WO2018121274A1 - 反射器 - Google Patents
反射器 Download PDFInfo
- Publication number
- WO2018121274A1 WO2018121274A1 PCT/CN2017/116164 CN2017116164W WO2018121274A1 WO 2018121274 A1 WO2018121274 A1 WO 2018121274A1 CN 2017116164 W CN2017116164 W CN 2017116164W WO 2018121274 A1 WO2018121274 A1 WO 2018121274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflector
- parts
- polypropylene
- light
- mica powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
Definitions
- the present invention relates to the field of lighting devices, and more particularly to a reflector for a lighting device.
- the reflector can reflect most of the light, and its performance has become more and more important in the industry.
- the light-shielding material used for the manufacture of the reflector is generally a polycarbonate material (ie, a PC material), and the polycarbonate material is a high molecular polymer containing a carbonate group in a molecular chain, which has a certain light-shielding property, but The high production costs make the reflector made of polycarbonate material less cost effective.
- an embodiment of the present invention provides a reflector for a lighting device, wherein the reflector is made of a light shielding material, and the light shielding material comprises polypropylene, and the weight ratio of the polypropylene is More than 36%.
- the reflector has a 1 mm light leakage rate of no more than 13% and a reflectance of not less than 88%.
- the reflector has a Rockwell hardness of not more than 113 HRC, a tensile strength of not more than 50 MPa, a notched impact strength of not more than 48 KJ/M2, and a heat distortion temperature of not more than 140 degrees. .
- the reflector has a 1 mm light leakage rate of 11.3% to 13%, a reflectance of 88.2% to 91.3%, a Rockwell hardness of 102 to 113 HRC, a tensile strength of 30 to 42 MPa, and a notched impact strength of 5 to
- the heat distortion temperature is 8.6KJ/M2 and is located at 122 to 135 degrees.
- the weight ratio of the polypropylene in the light shielding material is between 50% and 90%.
- the component of the light shielding material further comprises a polyolefin elastomer, titanium dioxide, mica powder, an antioxidant, and a lubricant, wherein the titanium dioxide is titanium dioxide whose surface is surface-modified with a silane coupling agent.
- the light shielding material comprises the following components by weight:
- Polypropylene 50-90 parts
- Polyolefin elastomer 2-10 parts
- Titanium dioxide 5-35 parts
- Antioxidant 0.1-0.5 parts
- Lubricant 0.1-0.5 parts
- the polypropylene comprises at least one of a homopolypropylene having a melt index of from 0.5 to 100 g/10 min and a copolymerized polypropylene having a melt index of from 0.1 to 60 g/10 min;
- the polyolefin-based elastomer comprising ethylene-octene At least one of a copolymer, an ethylene-butene copolymer, and an ethylene-propylene copolymer;
- the titanium dioxide has a mesh number of 350-500 mesh;
- the mica powder has a particle diameter of 1-100 ⁇ m, and the mica powder and The mass ratio of titanium dioxide is 0.5-2.0:1.
- the mica powder is a mica powder whose surface is surface-modified with a silane coupling agent.
- the glass fiber is a glass fiber surface-modified with a silane coupling agent.
- the antioxidant comprises at least one of a phosphite antioxidant and a hindered phenol antioxidant.
- the nucleating agent comprises at least one of a sorbitol, a phosphate, a carboxylate, and an amide nucleating agent.
- the lubricant comprises at least one of stearic acid, amide, and erucamide lubricants.
- the light shielding material used in the reflector provided by the embodiment of the present invention mainly adopts a polypropylene material, which reduces the production cost of the light shielding material compared with the common PC material, and also ensures the reflector.
- the optical properties allow the reflector to be very cost effective.
- FIG. 1 is a flow chart showing a method of manufacturing a reflector according to an embodiment of the present invention
- FIG. 2 is a flow chart of a method of fabricating a reflector in accordance with another embodiment of the present invention.
- a reflector is provided that is prepared from a light blocking material.
- the main component of the light shielding material is polypropylene, and the weight ratio of the polypropylene in the light shielding material is at least 36% or more.
- the reflector prepared by the PC material and the reflector made of the polypropylene-based light-shielding material have both optical performance and cost advantages, and have a strong application prospect.
- a reflector made of a polypropylene-based light-shielding material is used, and the processes and equipment thereof are all well-known in the art, and will not be described herein.
- the reflector of the present invention has a 1 mm light leakage rate of not more than 13% and a reflectance of not less than 88%. Such a reflector can well satisfy the requirement of sufficient reflection of light and no light leakage.
- the reflector prepared by using the polypropylene-based light-shielding material has the following characteristics: a Rockwell hardness of not more than 113HRC, a tensile strength of not more than 50 MPa, a notched impact strength of not more than 48 KJ/M2, and a heat distortion temperature of not more than 140 degrees. . Based on the above characteristics, the reflector has strong mechanical properties, and the reflector can be applied to various lighting environments with a long service life.
