WO2018120698A1 - 有机电致发光触控显示面板及其制作方法、显示装置 - Google Patents

有机电致发光触控显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2018120698A1
WO2018120698A1 PCT/CN2017/090647 CN2017090647W WO2018120698A1 WO 2018120698 A1 WO2018120698 A1 WO 2018120698A1 CN 2017090647 W CN2017090647 W CN 2017090647W WO 2018120698 A1 WO2018120698 A1 WO 2018120698A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
touch detection
photosensitive element
display panel
organic electroluminescent
Prior art date
Application number
PCT/CN2017/090647
Other languages
English (en)
French (fr)
Inventor
许睿
董学
吕敬
王海生
陈小川
刘英明
赵利军
李昌峰
顾品超
邹祥祥
丁小梁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/569,037 priority Critical patent/US10423256B2/en
Publication of WO2018120698A1 publication Critical patent/WO2018120698A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Definitions

  • the present disclosure relates to an organic electroluminescent touch display panel, a method of fabricating the same, and a display device.
  • the OLED display device (organic electroluminescence display device) has the characteristics of high contrast, thin thickness, wide viewing angle, and fast response speed. OLED display devices have begun to gradually replace LCD display devices (liquid crystal display devices).
  • the OLED display screens used in the market can only provide display functions, and it is necessary to fit an additional touch screen to implement the touch function.
  • the structure of the touch function by fitting the added touch screen has no thickness advantage compared with the LCD which realizes in cell touch (the touch element is integrated inside the display panel).
  • Another method usually adopted is to deposit a metal thin film and an insulating layer film on a TFE (tetrafluoroethylene) encapsulating film by using a low-temperature sputtering method to form a capacitive touch structure, but the product prepared by the method is well packaged. The rate is very low.
  • An embodiment of the present disclosure provides an organic electroluminescent touch display panel, a method for fabricating the same, and a display device.
  • the organic electroluminescent touch display panel integrates a touch component inside the display panel, thereby enabling touch and Display function.
  • At least one embodiment of the present disclosure provides an organic electroluminescent touch display panel, including: a substrate; a plurality of touch detection units disposed on the substrate, each of the touch detection units including at least a photosensitive element; a signal input line and a signal output line disposed on the base substrate in one-to-one correspondence with each of the touch detection units; wherein the signal input line is connected to the touch detection unit corresponding thereto In the input end of the photosensitive element, the signal input line is configured to load a touch detection signal; the signal output line is connected to an output end of the photosensitive element in the touch detection unit corresponding thereto, the signal The output line is configured to output current of the photosensitive element.
  • the photosensitive element is a photodiode.
  • the P pole, the N pole, and the intrinsic layer of each of the photodiodes are located in the same layer, and the P pole and the N pole are The intrinsic layers are separated and are in contact with the intrinsic layer, respectively.
  • the signal input line corresponding to the touch detection unit is connected to the touch detection.
  • a P pole of all the photodiodes in the unit; the signal output line corresponding to the touch detection unit is connected to the N poles of all the photodiodes.
  • the area of each of the touch detection units is 3 mm 2 -5 mm 2 .
  • the organic electroluminescent touch display panel may further include: an insulating layer, a thin film transistor array, and a passivation layer sequentially disposed on the plurality of photosensitive elements, and disposed on the blunt Organic light-emitting diodes on the layer.
  • a first via and a second via are disposed in the insulating layer, and the first via and the second pass The holes are respectively in one-to-one correspondence with the touch detection unit.
  • an input end of the photosensitive element passes through a corresponding to the touch detecting unit.
  • the first via is connected to the corresponding signal input line; the output end of the photosensitive element is connected to the corresponding signal output line through the second via corresponding to the touch detection unit.
  • the signal input line and the signal output line are disposed between the insulating layer and the passivation layer.
  • At least one embodiment of the present disclosure further provides a display device including any of the above organic electroluminescent touch display panels.
  • the display device may further include a touch control circuit, wherein an output end of the touch control circuit is connected to the signal input line in the organic electroluminescent touch display panel, The input of the touch control circuit is connected to the signal output line of the organic electroluminescent touch display panel. And configured to receive a current of the photosensitive element connected to the signal output line, and the touch control circuit recognizes a touch operation according to a current change of the photosensitive element.
  • At least one embodiment of the present disclosure further provides a method for fabricating an organic electroluminescent touch display panel, comprising: providing a substrate; forming a plurality of touch detection units on the substrate, wherein each of the The touch detection unit includes at least one photosensitive element; a signal input line and a signal output line corresponding to each of the touch detection units are formed on the base substrate; wherein the signal input line is connected to the corresponding An input end of the photosensitive element in the touch detection unit, the signal input line is configured to load a touch detection signal; and the signal output line is connected to an output end of the photosensitive element in the touch detection unit corresponding thereto The signal output line is configured to output a current of the photosensitive element.
  • the photosensitive element is a photodiode
  • forming the photosensitive element on the substrate comprises: depositing a layer of intrinsic material on the substrate Performing a pattern cost pattern on the intrinsic material, the intrinsic pattern comprising a first portion, a second portion, and a third portion arranged in sequence; and performing hydrogen boride BH 3 doping on the first portion
  • the P pole of the photodiode is doped with phosphine PH 3 to the second portion to obtain the N pole of the photodiode.
  • the signal input line corresponding to the touch detection unit is connected to all the photosensitivity in the touch detection unit.
  • a P pole of the diode; the signal output line corresponding to the touch detection unit is connected to the N poles of all the photodiodes.
  • the fabrication method provided by at least one embodiment of the present disclosure may further include sequentially forming an insulating layer, a thin film transistor array, and a passivation layer on the plurality of photosensitive elements; and forming an organic light emitting diode on the passivation layer.
