and carries all SN lists that are determined to be lost packets;
  • the status report further includes segmentation information of the lost portion of the received data packet, the segmentation information is in the form of SO+LI, where SO indicates the start position of the lost portion in the data packet, and LI is the lost data packet. Length information to request retransmission of the missing portion;
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet.
  • first node is a first evolved base station
  • second node is a second evolved base station
  • the switching module is specifically configured to: when the indication message carries an indication that the RLC is not reset, does not reset the RLC protocol stack entity;
  • the security parameters can be kept unchanged, the PDCP and RLC protocol stack entities are reserved, the MAC and the following protocol stack entities are reset, all received Gaps are regarded as packet loss, and the status report is fed back;
  • the security parameter needs to be updated, it is determined according to the security algorithm whether the non-complete PDCP PDU data can be decrypted. If the non-complete PDCP PDU data cannot be decrypted, all the received data are deleted, and the deleted data corresponding to the RLC PDU or The PDU segment is regarded as a packet loss, and is recorded as a NACK in the state record, and the data in the RLC cache is deleted;
  • the partially received data is sent to the PDCP layer for decryption operation, and if the decryption is successful, the RLC PDU corresponding to the successfully decrypted data or the PDU segment therein is regarded as correctly received, in the state
  • the ACK is marked in the update to delete the data in the RLC cache.
  • the embodiment of the present disclosure further provides an information processing apparatus, which is applied to a first node, including: a processor and a memory; wherein the processor is configured to execute the program stored in the memory: receiving an indication message on a network side, the indication Transmitting to switch the user equipment under the first node to the second node; negotiating with the second node to reserve radio link layer control protocol RLC status information of all bearers of the user equipment, and buffering data, so that The second node provides the user equipment with a connected data service based on the retained information.
  • the embodiment of the present disclosure further provides an information processing apparatus, which is applied to a second node, including: a processor and a memory; wherein the processor is configured to execute the program of the memory storage: negotiating with the first node to reserve the user equipment All bearer radio link layer control protocol RLC status information and cache data, the user equipment is switching from the first node to the second node; providing the user equipment with a connected data service based on the retained information .
  • the embodiment of the present disclosure further provides an information processing apparatus, which is applied to a user equipment, including a processor and a memory, wherein the processor is configured to execute the program stored in the memory: receiving an indication message sent by a network side, the indication message Instructing to switch the user equipment from the first node to the second node, and the indication message carries an indication field about layer 2 information processing; processing layer 2 information according to the indication message, by the A node switches to the second node.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a program stored thereon, the program being executed by a processor to implement any of the above-described information processing methods applied to the first node.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a program stored thereon, the program being executed by a processor to implement any of the above-described information processing methods applied to the second node.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a program stored thereon, the program being executed by a processor to implement any of the above-described information processing methods applied to a user equipment.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be maintained continuously, and the target node can be based on the latest
  • the user equipment status provides a continuous transmission service, which avoids the reset of all state information of the user equipment and the decrease of the transmission rate, and ultimately improves the network efficiency and the user experience.
  • FIG. 1 is a schematic diagram of a user plane protocol stack in an existing mobile communication system
  • FIG. 2 is a schematic flow chart of an information processing method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an information processing method according to Embodiment 2 of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for processing information according to Embodiment 3 of the present disclosure
  • FIG. 5 is a structural block diagram of an information processing apparatus according to Embodiment 4 of the present disclosure.
  • FIG. 6 is a structural block diagram of an information processing apparatus according to Embodiment 5 of the present disclosure.
  • FIG. 7 is a structural block diagram of an information processing apparatus according to Embodiment 6 of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a mobile communication system according to Embodiment 7 of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a mobile communication system according to Embodiment 8 of the present disclosure.
  • the embodiment of the present disclosure is directed to the related art that each time the service node is replaced, the state of the L2 needs to be reset, which affects the user experience on the one hand, and the unnecessary retransmission caused by the reset on the other hand also reduces the system efficiency.
  • the information processing method and device can ensure that the UE moves quickly between nodes, improves the user experience of switching between nodes, and improves the data transmission efficiency of the network.
  • This embodiment provides an information processing method, which is applied to a first node. As shown in FIG. 2, the method includes:
  • Step 101 The first node receives an indication message on the network side, where the indication message indicates that the user equipment under the first node is switched to the second node.
  • Step 102 The first node negotiates with the second node to reserve radio link layer control protocol RLC state information and cache data of all bearers of the user equipment, so that the second node is based on the retained information.
  • the user equipment provides a connected data service.
  • the indication message may be a handover message or a reconfiguration message.
  • the first node is a source cell, a source base station, or a source secondary node
  • the second node is a target cell, a target base station, or a target secondary node.
  • the first node and the second node may be located in different devices or may be two different parts of the same device.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be kept continuous, and the target node can be based on the latest user equipment status.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the PDCP protocol stack is located at the master control node
  • the RLC and other protocol stacks are respectively located at the first secondary node and the second secondary node.
  • the receiving, by the first node, the indication message on the network side includes:
  • the first secondary node forwards the RLC status information and the cached data of all the bearers of the user equipment to the second secondary node.
  • the method further includes:
  • the first secondary node immediately triggers the current receiving state and forms a new status report, and sends the new status report to the user equipment, where the status report includes the highest value ACK_SN of the SN of the data packet that has been correctly received by the uplink,
  • the status report also includes SN or segmentation information for all packets that have not been successfully received within the ACK_SN.
  • the first secondary node forwards, by using the primary control node, RLC status information and cache data of all bearers of the user equipment to The second secondary node.
  • the RLC status information includes acknowledge mode AM status information
  • the AM status information includes one or more of the following information: the sequence number SN of the next data packet to be transmitted, and the next SN confirming the successfully transmitted data packet, and polling the configuration information of the Poll, wherein
  • the configuration information of the Poll includes one or more of the following information: a Poll is triggered every preset number of SNs or a preset number of bytes, and the current number of SNs or the number of bytes that are triggered by the last Poll trigger is on the current time. The highest SN number recorded when the Poll is triggered.
  • the AM status information includes one or more of the following information: the highest value or the highest value of the SN of all correctly received data packets in sequence plus one, and the received SN of the data packet in the receiving window is the highest.
  • the value or the highest value is incremented by one, and the highest or highest value of the SN that can be included in the status report is incremented by one;
  • the AM status information includes the first SN of the data packet that has been sent but has not obtained the peer ARQ ACK acknowledgement, and the corresponding bit stream, the bit stream indicates from the data packet, and thereafter each Whether the sent packet receives an ARQ ACK confirmation;
  • the AM status information includes: an SN corresponding to the first unreceived data packet and a corresponding bit stream, the bit stream indicating the reception status of each data packet from the data packet thereafter .
  • the cached data includes cached data that needs to be forwarded in the AM mode
  • the cached data that needs to be forwarded in the AM mode includes: all the packets that have been sent but not received the ARQ ACK or all the packets that are sent from the first but not received the ARQ ACK packet, and all a packet that is not sent but cached in the send buffer;
  • the cached data that needs to be forwarded in the AM mode includes: all the packets in the receive buffer.
  • the cached data that needs to be forwarded in the AM mode further includes the number of times that all the transmitted data packets are sent;
  • the cached data that needs to be forwarded in the AM mode further includes the segmentation information of the part of the data packet.
  • segmentation information is in the form of SO+LI, where SO indicates the start position of the portion in the data packet, and LI is the length information of the portion; the segmentation information further includes whether the portion is the last of the data packet. A piece of information.
  • the RLC status information includes non-acknowledgment mode UM status information
  • the UM status information includes the SN of the next data packet to be sent
  • the UM status information includes the highest or highest value of the SN of the received data packet minus one.
  • the UM status information also includes a reordered state variable including a reordered lower boundary and/or an SN that triggers the reordered data packet.
  • the cached data includes cached data that needs to be forwarded in the UM mode
  • the cached data that needs to be forwarded in the UM mode includes: all unsent packets; and/or
  • the cached data that needs to be forwarded in the UM mode includes: a packet that has not been detected by the reordering timer.
  • the cached data that needs to be forwarded in the UM mode also includes the data packet that has been sent but has not received the HARQ ACK.
  • the cached data that needs to be forwarded further includes the SN of the data packet;
  • the data packet is forwarded in the order of receiving the data packet when forwarding the data packet.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the PDCP protocol stack And the RLC_H protocol stack is located at the primary control node
  • the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node
  • the receiving, by the first node, the indication message on the network side includes:
  • the first secondary node resets the RLC_L layer and the following protocol stack entities.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the first node negotiates with the second node to reserve the user equipment.
  • All bearer RLC status information and cached data include:
  • the first evolved base station sends a handover preparation command to the second evolved base station, and asks whether the second evolved base station agrees to perform layer two state maintenance;
  • the first evolved base station performs an operation of maintaining a layer two state, otherwise the first evolved base station performs a PDCP protocol stack entity Perform state forwarding to reset the remaining protocol stack entities.
  • the operation of the first evolved base station to perform the hold layer two state includes:
  • the first evolved base station forwards the state and data of the RLC layer to the second evolved base station;
  • the security parameter needs to be updated, it is determined according to the security algorithm whether the PDCP protocol data unit PDU of the received fragment can be successfully decrypted, and if the decryption can be successfully decrypted, the first evolved base station sends all received PDCP PDU segments to the PDCP.
  • the layer decrypts, recovers the PDCP service data unit SDU segment, and forwards the recovered segment to the second evolved base station; if the decryption cannot be successfully performed, the first evolved base station deletes the received PDCP PDU segmentation, recorded at the RLC layer as the entire PDCP PDU is lost and the state of the RLC layer is updated, the cache associated with the PDCP PDU segment is deleted, and the new RLC layer state and remaining data are forwarded to the second Evolved base station.
  • This embodiment provides an information processing method, which is applied to a second node. As shown in FIG. 3, the method includes:
  • Step 201 The second node negotiates with the first node to retain radio bearer layer control protocol RLC state information and cache data of all bearers of the user equipment, where the user equipment is switched from the first node to the Second node;
  • Step 202 The second node provides the user equipment with a connected data service based on the retained information.
  • the first node is a source cell, a source base station, or a source secondary node
  • the second node is a target cell, a target base station, or a target secondary node.
  • the first node and the second node may be located in different devices or may be two different parts of the same device.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be kept continuous, and the target node can be based on the latest user equipment status.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the packet data is aggregated.
  • a protocol PDCP protocol stack is located at the master control node
  • RLC and other protocol stacks are respectively located at the first secondary node and the second secondary node
  • the second secondary node receives RLC status information and cache data of all bearers of the user equipment sent by the first secondary node;
  • the second secondary node stores state variables and information of all bearers of the user equipment according to the RLC status information and the cached data.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the RLC_H protocol stack is located at the master control node
  • the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node
  • the second node negotiates with the first node to reserve all bearers of the user equipment.
  • the RLC status information and cached data include:
  • the second secondary node reconstructs RLC_L and the following protocol stack entities, and initializes each protocol stack entity that is built.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the second node negotiates with the first node to reserve all bearers of the user equipment.
  • the RLC status information and cached data include:
  • the second evolved base station returns handover feedback signaling to the first evolved base station, indicating whether to agree to perform layer two state maintenance.
  • the embodiment provides an information processing method, which is applied to a user equipment. As shown in FIG. 4, the method includes:
  • Step 301 The user equipment receives an indication message sent by the network side, where the indication message indicates that the user equipment is switched from the first node to the second node, and the indication message carries an indication about layer 2 information processing. area;
  • Step 302 The user equipment processes layer 2 information according to the indication message to switch from the first node to the second node.
  • the indication message may be a handover message or a reconfiguration message.
  • the first node is a source cell, a source base station, or a source secondary node
  • the second node is a target cell, a target base station, or a target secondary node.
  • the first node and the second node may be located in different devices or may be two different parts of the same device.
  • the target cell, the target base station, or the target secondary node is determined whether the user equipment is reset.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be kept continuous, and the target node can be based on the latest user equipment status.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the RLC_H protocol stack is located at the master control node
  • the protocol stacks of the RLC_L layer and the following are respectively located at the first secondary node and the second secondary node
  • the user equipment processes the layer 2 information according to the indication message, including:
  • the user equipment resets all physical protocol layers and all protocol stack entities below;
  • the user equipment directly determines that the data receiving Gap of the RLC is performing reordering detection is packet loss, no longer waits, and resets the reordering timer and updates the variable of the reordering record, and determines all the Gaps in the receiving queue at this time. For packet loss, update the maximum value of the SN included in the status report to the highest value of the SN of the currently received data packet or add 1;
  • the user equipment feeds back a status report to the network side, where the status report carries the SN highest value ACK_SN of the received data packet, and carries all SN lists that are determined to be lost packets;
  • the user equipment maintains all states of the PDCP protocol stack entity.
  • the status report further includes segmentation information of the missing portion of the received data packet, the segmentation information is in the form of SO+LI, where SO indicates the start position of the lost portion in the data packet, and LI is the length information of the lost data packet.
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet. That is, the segmentation information is in the form of SO+LI+LSF, and LSF is set to 1 when it is the last segment, otherwise LSF is set to 0. form
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the user equipment processing the layer 2 information according to the indication message includes:
  • the user equipment When the indication message carries an indication that the RLC is not reset, the user equipment does not reset the RLC protocol stack entity;
  • the user equipment reserves the PDCP and the RLC protocol stack entity, resets the MAC and the following protocol stack entities, treats all received Gits as packet loss, and feeds back the status report;
  • the user equipment determines whether the non-complete PDCP PDU data can be decrypted according to the security algorithm, and if the non-complete PDCP PDU data cannot be decrypted, all the received data are deleted, and the deleted data is corresponding.
  • the RLC PDU or the PDU segment therein is regarded as a packet loss, and is recorded as a NACK in the status record, and the data in the RLC cache is deleted;
  • the user equipment sends the partially received data to the PDCP layer for decryption operation, and if the decryption is successful, the RLC PDU corresponding to the successfully decrypted data or the PDU segment therein is regarded as correct.
  • Receive mark ACK in the status update, delete the data in the RLC cache.
  • Embodiment 4 of the present disclosure provides an information processing apparatus applied to a first node, including: a processor; and a memory connected to the processor through a bus interface, the memory is used to store the processor is executing
  • the program and data used in the operation, when the processor calls and executes the program and data stored in the memory, as shown in FIG. 5, includes the following functional modules or units:
  • the receiving module 41 is configured to receive an indication message on the network side, where the indication message indicates that the user equipment under the first node is switched to the second node;
  • the processing module 42 is configured to negotiate with the second node to reserve radio link layer control protocol RLC status information of all bearers of the user equipment and cache data, so that the second node is based on the retained information.
  • the user equipment provides a connected data service.
  • the indication message may be a handover message or a reconfiguration message.
  • the first node is a source cell, a source base station, or a source secondary node
  • the second node is a target cell, a target base station, or a target secondary node.
  • the first node and the second node may be located in different devices or may be two different parts of the same device.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be kept continuous, and the target node can be based on the latest user equipment status.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the packet data is aggregated.