- the reflector has the following characteristics: a 1 mm light leakage rate of 11.3% to 13%, a reflectance of 88.2% to 91.3%, a Rockwell hardness of 102 to 113 HRC, and a tensile strength of 30 to 42 MPa.
- the notched impact strength is 5 to 8.6 KJ/M2
- the heat distortion temperature is 122 to 135 degrees.
- the weight ratio of the polypropylene in the light-shielding material may preferably be in the range of 50% to 90%.
- the composition of the light-shielding material further includes a polyolefin-based elastomer, titanium white powder, mica powder, an antioxidant, and a lubricant, and the titanium dioxide is a titanium dioxide whose surface is surface-modified with a silane coupling agent.
- FIG. 1 is a flow chart of a method of manufacturing a reflector in an embodiment of the present invention. As shown in FIG. 1, the manufacturing method includes steps S102-S106.
- Step S102 adding 50-90 parts by weight of polypropylene, 2-10 parts of polyolefin-based elastomer, 5-35 A portion of the titanium dioxide, 5-35 parts of mica powder, 0.1-0.5 parts of the antioxidant, 0.05-0.3 parts of the nucleating agent and 0.1-0.5 parts of the lubricant are mixed to obtain a premix.
- the aforementioned raw materials are added to a mixer and mixed uniformly by a mixer to obtain a desired premix.
- Polypropylene is a thermoplastic resin obtained by polymerizing propylene. According to the position of the methyl group, it is classified into three types: isotactic polypropylene, atactic polypropylene, and syndiotactic polypropylene.
- the polypropylene used for the production of the light-shielding material includes at least one of a homopolypropylene having a melt index of 0.5 to 100 g/10 min and a copolymer polypropylene having a melt index of 0.1 to 60 g/10 min.
- the polypropylene specifically comprises: a first homopolypropylene having a melt index of 30 g/10 min (230 ° C, 2.16 kg) and a density of 0.9 g/cm 3 , and a melt index of 15 g/10 min (230 ° C, 2.16 kg) of a second homopolypropylene having a density of 0.9 g/cm 3 , a first copolymerized polypropylene having a melt index of 30 g/10 min (230 ° C, 2.16 kg) and a density of 0.89 g/cm 3 and a melt index of 15 g/ A second copolymerized polypropylene having a density of 0.89 g/cm 3 at 10 min (230 ° C, 2.16 kg).
- a polyolefin-based elastomer that is, a polymer of olefin, which is a thermoplastic elastomer mainly comprising polyethylene (PE), polypropylene (PP), and higher olefin polymers such as POE, EVA, MMA, etc. Narration.
- the polyolefin elastomer is rich in raw materials and low in cost, and can well reduce the production cost of the light shielding material.
- the polyolefin elastomer has the characteristics of easy processing, reusability, and the like, making the manufacture of the light shielding material simpler.
- the polyolefin-based elastomer for producing a light-shielding material includes at least one of an ethylene-octene copolymer, an ethylene-butene copolymer, and an ethylene-propylene copolymer.
- the polyolefin-based elastomer used an ethylene-octene copolymer having a melt flow rate (MFR) of 5 g/10 min (230 ° C, 2.16 kg).
- Titanium dioxide is titanium dioxide whose surface is modified by a surface of a silane coupling agent; the mica powder is a mica powder whose surface is modified by a surface of a silane coupling agent.
- the silane coupling agent for surface modification may be of a type such as KH-550, KH-560 or KH-570, and the surface modification of the titanium dioxide and mica powder by the aforementioned silane coupling agent is performed before performing step S101.
- the treatment wherein the specific means of surface modification is a conventional technical means in the art, will not be described herein.
- the titanium dioxide used for the light-shielding material has a mesh number of 350-500 mesh
- the mica powder has a particle diameter of 1-100 ⁇ m
- the mica powder and the titanium white powder have a mass ratio of 0.5-2.0:1.
- the shading performance of the resulting light-shielding material is ensured by configuring the preset weight ratio of titanium dioxide and mica powder.
- the antioxidant includes at least one of a phosphite antioxidant and a hindered phenol antioxidant.
- the antioxidant includes two types of the antioxidant 1010 and the antioxidant 168.
- the nucleating agent includes at least one of a sorbitol, a phosphate, a carboxylate, and an amide nucleating agent
- the lubricant includes at least one of a stearic acid, an amide, and a erucamide lubricant. Do not repeat them.
- the weight fraction of the raw material in the light-shielding material may be adjusted, and the adjusted light-shielding material comprises 60-70 parts of polypropylene, 4-8 parts of polyolefin-based elastomer, and 10-30 parts. Titanium dioxide, 10-30 parts of mica powder, 0.2-0.4 parts of antioxidant, 0.08-0.15 parts of nucleating agent and 0.1-0.3 part of lubricant can also be used for making shading by mixing the above-mentioned parts by weight of raw materials. A premix of materials.