  • the fabrication method provided in at least one embodiment of the present disclosure may further include: forming a first via and a second via in the insulating layer by a patterning process, wherein the first via and the second pass The holes are respectively in one-to-one correspondence with the touch detection unit.
  • the input end of the photosensitive element passes through the first via corresponding to the touch detection unit.
  • the corresponding signal input line is connected; the output end of the photosensitive element is connected to the corresponding signal output line through the second via corresponding to the touch detection unit.
  • FIG. 1 is a schematic plan view showing an organic electroluminescent touch display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structural view of an organic electroluminescent touch display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a photosensitive element of an organic electroluminescent touch display panel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a connection between a photosensitive element and a trace of an organic electroluminescent touch display panel according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of current changes of a photosensitive element of an organic electroluminescent touch display panel during a touch operation process according to an embodiment of the present disclosure
  • 6A-6C are schematic diagrams showing a method of fabricating an organic electroluminescent touch display panel according to an embodiment of the present disclosure.
  • each pattern in the organic electroluminescent touch display panel according to the embodiments of the present disclosure is usually on the order of micrometers or less in the actual product, and the size of each structure in the drawings of the embodiments of the present disclosure is clear for the sake of clarity. They are all magnified and do not represent actual dimensions and proportions unless explicitly stated otherwise.
  • the scheme of integrating the touch component into the inside of the display panel is realized, and there is a problem that the thickness of the display panel is thickened to cause no thickness advantage, or the product package yield is lowered.
  • FIG. 1 is a schematic diagram of a planar structure of an organic electroluminescent touch display panel according to an embodiment of the present disclosure.
  • the organic electroluminescent touch display panel includes: a base substrate 1; a plurality of touch detection units 3 disposed on the base substrate 1 , each touch detection unit 3 including at least one photosensitive element 2; a signal input line 4 and a signal output line 5 which are provided on the base substrate 1 in one-to-one correspondence with the respective touch detecting units 3.
  • the signal input line 4 is connected to the input end of the photosensitive element 2 in the corresponding touch detection unit 3, and the signal input line 4 is configured to load a touch detection signal (for example, configured to load a touch detection signal from the touch circuit)
  • the signal output line 5 is connected to the output end of the photosensitive element 2 in the corresponding touch detection unit 3, and the signal output line 5 is configured to output the current of the photosensitive element 2 (for example, output current to the touch circuit).
  • the touch circuit is enabled to recognize the touch operation according to the current change of the photosensitive element 2.
  • the two photosensitive elements 2 constitute a touch detecting unit 3 as an example, and one photosensitive element 2 may constitute one touch detecting unit 3, or may be two or more.
  • the photosensitive element 2 constitutes a touch detection unit 3, which is not limited herein.
  • the photosensitive element 2 is disposed on the base substrate 1 in the embodiment of the present disclosure, and the photosensitive element 2 is located in the case, thereby realizing the design of integrating the touch element into the interior of the OLED display panel, thereby enabling the implementation of the present disclosure.
  • the thickness of the display panel having the touch function is smaller than the thickness of the current touch display panel.
  • the OLED display device uses a capacitive touch structure, and the capacitive touch structure needs to sputter a metal layer on the TFE package film in a TFE package. Sputtering the metal layer on the film requires a higher process, resulting in lower product yield.
  • the embodiment of the present disclosure uses an optical touch instead of the conventional capacitive touch.
  • the photosensitive element only needs to be disposed on the base substrate, and the process requirement is low, so that the yield of the product can be improved, and thus the utility model has high practical value.
  • FIG. 2 is a cross-sectional structural diagram of an organic electroluminescent touch display panel according to an embodiment of the present disclosure.
  • the organic electroluminescent touch display panel includes: a substrate 1; a plurality of photosensitive elements 2 disposed on the substrate 1; and an insulating layer IN disposed on the plurality of photosensitive elements 2, Signal input line (not shown in FIG. 2), signal output line (not shown in FIG.
  • the photosensitive element can be a PIN junction photodiode.
  • FIG. 3 is a schematic structural diagram of a photosensitive element of an organic electroluminescent touch display panel according to an embodiment of the present disclosure. As shown in FIG. 3, the P pole 21, the N pole 23 and the intrinsic layer 22 of each photodiode 2 are located in the same layer, and the P pole 21 and the N pole 23 are separated by the intrinsic layer 22, and the intrinsic layer 22 is respectively It is in contact with the P pole 21 and the N pole 23.
  • each of the touch detection units 3 may include a plurality of PIN junction photodiodes.
  • the P poles 21 of all the photodiodes included as the input ends of the touch detection unit 3 include The N poles 23 of all the photodiodes serve as the output ends of the touch detection unit 3.
  • the thin film photodiodes are sequentially stacked structures having a thickness of generally 0.8 um to 1 um.
  • all photodiodes on the array substrate can be arranged to have a thickness of about
  • the single layer structure greatly reduces the number of layers laminated on each other on the substrate.
  • the photoelectric characteristics of horizontal PIN photodiodes are superior to those of vertical PIN photodiodes.
  • the signal input line corresponding to the touch detection unit 3 is connected to the P poles 21 of all the photodiodes 2 in the touch detection unit 3; the corresponding signal output lines of the touch detection unit 3 are connected to all the photosensitive signals.
  • FIG. 4 is an organic electroluminescent touch display panel according to an embodiment of the present disclosure. Schematic diagram of the connection of the photosensitive element to the trace. As shown in FIG. 4, the first via hole A and the second via hole B are disposed in the insulating layer IN, and the first via hole A and the second via hole B respectively correspond to the touch detecting unit.