  • the protocol PDCP protocol stack is located at the master control node
  • the RLC and other protocol stacks are respectively located at the first secondary node and the second secondary node.
  • the receiving module is specifically configured to receive an indication message sent by the master control node
  • the processing module is specifically configured to forward the RLC status information and the cached data of all the bearers of the user equipment to the second secondary node.
  • the device further includes:
  • a sending module configured to immediately trigger a current receiving state and form a new status report, and send the new status report to the user equipment, where the status report includes a highest value ACK_SN of the SN of the data packet that has been correctly received by the uplink,
  • the status report also includes SN or segmentation information for all packets that have not been successfully received within the ACK_SN.
  • the processing module is specifically configured to forward, by using the direct interface, all the RLC status information and the cached data of the user equipment to the second secondary node;
  • the processing module is specifically configured to forward, by using the primary control node, RLC status information and cache data of all bearers of the user equipment. To the second secondary node.
  • the RLC status information includes acknowledge mode AM status information
  • the AM status information includes one or more of the following information: the sequence number SN of the next data packet to be transmitted, the next SN confirming the successfully transmitted data packet, or the polling configuration information
  • the configuration information of the Poll includes one or more of the following information: a Poll is triggered every preset number of SNs or a preset number of bytes, and the current number of SNs or the number of bytes that are triggered by the last Poll trigger is on the current time. The highest SN number recorded when the Poll is triggered.
  • the AM status information includes one or more of the following information: the highest value or the highest value of the SN of all correctly received data packets in sequence plus one, and the received SN of the data packet in the receiving window is the highest.
  • the value or the highest value is incremented by one, and the highest or highest value of the SN that can be included in the status report is incremented by one;
  • the AM status information includes the first SN of the data packet that has been sent but has not obtained the peer ARQ ACK acknowledgement, and the corresponding bit stream, the bit stream indicates from the data packet, and thereafter each Whether the sent packet receives an ARQ ACK confirmation;
  • the AM status information includes: an SN corresponding to the first unreceived data packet and a corresponding bit stream, the bit stream indicating the reception status of each data packet from the data packet thereafter .
  • the cached data includes cached data that needs to be forwarded in the AM mode
  • the cached data that needs to be forwarded in the AM mode includes: all the packets that have been sent but not received the ARQ ACK or all the packets that are sent from the first but not received the ARQ ACK packet, and all a packet that is not sent but cached in the send buffer;
  • the cached data that needs to be forwarded in the AM mode includes: all the packets in the receive buffer.
  • the cached data that needs to be forwarded in the AM mode further includes the number of times that all the transmitted data packets are sent;
  • the cached data that needs to be forwarded in the AM mode further includes the segmentation information of the part of the data packet.
  • segmentation information is in the form of SO+LI, where SO indicates a starting position of the portion in the data packet, and LI is length information of the portion;
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet.
  • the RLC status information includes non-acknowledgment mode UM status information
  • the UM status information includes the SN of the next data packet to be sent
  • the UM status information includes the highest or highest value of the SN of the received data packet minus one.
  • the UM status information further includes a reordered state variable, the reordered state variable including a reordered lower boundary and/or an SN that triggers the reordered data packet.
  • the cached data includes cached data that needs to be forwarded in the UM mode
  • the cache data that needs to be forwarded in the UM mode includes: all unsent packets;
  • the cached data that needs to be forwarded in the UM mode includes: a data packet that has not been detected by the reordering timer.
  • the cache data that needs to be forwarded in the UM mode further includes a packet that has been sent but has not received the HARQ ACK.
  • the cached data that needs to be forwarded further includes the SN of the data packet
  • the data packet is forwarded in the order of receiving the data packet when forwarding the data packet.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the PDCP protocol stack And the RLC_H protocol stack is located at the primary control node
  • the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node
  • the receiving module is specifically configured to receive an indication message sent by the master control node
  • the processing module is specifically configured to reset the RLC_L layer and the following protocol stack entities.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the processing module includes:
  • a sending unit configured to send a handover preparation command to the second evolved base station, to query whether the second evolved base station agrees to perform layer two state maintenance
  • An execution unit configured to perform a hold layer two state operation if the second evolved base station agrees to perform layer two state hold in the handover feedback signaling, otherwise, the PDCP protocol stack entity performs state forwarding, and the remaining protocol stack is reset. entity.
  • the execution unit is specifically configured to determine whether the security parameter can remain unchanged
  • the security parameter needs to be updated, it is determined according to the security algorithm whether the PDCP protocol data unit PDU of the received fragment can be successfully decrypted. If the decryption can be successfully decrypted, all the received PDCP PDU segments are sent to the PDCP layer for decryption, and the PDCP is restored. Serving the data unit SDU segment, and forwarding the recovered segment to the second evolved base station; if the decryption is not successful, deleting the received PDCP PDU segment, and recording the entire PDCP PDU loss at the RLC layer And updating the state of the RLC layer, deleting the buffer related to the PDCP PDU segment, and forwarding the new RLC layer state and remaining data to the second evolved base station.
  • Embodiment 5 of the present disclosure provides an information processing apparatus, which is applied to a second node, including: a processor; and a memory connected to the processor through a bus interface, the memory is used to store the processor to execute
  • the program and data used in the operation, when the processor calls and executes the program and data stored in the memory, as shown in FIG. 6, includes the following functional modules or units:
  • the switching module 51 is configured to negotiate with the first node to retain radio link layer control protocol RLC status information and cache data of all bearers of the user equipment, where the user equipment is switched from the first node to the second node node;
  • the data transmission module 52 is configured to provide the user equipment with a connected data service based on the retained information.
  • the first node is a source cell, a source base station, or a source secondary node
  • the second node is a target cell, a target base station, or a target secondary node.
  • the first node and the second node may be located in different devices or may be two different parts of the same device.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be kept continuous, and the target node can be based on the latest user equipment status.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the packet data is aggregated.
  • the protocol PDCP protocol stack is located at the master control node
  • the RLC and other protocol stacks are located at the first secondary node and the second secondary node respectively
  • the switching module includes:
  • a receiving unit configured to receive RLC status information and cache data of all bearers of the user equipment sent by the first secondary node
  • a storage unit configured to store state variables and information of all bearers of the user equipment according to the RLC status information and the cached data.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the PDCP protocol stack And the RLC_H protocol stack is located at the primary control node
  • the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node
  • the switching module is specifically configured to reconstruct the RLC_L and the following protocol stack entities, and initialize each of the constructed protocol stack entities.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the switching module includes:
  • a receiving unit configured to receive a handover preparation command sent by the first evolved base station, where the handover preparation command asks whether to agree to perform layer two state maintenance
  • a sending unit configured to return, to the first evolved base station, handover feedback signaling, to indicate whether to agree to perform layer two state maintenance.
  • Embodiment 6 of the present disclosure provides an information processing apparatus applied to a user equipment, including: a processor; and a memory connected to the processor through a bus interface, the memory being used to store the processor performing an operation
  • the program and data used at the time, when the processor calls and executes the program and data stored in the memory, as shown in FIG. 7, includes the following functional modules or units:
  • the receiving module 61 is configured to receive an indication message sent by the network side, where the indication message indicates that the user equipment is switched from the first node to the second node, and the indication message carries an indication field about layer 2 information processing. ;
  • the switching module 62 is configured to process the layer 2 information according to the indication message to switch from the first node to the second node.
  • the indication message may be a handover message or a reconfiguration message.
  • the first node is a source cell, a source base station, or a source secondary node
  • the second node is a target cell, a target base station, or a target secondary node.
  • the first node and the second node may be located in different devices or may be two different parts of the same device.
  • the target cell, the target base station, or the target secondary node is determined whether the user equipment is reset.
  • the L2 state is maintained as much as possible, so that when the user equipment moves between the transmission nodes, the transmission status information of the user equipment can be kept continuous, and the target node can be based on the latest user equipment status.
  • the first node is a first secondary node
  • the second node is a second secondary node
  • the first secondary node and the second secondary node share the same primary control node
  • the PDCP protocol stack And the RLC_H protocol stack is located at the primary control node
  • the protocol stacks of the RLC_L layer and below are respectively located at the first secondary node and the second secondary node
  • the switching module is specifically configured to reset all physical stack layers and all protocol stack entities below;
  • the data receiving Gap that the RLC is performing reordering detection directly determines that the packet is lost, no longer waits, and resets the reordering timer and updates the variable of the reordering record, and all the Gaps in the receiving queue are determined as packet loss at this time. Updating the maximum value of the SN included in the status report to the highest value or the highest value of the SN of the currently received data packet plus one;
  • the status report carries the SN highest value ACK_SN of the received data packet, and carries all SN lists that are determined to be lost packets;
  • the status report further includes segmentation information of the missing portion of the received data packet, the segmentation information is in the form of SO+LI, where SO indicates the start position of the lost portion in the data packet, and LI is the length information of the lost data packet.
  • the segmentation information also includes information as to whether the portion is the last segment of the data packet.
  • the first node is a first evolved base station
  • the second node is a second evolved base station
  • the switching module is specifically configured to: when the indication message carries an indication that the RLC is not reset, does not reset the RLC protocol stack entity;
  • the security parameters can be kept unchanged, the PDCP and RLC protocol stack entities are reserved, the MAC and the following protocol stack entities are reset, all received Gaps are regarded as packet loss, and the status report is fed back;
  • the security parameter needs to be updated, it is determined according to the security algorithm whether the non-complete PDCP PDU data can be decrypted. If the non-complete PDCP PDU data cannot be decrypted, all the received data are deleted, and the deleted data corresponding to the RLC PDU or The PDU segment is regarded as a packet loss, and is recorded as a NACK in the state record, and the data in the RLC cache is deleted;
  • the partially received data is sent to the PDCP layer for decryption operation, and if the decryption is successful, the RLC PDU corresponding to the successfully decrypted data or the PDU segment therein is regarded as correctly received, in the state
  • the ACK is marked in the update to delete the data in the RLC cache.
  • the CU-DU architecture is adopted in the embodiment.
  • the master node refers to a CU (Central Unit) node
  • the secondary node refers to a DU (Distributed Unit). unit).
  • the protocol stack separation mode between the CU-DUs in this embodiment is a PDCP-RLC separation architecture, that is, the PDCP is used as a centralized protocol stack, and is located in the CU entity, and the RLC layer and the following protocol stacks are respectively located in the respective DUs.
  • Step a The UE operating under the DU1 is determined based on the mobility report, based on the measurement report reported by the UE or based on the network side measurement result or based on other factors, such as load balancing between the DUs, etc., and now the CU entity decides Switching the UE from DU1 to DU2;
  • Step b The CU sends an indication message to the DU1, requesting that the RLC status and the cached data of all the bearers of the UE are forwarded to the DU2, that is, the target node.
  • the indication message may be a handover message or a reconfiguration message.
  • the AM (acknowledgement mode) status information that the RLC needs to forward includes:
  • the next SN that confirms the successful transmission of the data packet may optionally carry the information related to the Poll, for example, how many SNs are configured or How many bytes will trigger Poll, then how many SNs or bytes have been accumulated since the last Poll trigger; the highest SN recorded when the Poll was last triggered.
  • the highest or highest value of the SN of the data packet received in the order is incremented by one, and the highest or highest value of the SN of the received data packet in the receiving window is incremented by one, and the SN that can be included in the status report is included.
  • AM status information has another way to carry:
  • the AM sender carrying the first SN of the data packet that has been sent but has not obtained the peer ARQ ACK acknowledgement, and carries the bit stream to display whether the SN of each transmitted data packet is received from the SN. It is confirmed that, for example, the received ACK corresponding bit position is 1, otherwise it is 0 until all the SNs of the already transmitted data packets have been indicated.
  • the AM receiving end carries the SN corresponding to the first unreceived data packet, and carries the bit stream to display the receiving condition of the SN of each data packet from the SN, for example, the corresponding bit of the correct receiving data packet
  • the position is 1, otherwise 0, until the SN of all received packets has been indicated.
  • the segmentation information can be carried.
  • the cached data that needs to be forwarded in RLC AM mode includes:
  • For the AM sender including all the data that has been sent, optionally carrying the number of times the already sent data is sent, and also including all data that is not sent but cached in the sending buffer;
  • the segmentation information may be carried and transmitted to the target node, and the segmentation information may be in the form of SO+LI.
  • SO indicates the starting position of the segmented portion in the original data packet
  • LI is the length information of the segment, and may also include information on whether the segment of the segment is the last segment to facilitate the target node to reassemble the data.
  • the UM (non-acknowledgment mode) status information that the RLC needs to forward includes:
  • the SN containing the next data packet to be sent For the UM sender, the SN containing the next data packet to be sent;
  • the SN maximum value or the highest value of the received data packet is decremented by one, and may optionally carry a reordering related state variable, such as a reordered lower boundary, a reordered SN, and the like.
  • the UM cache data that RLC needs to forward includes:
  • the UM sender For the UM sender, all unsent packets need to be forwarded to the target node.
  • the packets that have been sent but not received the HARQ ACK can also be forwarded to the target node.
  • the UM receiver it is optional to forward the data that has not been detected by the reordering timer to the target node.
  • the SN information needs to be carried when the data is forwarded. If the data has not been allocated the RLC SN, it does not need to be carried, but it needs to be carried. Ordered forwarding is performed in the order of reception, and the order of forwarding data is guaranteed by the sequence number of the transmission layer, such as the SN of the GTP-U (User Layer GPRS Tunneling Protocol), in the order received from the core network.
  • the sequence number of the transmission layer such as the SN of the GTP-U (User Layer GPRS Tunneling Protocol)
  • the current reception state of the source node can be immediately triggered and a new status report is formed and sent to the UE, where the status report includes The highest value of the SN of the data packet that has been correctly received by the uplink, that is, ACK_SN, and in the same status report, the SN or segmentation information of all the data packets that have not been successfully received within the ACK_SN, that is, NACK_SN or sub-index is given. Segment list. All the unsuccessfully received data packets include those that have been detected by the reordering timer, and those that have not been detected by the reordering timer. At this time, all the received sequence gaps are identified as packet loss, carried in NACK_SN or In the list of segments.
  • the forwarding of status information and cache data is from source node DU1 to destination node DU2.
  • source node DU1 When there is a direct interface between the two nodes, it can be transmitted through the direct interface.
  • the The CU node forwards.
  • the target node DU2 when the status information and the cached data sent by the DU1 are received, all the state variables and information are stored according to the status information and the data. If the receipt or confirmation of each packet is specified in the status information, the status is updated according to the information. If only a few key state variables are given, then each data is judged based on the forwarded data.
  • the case of the data packet for example, once carried in the forward data, proves that the data packet is not acknowledged and needs to be retransmitted; or for the receiving end, the forwarded data represents data that is unsuccessful or unsuccessful at the receiving end. The package needs to wait for other retransmissions.
  • the UE when receiving the indication message that the network side sends the switch from the DU1 to the DU2, where the display can carry the processing information for the L2, for example, whether the PDCP is re-established, and whether the RLC is reset, the UE follows the instruction in the indication message. Process it.
  • the PDCP entity on the UE side can be reserved without special operations.