- Step S104 the premix is melted and the premixed after the melt treatment is uniformly mixed to obtain a melt mixture.
- the premix is placed in a twin-screw extruder to be melted, and then melted, and the premix of the molten state is stirred and mixed to make it uniform.
- the degree of uniformity of the premix is related to the length of the agitation, and sufficient mixing time can be set based on industry experience to make the premix meet the requirements.
- Step S106 granulating the molten mixture to obtain the light shielding material.
- the uniformly mixed melt mixture is solidified by water cooling, and then cut and granulated by a pelletizer to obtain a desired light-shielding material.
- Example 1 Example 2
- Example 3 Example 4 First homopolypropylene 44.4 - 44.4 - Second homopolypropylene - 44.4 - 44.4 First copolymerized polypropylene 20 - 25 - Second copolymerized polypropylene - 20 - 20 Polyolefin elastomer 5 - 5 - Mica powder 20 20 30 - Titanium dioxide 10 10 - 30 Antioxidant 1010 0.1 0.1 0.1 0.1 0.1 Antioxidant 168 0.2 0.2 0.2 0.2 0.2 Nucleating agent 0.1 0.1 0.1 0.1 Lubricant 0.2 0.2 0.2 0.2 0.2 0.2 0.2
- the light-shielding materials obtained in the above Examples 1 to 4 were tested, wherein the tensile test was tested according to GB/T1040, the heat distortion temperature was tested according to ASTM D648 (0.45 MPa), the notched impact was tested according to GB/T1843, and the light transmittance was in accordance with GB/ T2410, reflectance according to ISO 3906-1980 (E), the test results are shown in Table 2 below. Among them, the common shading PC material currently on the market is selected as the comparative example, and the above test is also performed. The test results are shown in Table 2.
- the light transmittance of the material after the sample 3 was simply added to the mica powder was only 45%, and the example 4 simply added titanium white powder, because the hiding power of the titanium white powder itself was good, and the light transmittance was better than the example.
- the example 4 simply added titanium white powder, because the hiding power of the titanium white powder itself was good, and the light transmittance was better than the example. 3
- it can reach 33%, but there is still a gap between the shading PCs, but when the titanium dioxide and mica powder are mixed according to a certain mass ratio, the shading of the shading material is greatly The degree is increased to about 10%, and the shading performance exceeds that of PC materials.
- FIG. 2 is a flow chart of a method of fabricating a reflector in accordance with another embodiment of the present invention.
- the manufacturing method includes steps S202 to S206 as compared with the foregoing embodiment.
- Step S202 adding 50-90 parts by weight of polypropylene, 2-10 parts of polyolefin-based elastomer, 5-35 parts of titanium dioxide, 5-35 parts of mica powder, 0.1-0.5 parts of antioxidant, 0.05-0.3 parts by weight
- the nucleating agent is mixed with 0.1-0.5 parts of the lubricant to obtain a premix.
- step S204 the premix is melted and the melted premix is uniformly mixed to obtain a melt mixture.
- Step S205 adding 2-8 parts by weight of glass fibers to the melt mixture.
- the glass fibers can be boulder glass fibers, the glass fibers are pulled from a dedicated die and added to the melt blend in the twin-screw extruder.
- Step S206 granulating the molten mixture to obtain the light shielding material.
- step S206 The principle and the details of the foregoing step S206 are the same as the step S106 in the foregoing embodiment, and the foregoing content may be referred to, and details are not described herein.
- Example 5-8 the shading performance of the material reaches the level of shading PC, but the mechanical properties are still far from the shading PC.
- the glass fiber further enhances the mechanical properties of the product, which can adjust the shrinkage rate of the light-shielding PP. It can be seen from Example 5-8 that the mechanical properties of the light-shielding material are closer to the PC material after the addition of the glass fiber, and the opacity and reflectance are also obtained. Guaranteed.
- the light-shielding material provided by the embodiment of the present invention replaces the common PC material by the polypropylene material, thereby reducing the production cost of the light-shielding material; meanwhile, adding a predetermined weight ratio of titanium dioxide and mica powder to the polypropylene material.
- the shading performance of the shading material is ensured, so that the shading material has a high cost performance, and thus has a strong application prospect.