  • each touch detection unit the input end of the photosensitive element 2 (ie, the P pole 21 of the photodiode) is connected to the corresponding signal input line 4 through the first via A corresponding to the touch detection unit 3;
  • the output end of the component 2 ie, the N pole 23 of the touch detection unit
  • each touch detection unit can be set to 3 mm 2 -5 mm 2 for touch recognition. It can be understood that the area of each touch detection unit can also be set according to the pixel size of the display device, which is not limited herein.
  • At least one embodiment of the present disclosure further provides a display device including any of the above organic electroluminescent touch display panels. Based on the above organic electroluminescent touch display panel, the display device in the embodiment of the present disclosure implements in cell touch touch, which has a small cell thickness and conforms to the ultra-thin development trend of the current display device.
  • the display device may further include a touch circuit, wherein an output end of the touch circuit is connected to a signal input line in the organic electroluminescent touch display panel, and an output end of the touch circuit is configured to load the signal input line Controlling the detection signal; the input end of the touch circuit is connected to the signal output line in the organic electroluminescent touch display panel, and the input end of the touch circuit is configured to receive the current of the photosensitive element connected to the signal output line, and the touch circuit The touch operation is recognized based on the current change of the photosensitive element.
  • the principle of touch recognition is: when the photosensitive element is a PIN junction photodiode, the P pole of the photodiode receives the touch detection signal of the touch circuit to realize voltage scanning, and the N pole of the photodiode outputs current to the touch circuit.
  • FIG. 5 is a schematic diagram of current changes of a photosensitive element of an organic electroluminescent touch display panel during a touch operation according to an embodiment of the present disclosure.
  • the photodiode current value is low in the absence of illumination, as shown by curve 1, the current approaches 0.01 pA.
  • the intensity of the light obtained by all the touch detection unit regions is uniform, and the photocurrent value of each photodiode is as shown by the curve 2, approaching 30-40 pA, and each The current values output by the touch detection unit to the touch circuit are substantially the same.
  • the touch control circuit can use the area corresponding to the touch detection unit whose output current changes as the touch position.
  • At least one embodiment of the present disclosure further provides a method for fabricating an organic electroluminescent touch display panel, comprising: providing a substrate; forming a plurality of touch detection units on the substrate, wherein each touch The detecting unit includes at least one photosensitive element; a signal input line and a signal output line corresponding to the respective touch detecting units are formed on the base substrate; and the signal input line is connected to the input end of the photosensitive element in the touch detecting unit corresponding thereto, The signal input line is configured to load the touch detection signal; the signal output line is connected to the output end of the photosensitive element in the corresponding touch detection unit, and the signal output line is configured to output the current of the photosensitive element.
  • the photosensitive element is a PIN junction photodiode
  • the step of forming a plurality of photosensitive elements on the substrate substrate includes:
  • Step 1 referring to FIG. 6A, a layer of intrinsic material 61 is deposited on the base substrate 1.
  • Step 2 referring to FIG. 6B, the intrinsic material 61 is patterned to form an intrinsic pattern comprising a first portion 611, a second portion 612, and a third portion 613 arranged in sequence.
  • Step 3 referring to FIG. 6C, the first portion 611 of FIG. 6B is doped with hydrogen hydride BH 3 using a mask to obtain a P pole of the PIN junction, and the second portion 22 is subjected to phosphine PH 3 doping using a mask.
  • the N pole of the PIN junction is obtained, and a photodiode of a single layer structure as shown in FIG. 6C is finally produced.
  • the signal input line corresponding to the touch detection unit is connected to the P poles of all the photodiodes in the touch detection unit; the signal output lines corresponding to the touch detection unit are connected to the N poles of all the photodiodes.
  • the method for fabricating the organic electroluminescent touch display panel further includes sequentially forming an insulating layer, a thin film transistor array, and a passivation layer on the plurality of photosensitive elements; and forming an organic light emitting diode on the passivation layer, for example, the organic
  • the light emitting diode includes an anode, a cathode, and an organic light emitting layer between the anode and the cathode.
  • a signal input line and a signal output line are formed between the insulating layer and the passivation layer.
  • the method for fabricating the organic electroluminescent touch display panel further includes: forming a first via and a second via in the insulating layer by a patterning process, wherein the first via and the second via respectively detect the touch Units correspond one by one.
  • each touch detection unit the input end of the photosensitive element is connected to the corresponding signal input line through the first via corresponding to the touch detection unit; the output end of the photosensitive element passes through the corresponding corresponding to the touch detection unit.
  • the two vias are connected to the corresponding signal output lines.
  • ultra-thin glass As display devices have progressed toward ultra-thinning, ultra-thin glass has been generally used as a substrate.
  • the flatness of each layer structure is worse, and the stress on the ultra-thin glass is increased, so that the ultra-thin glass is easily damaged.
  • the overall layer structure on the substrate substrate can be made flater than that of the current stacked structure. Uniform force is beneficial.
  • the embodiment of the present disclosure places the photosensitive element on the substrate, and after the display substrate completes the box, the photosensitive element is located in the box, thereby realizing the in cell touch of the OLED, that is, the thickness of the display panel behind the box is smaller than usual.
  • the thickness of the display panel In addition, most of the current OLED display devices adopt a capacitive touch structure.
  • the capacitive touch structure needs to sputter a metal layer on the TFE package film, and the metal layer is sputtered on the TFE package film to have a high process requirement, so that the yield of the product is good. reduce.
