WO2018120626A1 - 空调器的控制方法、装置及空调器 - Google Patents

空调器的控制方法、装置及空调器 Download PDF

Info

Publication number
WO2018120626A1
WO2018120626A1 PCT/CN2017/086207 CN2017086207W WO2018120626A1 WO 2018120626 A1 WO2018120626 A1 WO 2018120626A1 CN 2017086207 W CN2017086207 W CN 2017086207W WO 2018120626 A1 WO2018120626 A1 WO 2018120626A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
value
air conditioner
temperature value
thermal resistance
Prior art date
Application number
PCT/CN2017/086207
Other languages
English (en)
French (fr)
Inventor
屈金祥
Original Assignee
美的集团武汉制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团武汉制冷设备有限公司, 美的集团股份有限公司 filed Critical 美的集团武汉制冷设备有限公司
Publication of WO2018120626A1 publication Critical patent/WO2018120626A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • the present invention relates to the field of air conditioning equipment, and in particular, to an air conditioner control method and apparatus, and an air conditioner.
  • the air conditioner obtains the PMV thermal sensation state parameter of the human body by obtaining the temperature of the room where the air conditioner is located and the human body temperature, and adjusting the state of the PMV thermal sensation state parameter according to the current state of the air conditioner.
  • the operating state of the air conditioner achieves the purpose of comfort of the human body.
  • the individual differences are relatively large, such as how many people dress differently, even if the same person wears clothes in different environments.
  • the parameter of the cold and hot state of the human body obtained according to the foregoing is inaccurate, and the comfort feeling of the person cannot be truly advanced. Therefore, controlling the air conditioner with this parameter may cause the person to be in a comfortable state in the room and cannot satisfy the human body.
  • the comfort requirements may cause the person to be in a comfortable state in the room and cannot satisfy the human body.
  • the main object of the present invention is to provide an air conditioner control method, device and air conditioner, which aim to solve the above-mentioned air conditioning existing control rules and obtain accurate parameters of the human body's thermal and thermal sensation state, thereby causing the air conditioner to control the human body's comfort requirements. problem.
  • an air conditioner control method provided by the present invention includes:
  • the operation of the air conditioner is controlled according to the comfort parameter of the human body.
  • the step of determining the thermal resistance value of the human body according to the temperature value of the surface of the human body further comprises:
  • the step of determining the thermal resistance value of the human body according to the temperature value of the surface of the human body is replaced by:
  • the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body and the temperature value of the human body surface.
  • the step of determining the thermal resistance value of the human body according to the air temperature value in the vicinity of the human body and the temperature value of the human body surface further includes:
  • the step of determining the thermal resistance value of the human body according to the air temperature value in the vicinity of the human body and the temperature value of the human body surface is replaced by:
  • the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body, the temperature value of the human body surface, and the humidity value in the vicinity of the human body.
  • the comfort parameter of the human body is a cold and hot state value of the human body
  • the step of controlling the air conditioner according to the comfort parameter specifically includes:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the step of adjusting the set temperature value according to the adjusted value of the set temperature and the state of the person's thermal sensation includes:
  • the set temperature is subtracted from the set temperature as an adjusted set temperature value
  • the set temperature plus the adjustment value of the set temperature is used as the adjusted set temperature value.
  • the comfort parameter of the human body is a comfortable temperature value of the human body
  • the step of controlling the air conditioner according to the comfort parameter specifically includes:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the determining the comfort parameter of the human body according to the thermal resistance value of the clothing of the human body also include:
  • the step of determining the comfort parameter of the human body according to the thermal resistance of the clothing of the human body is replaced by:
  • the comfort parameter of the human body is determined according to the thermal resistance value of the human body and the heat dissipation amount of the human body.
  • the present invention also provides an air conditioner control device, the air conditioner control device comprising:
  • a temperature detecting module for acquiring a temperature value of a surface of the human body
  • thermo resistance determining module for determining a thermal resistance value of the human body according to a temperature value of the human body surface
  • a comfort parameter determining module configured to determine a comfort parameter of the human body according to the thermal resistance of the clothing of the human body
  • the control module controls the operation of the air conditioner according to the comfort parameter of the human body.
  • the garment thermal resistance determining module is further configured to:
  • the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body and the temperature value of the human body surface.
  • the garment thermal resistance determining module is further configured to:
  • the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body, the temperature value of the human body surface, and the humidity value in the vicinity of the human body.