- the mechanical properties of the light-shielding material can be greatly improved under the premise of ensuring that the light-shielding property is not affected, and the application of the polypropylene material in the lighting industry is expanded.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
公开了一种反射器,用于照明装置,所述反射器通过遮光材料制造,所述遮光材料包括聚丙烯,所述聚丙烯的重量占比在36%以上。提供的反射器所用遮光材料主要采用聚丙烯材料,相对于常见的PC材料,降低了遮光材料的生产成本,同时还保证反射器的光学性能,使得反射器能够具有很高的性价比。
Description
本发明涉及照明装置领域,特别涉及一种用于照明装置的反射器。
反射器作为照明装置内的常规部件,能够将大部分光线反射出去,其性能高低也越发受到业内重视。目前,用于制造反射器的遮光材料一般为聚碳酸酯材料(即PC材料),聚碳酸酯材料是一种分子链内含有碳酸酯基的高分子聚合物,其具有一定的遮光性能,但生产成本很高,这使得由聚碳酸酯材料制得的反射器性价比较低。
发明内容
本发明实施例的目的是提供一种反射器,以解决现有反射器性价比低的问题。
为解决上述技术问题,本发明实施例提供了一种反射器,用于照明装置,其中,所述反射器通过遮光材料制造,所述遮光材料包括聚丙烯,所述聚丙烯的重量占比在36%以上。
可选地,所述反射器的1mm漏光率不大于13%、反射率不小于88%。
可选地,所述反射器的洛氏硬度不大于113HRC、拉伸强度不大于50MPa、缺口冲击强度不大于48KJ/M2、热变形温度不大于140度。。
可选地,所述反射器的1mm漏光率位于11.3%至13%、反射率位于88.2%至91.3%、洛氏硬度位于102至113HRC、拉伸强度位于30至42MPa、缺口冲击强度位于5至8.6KJ/M2、热变形温度位于122至135度。
可选地,所述遮光材料中聚丙烯的重量占比在50%-90%。
可选地,所述遮光材料的成分还包括聚烯烃类弹性体、钛白粉、云母粉、抗氧剂、润滑剂,所述钛白粉为表面经硅烷偶联剂表面改性的钛白粉。
可选地,所述遮光材料包括以下重量份的组分:
聚丙烯:50-90份;
聚烯烃类弹性体:2-10份;
钛白粉:5-35份;
云母粉:5-35份;
抗氧剂:0.1-0.5份;
成核剂:0.05-0.3份;
润滑剂:0.1-0.5份;
玻璃纤维:2-8份;
其中,所述聚丙烯包括熔融指数为0.5-100g/10min的均聚聚丙烯和熔融指数为0.1-60g/10min的共聚聚丙烯中至少一种;所述聚烯烃类弹性体包括乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丙烯共聚物中至少一种;所述钛白粉的目数为350-500目;所述云母粉的粒径为1-100μm,且该云母粉和钛白粉的质量比为0.5-2.0:1。
可选地,所述云母粉为表面经硅烷偶联剂表面改性的云母粉。
可选地,所述玻璃纤维为采用硅烷偶联剂进行表面改性的玻璃纤维。
可选地,所述抗氧剂包括亚磷酸酯类抗氧剂和受阻酚类抗氧剂中至少一种。
可选地,所述成核剂包括山梨醇类、磷酸酯类、羧酸盐类和酰胺类成核剂中至少一种。
可选地,所述润滑剂包括硬脂酸类、酰胺类和芥酸酰胺类润滑剂中至少一种。
由以上本发明实施例提供的技术方案可见,本发明实施例所提供的反射器所用遮光材料主要采用聚丙烯材料,相对于常见的PC材料,降低了遮光材料的生产成本,同时还保证反射器的光学性能,使得反射器能够具有很高的性价比。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例中反射器的制造方法的流程图;
图2为本发明另一实施例中反射器的制造方法的流程图。
为了使本技术领域的人员更好地理解本发明中技术方案,下面将结合本发明实施例中附图,对本发明实施例中技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在本发明实施例中,提供一种反射器,该反射器通过遮光材料制备。其中,所述遮光材料的主要成分为聚丙烯,聚丙烯在遮光材料中重量占比至少在36%以上。相对于现有技术中,通过PC材料所制备得到的反射器,通过聚丙烯为主的遮光材料所制备的反射器,兼具光学性能和成本优势,具有很强的应用前景。当然,利用聚丙烯为主的遮光材料来制备反射器,其工艺和设备均为本领域普通技术人员所熟知的技术,在此不做赘述。本发明的反射器的1mm漏光率不大于13%、反射率不小于88%。这样的反射器能够很好的满足对光线充分的反射且不漏光的要求。
并且,前述利用聚丙烯为主的遮光材料制备的反射器还具有如下特性:洛氏硬度不大于113HRC、拉伸强度不大于50MPa、缺口冲击强度不大于48KJ/M2、热变形温度不大于140度。基于上述特性,使得反射器具有很强的机械性能,反射器能够应用至多样的照明环境中,具有很长的使用寿命。