  • the embodiment of the present disclosure replaces the traditional capacitive touch with optical touch, and the photosensitive element only needs to be disposed on the base substrate, which has lower requirements on the process, thereby improving the yield of the product, and thus has high practical value. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机电致发光触控显示面板及其制作方法、显示装置,该有机电致发光触控显示面板包括:衬底基板(1);设置在所述衬底基板(1)上的多个触控检测单元(3),每个触控检测单元(3)包括至少一个光敏元件(2);设置在所述衬底基板(1)上的与各个触控检测单元(3)一一对应的信号输入线(4)和信号输出线(5),所述信号输入线(4)连接与其对应的触控检测单元(3)中光敏元件(2)的输入端,所述信号输入线(4)配置为加载触控检测信号;所述信号输出线(5)连接与其对应的触控检测单元(3)中的光敏元件(2)的输出端,所述信号输出线(5)配置为将所述光敏元件的电流输出,从而触控电路能够根据光敏元件的电流变化,识别触控操作。本公开在有机电致发光显示装置上实现了将触控元件集成在显示面板内部的设计,相比于通常的有机电致发光显示器件,本公开中的设计具有更小的盒厚。

Description

有机电致发光触控显示面板及其制作方法、显示装置 技术领域
本公开涉及一种有机电致发光触控显示面板及其制作方法、显示装置。
背景技术
OLED显示器件(有机电致发光显示器件)具有对比度高、厚度薄、视角广以及反应速度快等特点。OLED显示器件已经开始逐步取代LCD显示器件(液晶显示器件)。
目前,市场上采用的OLED显示屏都只能提供显示功能,需要贴合外加的触控屏才能实现触控功能。通过贴合外加的触控屏实现触控功能的结构与实现in cell touch(将触控元件集成在显示面板内部)的LCD相比无厚度优势。通常采用的另外一种方式为,在TFE(四氟乙烯)封装膜上采用低温溅射的方式沉积金属薄膜和绝缘层薄膜制作电容式触控结构,但是,采用该方法制备的产品的封装良率很低。
发明内容
本公开的实施例提供一种有机电致发光触控显示面板及其制作方法、显示装置,该有机电致发光触控显示面板将触控元件集成在显示面板的内部,从而能够实现触控和显示功能。
本公开至少一实施例提供一种有机电致发光触控显示面板,包括:衬底基板;设置在所述衬底基板上的多个触控检测单元,每个所述触控检测单元包括至少一个光敏元件;设置在所述衬底基板上的与各个所述触控检测单元一一对应的信号输入线和信号输出线;其中,所述信号输入线连接与其对应的所述触控检测单元中所述光敏元件的输入端,所述信号输入线配置为加载触控检测信号;所述信号输出线连接与其对应的所述触控检测单元中的所述光敏元件的输出端,所述信号输出线配置为将所述光敏元件的电流输出。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,所述光敏元件为光敏二极管。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,每一所述光敏二极管的P极、N极和本征层位于同一层,所述P极与所述N极通过所述本征层相隔且分别与所述本征层相接触。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,在同一所述触控检测单元中,所述触控检测单元对应的所述信号输入线连接所述触控检测单元中所有所述光敏二极管的P极;所述触控检测单元对应的所述信号输出线连接所有所述光敏二极管的N极。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,每一所述触控检测单元的面积为3mm2-5mm2
例如,本公开至少一实施例提供的有机电致发光触控显示面板还可以包括:依次设置在所述多个光敏元件上的绝缘层、薄膜晶体管阵列和钝化层,以及设置在所述钝化层上的有机发光二极管。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,所述绝缘层中设置有第一过孔和第二过孔,所述第一过孔和所述第二过孔分别与所述触控检测单元一一对应。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,在每个所述触控检测单元中,所述光敏元件的输入端通过与所述触控检测单元对应的所述第一过孔与对应的所述信号输入线连接;所述光敏元件的输出端通过与所述触控检测单元对应的所述第二过孔与对应的所述信号输出线连接。
例如,在本公开至少一实施例提供的有机电致发光触控显示面板中,所述信号输入线和所述信号输出线设置在所述绝缘层和所述钝化层之间。
本公开至少一实施例还提供一种显示装置,包括上述任一有机电致发光触控显示面板。
例如,本公开至少一实施例提供的显示装置,还可以包括触控电路,其中,所述触控电路的输出端与所述有机电致发光触控显示面板中的所述信号输入线连接,配置为向所述信号输入线加载触控检测信号;所述触控电路的输入端与所述有机电致发光触控显示面板中的所述信号输出线连 接,配置为接收所述信号输出线连接的所述光敏元件的电流,所述触控电路根据所述光敏元件的电流变化,识别触控操作。
本公开至少一实施例还提供一种有机电致发光触控显示面板的制作方法,包括:提供衬底基板;在所述衬底基板上形成多个触控检测单元,其中,每个所述触控检测单元包括至少一个光敏元件;在所述衬底基板上形成与各个所述触控检测单元一一对应的信号输入线和信号输出线;其中,所述信号输入线连接与其对应的所述触控检测单元中所述光敏元件的输入端,所述信号输入线配置为加载触控检测信号;所述信号输出线连接与其对应的所述触控检测单元中所述光敏元件的输出端,所述信号输出线配置为将所述光敏元件的电流输出。
例如,在本公开至少一实施例提供的制作方法中,所述光敏元件为光敏二极管,在所述衬底基板上形成所述光敏元件包括:在所述衬底基板上沉积一层本征材料;对所述本征材料进行构图形成本征图形,所述本征图形包括依次排布的第一部分、第二部分和第三部分;对所述第一部分进行硼化氢BH3掺杂得到所述光敏二极管的P极,对所述第二部分进行磷化氢PH3掺杂得到所述光敏二极管的N极。