  • the comfort parameter of the human body is a comfortable temperature value of the human body
  • the control module is further configured to:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the comfort parameter determination module is further configured to:
  • the comfort parameter of the human body is determined according to the thermal resistance value of the human body and the heat dissipation amount of the human body.
  • the present invention also provides an air conditioner, the air conditioner comprising:
  • Infrared sensor module
  • One or more processors are One or more processors;
  • One or more programs wherein the one or more programs are stored in the memory and configured to be executed by one or more processors, the program including instructions for performing the following steps:
  • the operation of the air conditioner is controlled according to the comfort parameter of the human body.
  • the invention determines the temperature resistance value of the human body by obtaining the temperature value of the surface of the human body, and determines the thermal resistance value of the human body according to the temperature value of the surface of the human body, and then determines the comfort parameter of the human body according to the thermal resistance of the human body, and finally controls the operation of the air conditioner according to the comfort parameter. Since the thermal resistance of the human body is an important parameter affecting the comfort of the human body, the thermal resistance of the human body is used to determine the comfort parameters of the human body, and finally the air conditioner operation is controlled based on the comfort parameters of the human body, and the existing air conditioner is solved. In the comfort control, since the thermal resistance of the human body is not taken into consideration, the problem of inaccurate control according to comfort is caused, thereby improving the accuracy of the air conditioner for user comfort control.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for controlling an air conditioner according to the present invention
  • FIG. 2 is a schematic view showing a thermal image of an object scanned by an infrared array sensor according to the present invention
  • FIG. 3 is a schematic flow chart of a second embodiment of a method for controlling an air conditioner according to the present invention.
  • FIG. 4 is a schematic flow chart of a third embodiment of a method for controlling an air conditioner according to the present invention.
  • Figure 5 is a schematic flow chart of a fourth embodiment of the air conditioner control method of the present invention.
  • Fig. 6 is a functional block diagram of an embodiment of an air conditioner control device according to the present invention.
  • the present invention first proposes an air conditioner control method.
  • FIG. 1 is a flow chart showing a method of controlling an air conditioner according to an embodiment of the present invention. As shown in FIG. 1, the air conditioner control method of the first embodiment of the present invention includes the following steps:
  • Step S10 obtaining a temperature value of a surface of the human body
  • the temperature TCL of the human body surface is the temperature value of the human body surface, which can be obtained by measuring the sensor with the function of measuring the thermal image.
  • the array type infrared sensor module can obtain a thermal image when the infrared sensor scans the human body or the surrounding environment. 2, the thermal image can be obtained by array arrangement in which the temperature value of each small area, that is, one of the pixels, as shown in FIG. 2, the color depth of each pixel indicates that the temperature value is different and can be read.
  • the specific temperature value of each pixel When the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area. Because the temperature of each part of the human body surface is different, it is reflected that the corresponding thermal image is different. Therefore, when measuring the temperature of the human body surface, it can be measured.
  • the human body obtains the average of the temperature points of all the pixels of the thermal image, that is, the average temperature value of the human body surface represents the body surface temperature value TCL.
  • Step S20 determining a thermal resistance value of the human body according to a temperature value of the surface of the human body
  • the clothing worn by the human body affects the evaporation of the human skin surface, it affects the evaporation of human sweat. At the same time, the clothing absorbs the sweat of the human body and makes people feel cold. Therefore, the clothing affects the human body's thermal feeling; meanwhile, when the external temperature is lowered, Clothing also affects the conduction of cold air around the human body to the skin, so the clothing also affects the cold feeling of the human body.
  • the thermal resistance of the human body is an indicator of the thermal insulation properties of the garment, expressed in CLO.
  • This formula is used to reflect the relationship between the body's thermal resistance value CLO and the body surface temperature value TCL.
  • the above fitting formula is only used to indicate that the thermal resistance value of the human body has a certain relationship with the surface temperature value of the human body, and does not limit the scope of the present invention.
  • the CLO and TCL data sets can also be based on Other fitting methods were fitted to obtain other fitting formulas.
  • the relationship between the human body's thermal resistance value CLO and the human body surface temperature value TCL can be obtained by looking up the table based on experimental data.
  • Step S30 determining a comfort parameter of the human body according to the thermal resistance of the human body
  • the comfort parameter of the human body is further determined according to the comfort parameter of the human body.