在本发明实施例中,所述反射器具有如下的特性:1mm漏光率位于11.3%至13%、反射率位于88.2%至91.3%、洛氏硬度位于102至113HRC、拉伸强度位于30至42MPa、缺口冲击强度位于5至8.6KJ/M2、热变形温度位于122至135度。这些特性均可以通过业内常规的测量设备检测所得,在此不做赘述。
在本发明实施例中,聚丙烯在遮光材料中重量占比可以优选在50%-90%的范围内。在实际应用中,所述遮光材料的成分还包括聚烯烃类弹性体、钛白粉、云母粉、抗氧剂、润滑剂,所述钛白粉为表面经硅烷偶联剂表面改性的钛白粉。
图1为本发明实施例中反射器的制造方法的流程图。结合图1所示,该制造方法包括步骤S102-S106。
步骤S102、将重量份为50-90份聚丙烯、2-10份聚烯烃类弹性体、5-35
份钛白粉、5-35份云母粉、0.1-0.5份抗氧剂、0.05-0.3份成核剂和0.1-0.5份润滑剂做混合,得到预混剂。
在实际应用中,前述原材料被加入混合机内,通过混合机来混合均匀,得到所需的预混剂。
聚丙烯是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。
其中,用于制造遮光材料的聚丙烯包括熔融指数为0.5-100g/10min的均聚聚丙烯和熔融指数为0.1-60g/10min的共聚聚丙烯中至少一种。
在本发明实施例中,聚丙烯具体包括:熔融指数为30g/10min(230℃,2.16kg)且密度为0.9g/cm3的第一均聚聚丙烯、熔融指数为15g/10min(230℃,2.16kg)且密度为0.9g/cm3的第二均聚聚丙烯、熔融指数为30g/10min(230℃,2.16kg)且密度为0.89g/cm3的第一共聚聚丙烯以及熔融指数为15g/10min(230℃,2.16kg)且密度0.89g/cm3的第二共聚聚丙烯。
聚烯烃类弹性体即烯烃的聚合物,其是一种热塑型弹性体,主要包括聚乙烯(PE)、聚丙烯(PP)和POE、EVA、MMA等高级烯烃聚合物,在此不做赘述。聚烯烃类弹性体的原料丰富,价格低廉,能很好的降低遮光材料的生产成本。并且,聚烯烃类弹性体具有易加工、可重复使用等特点,使得遮光材料的制造更简单。
其中,用于制造遮光材料的聚烯烃类弹性体包括乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丙烯共聚物中至少一种。
在本发明实施例中,聚烯烃类弹性体采用熔体流动速率(MFR)为5g/10min(230℃,2.16kg)的乙烯-辛烯共聚物。
钛白粉为表面经硅烷偶联剂表面改性的钛白粉;所述云母粉为表面经硅烷偶联剂表面改性的云母粉。用于表面改性的硅烷偶联剂可以是例如KH-550、KH-560或KH-570等类型,在执行步骤S101之前,会通过前述硅烷偶联剂对钛白粉和云母粉进行表面改性处理,其中表面改性的具体手段为本领域的常规技术手段,在此不做赘述。
在本发明实施例中,用于制造遮光材料的钛白粉的目数为350-500目,云母粉的粒径为1-100μm,并且云母粉和钛白粉的质量比为0.5-2.0:1。通过配置预设重量份比例的钛白粉和云母粉,保证了制造所得遮光材料的遮光性能。
抗氧剂包括亚磷酸酯类抗氧剂和受阻酚类抗氧剂中至少一种,在本发明实施例中,抗氧剂包括抗氧剂1010和抗氧剂168两种类型。
成核剂包括山梨醇类、磷酸酯类、羧酸盐类和酰胺类成核剂中至少一种,润滑剂包括硬脂酸类、酰胺类和芥酸酰胺类润滑剂中至少一种,同样不做赘述。
当然,在本发明的其他实施例中,遮光材料内原料的重量份可以被调整,经过调整后的遮光材料包括60-70份聚丙烯、4-8份聚烯烃类弹性体、10-30份钛白粉、10-30份云母粉、0.2-0.4份抗氧剂、0.08-0.15份成核剂和0.1-0.3份润滑剂,通过将上述重量份的原料做混合,也可以得到用于制造遮光材料的预混剂。
步骤S104、对所述预混剂做熔融处理并将熔融处理后的预混剂混合均匀,得到熔融混剂。
预混剂被放入双螺杆挤出机做熔融处理后成为熔融状态,进而对熔融状态的预混剂进行搅拌、混合,使其变得均匀。预混剂的均匀程度与搅拌的时长相关,可以基于业内经验设定足够的搅拌时长,使得预混剂达到要求。
步骤S106、对所述熔融混剂做造粒处理,得到所述遮光材料。
混合均匀后的熔融混剂会经过水冷却形成固态,再通过切粒机进行切割、造粒,得到符合要求的遮光材料。
以下结合具体示例,详述本发明实施例中制造方法所制得遮光材料的性能。参表1所示,以千克为单位、采用如下重量份的原材料制造得到遮光材料。
原材料 | 示例1 | 示例2 | 示例3 | 示例4 |
第一均聚聚丙烯 | 44.4 | — | 44.4 | — |
第二均聚聚丙烯 | — | 44.4 | — | 44.4 |
第一共聚聚丙烯 | 20 | — | 25 | — |
第二共聚聚丙烯 | — | 20 | — | 20 |
聚烯烃类弹性体 | 5 | — | 5 | — |
云母粉 | 20 | 20 | 30 | — |
钛白粉 | 10 | 10 | — | 30 |
抗氧剂1010 | 0.1 | 0.1 | 0.1 | 0.1 |
抗氧剂168 | 0.2 | 0.2 | 0.2 | 0.2 |
成核剂 | 0.1 | 0.1 | 0.1 | 0.1 |
润滑剂 | 0.2 | 0.2 | 0.2 | 0.2 |
表1
将上述示例1至4制造所得的遮光材料进行测试,其中拉伸测试按GB/T1040测试,热变形温度按照ASTM D648(0.45MPa)测试,缺口冲击按GB/T1843测试,透光率按照GB/T2410,反射率按照ISO 3906-1980(E),测试得到的结果见下表2。其中选用目前市面上常见的遮光PC材料为对比例,同样进行上述测试,测试结果参见表2。