例如,在本公开至少一实施例提供的制作方法中,在同一所述触控检测单元中,所述触控检测单元对应的所述信号输入线连接所述触控检测单元中所有所述光敏二极管的P极;所述触控检测单元对应的所述信号输出线连接所有所述光敏二极管的N极。
例如,本公开至少一实施例提供的制作方法还可以包括:在所述多个光敏元件上依次形成绝缘层、薄膜晶体管阵列和钝化层;在所述钝化层上形成有机发光二极管。
例如,本公开至少一实施例提供的制作方法还可以包括:通过构图工艺在所述绝缘层中形成第一过孔和第二过孔,其中,所述第一过孔和所述第二过孔分别与所述触控检测单元一一对应。
例如,在本公开至少一实施例提供的制作方法中,在每个所述触控检测单元中,所述光敏元件的输入端通过与所述触控检测单元对应的所述第一过孔与对应的所述信号输入线连接;所述光敏元件的输出端通过与所述触控检测单元对应的所述第二过孔与对应的所述信号输出线连接。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一实施例提供的一种有机电致发光触控显示面板的平面结构示意图;
图2为本公开一实施例提供的一种有机电致发光触控显示面板的截面结构示意图;
图3为本公开一实施例提供的一种有机电致发光触控显示面板的光敏元件的结构示意图;
图4为本公开一实施例提供的一种有机电致发光触控显示面板的光敏元件与走线的连接示意图;
图5为本公开一实施例提供的一种有机电致发光触控显示面板的光敏元件在触控操作过程中的电流变化示意图;以及
图6A-图6C为本公开一实施例提供的一种有机电致发光触控显示面板的制作方法的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝 对位置改变后,则该相对位置关系也可能相应地改变。
本公开的实施例所涉及的有机电致发光触控显示面板中各图案的尺寸在实际产品中通常为微米或更小量级,为了清楚起见,本公开实施例的附图中各结构的尺寸均被放大,除非另有明确说明,不代表实际尺寸与比例。
目前,在有机电致发光器件上实现将触控元件集成在显示面板内部的方案,会存在显示面板的厚度加厚造成无厚度优势的问题,或者产品封装良率降低的问题。
本公开至少一实施例提供一种有机电致发光触控显示面板,例如,图1为本公开一实施例提供的一种有机电致发光触控显示面板的平面结构示意图。如图1所示,该有机电致发光触控显示面板包括:衬底基板1;设置在衬底基板1上的多个触控检测单元3,每个触控检测单元3包括至少一个光敏元件2;设置在衬底基板1上的与各个触控检测单元3一一对应的信号输入线4和信号输出线5。该信号输入线4连接与其对应的触控检测单元3中光敏元件2的输入端,该信号输入线4配置为加载触控检测信号(例如,配置为加载来自触控电路的触控检测信号),该信号输出线5连接与其对应的触控检测单元3中的光敏元件2的输出端,该信号输出线5配置为将光敏元件2的电流输出(例如,将电流输出至触控电路),使得触控电路能够根据光敏元件2的电流变化,识别触控操作。
需要说明的是,图1中以两个光敏元件2构成一个触控检测单元3为例加以说明,可以是1个光敏元件2构成一个触控检测单元3,也可以是两个或者两个以上的光敏元件2构成一个触控检测单元3,在此不做限定。
当用户触碰图1所示的有机电致发光触控显示面板的触摸屏时,例如,用户采用手指或者触控笔等触碰触摸屏时,会遮挡一部分来自外部的入射光线,从而使光敏元件2的电流发生变化,本公开的实施例根据光敏元件2的电流变化来识别触控操作。
一方面,本公开的实施例中光敏元件2设置在衬底基板1上,光敏元件2位于盒内,从而实现了将触控元件集成在OLED显示面板的内部的设计,从而使得本公开的实施例中具有触控功能的显示面板的厚度小于目前触控显示面板的厚度。另一方面,目前,OLED显示装置使用的是电容式触控结构,电容式触控结构需要在TFE封装膜上溅射金属层,在TFE封 装膜上溅射金属层对工艺要求较高,使得产品良率较低。本公开的实施例使用光学触控代替传统的电容式触控,光敏元件只需要设置在衬底基板上,对工艺要求较低,从而能够提高产品的良率,因此具有很高的实用价值。
下面结合实际应用,对本公开的实施例提供的有机电致发光触控显示面板进行详细的介绍。
例如,图2为本公开一实施例提供的一种有机电致发光触控显示面板的截面结构示意图。如图2所示,该有机电致发光触控显示面板包括:衬底基板1,设置在衬底基板1上的多个光敏元件2;设置在多个光敏元件2上的绝缘层IN,设置在绝缘层IN上的信号输入线(图2未示出)、信号输出线(图2未示出)和薄膜晶体管TFT阵列;设置在信号输入线、信号输出线和薄膜晶体管TFT阵列上的钝化层6;设置在钝化层6上的有机发光二极管,例如,该有机发光二极管包括阳极7、阴极9和位于阳极7和阴极9之间的有机发光层8。
例如,在本公开的实施例中,光敏元件可以是PIN结光敏二极管。例如,图3为本公开一实施例提供的一种有机电致发光触控显示面板的光敏元件的结构示意图。如图3所示,每个光敏二极管2的P极21、N极23和本征层22位于同一层,且P极21与N极23之间通过本征层22相隔,本征层22分别与P极21与N极23接触。
例如,每个触控检测单元3均可以包括多个PIN结光敏二极管,在一个触控检测单元3中,其包括的所有光敏二极管的P极21作为触控检测单元3的输入端,其包括的所有光敏二极管的N极23作为触控检测单元3的输出端。
通常,薄膜光敏二极管为依次层叠的结构,厚度一般为0.8um~1um。在本公开的实施例中,可使阵列基板上所有光敏二极管排列成厚度约为
Figure PCTCN2017090647-appb-000001
的单层结构,这样大大地减少了衬底基板上相互层叠的膜层的数量。此外,水平向的PIN光敏二极管的光电特性优于垂直向的PIN光敏二极管的光电特性。
例如,在同一触控检测单元3中,触控检测单元3对应的信号输入线连接触控检测单元3中所有光敏二极管2的P极21;触控检测单元3对应的信号输出线连接所有光敏二极管2的N极23。
例如,图4为本公开一实施例提供的一种有机电致发光触控显示面板 的光敏元件与走线的连接示意图。如图4所示,绝缘层IN中设置有第一过孔A和第二过孔B,第一过孔A和第二过孔B分别与触控检测单元一一对应。