  • the network side performs the RLC entity state and data forwarding, so the RLC entity on the UE side can also continue at this time, and the special point is that when the UE has any weight at this time
  • the sorting timer starts, it needs to stop and reset the reordering timer immediately, and all the receiving gaps are now considered as packet loss.
  • whether to immediately report the status report to the network side, where the highest value of the SN of the received data packet, and all the gap SN or segment list information are carried.
  • a processing manner in another CU-DU architecture is given, that is, a protocol stack separation manner between CU-DUs adopts a architecture of Higher RLC-Lower RLC separation, that is, PDCP and Higher RLC (RLC).
  • RLC Radio Link Control
  • -H As a centralized protocol stack, the protocol stacks located in the CU entity, the Lower RLC layer and below are located in the respective DUs.
  • the Higher RLC completes the one-to-one mapping of the RLC PDU and the PDCP PDU, and allocates the RLC SN, and the Lower RLC (RLC-L) segments the RLC PDU and the RLC PDU of the appropriate size according to the size of the transmission resource provided by the MAC layer in real time.
  • the sequence is sent to the MAC layer for grouping and transmission.
  • the content of the data packet transmitted by the CU-DU interface is the RLC PDU carrying the RLC SN.
  • this interface can also have a transport layer protocol, such as GTP-U or GRE.
  • the manner in which the CU-DU interacts is similar to the manner in which the master node-secondary node in the seventh embodiment.
  • the RLC entity has some functions centralized in the CU for processing, such as SN allocation, state variables, and maintenance of the main timer.
  • the functions related to processing and organizing ARQ are also performed in the RLC-Higher entity of the CU. .
  • the UE is handed over by one DU (ie, the source DU) under the CU to another DU (ie, the target DU), since the CU node is not replaced, the RLC-H related state variables and context information can be retained.
  • the transmitting end mainly undertakes to buffer certain transmission data, and organizes the RLC PDU according to the resource size scheduled by the MAC layer in real time to obtain data adapted to the transmission resource block, and sends the data.
  • the MAC layer The receiving end mainly bears the function of receiving the data packet and transmitting it to the upper layer.
  • the RLC PDU segment can be reorganized and the RLC PDU can be sorted. Since the UE is in the DU's RLC-L entity and the following MAC and PHY entities when replacing the DU, it faces two choices, either resetting or performing state forwarding, ie the source DU passes the relevant context state to the target DU.
  • the protocol stack of the DU since the protocol stack of the DU includes RLC-L, only a small amount of state information related to real-time transmission is stored, and the RLC-related state and retransmission information are all maintained in the RLC-H of the CU. Therefore, resetting all entities of the DU is an excellent choice.
  • the UE side processing includes: after the UE receives the indication message of the network side, indicating that the UE is switched from the source DU to the target DU, the UE needs to perform the following processing on its current state:
  • the data receiving Gap that the RLC is performing the reordering detection directly determines that the packet is lost, no longer waits, and resets the reordering timer and updates the variables of the related reordering record, and all the Gaps in the receiving queue are identified as packet loss at this time. , updating the maximum value of the SN that can be included in the status report to the highest value or the next value of the SN of the currently received data packet;
  • the UE immediately triggers a status report report, and uses the highest SN of the currently received data packet as the ACK_SN, and carries all the SN lists that are determined to be lost packets in the same status report, which may include segmentation information, that is, when there is one Part of the RLC PDU is correctly received, while other parts are lost, carrying the missing part of the SO and LI information, and finally forming a list of NACK_SN and segmentation, and sending it to the sender to request the necessary retransmission.
  • segmentation information that is, when there is one Part of the RLC PDU is correctly received, while other parts are lost, carrying the missing part of the SO and LI information
  • the UE maintains all states of the PDCP and continues processing.
  • the processing on the network side is:
  • the new DU (ie, the target DU) will construct a new RLC_L and the following protocol stack entities, each starting with an initialization state, waiting for data transmission and reception.
  • CU entity For the CU entity, all protocols and context states of PDCP and RLC_H are reserved. If there is a reordering timer in RLC_H, the reordering timer is reset, and the variables of the related reordering records are updated, which will be in the receiving queue at this time. All Gaps are considered as packet loss, and the maximum value of the SN that can be included in the status report is updated to the highest value or the next value of the SN of the currently received data packet; the CU immediately triggers a status report report, and will receive the current status.
  • the highest SN is used as the ACK_SN, and carries all the SN lists that are determined to be lost packets in the same status report, which may include segmentation information, that is, when a partial segment of one RLC PDU is correctly received, and other parts are lost, Carrying the missing part of the SO and LI information, and finally forming a list of NACK_SN and segmentation, and sending it to the sender to request the necessary retransmission.
  • the PDCP layer of the CU For the PDCP layer of the CU, it can continue to maintain the current state without additional operations.
  • the handover scenario is performed between the eNB and the eNB.
  • the UE needs to retain the context information of the RLC layer and the foregoing, so that the current transmission state can be reserved.
  • the network side source eNB when the network side source eNB sends a handover preparation command to the target eNB, it needs to carry information, and asks whether the target eNB supports and agrees to perform layer two state maintenance, if the target eNB agrees to perform the handover feedback signaling. If the layer 2 state is maintained, the subsequent layer 2 state is maintained. Otherwise, the current switching process is performed, that is, only the PDCP entity performs state forwarding, and the remaining protocol layers are all reset.
  • the source node When the source node (ie, the source eNB) and the target node (ie, the target NB) negotiate to determine the layer 2 state hold, the source node needs to distinguish which states are the PDCP layer state and which states are the RLC when forwarding the state to the target node.
  • the security parameters can be maintained, it means that the state and data of the RLC layer can be forwarded to the target node completely unchanged, and the uncompleted transmission is resumed at the target node. If the security parameters are not maintained, it means that some states of the RLC layer may need to be updated. For example, when the received RLC PDU cannot be reassembled into a complete PDCP PDU, it is necessary to check whether the fragmented PDCP PDU can be used according to the security algorithm. Successful decryption, if possible, the PDCP PDU fragment can be regarded as a valid transmission, no retransmission is needed on the target side, and only the unsuccessful part needs to be retransmitted.
  • the security algorithm determines that only the entire PDCP PDU is successfully received, the successful decryption security operation can be performed. If the PDCP PDU fragment received successfully does not need to be forwarded, it is considered that the entire PDCP PDU is lost. At this time, the RLC corresponds to the relevant PDCP PDU. The SN is also recorded as a packet loss, and the associated RLC PDU and its segments that have been successfully received are deleted.
  • What needs to be done on the network side is to forward the status and data of the RLC that needs to be forwarded from the source node to the target node, and notify the UE in the handover command whether the current RLC state is reset.
  • the source node forwards the information and data of the RLC to the target node, and the content of the forwarding refers to the seventh embodiment; the security context needs to be updated before and after the handover, and the security algorithm does not support
  • the security context needs to be updated before and after the handover, and the security algorithm does not support
  • all received PDCP PDU segments are deleted at this time, and the entire PDCP PDU is lost at the RLC layer, and the status of the RLC is re-updated according to these conditions and the segmentation related to these PDCP PDU segments is deleted.
  • the cryptographic operation of the line cannot be processed in the target cell, but at this time, it is equivalent to decrypting all the segmented data received by the PDCP layer and restoring it into a PDCP SDU segment. In the target cell, it needs to be performed. At the PDCP SDU level, the reorganization is still done in a manner similar to SO+LI and the last segmentation.