表2
将上述示例1至4可以看出,示例3单纯加入云母粉填充后材料的透光率只有45%,而示例4单纯加入钛白粉,由于钛白粉本身遮盖力就很好,透光率较示例3有了不少的提高可以达到33%,但距离遮光PC还有差距,但是当钛白粉和云母粉按照一定质量比例混合使用后,遮光材料的遮光度大幅
度提高到10%左右,遮光性能超越PC材料。
图2为本发明另一实施例中反射器的制造方法的流程图。与前述实施例相比,该制造方法包括步骤S202至S206。
步骤S202、将重量份为50-90份聚丙烯、2-10份聚烯烃类弹性体、5-35份钛白粉、5-35份云母粉、0.1-0.5份抗氧剂、0.05-0.3份成核剂和0.1-0.5份润滑剂做混合,得到预混剂。
步骤S204、对所述预混剂做熔融处理并将熔融处理后的预混剂混合均匀,得到熔融混剂。
前述步骤S202、S204的原理和细节与前述实施例中步骤S102、S104相同,可参考前述内容,在此不做赘述。
步骤S205、将重量份为2-8份的玻璃纤维添加至所述熔融混剂。
玻璃纤维可以采用巨石玻璃纤维,将玻璃纤维从专用的模头内拉出,并加入至双螺杆挤出机内的熔融混剂。
步骤S206、对所述熔融混剂做造粒处理,得到所述遮光材料。
前述步骤S206的原理和细节与前述实施例中步骤S106相同,可参考前述内容,在此不做赘述。
以下结合具体示例,详述本发明实施例中制造方法所制得遮光材料的性能。参表3所示,以千克为单位、采用如下重量份的原材料制造得到遮光材料。
原材料 | 示例5 | 示例6 | 示例7 | 示例8 |
第一均聚聚丙烯 | 44.4 | — | 44.4 | — |
第二均聚聚丙烯 | — | 44.4 | — | 44.4 |
第一共聚聚丙烯 | 20 | — | 25 | — |
第二共聚聚丙烯 | — | 20 | — | 20 |
聚烯烃类弹性体 | 5 | — | 5 | — |
玻璃纤维 | 5 | 5 | 5 | 5 |
云母粉 | 20 | 20 | 10 | 10 |
钛白粉 | 10 | 10 | 20 | 20 |
抗氧剂1010 | 0.1 | 0.1 | 0.1 | 0.1 |
抗氧剂168 | 0.2 | 0.2 | 0.2 | 0.2 |
成核剂 | 0.1 | 0.1 | 0.1 | 0.1 |
润滑剂 | 0.2 | 0.2 | 0.2 | 0.2 |
表3
将上述示例5至8制造所得的产品进行相关性能测试,其中拉伸测试按GB/T1040测试,热变形温度按照ASTM D648(0.45MPa)测试,缺口冲击按GB/T1843测试,透光率按照GB/T2410,反射率按照ISO 3906-1980(E)。其中选用目前市面上常见的遮光PC材料为对比例,同样进行上述性能测试,测试结果参见表4。其中选用目前市面上常见的遮光PC为对比例,同样进行上述性能测试,测试结果参见表4。
表4
结合表1、表2所示,表1内示例1-2,材料的遮光性能达到遮光PC的水平,但力学性能距离遮光PC还有一定的差距。表3内示例5-8中加入
了玻璃纤维进一步增强产品的机械性能,其能够调节遮光PP的收缩率,通过示例5-8可以看到,加入玻璃纤维后遮光材料的机械性能更加接近PC材料,同时遮光度和反射率也得到了保证。
综上,本发明实施例所提供的遮光材料通过聚丙烯材料来取代目前常见的PC材料,降低了遮光材料的生产成本;同时,在聚丙烯材料加入预设重量份比例的钛白粉和云母粉,保证了遮光材料的遮光性能,使得遮光材料具有很高的性价比,从而具有很强的应用前景。此外,还可以通过增加玻璃纤维,在保证不影响遮光性的前提下,大大提高了遮光材料的力学性能,拓展了聚丙烯材料在照明行业的应用。
本说明书中各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。
Claims (12)
- 一种反射器,用于照明装置,其中,所述反射器通过遮光材料制造,所述遮光材料包括聚丙烯,所述聚丙烯的重量占比在36%以上。
- 如权利要求1所述的反射器,其中,所述反射器的1mm漏光率不大于13%、反射率不小于88%。
- 如权利要求1所述的反射器,其中,所述反射器的洛氏硬度不大于113HRC、拉伸强度不大于50MPa、缺口冲击强度不大于48KJ/M2、热变形温度不大于140度。
- 如权利要求3所述的反射器,其中,所述反射器的1mm漏光率位于11.3%至13%、反射率位于88.2%至91.3%、洛氏硬度位于102至113HRC、拉伸强度位于30至42MPa、缺口冲击强度位于5至8.6KJ/M2、热变形温度位于122至135度。
- 如权利要求1所述的反射器,其中,所述遮光材料中聚丙烯的重量占比在50%-90%。
- 如权利要求1所述的反射器,其中,所述遮光材料的成分还包括聚烯烃类弹性体、钛白粉、云母粉、抗氧剂、润滑剂,所述钛白粉为表面经硅烷偶联剂表面改性的钛白粉。
- 如权利要求1所述的反射器,其中,所述遮光材料包括以下重量份的组分:聚丙烯:50-90份;聚烯烃类弹性体:2-10份;钛白粉:5-35份;云母粉:5-35份;抗氧剂:0.1-0.5份;成核剂:0.05-0.3份;润滑剂:0.1-0.5份;玻璃纤维:2-8份;其中,所述聚丙烯包括熔融指数为0.5-100g/10min的均聚聚丙烯和熔融指数为0.1-60g/10min的共聚聚丙烯中至少一种;所述聚烯烃类弹性体包括乙烯-辛烯共聚物、乙烯-丁烯共聚物和乙烯-丙烯共聚物中至少一种;所述钛白粉的目数为350-500目;所述云母粉的粒径为1-100μm,且该云母粉和钛白粉的质量比为0.5-2.0:1。