例如,在每个触控检测单元中,光敏元件2的输入端(即光敏二极管的P极21)通过与触控检测单元3对应的第一过孔A与对应的信号输入线4连接;光敏元件2的输出端(即该触控检测单元的N极23)通过与触控检测单元3对应的第二过孔B与信号输出线5连接。
例如,每一触控检测单元的面积可以设置为3mm2-5mm2以适用于触控识别。可以理解的是,每个触控检测单元的面积也可以根据显示装置的像素尺寸进行设置,在此不做限定。
本公开至少一实施例还提供一种显示装置,该显示装置包括上述任一有机电致发光触控显示面板。基于上述有机电致发光触控显示面板,本公开的实施例中的显示装置实现了in cell touch触控,其具有较小的盒厚,符合当前显示装置的超薄化发展趋势。
例如,该显示装置还可以包括触控电路,该触控电路的输出端与有机电致发光触控显示面板中的信号输入线连接,该触控电路的输出端配置为向信号输入线加载触控检测信号;该触控电路的输入端与有机电致发光触控显示面板中的信号输出线连接,该触控电路的输入端配置为接收信号输出线连接的光敏元件的电流,触控电路根据光敏元件的电流变化,识别触控操作。
例如,触控识别原理为:当光敏元件为PIN结光敏二极管时,光敏二极管的P极接收触控电路的触控检测信号,实现电压扫描,光敏二极管的N极向触控电路输出电流。
例如,图5为本公开一实施例提供的一种有机电致发光触控显示面板的光敏元件在触控操作过程中的电流变化示意图。如图5所示,当光敏二极管在电压为D的位置开启时,在没有光照的情况下,光敏二极管的电流值很低,如曲线①所示,电流趋近于0.01pA。当显示装置开启,没有手指触控时,所有触控检测单元区域获得的光的强度是一致的,每个光敏二极管的光电流值如曲线②所示,趋近至30-40pA,且每个触控检测单元向触控电路输出的电流值均大致相同。当用户采用手指等进行触控时,触控位置的光敏二极管接收到的光线被手指等遮挡住,这样产生的电流值会发生 变化,从而使得其所属的触控检测单元向触控电路输出的电流值发生变化,触控电路可以将输出电流发生变化的触控检测单元对应的区域作为触控位置。
例如,本公开至少一实施例还提供一种有机电致发光触控显示面板的制作方法,包括:提供衬底基板;在衬底基板上形成多个触控检测单元,其中,每个触控检测单元包括至少一个光敏元件;在衬底基板上形成与各个触控检测单元一一对应的信号输入线和信号输出线;信号输入线连接与其对应的触控检测单元中光敏元件的输入端,信号输入线配置为加载触控检测信号;信号输出线连接与其对应的触控检测单元中光敏元件的输出端,信号输出线配置为将光敏元件的电流输出。
例如,在本公开的实施例中,光敏元件为PIN结光敏二极管,在衬底基板上形成多个光敏元件的步骤包括:
步骤1,参考图6A,在衬底基板1上沉积一层本征材料61。
步骤2,参考图6B,对本征材料61进行构图以形成本征图形,该本征图形包括依次排布的第一部分611、第二部分612和第三部分613。
步骤3,参考图6C,使用掩膜版对图6B中的第一部分611进行硼化氢BH3掺杂得到PIN结的P极,使用掩膜版对第二部分22进行磷化氢PH3掺杂得到PIN结的N极,最终生成图6C所示的单层结构的光敏二极管。
例如,在同一触控检测单元中,触控检测单元对应的信号输入线连接触控检测单元中所有光敏二极管的P极;触控检测单元对应的信号输出线连接所有光敏二极管的N极。
例如,该有机电致发光触控显示面板的制作方法还包括:在多个光敏元件上依次形成绝缘层、薄膜晶体管阵列和钝化层;在钝化层上形成有机发光二极管,例如,该有机发光二极管包括阳极、阴极和位于阳极和阴极之间的有机发光层。
例如,信号输入线和信号输出线形成在绝缘层和钝化层之间。
例如,该有机电致发光触控显示面板的制作方法还包括:通过构图工艺在绝缘层中形成第一过孔和第二过孔,该第一过孔和第二过孔分别与触控检测单元一一对应。
例如,在每个触控检测单元中,光敏元件的输入端通过与触控检测单元对应的第一过孔与对应的信号输入线连接;光敏元件的输出端通过与触控检测单元对应的第二过孔与对应的信号输出线连接。
随着显示装置向超薄化的方向发展,目前一般采用超薄玻璃作为衬底基板。在采用超薄玻璃作为衬底基板制作有机电致发光触控显示面板的过程中,各层结构的平整度越差,对超薄玻璃产生的应力越大,从而越容易使超薄玻璃受到损坏,使得产品良率降低。在本公开的实施例中,在制作光敏二极管的过程中,只需要沉积一个层结构,相比于目前的层叠结构,可使得衬底基板上的整体层结构更为平整,对衬底基板的均匀受力有利。
本公开的实施例将光敏元件设置在衬底基板上,在显示基板完成对盒后,光敏元件位于盒内,从而实现了OLED的in cell touch,即对盒后的显示面板的厚度小于通常的显示面板的厚度。此外,目前OLED显示装置大多采用电容式触控结构,电容式触控结构需要在TFE封装膜上溅射金属层,在TFE封装膜上溅射金属层对工艺要求较高,使得产品的良率降低。本公开的实施例采用光学触控代替了传统的电容式触控,光敏元件只需要设置在衬底基板上,对工艺要求较低,从而能够提高产品的良率,因此具有很高的实用价值。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年12月27日递交的中国专利申请第201611226642.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (17)

  1. 一种有机电致发光触控显示面板,包括:
    衬底基板;
    设置在所述衬底基板上的多个触控检测单元,每个所述触控检测单元包括至少一个光敏元件;
    设置在所述衬底基板上的与各个所述触控检测单元一一对应的信号输入线和信号输出线;
    其中,所述信号输入线连接与其对应的所述触控检测单元中所述光敏元件的输入端,所述信号输入线配置为加载触控检测信号;
    所述信号输出线连接与其对应的所述触控检测单元中的所述光敏元件的输出端,所述信号输出线配置为将所述光敏元件的电流输出。
  2. 根据权利要求1所述的有机电致发光触控显示面板,其中,所述光敏元件为光敏二极管。
  3. 根据权利要求2所述的有机电致发光触控显示面板,其中,每一所述光敏二极管的P极、N极和本征层位于同一层,所述P极与所述N极通过所述本征层相隔且分别与所述本征层相接触。
  4. 根据权利要求3所述的有机电致发光触控显示面板,其中,
    在同一所述触控检测单元中,所述触控检测单元对应的所述信号输入线连接所述触控检测单元中所有所述光敏二极管的P极;所述触控检测单元对应的所述信号输出线连接所有所述光敏二极管的N极。