  • the corresponding processing operations include:
  • the UE When the UE receives the indication message of the network side, if the indication that the RLC is not reset is carried, the UE follows the execution;
  • the PDCP and the RLC of the UE may be completely reserved, and the MAC and the following are reset.
  • the UE side treats all the received Gits as packet loss and feeds back the status report, similar to the UE behavior in the eighth embodiment.
  • the UE determines, according to the security algorithm, that if the security algorithm cannot decrypt the non-complete PDCP PDU data, all the partially received data is deleted, and the RLC PDU corresponding to the partial data or the PDU therein is segmented. It is regarded as a packet loss. It is recorded as a NACK in the status record. The data cached by the RLC needs to be deleted. The complete PDCP PDU at the receiving end is sent to the PDCP for processing. The sender needs the PDCP sending entity to re-encrypt and process the MAC address. In addition, the MAC address is added. Reset and status report immediate feedback;
  • the partially received data may be sent to the PDCP layer for decryption operation. If successful, the RLC PDU corresponding to the data may be The PDU segment is regarded as correctly received, and the ACK is marked in the status update. The data cached by the RLC needs to be deleted, and the receiving end sends the packet to the PDCP for processing. The transmitting end needs the PDCP sending entity to perform encryption and related processing again. MAC reset and status report immediately feedback.
  • two cells before and after UE handover belong to one eNB.
  • security parameters can be preserved without replacing nodes. Similar to the case where the security context is continued in Embodiment 9, the manner of processing is similar to the case where the security parameters in Embodiment 9 are not updated for the UE side.
  • the source cell and the target cell are located in the same eNB, the forwarding between the cell and the cell does not need to be performed, and can be completed through the network side.
  • the source cell can be implemented. All the states are used in the target cell. It should also be noted that since the MAC is reset, all the receiving gaps of the RLC are regarded as packet loss, reset the reordering timer, and immediately send status feedback. These processes are required.
  • each logical channel is similarly processed, and each logical channel can be processed separately, for example, a logical channel for transmitting signaling, or not
  • the UM data may not be forwarded in the RLC state
  • the AM data may optionally be forwarded and maintained in the RLC state.
  • the apparatus provided by the fourth, fifth, and sixth embodiments of the present disclosure is an information processing apparatus that can be implemented by implementing the foregoing method embodiments. Therefore, all embodiments of the information processing method provided by the foregoing method embodiments can be correspondingly applied. In the fourth, fifth and sixth embodiments, the same or similar beneficial effects can be achieved.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本公开提供了一种信息处理方法及装置。其中,该信息处理方法,应用于第一节点,包括:所述第一节点接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。

Description

信息处理方法及装置
相关申请的交叉引用
本申请主张于2017年1月5日提交中国专利局、申请号为:201710008344.0的优先权,其全部内容据此通过引用并入本申请。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息处理方法及装置。
背景技术
移动通信系统未来发展中,为了更好的满足用户需求,极大提升网络容量和吞吐量,必将会引入更多的传输节点,即未来为超密集网络。在LTE(Long Term Evolution,长期演进)系统中,网络侧的节点之间大多通过有线进行连接,如图1所示,eNB(evolved Node B,演进型基站)之间通过有线链路连接,eNB和核心网节点之间也是采取有线链路连接,核心网节点包括MME(Mobility Management Entity,移动性管理实体),S-GW(Serving GateWay,服务网关)等。
在现有R8规范中,典型的MME和S-GW内部切换流程如下:
源eNB基于测量报告和RRM((Radio Resource Management,无线资源管理)信息做判决,决定UE(User Equipment,用户设备,也可以称为“终端”)需要切换;
源eNB发起切换请求消息至目标eNB,携带必要的信息为目标侧的切换做准备;
目标eNB基于收到的E-RAB(Evolved Radio Access Bearer,演进的无线接入承载)QoS(Quality of Service,服务质量)信息做接纳控制,配置请求的资源,预留C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)和可能的RACH(Random Access Channel,随机接入信道)Preamble(接入信道的前导码);
目标eNB准备切换并发送切换请求确认消息至源eNB,切换请求确认消息中含有发送给UE的执行切换的RRC(Radio Resource Control,无线资源控制)消息,RRC消息中包含新的C-RNTI,目标eNB安全算法指示,可能包含专用RACH Preamble和其他参数,如接入参数,SIBs(系统信息块)等,切换请求确认消息中如果需要还可包含数据前转通道的信息。
一旦源eNB接收到切换请求确认消息或者一旦切换命令在下行开始传输,数据前转过程开始启动;
源eNB将目标eNB透传过来的RRC连接重配置消息进行完整性保护和加密等操作后发往UE;
源eNB向目标eNB发送SN(Sequence Number,序列号)状态传递消息,该消息携带需要保留PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)状态的E-RABs(RLC AM业务)的上行PDCP SN接收状态和下行PDCP SN发送状态信息。上行PDCP SN接收状态至少包含第一个丢失UL(无序列表)SDU((Service Data Unit,服务数据单元)的PDCP SN和可能的乱序UL PDCP SN的bit图信息;下行PDCP SN传输状态包含目标eNB给新SDU分配的下一个PDCP SN号;
UE收到包含切换信息的RRC连接重配置信令,与目标eNB做同步,并发送RRC连接重配置完成。
为了进行数据无损切换,对于用户面来讲,需要进行数据前转,其过程如下:
在切换准备阶段,在源eNB和目标eNB之间建立数据前转的用户面隧道。需要进行前转数据的每一个E-RAB建立一个隧道用于上行数据前转和另一个用户下行数据前转。在切换执行阶段,用户数据从源eNB前转至目标eNB。切换完成阶段,源eNB继续前转用户面数据直到最后一个包“end marker”。目标eNB收到“end marker”,认为前转数据完成。
在相关技术的系统中,在切换时RLC及以下的所有层,都进行了复位,只有PDCP层因为业务无损的要求,会传递一些未发送或者未确认的数据,以及传递PDCP的SN信息给目标节点,以保证目标节点能够无损的接续进 行数据处理。
在超密集网络中,传输节点之间距离较近,用户在传输节点之间切换和移动的频度较大。如果每次更换服务节点都需要对L2(层2,即介质访问控制层)的状态进行复位,则一方面影响用户体验,另一方面复位引起的非必要重传也会降低系统效率,因为RLC层的复位,将丢失RLC层的一些传输信息。例如,某些RLC PDU(协议数据单元)传输成功并获得了接收端的肯定确认,而该RLC PDU中并没有包含完整的高层数据,而是高层数据的某个分段,那这个已经传输成功的分段信息,并不会被保留,相当于在目标节点,需要对该整个高层数据进行重传,其中包含已经传输成功的分段,造成了冗余的重传,不利于系统效率和用户体验。
发明内容
本公开要解决的技术问题是提供一种信息处理方法及装置,能够保证UE快速高效的在节点之间进行移动,提升用户在节点间切换的体验,并提高网络的数据传输效率。
为解决上述技术问题,本公开的实施例提供技术方案如下:
一方面,提供一种信息处理方法,应用于第一节点,所述方法包括:
所述第一节点接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,
所述第一节点接收网络侧的指示消息包括:
所述第一辅节点接收所述主控节点发送的指示消息;
所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载 的RLC状态信息以及缓存数据包括:
所述第一辅节点将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点。
进一步地,所述第一辅节点接收所述主控节点发送的指示消息之后,所述方法还包括:
所述第一辅节点将当前的接收状态立即触发并形成一个新的状态报告,发送给所述用户设备,在所述状态报告中包含上行已经正确接收到的数据包的SN的最高值ACK_SN,所述状态报告还包括在ACK_SN之内所有没有成功接收的数据包的SN或分段信息。
进一步地,在所述第一辅节点和所述第二辅节点之间有直接接口时,
所述第一辅节点通过所述直接接口将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点;
在所述第一辅节点和所述第二辅节点之间没有直接接口时,所述第一辅节点通过所述主控节点将所述用户设备的所有承载的RLC状态信息以及缓存数据转发到所述第二辅节点。
进一步地,所述RLC状态信息包括确认模式AM状态信息;
对于AM发送端,所述AM状态信息包括下列信息中的一个或多个:下一个将要发送的数据包的序列号SN,下一个确认发送成功的数据包的SN,探询Poll的配置信息,所述Poll的配置信息包括下列信息中的一个或多个:每隔预设数量个SN或者预设数量个字节触发Poll,当前时刻距离上次Poll触发累计的SN数量或者字节数量,上次触发Poll时所记录的最高SN号;
对于AM接收端,所述AM状态信息包括下列信息中的一个或多个:按顺序全部正确接收的数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告中能够包含的SN的最高值或最高值加1;
或者
对于AM发送端,所述AM状态信息包括第一个已经发送但未获得对端ARQ ACK确认的数据包的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个发送的数据包是否接收到ARQ ACK确认;
对于AM接收端,所述AM状态信息包括:第一个未接收到的数据包对应的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个数据包的接收情况。
进一步地,所述缓存数据包括AM模式下需要前转的缓存数据;
对于AM发送端,AM模式下需要前转的缓存数据包括:所有已经发送但未收到ARQ ACK的数据包或者从第一个发送但未收到ARQ ACK数据包之后的所有数据包,以及所有未发送但缓存在发送缓存中的数据包;
对于AM接收端,AM模式下需要前转的缓存数据包括:所有接收缓存中的数据包。
进一步地,对于AM发送端,AM模式下需要前转的缓存数据还包括所有已经发送的数据包被发送的次数;
对于AM接收端,接收缓存中的数据为数据包的一部分时,AM模式下需要前转的缓存数据还包括数据包的该部分的分段信息。
进一步地,所述分段信息为SO+LI形式,其中SO表明该部分在数据包中的开始位置,LI为该部分的长度信息;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
进一步地,所述RLC状态信息包括非确认模式UM状态信息;
对于UM发送端,所述UM状态信息包括下一个将要发送的数据包的SN;
对于UM接收端,所述UM状态信息包括接收到的数据包的SN最高值或最高值减1。
进一步地,所述缓存数据包括UM模式下需要前转的缓存数据;
对于UM发送端,UM模式下需要前转的缓存数据包括:所有未发送的数据包;或者,UM模式下需要前转的缓存数据包括:所有未发送的数据包和已经发送但没有接收到HARQ ACK的数据包;
和/或,对于UM接收端,UM模式下需要前转的缓存数据包括:未经过重排序定时器检测的数据包。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一 辅节点和第二辅节点,
所述第一节点接收网络侧的指示消息包括:
所述第一辅节点接收所述主控节点发送的指示消息;
所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第一辅节点将RLC_L层及以下的协议栈实体进行复位。
进一步地,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第一演进型基站向所述第二演进型基站发送切换准备命令,询问第二演进型基站是否同意进行层二状态保持;
如果所述第二演进型基站在切换反馈信令中同意进行层二状态保持,则所述第一演进型基站执行保持层二状态的操作,否则所述第一演进型基站将PDCP协议栈实体进行状态前转,复位其余协议栈实体。
进一步地,所述第一演进型基站执行保持层二状态的操作包括:
所述第一演进型基站判断安全参数是否能够保持不变;
如果安全参数能够保持不变,则所述第一演进型基站将RLC层的状态和数据前转至所述第二演进型基站;
如果安全参数需要更新,则根据安全算法判断接收的片断的PDCP协议数据单元PDU是否能够成功解密,如果能够成功解密,所述第一演进型基站将所有接收到的PDCP PDU分段都发送到PDCP层进行解密,恢复出PDCP服务数据单元SDU分段,并将恢复出的分段前转至所述第二演进型基站;如果不能够成功解密,则所述第一演进型基站删除接收到的PDCP PDU分段,在RLC层记录为整个PDCP PDU丢失并更新RLC层的状态,删除与所述PDCP PDU分段相关的缓存,将新的RLC层状态和剩余的数据前转至所述第二演进型基站。
本公开实施例还提供了一种信息处理方法,应用于第二节点,所述方法包括:
所述第二节点与第一节点进行协商以保留用户设备的所有承载的无线链 路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第二辅节点接收所述第一辅节点发送的用户设备的所有承载的RLC状态信息以及缓存数据;
所述第二辅节点根据所述RLC状态信息以及缓存数据将所述用户设备的所有承载的状态变量和信息进行存储。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第二辅节点重新构建RLC_L及以下的协议栈实体,并初始化构建的每个协议栈实体。
进一步地,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第二演进型基站接收所述第一演进型基站发送的切换准备命令,所述切换准备命令询问是否同意进行层二状态保持;
所述第二演进型基站向所述第一演进型基站返回切换反馈信令,指示是否同意进行层二状态保持。
本公开实施例还提供了一种信息处理方法,应用于用户设备,所述方法包括:
所述用户设备接收网络侧发送的指示消息,所述指示消息指示将所述用 户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
所述用户设备根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,所述用户设备根据所述指示消息对层二信息进行处理包括:
所述用户设备复位物理MAC层及以下的所有协议栈实体;
所述用户设备对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将包含在状态报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者加1;
所述用户设备向网络侧反馈状态报告,所述状态报告携带有接收的数据包的SN最高值ACK_SN,还携带有所有被判定为丢包的SN列表;
所述用户设备保持PDCP协议栈实体的全部状态。
进一步地,所述状态报告还包括接收的数据包的丢失部分的分段信息,所述分段信息为SO+LI形式,其中SO表明丢失部分在数据包中的开始位置,LI为丢失数据包的长度信息,以请求重传丢失部分;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
进一步地,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述用户设备根据所述指示消息对层二信息进行处理包括:
在所述指示消息中携带有RLC不复位的指示时,则所述用户设备不对RLC协议栈实体进行复位;
如果安全参数能够保持不变,则所述用户设备保留PDCP和RLC协议栈实体,对MAC及以下协议栈实体进行复位,将所有接收Gap视为丢包,并反馈状态报告;
如果安全参数需要更新,则所述用户设备根据安全算法判断是否能够解 密非完整PDCP PDU数据,如果不能解密非完整PDCP PDU数据,则将所有接收的数据都予以删除,并将删除的数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,删除RLC缓存中的数据;
如果能够解密非完整PDCP PDU数据,则所述用户设备将部分接收的数据发送到PDCP层进行解密操作,如果解密成功,则将解密成功的数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,删除RLC缓存中的数据。
本公开实施例还提供了一种信息处理装置,应用于第一节点,所述装置包括:
接收模块,用于接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
处理模块,用于与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,
所述接收模块具体用于接收所述主控节点发送的指示消息;
所述处理模块具体用于将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点。
进一步地,所述装置还包括:
发送模块,用于将当前的接收状态立即触发并形成一个新的状态报告,发送给所述用户设备,在所述状态报告中包含上行已经正确接收到的数据包的SN的最高值ACK_SN,所述状态报告还包括在ACK_SN之内所有没有成功接收的数据包的SN或分段信息。
进一步地,在所述第一辅节点和所述第二辅节点之间有直接接口时,
所述处理模块具体用于通过所述直接接口将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点;
在所述第一辅节点和所述第二辅节点之间没有直接接口时,所述处理模块具体用于通过所述主控节点将所述用户设备的所有承载的RLC状态信息以及缓存数据转发到所述第二辅节点。
进一步地,所述RLC状态信息包括确认模式AM状态信息;
对于AM发送端,所述AM状态信息包括下列信息中的一个或多个:下一个将要发送的数据包的序列号SN,下一个确认发送成功的数据包的SN,探询Poll的配置信息,所述Poll的配置信息包括下列信息中的一个或多个:每隔预设数量个SN或者预设数量个字节触发Poll,当前时刻距离上次Poll触发累计的SN数量或者字节数量,上次触发Poll时所记录的最高SN号;
对于AM接收端,所述AM状态信息包括下列信息中的一个或多个:按顺序全部正确接收的数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告中能够包含的SN的最高值或最高值加1;
或者
对于AM发送端,所述AM状态信息包括第一个已经发送但未获得对端ARQ ACK确认的数据包的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个发送的数据包是否接收到ARQ ACK确认;
对于AM接收端,所述AM状态信息包括:第一个未接收到的数据包对应的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个数据包的接收情况。
进一步地,所述缓存数据包括AM模式下需要前转的缓存数据;
对于AM发送端,AM模式下需要前转的缓存数据包括:所有已经发送但未收到ARQ ACK的数据包或者从第一个发送但未收到ARQ ACK数据包之后的所有数据包,以及所有未发送但缓存在发送缓存中的数据包;
对于AM接收端,AM模式下需要前转的缓存数据包括:所有接收缓存中的数据包。
进一步地,对于AM发送端,AM模式下需要前转的缓存数据还包括所有已经发送的数据包被发送的次数;
对于AM接收端,接收缓存中的数据为数据包的一部分时,AM模式下 需要前转的缓存数据还包括数据包的该部分的分段信息。
进一步地,所述分段信息为SO+LI形式,其中SO表明该部分在数据包中的开始位置,LI为该部分的长度信息;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
进一步地,所述RLC状态信息包括非确认模式UM状态信息;
对于UM发送端,所述UM状态信息包括下一个将要发送的数据包的SN;
对于UM接收端,所述UM状态信息包括接收到的数据包的SN最高值或最高值减1。
进一步地,所述缓存数据包括UM模式下需要前转的缓存数据;
对于UM发送端,UM模式下需要前转的缓存数据包括:所有未发送的数据包;或者,UM模式下需要前转的缓存数据包括:所有未发送的数据包和已经发送但没有接收到HARQ ACK的数据包;
和/或,对于UM接收端,UM模式下需要前转的缓存数据包括:未经过重排序定时器检测的数据包。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述接收模块具体用于接收所述主控节点发送的指示消息;
所述处理模块具体用于将RLC_L层及以下的协议栈实体进行复位。
进一步地,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述处理模块包括:
发送单元,用于向所述第二演进型基站发送切换准备命令,询问第二演进型基站是否同意进行层二状态保持;
执行单元,用于如果所述第二演进型基站在切换反馈信令中同意进行层二状态保持,则执行保持层二状态的操作,否则将PDCP协议栈实体进行状态前转,复位其余协议栈实体。
进一步地,所述执行单元具体用于判断安全参数是否能够保持不变;
如果安全参数能够保持不变,则将RLC层的状态和数据前转至所述第二 演进型基站;
如果安全参数需要更新,则根据安全算法判断接收的片断的PDCP协议数据单元PDU是否能够成功解密,如果能够成功解密,将所有接收到的PDCP PDU分段都发送到PDCP层进行解密,恢复出PDCP服务数据单元SDU分段,并将恢复出的分段前转至所述第二演进型基站;如果不能够成功解密,则删除接收到的PDCP PDU分段,在RLC层记录为整个PDCP PDU丢失并更新RLC层的状态,删除与所述PDCP PDU分段相关的缓存,将新的RLC层状态和剩余的数据前转至所述第二演进型基站。
本公开实施例还提供了一种信息处理装置,应用于第二节点,所述装置包括:
切换模块,用于与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
数据传输模块,用于基于保留的信息为所述用户设备提供接续的数据服务。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,所述切换模块包括:
接收单元,用于接收所述第一辅节点发送的用户设备的所有承载的RLC状态信息以及缓存数据;
存储单元,用于根据所述RLC状态信息以及缓存数据将所述用户设备的所有承载的状态变量和信息进行存储。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述切换模块具体用于重新构建RLC_L及以下的协议栈实体,并初始化构建的每个协议栈实体。
进一步地,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述切换模块包括:
接收单元,用于接收所述第一演进型基站发送的切换准备命令,所述切换准备命令询问是否同意进行层二状态保持;
发送单元,用于向所述第一演进型基站返回切换反馈信令,指示是否同意进行层二状态保持。
本公开实施例还提供了一种信息处理装置,应用于用户设备,所述装置包括:
接收模块,用于接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
切换模块,用于根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
进一步地,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述切换模块具体用于复位物理MAC层及以下的所有协议栈实体;
对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将包含在状态报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者加1;
向网络侧反馈状态报告,所述状态报告携带有接收的数据包的SN最高值ACK_SN,还携带有所有被判定为丢包的SN列表;
保持PDCP协议栈实体的全部状态。
进一步地,所述状态报告还包括接收的数据包的丢失部分的分段信息,所述分段信息为SO+LI形式,其中SO表明丢失部分在数据包中的开始位置,LI为丢失数据包的长度信息,以请求重传丢失部分;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
进一步地,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,
所述切换模块具体用于在所述指示消息中携带有RLC不复位的指示时,不对RLC协议栈实体进行复位;
如果安全参数能够保持不变,则保留PDCP和RLC协议栈实体,对MAC及以下协议栈实体进行复位,将所有接收Gap视为丢包,并反馈状态报告;
如果安全参数需要更新,则根据安全算法判断是否能够解密非完整PDCP PDU数据,如果不能解密非完整PDCP PDU数据,则将所有接收的数据都予以删除,并将删除的数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,删除RLC缓存中的数据;
如果能够解密非完整PDCP PDU数据,则将部分接收的数据发送到PDCP层进行解密操作,如果解密成功,则将解密成功的数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,删除RLC缓存中的数据。
本公开实施例还提供一种信息处理装置,应用于第一节点,包括:处理器以及存储器;其中所述处理器用于执行所述存储器存储的程序实现:接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
本公开实施例还提供一种信息处理装置,应用于第二节点,包括:处理器以及存储器;其中所述处理器用于执行所述存储器存储的程序实现:与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;基于保留的信息为所述用户设备提供接续的数据服务。
本公开实施例还提供一种信息处理装置,应用于用户设备,包括处理器以及存储器;其中所述处理器用于执行所述存储器存储的程序实现:接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;根据所述 指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现上述任一种应用于第一节点的信息处理方法。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现上述任一种应用于第二节点的信息处理方法。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现上述任一种应用于用户设备的信息处理方法。
本公开的实施例具有以下有益效果:
上述方案中,上述方案中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
附图说明
图1为现有移动通信系统中的用户面协议栈的示意图;
图2为本公开实施例一信息处理方法的流程示意图;
图3为本公开实施例二信息处理方法的流程示意图;
图4为本公开实施例三信息处理方法的流程示意图;
图5为本公开实施例四信息处理装置的结构框图;
图6为本公开实施例五信息处理装置的结构框图;
图7为本公开实施例六信息处理装置的结构框图;
图8为本公开实施例七移动通信系统的架构示意图;
图9为本公开实施例八移动通信系统的架构示意图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开的实施例针对相关技术中每次更换服务节点都需要对L2的状态进行复位,一方面影响用户体验,另一方面复位引起的非必要重传也会降低系统效率的问题,提供一种信息处理方法及装置,能够保证UE快速高效的在节点之间进行移动,提升用户在节点间切换的体验,并提高网络的数据传输效率。
实施例一
本实施例提供一种信息处理方法,应用于第一节点,如图2所示,所述方法包括:
步骤101:所述第一节点接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
步骤102:所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
其中,指示消息可以是切换消息,也可以是重配置消息。
其中,第一节点为源小区、源基站或源辅节点,第二节点为目标小区、目标基站或目标辅节点。第一节点和第二节点可以位于不同设备中,也可以是同一设备的两个不同部分。
本实施例中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,
所述第一节点接收网络侧的指示消息包括:
所述第一辅节点接收所述主控节点发送的指示消息;
所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第一辅节点将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点。
进一步地,所述第一辅节点接收所述主控节点发送的指示消息之后,所述方法还包括:
所述第一辅节点将当前的接收状态立即触发并形成一个新的状态报告,发送给所述用户设备,在所述状态报告中包含上行已经正确接收到的数据包的SN的最高值ACK_SN,所述状态报告还包括在ACK_SN之内所有没有成功接收的数据包的SN或分段信息。
具体实施方式中,在所述第一辅节点和所述第二辅节点之间有直接接口时,
所述第一辅节点通过所述直接接口将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点;
在所述第一辅节点和所述第二辅节点之间没有直接接口时,所述第一辅节点通过所述主控节点将所述用户设备的所有承载的RLC状态信息以及缓存数据转发到所述第二辅节点。
进一步地,所述RLC状态信息包括确认模式AM状态信息;
对于AM发送端,所述AM状态信息包括下列信息中的一个或多个:下一个将要发送的数据包的序列号SN,下一个确认发送成功的数据包的SN,探询Poll的配置信息,其中所述Poll的配置信息包括下列信息中的一个或多个:每隔预设数量个SN或者预设数量个字节触发Poll,当前时刻距离上次Poll触发累计的SN数量或者字节数量,上次触发Poll时所记录的最高SN号;
对于AM接收端,所述AM状态信息包括下列信息中的一个或多个:按顺序全部正确接收的数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告中能够包含的SN的最高值或最高值加1;
或者
对于AM发送端,所述AM状态信息包括第一个已经发送但未获得对端 ARQ ACK确认的数据包的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个发送的数据包是否接收到ARQ ACK确认;
对于AM接收端,所述AM状态信息包括:第一个未接收到的数据包对应的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个数据包的接收情况。
进一步地,所述缓存数据包括AM模式下需要前转的缓存数据;
对于AM发送端,AM模式下需要前转的缓存数据包括:所有已经发送但未收到ARQ ACK的数据包或者从第一个发送但未收到ARQ ACK数据包之后的所有数据包,以及所有未发送但缓存在发送缓存中的数据包;
对于AM接收端,AM模式下需要前转的缓存数据包括:所有接收缓存中的数据包。
进一步地,对于AM发送端,AM模式下需要前转的缓存数据还包括所有已经发送的数据包被发送的次数;
对于AM接收端,接收缓存中的数据为数据包的一部分时,AM模式下需要前转的缓存数据还包括数据包的该部分的分段信息。
进一步地,所述分段信息为SO+LI形式,其中SO表明该部分在数据包中的开始位置,LI为该部分的长度信息;所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
进一步地,所述RLC状态信息包括非确认模式UM状态信息;
对于UM发送端,所述UM状态信息包括下一个将要发送的数据包的SN;
对于UM接收端,所述UM状态信息包括接收到的数据包的SN最高值或最高值减1。
进一步地,
对于UM接收端,所述UM状态信息还包括重排序的状态变量,所述重排序的状态变量包括重排序的下边界和/或触发重排序的数据包的SN。
进一步地,所述缓存数据包括UM模式下需要前转的缓存数据;
对于UM发送端,UM模式下需要前转的缓存数据包括:所有未发送的数据包;和/或
对于UM接收端,UM模式下需要前转的缓存数据包括:未经过重排序 定时器检测的数据包。
进一步地,
对于UM发送端,UM模式下需要前转的缓存数据还包括已经发送但没有接收到HARQ ACK的数据包。
进一步地,
在前转的数据包分配有RLC的SN时,则需要前转的缓存数据还包括数据包的SN;
在前转的数据包没有分配RLC的SN时,则在前转数据包时按照接收数据包的顺序来前转数据包。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述第一节点接收网络侧的指示消息包括:
所述第一辅节点接收所述主控节点发送的指示消息;
所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第一辅节点将RLC_L层及以下的协议栈实体进行复位。
一具体实施方式中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第一演进型基站向所述第二演进型基站发送切换准备命令,询问第二演进型基站是否同意进行层二状态保持;
如果所述第二演进型基站在切换反馈信令中同意进行层二状态保持,则所述第一演进型基站执行保持层二状态的操作,否则所述第一演进型基站将PDCP协议栈实体进行状态前转,复位其余协议栈实体。
进一步地,所述第一演进型基站执行保持层二状态的操作包括:
所述第一演进型基站判断安全参数是否能够保持不变;
如果安全参数能够保持不变,则所述第一演进型基站将RLC层的状态和 数据前转至所述第二演进型基站;
如果安全参数需要更新,则根据安全算法判断接收的片断的PDCP协议数据单元PDU是否可以成功解密,如果可以成功解密,所述第一演进型基站将所有接收到的PDCP PDU分段都发送到PDCP层进行解密,恢复出PDCP服务数据单元SDU分段,并将恢复出的分段前转至所述第二演进型基站;如果不能够成功解密,则所述第一演进型基站删除接收到的PDCP PDU分段,在RLC层记录为整个PDCP PDU丢失并更新RLC层的状态,删除与所述PDCP PDU分段相关的缓存,将新的RLC层状态和剩余的数据前转至所述第二演进型基站。
实施例二
本实施例提供一种信息处理方法,应用于第二节点,如图3所示,所述方法包括:
步骤201:所述第二节点与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
步骤202:所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
其中,第一节点为源小区、源基站或源辅节点,第二节点为目标小区、目标基站或目标辅节点。第一节点和第二节点可以位于不同设备中,也可以是同一设备的两个不同部分。
本实施例中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第二辅节点接收所述第一辅节点发送的用户设备的所有承载的RLC状态信息以及缓存数据;
所述第二辅节点根据所述RLC状态信息以及缓存数据将所述用户设备的所有承载的状态变量和信息进行存储。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第二辅节点重新构建RLC_L及以下的协议栈实体,并初始化构建的每个协议栈实体。
一具体实施方式中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
所述第二演进型基站接收所述第一演进型基站发送的切换准备命令,所述切换准备命令询问是否同意进行层二状态保持;
所述第二演进型基站向所述第一演进型基站返回切换反馈信令,指示是否同意进行层二状态保持。
实施例三
本实施例提供一种信息处理方法,应用于用户设备,如图4所示,所述方法包括:
步骤301:所述用户设备接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
步骤302:所述用户设备根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
其中,指示消息可以是切换消息,也可以是重配置消息。
其中,第一节点为源小区、源基站或源辅节点,第二节点为目标小区、目标基站或目标辅节点。第一节点和第二节点可以位于不同设备中,也可以 是同一设备的两个不同部分。决定用户设备是否复位的为目标小区、目标基站或目标辅节点。
本实施例中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,所述用户设备根据所述指示消息对层二信息进行处理包括:
所述用户设备复位物理MAC层及以下的所有协议栈实体;
所述用户设备对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将包含在状态报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者加1;
所述用户设备向网络侧反馈状态报告,所述状态报告携带有接收的数据包的SN最高值ACK_SN,还携带有所有被判定为丢包的SN列表;
所述用户设备保持PDCP协议栈实体的全部状态。
进一步地,
所述状态报告还包括接收的数据包的丢失部分的分段信息,所述分段信息为SO+LI形式,其中SO表明丢失部分在数据包中的开始位置,LI为丢失数据包的长度信息,以请求重传丢失部分;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。即分段信息为SO+LI+LSF形式,当是最后一个分段时LSF置为1,否则LSF置为0。形式
一具体实施方式中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述用户设备根据所述指示消息对层二信息进行处理包括:
在所述指示消息中携带有RLC不复位的指示时,则所述用户设备不对 RLC协议栈实体进行复位;
如果安全参数能够保持不变,则所述用户设备保留PDCP和RLC协议栈实体,对MAC及以下协议栈实体进行复位,将所有接收Gap视为丢包,并反馈状态报告;