- 如权利要求7所述的反射器,其中,所述云母粉为表面经硅烷偶联剂表面改性的云母粉。
- 如权利要求7所述的反射器,其中,所述玻璃纤维为采用硅烷偶联剂进行表面改性的玻璃纤维。
- 如权利要求7所述的反射器,其中,所述抗氧剂包括亚磷酸酯类抗氧剂和受阻酚类抗氧剂中至少一种。
- 如权利要求7所述的反射器,其中,所述成核剂包括山梨醇类、磷酸酯类、羧酸盐类和酰胺类成核剂中至少一种。
- 如权利要求7所述的反射器,其中,所述润滑剂包括硬脂酸类、酰胺类和芥酸酰胺类润滑剂中至少一种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611270277.1 | 2016-12-30 | ||
CN201611270277.1A CN106633408A (zh) | 2016-12-30 | 2016-12-30 | 反射器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018121274A1 true WO2018121274A1 (zh) | 2018-07-05 |
Family
ID=58838642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116164 WO2018121274A1 (zh) | 2016-12-30 | 2017-12-14 | 反射器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106633408A (zh) |
WO (1) | WO2018121274A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591568A (zh) * | 2022-03-28 | 2022-06-07 | 国高材高分子材料产业创新中心有限公司 | 一种拉伸检测用标准样品及其制备方法 |
CN116175935A (zh) * | 2023-02-22 | 2023-05-30 | 阳光水面光伏科技有限公司 | 一种高反光浮体及其制作方法、应用 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106633408A (zh) * | 2016-12-30 | 2017-05-10 | 苏州欧普照明有限公司 | 反射器 |
CN106993387B (zh) * | 2017-05-27 | 2023-12-29 | 欧普照明股份有限公司 | 电源盒 |
CN108084556A (zh) * | 2017-08-21 | 2018-05-29 | 骆驼集团塑胶制品有限公司 | 一种带有珠光效果的耐电解液聚丙烯材料及其制备方法 |
CN107513225A (zh) * | 2017-09-26 | 2017-12-26 | 上海日之升科技有限公司 | 一种led用高遮光高反射聚丙烯复合材料及其制备方法 |
CN109082006B (zh) * | 2018-07-04 | 2021-02-26 | 苏州亿光源光电科技有限公司 | 一种防漏光导光板用高韧性反光复合材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1732356A (zh) * | 2002-12-30 | 2006-02-08 | 费罗公司 | 光反射聚合物组合物 |
CN101180556A (zh) * | 2005-04-14 | 2008-05-14 | 帝人株式会社 | 反射片材及其制造方法 |
CN102374489A (zh) * | 2011-11-18 | 2012-03-14 | 深圳市华星光电技术有限公司 | 反射板及背光系统 |
CN106633408A (zh) * | 2016-12-30 | 2017-05-10 | 苏州欧普照明有限公司 | 反射器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3243629B2 (ja) * | 1994-08-03 | 2002-01-07 | ポリプラスチックス株式会社 | 光反射用部品の製造方法、及びその方法により製造される光反射用部品 |
EP1105752B1 (en) * | 1998-08-18 | 2002-10-30 | Gore Enterprise Holdings, Inc. | Contaminant resistant, cleanable, light reflective surface |
US7273640B2 (en) * | 2003-11-21 | 2007-09-25 | Rohm And Haas Denmark Finance A/S | Highly reflective optical element |