  5. 根据权利要求1-4中任一项所述的有机电致发光触控显示面板,其中,
    每一所述触控检测单元的面积为3mm2-5mm2
  6. 根据权利要求1-5中任一项所述的有机电致发光触控显示面板,还包括:
    依次设置在所述多个光敏元件上的绝缘层、薄膜晶体管阵列和钝化层,以及设置在所述钝化层上的有机发光二极管。
  7. 根据权利要求6所述的有机电致发光触控显示面板,其中,所述绝缘层中设置有第一过孔和第二过孔,所述第一过孔和所述第二过孔分别与所述触控检测单元一一对应。
  8. 根据权利要求7所述的有机电致发光触控显示面板,其中,在每个所述触控检测单元中,
    所述光敏元件的输入端通过与所述触控检测单元对应的所述第一过孔与对应的所述信号输入线连接;
    所述光敏元件的输出端通过与所述触控检测单元对应的所述第二过孔与对应的所述信号输出线连接。
  9. 根据权利要求6-8中任一项所述的有机电致发光触控显示面板,其中,所述信号输入线和所述信号输出线设置在所述绝缘层和所述钝化层之间。
  10. 一种显示装置,包括如权利要求1-9中任一项所述的有机电致发光触控显示面板。
  11. 根据权利要求10所述的显示装置,还包括触控电路,其中,
    所述触控电路的输出端与所述有机电致发光触控显示面板中的所述信号输入线连接,配置为向所述信号输入线加载触控检测信号;
    所述触控电路的输入端与所述有机电致发光触控显示面板中的所述信号输出线连接,配置为接收所述信号输出线连接的所述光敏元件的电流,所述触控电路根据所述光敏元件的电流变化,识别触控操作。
  12. 一种有机电致发光触控显示面板的制作方法,包括:
    提供衬底基板;
    在所述衬底基板上形成多个触控检测单元,其中,每个所述触控检测单元包括至少一个光敏元件;
    在所述衬底基板上形成与各个所述触控检测单元一一对应的信号输入线和信号输出线;
    其中,所述信号输入线连接与其对应的所述触控检测单元中所述光敏元件的输入端,所述信号输入线配置为加载触控检测信号;
    所述信号输出线连接与其对应的所述触控检测单元中所述光敏元件的输出端,所述信号输出线配置为将所述光敏元件的电流输出。
  13. 根据权利要求12所述的制作方法,其中,所述光敏元件为光敏二极管,在所述衬底基板上形成所述光敏元件包括:
    在所述衬底基板上沉积一层本征材料;
    对所述本征材料进行构图形成本征图形,所述本征图形包括依次排布的第一部分、第二部分和第三部分;
    对所述第一部分进行硼化氢BH3掺杂得到所述光敏二极管的P极,对所述第二部分进行磷化氢PH3掺杂得到所述光敏二极管的N极。
  14. 根据权利要求13所述的制作方法,其中,在同一所述触控检测单元中,所述触控检测单元对应的所述信号输入线连接所述触控检测单元中所有所述光敏二极管的P极;所述触控检测单元对应的所述信号输出线连接所有所述光敏二极管的N极。
  15. 根据权利要求12-14中任一项所述的制作方法,还包括:
    在所述多个光敏元件上依次形成绝缘层、薄膜晶体管阵列和钝化层;
    在所述钝化层上形成有机发光二极管。
  16. 根据权利要求15所述的制作方法,还包括:通过构图工艺在所述绝缘层中形成第一过孔和第二过孔,其中,所述第一过孔和所述第二过孔分别与所述触控检测单元一一对应。
  17. 根据权利要求16所述的制作方法,其中,在每个所述触控检测单元中,
    所述光敏元件的输入端通过与所述触控检测单元对应的所述第一过孔与对应的所述信号输入线连接;
    所述光敏元件的输出端通过与所述触控检测单元对应的所述第二过孔与对应的所述信号输出线连接。
PCT/CN2017/090647 2016-12-27 2017-06-28 有机电致发光触控显示面板及其制作方法、显示装置 WO2018120698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/569,037 US10423256B2 (en) 2016-12-27 2017-06-28 Organic light emitting touch display panel, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611226642.9 2016-12-27
CN201611226642.9A CN106505090B (zh) 2016-12-27 2016-12-27 一种有机电致发光显示面板、显示装置及制作方法

Publications (1)

Publication Number Publication Date
WO2018120698A1 true WO2018120698A1 (zh) 2018-07-05

Family

ID=58334355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090647 WO2018120698A1 (zh) 2016-12-27 2017-06-28 有机电致发光触控显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US10423256B2 (zh)
CN (1) CN106505090B (zh)
WO (1) WO2018120698A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505090B (zh) * 2016-12-27 2024-06-07 京东方科技集团股份有限公司 一种有机电致发光显示面板、显示装置及制作方法
CN106708326A (zh) 2017-01-10 2017-05-24 京东方科技集团股份有限公司 触控基板及显示装置
CN109727974B (zh) * 2019-01-03 2021-10-08 京东方科技集团股份有限公司 感光组件、其制备方法以及感光基板
TWI750700B (zh) * 2020-06-18 2021-12-21 友達光電股份有限公司 觸控顯示裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913449A (zh) * 2013-01-07 2014-07-09 Nxp股份有限公司 集成电路与制造方法