  • the comfort parameter value of the human body can be divided into two according to the specific rules for controlling the air conditioner, one is the thermal and thermal state value M of the human body, and A comfortable temperature value TSUB for the human body.
  • the thermal and thermal sensation state value M of the human body is obtained according to the thermal resistance value CLO of the human body, and the thermal resistance CLO of the human body and the cold of the human body can be obtained through experiments.
  • the relationship between the thermal state value M and the specific relationship can be obtained by fitting the formula.
  • the relationship between the thermal state value M of the human body and the clothing thermal resistance value CLO of the human body can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the CLO and M data sets, for example, n is taken.
  • a value of 2 forms the following formula:
  • This formula is used to express the relationship between the thermal state value M of the human body and the thermal resistance value CLO of the human body.
  • the above fitting formula is only used to indicate that the thermal state value M of the human body has a certain relationship with the clothing thermal resistance value CLO of the human body, and does not limit the scope of the present invention, according to the M and CLO in the preliminary experiment.
  • the data set can also be fitted according to other fitting methods to obtain other fitting formulas.
  • the magnitude of the thermal sensation state value M reflects the different thermal comfort sensations of the human body.
  • the range of the final calculation result of the thermal sensation state value M - 3 ⁇ M ⁇ 3 is divided into 8 intervals, which respectively represent different human bodies. Thermal comfort feels as shown in the table below:
  • the comfort parameter value of the human body is the comfortable temperature value TSUB of the human body
  • the comfortable temperature value TSUB of the human body is obtained according to the thermal resistance value CLO of the human body
  • the thermal resistance CLO of the human body and the comfortable temperature value of the human body can be obtained through experiments.
  • the relationship between TSUB and the specific formula can be obtained by fitting the formula.
  • c0, c1, c2, c3...cn are different calculated coefficient values obtained according to the experiment, and n is a positive value, and the value is determined according to a specific fitting formula between the CLO and TSUB data sets, for example, N is taken.
  • a value of 2 forms the following formula:
  • fitting formula is only used to indicate that the comfortable temperature value TSUB of the human body has a certain relationship with the clothing thermal resistance value CLO of the human body, and does not limit the scope of the present invention, according to the M and TSUB data sets in the preliminary experiment.
  • Other fitting methods can also be obtained by fitting according to other fitting methods.
  • the human body's comfortable temperature value TSUB reflects the corresponding ambient temperature value when the human body is in different comfort states. Therefore, the human body's comfortable temperature value TSUB and the human body's thermal sensation state value M are different parameters indicating the comfort of the human body.
  • the acquisition formula is different, such as based on the above fitting formula, its parameters b0, b1, b2, b3 and c0, c1, c2, c3 values Different, so the results calculated based on the above fitting formula are different.
  • Step S40 controlling the operation of the air conditioner according to the comfort parameter.
  • the comfort parameter is specifically divided into two parameters: the thermal state value M of the human body or the comfort temperature value TSUB of the human body, when the air conditioner is controlled according to the comfort parameter, different control rules are also respectively determined according to the two parameters. .
  • the operation of the air conditioner according to the comfort parameter is as follows:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the adjustment value A of the set temperature determined according to the currently obtained human body's thermal sensation state value M can be obtained based on the following formula:
  • DelM is an empirical value parameter obtained according to the experiment. It can be seen from the above formula that the adjustment value A is different according to the magnitude of the human body's thermal sensation state value M.
  • the magnitude of the human body's thermal sensation state value M reflects the different thermal comfort sensations of the human body, including the state of partial heat, comfort, and coldness
  • the set temperature of the air conditioner is adjusted, it is necessary to determine the person according to the person.
  • Different thermal comfort feelings are adjusted, such as when the person feels hot, need to lower the current air conditioner set temperature value, when the person feels cold, need Raise the current air conditioner set temperature value by adjusting so as to finally reach the person in a comfortable state. Therefore, when the set temperature value is adjusted according to the set value A of the set temperature, it is necessary to combine the magnitude of the thermal and thermal state value M of the current human body.
  • the adjustment value A is decreased for the current set temperature value. Decrease the current air conditioner set temperature value; when M is in the cold interval, increase the adjustment value A to the current set temperature value to increase the current air conditioner set temperature value; when M is in the comfort zone, the current setting The temperature value is not adjusted.