EP1777558A3 (en) * | 2005-10-24 | 2007-07-25 | LG Electronics Inc. | Thermal spreading sheet and method for manufacturing the same, and backlight unit with the same |
CN107759898B (zh) * | 2016-08-18 | 2020-09-25 | 江苏金发科技新材料有限公司 | 高遮光度聚丙烯复合材料及其制备方法 |
-
2016
- 2016-12-30 CN CN201611270277.1A patent/CN106633408A/zh active Pending
-
2017
- 2017-12-14 WO PCT/CN2017/116164 patent/WO2018121274A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1732356A (zh) * | 2002-12-30 | 2006-02-08 | 费罗公司 | 光反射聚合物组合物 |
CN101180556A (zh) * | 2005-04-14 | 2008-05-14 | 帝人株式会社 | 反射片材及其制造方法 |
CN102374489A (zh) * | 2011-11-18 | 2012-03-14 | 深圳市华星光电技术有限公司 | 反射板及背光系统 |
CN106633408A (zh) * | 2016-12-30 | 2017-05-10 | 苏州欧普照明有限公司 | 反射器 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591568A (zh) * | 2022-03-28 | 2022-06-07 | 国高材高分子材料产业创新中心有限公司 | 一种拉伸检测用标准样品及其制备方法 |
CN114591568B (zh) * | 2022-03-28 | 2023-11-10 | 国高材高分子材料产业创新中心有限公司 | 一种拉伸检测用标准样品及其制备方法 |
CN116175935A (zh) * | 2023-02-22 | 2023-05-30 | 阳光水面光伏科技有限公司 | 一种高反光浮体及其制作方法、应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106633408A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018121274A1 (zh) | 反射器 | |
CN111019238B (zh) | 灯具用聚丙烯组合物及其制备方法 | |
CN106908882B (zh) | 一种非涂布型漫反射性反射膜及其制备方法 | |
CN107759898B (zh) | 高遮光度聚丙烯复合材料及其制备方法 | |
CN102234390B (zh) | 一种硫酸钙晶须改性低密度聚乙烯复合材料及其制备方法 | |
CN109666240B (zh) | 一种高刚性光扩散k树脂材料及其制备方法 | |
CN104610677A (zh) | 一种ps扩散板生产方法及ps扩散板 | |
CN111295419B (zh) | 成型品 | |
CN105001609A (zh) | 一种光扩散板母粒、光扩散板及其制造方法 | |
WO2021004293A1 (zh) | 一种聚丙烯复合材料及其制备方法和一种应用 | |
CN103450560B (zh) | 耐热性光扩散聚丙烯组合物及其制备方法 | |
CN110204832B (zh) | Led用防蓝光聚丙烯复合材料及其制备方法 | |
CN114621531B (zh) | 一种具有泡孔结构的光学扩散板及其制备方法和应用 | |
CN110903549A (zh) | 一种聚丙烯复合材料及其制备方法与应用 | |
CN108102222B (zh) | 一种抗应力发白母粒和抗应力发白无卤膨胀阻燃聚丙烯复合材料及其制备方法 | |
CN109912891A (zh) | 熔喷共聚物及其制造方法 | |
CN109422961B (zh) | 一种led用阻燃光扩散聚丙烯复合材料及其制件 | |
CN102108146B (zh) | 一种聚烯烃热塑性弹性体的组合物及其制备方法 | |
CN110498968A (zh) | 一种聚丙烯热塑性弹性体复合材料及其制备方法 | |
CN105348623A (zh) | 一种聚乙烯梅花管材料 | |
CN106751035A (zh) | 一种耐折叠发白聚丙烯复合材料及其制备方法 | |
CN103709494A (zh) | 一种光纤用低烟无卤阻燃紧套料及其制备方法 | |
JP4379070B2 (ja) | ポリオレフィン系光反射フィルム | |
JP6115749B2 (ja) | 光反射シート用ポリプロピレン系樹脂組成物とそれを用いた光反射シート | |
CN109320839B (zh) | 一种led用光扩散聚丙烯复合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887729 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17887729 Country of ref document: EP Kind code of ref document: A1 |