CN105304673A (zh) * 2014-06-11 2016-02-03 三星显示有限公司 包括传感器的有机发光二极管显示器
JP2016045307A (ja) * 2014-08-21 2016-04-04 株式会社ジャパンディスプレイ 表示装置
CN106505090A (zh) * 2016-12-27 2017-03-15 京东方科技集团股份有限公司 一种有机电致发光显示面板、显示装置及制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0014962D0 (en) * 2000-06-20 2000-08-09 Koninkl Philips Electronics Nv Matrix array display devices with light sensing elements and associated storage capacitors
GB0406540D0 (en) * 2004-03-24 2004-04-28 Koninkl Philips Electronics Nv Electroluminescent display devices
TWI394071B (zh) * 2009-08-14 2013-04-21 Au Optronics Corp 有機發光二極體觸控面板及其製作方法
KR20130057700A (ko) * 2011-11-24 2013-06-03 삼성디스플레이 주식회사 유기 발광 표시 장치
US8721166B1 (en) * 2013-01-15 2014-05-13 The Maitland Company Agitation and evacuation of refinery solids waste
CN104835449B (zh) * 2015-05-04 2017-05-17 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN206292757U (zh) * 2016-12-27 2017-06-30 京东方科技集团股份有限公司 一种有机电致发光显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913449A (zh) * 2013-01-07 2014-07-09 Nxp股份有限公司 集成电路与制造方法
CN105304673A (zh) * 2014-06-11 2016-02-03 三星显示有限公司 包括传感器的有机发光二极管显示器
JP2016045307A (ja) * 2014-08-21 2016-04-04 株式会社ジャパンディスプレイ 表示装置
CN106505090A (zh) * 2016-12-27 2017-03-15 京东方科技集团股份有限公司 一种有机电致发光显示面板、显示装置及制作方法

Also Published As

Publication number Publication date
CN106505090A (zh) 2017-03-15
US10423256B2 (en) 2019-09-24
CN106505090B (zh) 2024-06-07
US20180284933A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2018129970A1 (zh) 感光触控基板及其制备方法、显示装置
WO2020001049A1 (zh) 像素单元及其补偿方法、显示装置及其制造方法
US10488962B2 (en) Organic light-emitting diode display device with touch control function and manufacturing method therefor
JP6517617B2 (ja) 表示装置
WO2021057011A1 (zh) 显示面板及其制作方法、显示装置
WO2018120698A1 (zh) 有机电致发光触控显示面板及其制作方法、显示装置
WO2016082636A1 (zh) 像素结构、透明触摸显示屏及其制作方法、和显示装置
WO2016145771A1 (zh) 阵列基板及其制作方法以及显示装置
WO2021017320A1 (zh) 有机发光器件、显示装置及有机发光器件的制作方法
WO2017004960A1 (zh) 内嵌式触摸屏及有机发光二极管显示装置
WO2018036179A1 (zh) 触控结构、阵列基板和显示装置
CN110098224B (zh) 一种像素结构、显示屏以及像素结构制作方法
CN107168578B (zh) 内嵌式触控显示面板及其制作方法、显示装置
WO2018130110A1 (zh) 触控基板及显示装置
KR102367826B1 (ko) 터치 스크린 일체형 표시 장치와 그의 제조방법
KR102426269B1 (ko) 터치 스크린 일체형 표시장치
CN107885400B (zh) 一种oled触控显示面板及其驱动方法
US20160342234A1 (en) Mutual capacitance one glass solution touch panel and manufacture method thereof
WO2019000939A1 (zh) 显示器阵列基板、制备方法和显示器
JP2023531340A (ja) 表示基板及び表示装置
CN105260069B (zh) 一种自电容式触控显示面板及显示装置
WO2020168801A1 (zh) 显示模组及其制造方法、显示装置
WO2021139089A1 (zh) 一种光电二极管及其制作方法以及显示屏
CN206292757U (zh) 一种有机电致发光显示面板及显示装置
US11948393B2 (en) Display substrate and display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15569037

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886360

Country of ref document: EP

Kind code of ref document: A1