如果安全参数需要更新,则所述用户设备根据安全算法判断是否能够解密非完整PDCP PDU数据,如果不能解密非完整PDCP PDU数据,则将所有接收的数据都予以删除,并将删除的数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,删除RLC缓存中的数据;
如果能够解密非完整PDCP PDU数据,则所述用户设备将部分接收的数据发送到PDCP层进行解密操作,如果解密成功,则将解密成功的数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,删除RLC缓存中的数据。
实施例四
本公开的实施例四提供一种信息处理装置,应用于第一节点,包括:处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,如图5所示,包括实现如下的功能模块或单元:
接收模块41,用于接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
处理模块42,用于与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
其中,指示消息可以是切换消息,也可以是重配置消息。
其中,第一节点为源小区、源基站或源辅节点,第二节点为目标小区、目标基站或目标辅节点。第一节点和第二节点可以位于不同设备中,也可以是同一设备的两个不同部分。
本实施例中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目 标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,
所述接收模块具体用于接收所述主控节点发送的指示消息;
所述处理模块具体用于将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点。
进一步地,所述装置还包括:
发送模块,用于将当前的接收状态立即触发并形成一个新的状态报告,发送给所述用户设备,在所述状态报告中包含上行已经正确接收到的数据包的SN的最高值ACK_SN,所述状态报告还包括在ACK_SN之内所有没有成功接收的数据包的SN或分段信息。
进一步地,在所述第一辅节点和所述第二辅节点之间有直接接口时,
所述处理模块具体用于通过所述直接接口将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点;
在所述第一辅节点和所述第二辅节点之间没有直接接口时,所述处理模块具体用于通过所述主控节点将所述用户设备的所有承载的RLC状态信息以及缓存数据转发到所述第二辅节点。
进一步地,所述RLC状态信息包括确认模式AM状态信息;
对于AM发送端,所述AM状态信息包括下列信息中的一个或多个:下一个将要发送的数据包的序列号SN,下一个确认发送成功的数据包的SN,或探询Poll的配置信息,所述Poll的配置信息包括下列信息中的一个或多个:每隔预设数量个SN或者预设数量个字节触发Poll,当前时刻距离上次Poll触发累计的SN数量或者字节数量,上次触发Poll时所记录的最高SN号;
对于AM接收端,所述AM状态信息包括下列信息中的一个或多个:按顺序全部正确接收的数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告中能够包含的SN的最 高值或最高值加1;
或者
对于AM发送端,所述AM状态信息包括第一个已经发送但未获得对端ARQ ACK确认的数据包的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个发送的数据包是否接收到ARQ ACK确认;
对于AM接收端,所述AM状态信息包括:第一个未接收到的数据包对应的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个数据包的接收情况。
进一步地,所述缓存数据包括AM模式下需要前转的缓存数据;
对于AM发送端,AM模式下需要前转的缓存数据包括:所有已经发送但未收到ARQ ACK的数据包或者从第一个发送但未收到ARQ ACK数据包之后的所有数据包,以及所有未发送但缓存在发送缓存中的数据包;
对于AM接收端,AM模式下需要前转的缓存数据包括:所有接收缓存中的数据包。
进一步地,对于AM发送端,AM模式下需要前转的缓存数据还包括所有已经发送的数据包被发送的次数;
对于AM接收端,接收缓存中的数据为数据包的一部分时,AM模式下需要前转的缓存数据还包括数据包的该部分的分段信息。
进一步地,所述分段信息为SO+LI形式,其中SO表明该部分在数据包中的开始位置,LI为该部分的长度信息;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
进一步地,所述RLC状态信息包括非确认模式UM状态信息;
对于UM发送端,所述UM状态信息包括下一个将要发送的数据包的SN;
对于UM接收端,所述UM状态信息包括接收到的数据包的SN最高值或最高值减1。
进一步地,对于UM接收端,所述UM状态信息还包括重排序的状态变量,所述重排序的状态变量包括重排序的下边界和/或触发重排序的数据包的SN。
进一步地,所述缓存数据包括UM模式下需要前转的缓存数据;
对于UM发送端,UM模式下需要前转的缓存数据包括:所有未发送的数据包;
对于UM接收端,UM模式下需要前转的缓存数据包括:未经过重排序定时器检测的数据包。
进一步地,对于UM发送端,UM模式下需要前转的缓存数据还包括已经发送但没有接收到HARQ ACK的数据包。
进一步地,在前转的数据包分配有RLC的SN时,则需要前转的缓存数据还包括数据包的SN;
在前转的数据包没有分配RLC的SN时,则在前转数据包时按照接收数据包的顺序来前转数据包。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述接收模块具体用于接收所述主控节点发送的指示消息;
所述处理模块具体用于将RLC_L层及以下的协议栈实体进行复位。
一具体实施方式中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述处理模块包括:
发送单元,用于向所述第二演进型基站发送切换准备命令,询问第二演进型基站是否同意进行层二状态保持;
执行单元,用于如果所述第二演进型基站在切换反馈信令中同意进行层二状态保持,则执行保持层二状态的操作,否则将PDCP协议栈实体进行状态前转,复位其余协议栈实体。
进一步地,
所述执行单元具体用于判断安全参数是否能够保持不变;
如果安全参数能够保持不变,则将RLC层的状态和数据前转至所述第二演进型基站;
如果安全参数需要更新,则根据安全算法判断接收的片断的PDCP协议数据单元PDU是否可以成功解密,如果可以成功解密,将所有接收到的PDCP  PDU分段都发送到PDCP层进行解密,恢复出PDCP服务数据单元SDU分段,并将恢复出的分段前转至所述第二演进型基站;如果不能够成功解密,则删除接收到的PDCP PDU分段,在RLC层记录为整个PDCP PDU丢失并更新RLC层的状态,删除与所述PDCP PDU分段相关的缓存,将新的RLC层状态和剩余的数据前转至所述第二演进型基站。
实施例五
本公开的实施例五提供一种信息处理装置,应用于第二节点,包括:处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,如图6所示,包括实现如下的功能模块或单元:
切换模块51,用于与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
数据传输模块52,用于基于保留的信息为所述用户设备提供接续的数据服务。
其中,第一节点为源小区、源基站或源辅节点,第二节点为目标小区、目标基站或目标辅节点。第一节点和第二节点可以位于不同设备中,也可以是同一设备的两个不同部分。
本实施例中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,所述切换模块包括:
接收单元,用于接收所述第一辅节点发送的用户设备的所有承载的RLC状态信息以及缓存数据;
存储单元,用于根据所述RLC状态信息以及缓存数据将所述用户设备的所有承载的状态变量和信息进行存储。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述切换模块具体用于重新构建RLC_L及以下的协议栈实体,并初始化构建的每个协议栈实体。
一具体实施方式中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述切换模块包括:
接收单元,用于接收所述第一演进型基站发送的切换准备命令,所述切换准备命令询问是否同意进行层二状态保持;
发送单元,用于向所述第一演进型基站返回切换反馈信令,指示是否同意进行层二状态保持。
实施例六
本公开的实施例六提供一种信息处理装置,应用于用户设备,包括:处理器;以及通过总线接口与所述处理器相连接的存储器,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,如图7所示,包括实现如下的功能模块或单元:
接收模块61,用于接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
切换模块62,用于根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
其中,指示消息可以是切换消息,也可以是重配置消息。
其中,第一节点为源小区、源基站或源辅节点,第二节点为目标小区、目标基站或目标辅节点。第一节点和第二节点可以位于不同设备中,也可以是同一设备的两个不同部分。决定用户设备是否复位的为目标小区、目标基 站或目标辅节点。
本实施例中,在用户设备发生切换时,尽可能地保持L2状态,这样当用户设备在传输节点之间移动时,能够保持用户设备传输状态信息的连续,目标节点可以基于最新的用户设备状态提供接续的传输服务,避免用户设备全部状态信息复位和传输速率的下降,最终提高网络效率和用户的体验。
一具体实施方式中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
所述切换模块具体用于复位物理MAC层及以下的所有协议栈实体;
对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将包含在状态报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者最高值加1;
向网络侧反馈状态报告,所述状态报告携带有接收的数据包的SN最高值ACK_SN,还携带有所有被判定为丢包的SN列表;
保持PDCP协议栈实体的全部状态。
进一步地,
所述状态报告还包括接收的数据包的丢失部分的分段信息,所述分段信息为SO+LI形式,其中SO表明丢失部分在数据包中的开始位置,LI为丢失数据包的长度信息,以请求重传丢失部分;
所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
一具体实施方式中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,
所述切换模块具体用于在所述指示消息中携带有RLC不复位的指示时,不对RLC协议栈实体进行复位;
如果安全参数能够保持不变,则保留PDCP和RLC协议栈实体,对MAC及以下协议栈实体进行复位,将所有接收Gap视为丢包,并反馈状态报告;
如果安全参数需要更新,则根据安全算法判断是否能够解密非完整PDCP  PDU数据,如果不能解密非完整PDCP PDU数据,则将所有接收的数据都予以删除,并将删除的数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,删除RLC缓存中的数据;
如果能够解密非完整PDCP PDU数据,则将部分接收的数据发送到PDCP层进行解密操作,如果解密成功,则将解密成功的数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,删除RLC缓存中的数据。
实施例七
如图8所示,本实施例采用CU-DU架构,在CU-DU架构中,主控节点指的是CU(Central Unit,中央单元)节点,辅节点指的是DU(Distributed Unit,分布式单元)。且本实施例CU-DU之间的协议栈分离方式采取的是PDCP-RLC分离的架构,即PDCP作为集中协议栈,位于CU实体,RLC层及以下的协议栈分别位于各个DU。
本实施例中,当UE从一个DU实体(DU1)连接切换到另一个DU实体(DU2)连接时,其大致流程如下:
步骤a:在DU1下工作的UE,由于其移动性原因,基于UE上报的测量报告或者基于网络侧的测量结果或者基于其它因素考虑,例如需要在DU之间进行负荷均衡等,现在CU实体决定将该UE由DU1切换到DU2;
步骤b:CU向DU1发送指示消息,要求将该UE的所有承载的RLC状态以及缓存数据,均前转到DU2,即目标节点。其中,指示消息可以是切换消息,也可以是重配置消息。
其中,RLC需要前转的AM(确认模式)状态信息包括:
对AM发送端,包括下一个将要发送的数据包的SN,下一个确认发送成功的数据包的SN,可选的还可以携带Poll(探询)的相关信息,例如配置了每隔多少个SN或者多少字节将触发Poll,此时距离上次Poll触发已经累计了多少SN或者多少字节;上次触发Poll时所记录的最高SN等。
对AM接收端,按顺序全部正确接收数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告 中能够包含的SN的最高值或最高值加1;
或者,AM状态信息还有另一种携带方法:
对AM发送端,携带第一个已经发送但未获得对端ARQ ACK确认的数据包的SN,并携带比特流来显示从该SN起,其后每个发送的数据包的SN是否接收到ACK确认,例如接收到ACK对应比特位置为1,否则为0,直至所有已经发送过的数据包的SN都已经被指示。对于分段被确认的情况,可以携带分段信息。举例说明,例如目前第一个发送未确认的数据包SN=100,意味着100之前的所有数据包均被正确接收反馈ACK,100-105这几个数据包是发送了,但确认情况较复杂,从100开始,第一个未被确认,其后5个的包状态分别为11001,则携带SN=100,和比特流11001,来指示序号为101-105数据包的确认情况。
对AM接收端,携带第一个未接收到的数据包对应的SN,并携带比特流来显示从该SN起,其后每个数据包的SN的接收情况,例如正确接收数据包则对应比特位置为1,否则为0,直至所有已经接收的数据包的SN都已经被指示。对于分段被接收的情况,可以携带分段信息。
RLC AM模式下需要前转的缓存数据包括:
对AM发送端,包括所有已经发送的数据,可选的携带已经发送的数据被发送的次数,还包括所有未发送但缓存在发送缓存中的数据;
对AM接收端,将所有接收缓存中的数据,均前转到目标节点,即便该数据仅是一个分段,也可以携带分段信息,传递到目标节点,分段信息可以是SO+LI形式,其中SO表明分段的部分在原始数据包中的开始位置,LI为该分段的长度信息,也可以包含该分段的部分是否最后一个分段的信息,以利于目标节点进行重组数据。
RLC需要前转的UM(非确认模式)状态信息包括:
对UM发送端,包含下一个需要发送的数据包的SN;
对UM接收端,包含接收到的数据包的SN最高值或者最高值减1,可选得可以携带重排序相关的状态变量,例如重排序的下边界,触发重排序的SN等。
RLC需要前转的UM缓存数据包括:
对于UM发送端,所有未发送的数据包,需要前转至目标节点,可选得可以将已经发送,但没有接收到HARQ ACK的数据包也前转到目标节点;
对于UM接收端,可选的可以将未经过重排序定时器检测的数据,前转到目标节点。
注意:在AM和UM的数据前转中,一旦数据已经分配了RLC的SN,则在数据前转时,需要携带该SN信息,如果该数据还没有分配RLC SN,则不需要携带,但需要按照接收的顺序进行有序的前转,通过传输层的序号,例如GTP-U(用户层面的GPRS隧道协议)的SN来保证前转数据的顺序,是按照从核心网接收到的顺序。
对于源节点DU1来说,当接收到CU发来的切换命令时,可选的,可以将自己当前的接收状态立即触发并形成一个新的状态报告,发送给UE,在该状态报告中,包含上行已经正确接收到的数据包的SN的最高值,即ACK_SN,并在同一个状态报告中,给出在ACK_SN之内,所有没有成功接收的数据包的SN或者分段信息,即NACK_SN或分段列表。其中所有未成功接收的数据包既包括已经经过了重排序定时器检测的,也包括没有经过重排序定时器检测的,此时所有的接收序列的缺口,都认定为丢包,携带在NACK_SN或分段的列表中。
状态信息和缓存数据的前转,是从源节点DU1到目标节点DU2,当这个两个节点之间有直接接口时,可以通过直接接口传输,当两个节点之间没有直接接口时,可以通过CU节点进行转发。
对于目标节点DU2来说,接收到DU1发来的状态信息和缓存数据,则根据状态信息和数据,将所有的状态变量和信息进行存储。如果在状态信息中详细指明了每个数据包的接收或者确认情况,则根据该信息更新状态,如果仅仅是给出了几个关键的状态变量,则再根据前转的数据,来判断每个数据包的情况,例如一旦在前转数据中携带了,则证明该数据包没有被确认,需要重传;或者对于接收端,前转的数据代表了接收端非按序或者重组不成功的数据包,需要进一步等待其他的重传。
对于UE侧来说,当接收到网络侧发送的从DU1切换到DU2的指示消息,其中可以显示的携带对于L2的处理信息,例如PDCP是否重建,RLC是否复位,则UE按照指示消息中的指令进行处理。
在图8所示的架构中,由于网络侧的PDCP实体没有发生任何变化,因此UE侧PDCP实体保留即可,无需特殊操作;
而对于RLC来说,在这种情况下,网络侧进行了RLC实体状态和数据的前转,因此这时UE侧的RLC实体也可以继续,比较特殊的点在于,当UE此时有任何重排序定时器启动时,都需要立即停止并复位该重排序定时器,并对现在所有的接收缺口,都认定为丢包。可选的,可以根据配置,决定是否立即向网络侧反馈状态报告,其中携带接收的数据包的SN的最高值,和所有的缺口SN或者分段的列表信息。
实施例八:
在本实施例中,给出另一种CU-DU架构中的处理方式,即CU-DU之间的协议栈分离方式采取的是Higher RLC-Lower RLC分离的架构,即PDCP和Higher RLC(RLC-H)作为集中协议栈,位于CU实体,Lower RLC层及以下的协议栈分别位于各个DU。其中Higher RLC完成RLC PDU和PDCP PDU的一一映射,并分配RLC SN,而Lower RLC(RLC-L)根据实时地MAC层提供的传输资源的大小,将适合尺寸的RLC PDU及RLC PDU分段顺序的发送到MAC层进行组包并传输。
在这种架构中,CU-DU接口传输的数据包内容为携带RLC SN的RLC PDU。并且这个接口也可以具有传输层协议,例如GTP-U或者GRE。
在本公开实施例中,CU-DU交互的方式与实施例七中的主控节点-辅节点的方式类似。其中RLC实体有部分功能集中在CU进行处理,例如SN分配,状态变量和主要定时器的维护等,另外,处理和组织ARQ(自动重传请求)相关的功能也是在CU的RLC-Higher实体进行。当UE由CU下的一个DU(即源DU)切换到另一个DU(即目标DU)时,由于CU节点没有更换,因此RLC-H相关的状态变量和上下文信息都可以保留。
对于位于DU的RLC-Lower实体来说,发送端主要承担的是缓存一定的 发送数据,并根据MAC层实时调度的资源大小,对RLC PDU进行组织,以得到适应于传输资源块的数据,发送给MAC层。接收端主要承担的是对数据包进行接收并传递给高层的功能,可选的可以对RLC PDU分段进行一定的重组以及对RLC PDU进行一定的排序。由于UE在更换DU时,位于DU的RLC-L实体以及以下的MAC和PHY实体,面临两个选择,要么复位,要么进行状态前转,即源DU将相关的上下文状态传递给目标DU。在本实施例的解决方案中,由于DU的协议栈中,包括RLC-L都只是存储少量与实时发送相关的状态信息,RLC相关的状态和重传信息等均是在CU的RLC-H维护,因此将DU的所有实体进行复位,是较优的选择。
对应的,UE侧的处理包括,当UE接收到网络侧的指示消息,指示UE由源DU切换到目标DU之后,UE需要对自己当前的状态进行如下处理:
复位MAC层及以下的所有协议栈实体;
对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新相关重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将能包含在状态报告中的SN的最大值更新为当前接收到数据包的SN的最高值或者下一个值;
UE立即触发一次状态报告上报,将当前接收到的数据包的最高SN作为ACK_SN,并在相同的状态报告中携带所有被判定为丢包的SN列表,其中可以包含分段信息,即当有一个RLC PDU的部分分段被正确接收,而其它部分丢失,携带丢失部分的SO和LI信息,最终形成NACK_SN及分段的列表,发送给发送端,请求必要的重传。
UE保持PDCP的全部状态,继续进行处理。
网络侧的处理为:
新的DU(即目标DU)将构建新的RLC_L及以下的协议栈实体,每个实体均以初始化状态开始,等待数据传输和接收。
对于CU实体来说,保留PDCP和RLC_H的所有协议和上下文状态,如果RLC_H存在有重排序定时器,则将重排序定时器复位,并更新相关重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将能包含在状态 报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者下一个值;CU立即触发一次状态报告上报,将当前接收到的最高SN作为ACK_SN,并在相同的状态报告中携带所有被判定为丢包的SN列表,其中可以包含分段信息,即当有一个RLC PDU的部分分段被正确接收,而其它部分丢失,携带丢失部分的SO和LI信息,最终形成NACK_SN及分段的列表,发送给发送端,请求必要的重传。
对于CU的PDCP层来说,可以继续保持当前状态进行,无需额外操作。
实施例九:
本实施例为跨eNB节点的切换场景,本实施例中,UE从源eNB切换到目标eNB,需要保留RLC层及以上的上下文信息,以使得当前的传输状态能得以保留。
具体对于网络侧来说,网络侧源eNB在向目标eNB发送切换准备命令时,需要携带信息,询问目标eNB是否支持并同意进行层二状态保持,如果目标eNB在切换反馈信令中同意了进行层二状态保持,则后续执行层二状态保持,否则按照现有的切换流程进行,即仅PDCP实体进行状态前转,其余协议层均复位。
当源节点(即源eNB)和目标节点(即目标NB)协商决定进行层二状态保持,则源节点在向目标节点前转状态时,需要区分哪些状态是PDCP层的状态,哪些状态是RLC层的状态,并且在数据前转时,也需要区分数据的类型,例如哪些数据是PDCP层的,哪些数据是RLC层的。
当UE在源节点和目标节点之间切换时,如果安全参数能够保持,则意味着RLC层的状态和数据可以完全不变的前转到目标节点,在目标节点再继续进行未完成的传输。如果安全参数不能够保持,意味着RLC层的一些状态可能需要进行一定的更新,例如当接收的RLC PDU不能重组成完整的PDCP PDU,这时候需要根据安全算法,看是否该片断的PDCP PDU可以进行成功解密,如果可以则该PDCP PDU片断可以视为有效传输,在目标侧不需要重传,只需要重传未成功的部分即可。如果安全算法决定,只有整个PDCP PDU成功接收,才能够进行成功的解密安全操作,则对于接收成功的PDCP PDU 片断也无需前转,并视为整个PDCP PDU丢失,此时RLC对应于相关PDCP PDU的SN也要记为丢包,并且删除已经接收成功地相关RLC PDU及其分段。
网络侧需要做的是将需要前转的RLC的状态和数据,从源节点前转到目标节点,并在切换命令中通知UE,当前RLC的状态是否复位。
对于切换前后安全上下文可以保留的情况,则源节点将RLC的信息和数据均前转到目标节点,前转的内容参考实施例七;对于切换前后安全上下文需要更新的情况,且安全算法不支持部分数据的解密,则此时对所有接收到的PDCP PDU分段都予以删除,在RLC层均算作整个PDCP PDU丢失,并根据这些情况重新更新RLC的状态并删除与这些PDCP PDU分段相关的缓存,将新的RLC状态和剩余的数据前转至目标节点;对于切换前后安全上下文需要更新的情况,如果安全算法支持部分数据的解密,则此是将所有接收到的PDCP PDU分段都发送到PDCP层进行解密,恢复出PDCP SDU分段,并将这些分段前转至目标节点,对RLC层的来说,相关的状态都按照分段接收成功进行考虑并前转状态至目标节点,此时RLC层的数据均不需要前转至目标节点,因为RLC层的数据均是使用源小区的安全参数进行的加密操作,在目标小区无法处理,但此时相当于将所有部分接收的分段数据,都由PDCP层进行了部分数据的解密,并恢复成PDCP SDU片断,则在目标小区,需要进行PDCP SDU级别的重组,重组的方式仍旧是以类似SO+LI和最后一个分段指示的方式进行。
对于UE侧来说,相应的处理操作包括:
当UE接收到网络侧的指示消息,如果其中携带RLC不复位的指示,则UE遵照执行;
如果安全参数不需要更新,则UE的PDCP和RLC可以完全保留,MAC及以下进行复位,UE侧将所有接收Gap视为丢包,并反馈状态报告,类似实施例八中UE行为;
如果安全参数需要更新,则UE根据安全算法判断,如果安全算法不能解密非完整PDCP PDU数据,则将所有部分接收的数据都予以删除,并将这 些部分数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,RLC缓存的数据均需要删除,接收端完整PDCP PDU发到PDCP处理,发送端需要PDCP发送实体重新进行加密和相关处理,除此之外,MAC复位与状态报告立即反馈;
如果安全参数需要更新,且UE根据安全算法判断,安全算法可以解密非完整PDCP PDU数据,则可以将部分接收的数据都发送到PDCP层进行解密操作,如果成功,则这些数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,RLC缓存的数据均需要删除,接收端发到PDCP处理,发送端需要PDCP发送实体重新进行加密和相关处理,除此之外,MAC复位与状态报告立即反馈。
实施例十
本实施例中UE切换前后的两个小区同属于一个eNB。一般来说按照安全的原则,在不更换节点的情况下,安全参数可以得以保留。类似于实施例九中安全上下文得以延续的情况,对于UE侧来说,处理的方式与实施例九中安全参数不更新的情况是类似的。
对于网络侧来说,由于源小区和目标小区位于同一个eNB,则小区与小区之间的前转不需要进行接口过程,通过网络侧实现即可完成,一般来说,均可以做到源小区的全部状态在目标小区使用,也需要注意,由于MAC之下复位了,因此RLC的全部接收缺口均视为丢包,复位重排序定时器,立即发送状态反馈,这些过程是需要进行的。
针对上述所有实施例,上述的过程都是针对一条逻辑信道进行的描述,一般情况下,每个逻辑信道都类似处理,而且每个逻辑信道可以分别处理,例如传输信令的逻辑信道,可以不进行任何状态保持和数据前转,UM数据也可以不进行RLC状态前转,AM数据可选的进行RLC状态前转和保持。
需要说明的是,本公开第四、五、六实施例提供的装置是能够对应实现上述方法实施例提供的信息处理装置,故上述方法实施例提供的信息处理方法的所有实施例均可对应适用于该第四、五、六实施例,且均能达到相同或相似的有益效果。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (48)

  1. 一种信息处理方法,应用于第一节点,包括:
    所述第一节点接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
    所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
  2. 根据权利要求1所述的信息处理方法,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,
    所述第一节点接收网络侧的指示消息包括:
    所述第一辅节点接收所述主控节点发送的指示消息;
    所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
    所述第一辅节点将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点。
  3. 根据权利要求2所述的信息处理方法,其中,所述第一辅节点接收所述主控节点发送的指示消息之后,所述方法还包括:
    所述第一辅节点将当前的接收状态立即触发并形成一个新的状态报告,发送给所述用户设备,在所述状态报告中包含上行已经正确接收到的数据包的SN的最高值ACK_SN,所述状态报告还包括在ACK_SN之内所有没有成功接收的数据包的SN或分段信息。
  4. 根据权利要求2或3所述的信息处理方法,其中,在所述第一辅节点和所述第二辅节点之间有直接接口时,
    所述第一辅节点通过所述直接接口将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点;
    在所述第一辅节点和所述第二辅节点之间没有直接接口时,所述第一辅 节点通过所述主控节点将所述用户设备的所有承载的RLC状态信息以及缓存数据转发到所述第二辅节点。
  5. 根据权利要求2-4任一项所述的信息处理方法,其中,所述RLC状态信息包括确认模式AM状态信息;
    对于AM发送端,所述AM状态信息包括下列信息中的一个或多个:下一个将要发送的数据包的序列号SN,下一个确认发送成功的数据包的SN,探询Poll的配置信息,其中所述Poll的配置信息包括下列信息中的一个或多个:每隔预设数量个SN或者预设数量个字节触发Poll,当前时刻距离上次Poll触发累计的SN数量或者字节数量,上次触发Poll时所记录的最高SN号;
    对于AM接收端,所述AM状态信息包括下列信息中的一个或多个:按顺序全部正确接收的数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告中能够包含的SN的最高值或最高值加1;
    或者
    对于AM发送端,所述AM状态信息包括第一个已经发送但未获得对端ARQ ACK确认的数据包的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个发送的数据包是否接收到ARQ ACK确认;
    对于AM接收端,所述AM状态信息包括:第一个未接收到的数据包对应的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个数据包的接收情况。
  6. 根据权利要求2-5任一项所述的信息处理方法,其中,所述缓存数据包括AM模式下需要前转的缓存数据;
    对于AM发送端,AM模式下需要前转的缓存数据包括:所有已经发送但未收到ARQ ACK的数据包或者从第一个发送但未收到ARQ ACK数据包之后的所有数据包,以及所有未发送但缓存在发送缓存中的数据包;
    对于AM接收端,AM模式下需要前转的缓存数据包括:所有接收缓存中的数据包。
  7. 根据权利要求6所述的信息处理方法,其中,
    对于所述AM发送端,所述AM模式下需要前转的缓存数据还包括所有 已经发送的数据包被发送的次数;
    对于所述AM接收端,接收缓存中的数据为数据包的一部分时,所述AM模式下需要前转的缓存数据还包括数据包的该部分的分段信息。
  8. 根据权利要求7所述的信息处理方法,其中,所述分段信息为SO+LI形式,其中SO表明该部分在数据包中的开始位置,LI为该部分的长度信息;
    所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
  9. 根据权利要求2-8任一项所述的信息处理方法,其中,所述RLC状态信息包括非确认模式UM状态信息;
    对于UM发送端,所述UM状态信息包括下一个将要发送的数据包的SN;
    对于UM接收端,所述UM状态信息包括接收到的数据包的SN最高值或最高值减1。
  10. 根据权利要求2-9任一项所述的信息处理方法,其中,所述缓存数据包括UM模式下需要前转的缓存数据;
    对于UM发送端,UM模式下需要前转的缓存数据包括:所有未发送的数据包;或者,UM模式下需要前转的缓存数据包括:所有未发送的数据包和已经发送但没有接收到HARQ ACK的数据包;
    和/或,对于UM接收端,UM模式下需要前转的缓存数据包括:未经过重排序定时器检测的数据包。
  11. 根据权利要求1所述的信息处理方法,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
    所述第一节点接收网络侧的指示消息包括:
    所述第一辅节点接收所述主控节点发送的指示消息;
    所述第一节点与所述第二节点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
    所述第一辅节点将RLC_L层及以下的协议栈实体进行复位。
  12. 根据权利要求1所述的信息处理方法,其中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述第一节点与所述第二节 点进行协商以保留所述用户设备的所有承载的RLC状态信息以及缓存数据包括:
    所述第一演进型基站向所述第二演进型基站发送切换准备命令,询问第二演进型基站是否同意进行层二状态保持;
    如果所述第二演进型基站在切换反馈信令中同意进行层二状态保持,则所述第一演进型基站执行保持层二状态的操作,否则所述第一演进型基站将PDCP协议栈实体进行状态前转,复位其余协议栈实体。
  13. 根据权利要求12所述的信息处理方法,其中,所述第一演进型基站执行保持层二状态的操作包括:
    所述第一演进型基站判断安全参数是否能够保持不变;
    如果安全参数能够保持不变,则所述第一演进型基站将RLC层的状态和数据前转至所述第二演进型基站;
    如果安全参数需要更新,则根据安全算法判断接收的片断的PDCP协议数据单元PDU是否能够成功解密,如果能够成功解密,则所述第一演进型基站将所有接收到的PDCP PDU分段都发送到PDCP层进行解密,恢复出PDCP服务数据单元SDU分段,并将恢复出的分段前转至所述第二演进型基站;如果不能够成功解密,则所述第一演进型基站删除接收到的PDCP PDU分段,在RLC层记录为整个PDCP PDU丢失并更新RLC层的状态,删除与所述PDCP PDU分段相关的缓存,将新的RLC层状态和剩余的数据前转至所述第二演进型基站。
  14. 一种信息处理方法,应用于第二节点,包括:
    所述第二节点与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
    所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
  15. 根据权利要求14所述的信息处理方法,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,所述第二 节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
    所述第二辅节点接收所述第一辅节点发送的用户设备的所有承载的RLC状态信息以及缓存数据;
    所述第二辅节点根据所述RLC状态信息以及缓存数据将所述用户设备的所有承载的状态变量和信息进行存储。
  16. 根据权利要求14所述的信息处理方法,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
    所述第二辅节点重新构建RLC_L及以下的协议栈实体,并初始化构建的每个协议栈实体。
  17. 根据权利要求14所述的信息处理方法,其中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述第二节点与所述第一节点进行协商以保留用户设备的所有承载的RLC状态信息以及缓存数据包括:
    所述第二演进型基站接收所述第一演进型基站发送的切换准备命令,所述切换准备命令询问是否同意进行层二状态保持;
    所述第二演进型基站向所述第一演进型基站返回切换反馈信令,指示是否同意进行层二状态保持。
  18. 一种信息处理方法,应用于用户设备,包括:
    所述用户设备接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
    所述用户设备根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
  19. 根据权利要求18所述的信息处理方法,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共 用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,所述用户设备根据所述指示消息对层二信息进行处理包括:
    所述用户设备复位物理MAC层及以下的所有协议栈实体;
    所述用户设备对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将包含在状态报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者加1;
    所述用户设备向网络侧反馈状态报告,所述状态报告携带有接收的数据包的SN最高值ACK_SN,还携带有所有被判定为丢包的SN列表;
    所述用户设备保持PDCP协议栈实体的全部状态。
  20. 根据权利要求19所述的信息处理方法,其中,
    所述状态报告还包括接收的数据包的丢失部分的分段信息,所述分段信息为SO+LI形式,其中SO表明丢失部分在数据包中的开始位置,LI为丢失数据包的长度信息,以请求重传丢失部分;
    所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
  21. 根据权利要求18所述的信息处理方法,其中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述用户设备根据所述指示消息对层二信息进行处理包括:
    在所述指示消息中携带有RLC不复位的指示时,则所述用户设备不对RLC协议栈实体进行复位;
    如果安全参数能够保持不变,则所述用户设备保留PDCP和RLC协议栈实体,对MAC及以下协议栈实体进行复位,将所有接收Gap视为丢包,并反馈状态报告;
    如果安全参数需要更新,则所述用户设备根据安全算法判断是否能够解密非完整PDCP PDU数据,如果不能解密非完整PDCP PDU数据,则将所有接收的数据都予以删除,并将删除的数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,删除RLC缓存中的数据;
    如果能够解密非完整PDCP PDU数据,则所述用户设备将部分接收的数 据发送到PDCP层进行解密操作,如果解密成功,则将解密成功的数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,删除RLC缓存中的数据。
  22. 一种信息处理装置,应用于第一节点,包括:
    接收模块,用于接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
    处理模块,用于与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
  23. 根据权利要求22所述的信息处理装置,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,
    所述接收模块具体用于接收所述主控节点发送的指示消息;
    所述处理模块具体用于将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点。
  24. 根据权利要求23所述的信息处理装置,还包括:
    发送模块,用于将当前的接收状态立即触发并形成一个新的状态报告,发送给所述用户设备,在所述状态报告中包含上行已经正确接收到的数据包的SN的最高值ACK_SN,所述状态报告还包括在ACK_SN之内所有没有成功接收的数据包的SN或分段信息。
  25. 根据权利要求23或24所述的信息处理装置,其中,在所述第一辅节点和所述第二辅节点之间有直接接口时,
    所述处理模块具体用于通过所述直接接口将所述用户设备的所有承载的RLC状态信息以及缓存数据均前转到所述第二辅节点;
    在所述第一辅节点和所述第二辅节点之间没有直接接口时,所述处理模块具体用于通过所述主控节点将所述用户设备的所有承载的RLC状态信息以及缓存数据转发到所述第二辅节点。
  26. 根据权利要求23-25任一项所述的信息处理装置,其中,所述RLC 状态信息包括确认模式AM状态信息;
    对于AM发送端,所述AM状态信息包括下列信息中的一个或多个:下一个将要发送的数据包的序列号SN,下一个确认发送成功的数据包的SN,探询Poll的配置信息,其中所述Poll的配置信息包括下列信息中的一个或多个:每隔预设数量个SN或者预设数量个字节触发Poll,当前时刻距离上次Poll触发累计的SN数量或者字节数量,上次触发Poll时所记录的最高SN号;
    对于AM接收端,所述AM状态信息包括下列信息中的一个或多个:按顺序全部正确接收的数据包的SN的最高值或者最高值加1,接收到的接收窗口内数据包的SN最高值或者最高值加1,在状态报告中能够包含的SN的最高值或最高值加1;
    或者
    对于AM发送端,所述AM状态信息包括第一个已经发送但未获得对端ARQ ACK确认的数据包的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个发送的数据包是否接收到ARQ ACK确认;
    对于AM接收端,所述AM状态信息包括:第一个未接收到的数据包对应的SN以及对应的比特流,所述比特流表示从该数据包起,其后每个数据包的接收情况。
  27. 根据权利要求23-26任一项所述的信息处理装置,其中,所述缓存数据包括AM模式下需要前转的缓存数据;
    对于AM发送端,AM模式下需要前转的缓存数据包括:所有已经发送但未收到ARQ ACK的数据包或者从第一个发送但未收到ARQ ACK数据包之后的所有数据包,以及所有未发送但缓存在发送缓存中的数据包;
    对于AM接收端,AM模式下需要前转的缓存数据包括:所有接收缓存中的数据包。
  28. 根据权利要求27所述的信息处理装置,其中,
    对于所述AM发送端,所述AM模式下需要前转的缓存数据还包括所有已经发送的数据包被发送的次数;
    对于所述AM接收端,接收缓存中的数据为数据包的一部分时,所述AM模式下需要前转的缓存数据还包括数据包的该部分的分段信息。
  29. 根据权利要求28所述的信息处理装置,其中,所述分段信息为SO+LI形式,其中SO表明该部分在数据包中的开始位置,LI为该部分的长度信息;
    所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
  30. 根据权利要求23-29任一项所述的信息处理装置,其中,所述RLC状态信息包括非确认模式UM状态信息;
    对于UM发送端,所述UM状态信息包括下一个将要发送的数据包的SN;
    对于UM接收端,所述UM状态信息包括接收到的数据包的SN最高值或最高值减1。
  31. 根据权利要求23-30任一项所述的信息处理装置,其中,所述缓存数据包括UM模式下需要前转的缓存数据;
    对于UM发送端,UM模式下需要前转的缓存数据包括:所有未发送的数据包;或者,UM模式下需要前转的缓存数据包括:所有未发送的数据包和已经发送但没有接收到HARQ ACK的数据包;
    和/或,对于UM接收端,UM模式下需要前转的缓存数据包括:未经过重排序定时器检测的数据包。
  32. 根据权利要求22所述的信息处理装置,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
    所述接收模块具体用于接收所述主控节点发送的指示消息;
    所述处理模块具体用于将RLC_L层及以下的协议栈实体进行复位。
  33. 根据权利要求22所述的信息处理装置,其中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述处理模块包括:
    发送单元,用于向所述第二演进型基站发送切换准备命令,询问第二演进型基站是否同意进行层二状态保持;
    执行单元,用于如果所述第二演进型基站在切换反馈信令中同意进行层二状态保持,则执行保持层二状态的操作,否则将PDCP协议栈实体进行状态前转,复位其余协议栈实体。
  34. 根据权利要求33所述的信息处理装置,其中,
    所述执行单元具体用于判断安全参数是否能够保持不变;
    如果安全参数能够保持不变,则将RLC层的状态和数据前转至所述第二演进型基站;
    如果安全参数需要更新,则根据安全算法判断接收的片断的PDCP协议数据单元PDU是否能够成功解密,如果能够成功解密,将所有接收到的PDCPPDU分段都发送到PDCP层进行解密,恢复出PDCP服务数据单元SDU分段,并将恢复出的分段前转至所述第二演进型基站;如果不能够成功解密,则删除接收到的PDCP PDU分段,在RLC层记录为整个PDCP PDU丢失并更新RLC层的状态,删除与所述PDCP PDU分段相关的缓存,将新的RLC层状态和剩余的数据前转至所述第二演进型基站。
  35. 一种信息处理装置,应用于第二节点,包括:
    切换模块,用于与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
    数据传输模块,用于基于保留的信息为所述用户设备提供接续的数据服务。
  36. 根据权利要求35所述的信息处理装置,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,分组数据汇聚协议PDCP协议栈位于所述主控节点,RLC及以下的其他协议栈分别位于所述第一辅节点和所述第二辅节点,所述切换模块包括:
    接收单元,用于接收所述第一辅节点发送的用户设备的所有承载的RLC状态信息以及缓存数据;
    存储单元,用于根据所述RLC状态信息以及缓存数据将所述用户设备的所有承载的状态变量和信息进行存储。
  37. 根据权利要求35所述的信息处理装置,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
    所述切换模块具体用于重新构建RLC_L及以下的协议栈实体,并初始化构建的每个协议栈实体。
  38. 根据权利要求35所述的信息处理装置,其中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,所述切换模块包括:
    接收单元,用于接收所述第一演进型基站发送的切换准备命令,所述切换准备命令询问是否同意进行层二状态保持;
    发送单元,用于向所述第一演进型基站返回切换反馈信令,指示是否同意进行层二状态保持。
  39. 一种信息处理装置,应用于用户设备,包括:
    接收模块,用于接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
    切换模块,用于根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
  40. 根据权利要求39所述的信息处理装置,其中,所述第一节点为第一辅节点,所述第二节点为第二辅节点,所述第一辅节点与所述第二辅节点共用同一主控节点,PDCP协议栈和RLC_H协议栈位于所述主控节点,RLC_L层及以下的协议栈分别位于第一辅节点和第二辅节点,
    所述切换模块具体用于复位物理MAC层及以下的所有协议栈实体;
    对RLC正在进行重排序检测的数据接收Gap直接判定为丢包,不再等待,并复位重排序定时器和更新重排序记录的变量,将此时接收队列中的所有Gap均认定为丢包,将包含在状态报告中的SN的最大值更新为当前接收到的数据包的SN的最高值或者加1;
    向网络侧反馈状态报告,所述状态报告携带有接收的数据包的SN最高值ACK_SN,还携带有所有被判定为丢包的SN列表;
    保持PDCP协议栈实体的全部状态。
  41. 根据权利要求40所述的信息处理装置,其中,
    所述状态报告还包括接收的数据包的丢失部分的分段信息,所述分段信息为SO+LI形式,其中SO表明丢失部分在数据包中的开始位置,LI为丢失 数据包的长度信息,以请求重传丢失部分;
    所述分段信息还包括该部分是否为数据包的最后一个分段的信息。
  42. 根据权利要求39所述的信息处理装置,其中,所述第一节点为第一演进型基站,所述第二节点为第二演进型基站,
    所述切换模块具体用于在所述指示消息中携带有RLC不复位的指示时,不对RLC协议栈实体进行复位;
    如果安全参数能够保持不变,则保留PDCP和RLC协议栈实体,对MAC及以下协议栈实体进行复位,将所有接收Gap视为丢包,并反馈状态报告;
    如果安全参数需要更新,则根据安全算法判断是否能够解密非完整PDCP PDU数据,如果不能解密所述非完整PDCP PDU数据,则将所有接收的数据都予以删除,并将删除的数据对应的RLC PDU或者其中的PDU分段视为丢包,在状态记录中记为NACK,删除RLC缓存中的数据;
    如果能够解密非完整PDCP PDU数据,则将部分接收的数据发送到PDCP层进行解密操作,如果解密成功,则将解密成功的数据对应的RLC PDU或者其中的PDU分段视为正确接收,在状态更新中标记ACK,删除RLC缓存中的数据。
  43. 一种信息处理装置,应用于第一节点,包括:处理器以及存储器;其中所述处理器用于执行所述存储器存储的程序实现:
    接收网络侧的指示消息,所述指示消息指示将所述第一节点下的用户设备切换至第二节点;
    与所述第二节点进行协商以保留所述用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,使得所述第二节点基于保留的信息为所述用户设备提供接续的数据服务。
  44. 一种信息处理装置,应用于第二节点,包括:处理器以及存储器;其中所述处理器用于执行所述存储器存储的程序实现:
    与第一节点进行协商以保留用户设备的所有承载的无线链路层控制协议RLC状态信息以及缓存数据,所述用户设备为从所述第一节点切换至所述第二节点;
    基于保留的信息为所述用户设备提供接续的数据服务。
  45. 一种信息处理装置,应用于用户设备,包括处理器以及存储器;其中所述处理器用于执行所述存储器存储的程序实现:
    接收网络侧发送的指示消息,所述指示消息指示将所述用户设备从第一节点切换至第二节点,且所述指示消息中携带有关于层二信息处理的指示域;
    根据所述指示消息对层二信息进行处理,以由所述第一节点切换至所述第二节点。
  46. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1-13中任一项所述的方法中的步骤。
  47. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求14-17中任一项所述的的方法中的步骤。
  48. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求18-21中任一项所述的方法中的步骤。
PCT/CN2018/076476 2017-01-05 2018-02-12 信息处理方法及装置 WO2018127238A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,950 US11057797B2 (en) 2017-01-05 2018-02-12 Method and device for processing information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008344.0A CN108282825B (zh) 2017-01-05 2017-01-05 一种信息处理方法及装置
CN201710008344.0 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018127238A1 true WO2018127238A1 (zh) 2018-07-12

Family

ID=62790903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076476 WO2018127238A1 (zh) 2017-01-05 2018-02-12 信息处理方法及装置

Country Status (3)

Country Link
US (1) US11057797B2 (zh)
CN (1) CN108282825B (zh)
WO (1) WO2018127238A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063501A1 (zh) * 2018-09-27 2020-04-02 华为技术有限公司 传输确认报文的方法和通信设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3829222A4 (en) * 2018-08-07 2021-08-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. NETWORK SWITCHING PROCESS, NETWORK NODE, CHIP AND COMMUNICATION SYSTEM
CN110830182B (zh) 2018-08-09 2023-08-01 北京三星通信技术研究有限公司 数据重传的方法和装置
CN110831095B (zh) * 2018-08-11 2021-11-19 华为技术有限公司 通信方法和通信装置
CN109067509B (zh) * 2018-08-22 2021-08-06 深圳市网心科技有限公司 分布式节点信令传输方法和系统、共享计算节点及信令网关
CN110972185A (zh) * 2018-09-28 2020-04-07 中兴通讯股份有限公司 数据传输方法及装置
CN111093233B (zh) * 2018-10-24 2022-09-06 中国移动通信有限公司研究院 一种切换控制方法、装置及基站
CN111148257B (zh) * 2018-11-02 2023-05-02 中兴通讯股份有限公司 状态上报、消息接收方法及装置、存储介质、电子装置
WO2020126022A1 (en) * 2018-12-21 2020-06-25 Nokia Technologies Oy Method and apparatus for providing non-scheduled network access
CN111355561B (zh) * 2018-12-24 2023-01-24 中兴通讯股份有限公司 数据重传的指示、处理方法及装置
CN111510929B (zh) * 2019-01-31 2023-07-14 中兴通讯股份有限公司 Iab网络中进行lcid扩展的方法及装置
CN111556523A (zh) * 2019-02-12 2020-08-18 电信科学技术研究院有限公司 一种数据传输方法及基站
CN113196827A (zh) * 2019-03-18 2021-07-30 苹果公司 Mr-dc中利用涉及sn改变的5gc操作的数据转发
CN111818572B (zh) * 2019-04-10 2023-01-13 中国移动通信有限公司研究院 一种信息传输方法及设备
KR102506464B1 (ko) * 2019-05-17 2023-03-06 삼성전자 주식회사 무선 통신 시스템에서 지연 감소를 위한 패킷 전송의 제어 방법 및 장치
CN112203362A (zh) * 2019-07-08 2021-01-08 联发科技(新加坡)私人有限公司 减少移动中断的方法和用户设备
US11418631B2 (en) * 2019-07-24 2022-08-16 Mediatek Inc. Efficient packet delivery methods and associated communications apparatus
CN114208358A (zh) * 2019-08-15 2022-03-18 高通股份有限公司 在辅助节点之间的低时延切换
EP4061055A4 (en) * 2019-12-11 2022-11-30 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
CN113613244A (zh) * 2020-04-17 2021-11-05 华为技术有限公司 一种节点切换方法和装置
CN112566256B (zh) * 2020-12-01 2023-04-07 重庆重邮汇测电子技术研究院有限公司 一种基于rlc um模式发送协议数据单元的方法
CN113905417B (zh) * 2021-09-30 2023-10-20 河海大学 基于令牌桶的5g基站分组数据汇聚协议层流量控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247643A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 小区切换过程中数据前转、传输的方法、系统及装置
CN102017704A (zh) * 2008-05-02 2011-04-13 高通股份有限公司 用于长期演进中的有效率的越区移交的方法及设备
CN103329473A (zh) * 2010-12-09 2013-09-25 高通股份有限公司 用于减少在单频双载波无线通信系统中的切换期间的重置的系统和方法
WO2016021820A1 (en) * 2014-08-08 2016-02-11 Lg Electronics Inc. Method for processing a packet data convergence protocol re-ordering function at a user equipment in a dual connectivity system and device therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039193A1 (de) * 2000-08-10 2002-02-21 Siemens Ag Verfahren und Anordnung zur Durchführung eines Handovers in mobilen Datenübertragungssystemen unter Datenduplizierung
WO2008010063A2 (en) * 2006-07-18 2008-01-24 Nokia Corporation Method, device, computer program, and apparatus providing embedded status information in handover control signaling
KR100938090B1 (ko) * 2006-10-19 2010-01-21 삼성전자주식회사 이동통신 시스템에서 핸드오버 수행 방법 및 장치
WO2009018318A2 (en) * 2007-08-02 2009-02-05 Interdigital Patent Holdings, Inc. Packet data convergence protocol procedures
US8400982B2 (en) * 2007-09-20 2013-03-19 Lg Electronics Inc. Method for handling correctly received but header compression failed packets
CN101860929B (zh) * 2009-04-13 2013-06-12 中兴通讯股份有限公司 基站间切换方法
CN107819546B (zh) * 2012-11-13 2023-07-11 华为技术有限公司 传输数据的方法、基站和用户设备
CN104301955A (zh) * 2014-09-02 2015-01-21 中兴通讯股份有限公司 一种用户设备切换基站的方法及基站、用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247643A (zh) * 2007-02-15 2008-08-20 华为技术有限公司 小区切换过程中数据前转、传输的方法、系统及装置
CN102017704A (zh) * 2008-05-02 2011-04-13 高通股份有限公司 用于长期演进中的有效率的越区移交的方法及设备
CN103329473A (zh) * 2010-12-09 2013-09-25 高通股份有限公司 用于减少在单频双载波无线通信系统中的切换期间的重置的系统和方法
WO2016021820A1 (en) * 2014-08-08 2016-02-11 Lg Electronics Inc. Method for processing a packet data convergence protocol re-ordering function at a user equipment in a dual connectivity system and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063501A1 (zh) * 2018-09-27 2020-04-02 华为技术有限公司 传输确认报文的方法和通信设备
US11533657B2 (en) 2018-09-27 2022-12-20 Huawei Technologies Co., Ltd. Acknowledgment packet transmission method and communications device

Also Published As

Publication number Publication date
CN108282825B (zh) 2019-12-20
US11057797B2 (en) 2021-07-06
US20190335364A1 (en) 2019-10-31
CN108282825A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
WO2018127238A1 (zh) 信息处理方法及装置
CN108617029B (zh) 无线承载配置方法、及相应的ue和基站
CN112738858B (zh) 切换的方法和设备
CN104935413B (zh) 分组数据汇聚协议pdcp实体及其执行的方法
CN110266445B (zh) 用于重新配置承载的方法及设备
JP4440300B2 (ja) 無線通信システムの分離型媒体アクセス制御プロトコル構造と、これを用いたデータ送受信方法並びにハンドオーバー方法及びそのシステム
TWI406576B (zh) 執行交接程序及建立資料之方法
KR101387475B1 (ko) 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법
US8611304B2 (en) Method, system and base station for transmitting data during cell handover
CN108631954B (zh) 一种数据传输方法及装置
TWI646814B (zh) Data transmission method and related equipment
TWI233309B (en) Inter node B serving HS-DSCH cell change mechanism in high speed wireless communication system
AU2017424739B2 (en) Switching method, access network device and terminal device
WO2018127225A1 (zh) 数据传输方法、网络侧设备及用户设备
WO2018006674A1 (zh) 一种数据处理方法及装置
CN104935414A (zh) 一种在双连接系统中传输信息的方法和装置
KR20090031239A (ko) 성공적으로 수신했으나 헤더 압축 복원에 실패한 패킷의 처리 방법
IL197704A (en) System for efficient release of information following a change in HS-DSCH
JP2013513988A (ja) 中継ハンドオーバ制御
CN108282824B (zh) 一种状态更新方法、节点和用户终端
CN104821859A (zh) 用于在分组数据汇聚协议层处理数据的方法和设备
EP3456146B1 (en) Method and device for loss mitigation during device to device communication mode switching
WO2014194841A1 (zh) 数据传输方法及装置
WO2017133595A1 (zh) 数据处理的方法及装置
TWI797414B (zh) 用於行動性增強之方法及其使用者設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18736366

Country of ref document: EP

Kind code of ref document: A1