  • the size of the M value in the control of obtaining the thermal and thermal state value M of the human body according to the clothing thermal resistance value CLO of the human body can be divided into three sections, as follows:
  • M>0.5 is judged to be in a hot state
  • the set temperature value is adjusted according to the set value of the set temperature in combination with the interval in which the above M is located:
  • TS(n) is the adjusted set temperature value and TS(n-1) is the current set temperature value.
  • the DelM experiment is determined to be 2,
  • TS(n) TS(n-1)-
  • TS(n) TS(n-1)+
  • the air conditioner controls the operation of the load according to the adjusted set temperature value, such as controlling the working state of the compressor. Or further control the operating wind speed state, in order to finally control the room around the set temperature value, and finally the human body's cold and heat state value M is in a comfortable range to meet the human body's comfort requirements.
  • the comfort parameter value of the human body is the comfortable temperature value TSUB of the human body
  • the parameters of the air conditioner control are as follows:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the comfort temperature value TSUB reflects the current comfortable state of the human body. If the comfort temperature value TSUB of the human body is high, It shows that the human body feels relatively high temperature, that is, the human body feels hot; if the human body's comfortable temperature value TSUB is low, it means that the human body feels relatively low temperature, that is, the human body feels cold.
  • the air conditioner is controlled according to the adjusted set temperature value.
  • the preset range is 26-28 ° C. If the currently obtained comfort temperature value TSUB is 29 ° C, the current temperature of the human body is high, that is, partial heat, so the air conditioner set temperature value is lowered, if current The obtained comfortable temperature value TSUB is 25 ° C, indicating that the current temperature of the human body is low, that is, it is too cold, so the air conditioner set temperature value is raised. Finally, the air conditioner is controlled to operate according to the set air temperature of the entire air conditioner.
  • the change value may be determined according to the adjusted set temperature value and the current set temperature to determine the air conditioner compressor.
  • the operating frequency such as the air conditioner operating cooling mode
  • the adjusted set temperature value is higher than the current set temperature value. If the change value is larger, the determined compression running frequency value is higher, and if the change value is smaller, the determination is made.
  • the compression run frequency value is lower.
  • adjusting the set temperature value of the air conditioner may specifically adjust the set temperature value according to the adjusted value of the set temperature and the state of the thermal sensation. That is, the adjustment value of a set temperature can be determined by the comfort temperature value TSUB, as determined by the following formula:
  • the preset interval range can be adjusted according to different air conditioning working modes, such as the cooling mode, such as the preset range is 26-28 ° C, if The comfort temperature value TSUB is greater than this preset range, indicating that the hot and cold state is too hot. If the comfort temperature value TSUB is less than the preset range, the cold and hot state is cold.
  • the set temperature of the air conditioner needs to be adjusted to the small adjustment value B; when the human body is in a cold state, the set temperature of the air conditioner needs to be adjusted to the above adjustment value B, thus achieving the combination.
  • the comfort temperature value is adjusted according to the set value of the set temperature and the state of the hot and cold state.
  • the embodiment of the invention obtains the temperature value of the surface of the human body, determines the thermal resistance value of the human body according to the temperature value of the surface of the human body, and then determines the comfort parameter of the human body according to the thermal resistance of the human body, and finally controls the air conditioner according to the comfort parameter. run. Since the thermal resistance of the human body is an important parameter affecting the comfort of the human body, the thermal resistance of the human body is used to determine the comfort parameters of the human body, and finally the air conditioner operation is controlled based on the comfort parameters of the human body, and the existing air conditioner is solved. In the comfort control, since the thermal resistance of the human body is not considered, it is difficult to provide a suitable comfortable environment for the user and thus affect the comfort of the human body, thereby improving the accuracy of the air conditioner for user comfort control.
  • FIG. 3 is a schematic flow chart of a method for controlling an air conditioner according to a second embodiment of the present invention, based on the first embodiment of the air conditioning control method of the present invention, in this embodiment, according to the human body
  • the nearby air temperature value obtains the thermal resistance value of the human body garment, and also includes:
  • Step S21 acquiring an air temperature value in the vicinity of the human body
  • step S22 the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body and the temperature value of the human body surface.
  • the air temperature value Ta near the human body can also be obtained based on the ambient temperature value T1 detected by the air conditioner in the room, in conjunction with the operating state of the air conditioner and the relative position of the person and the air conditioner.
  • the air supply state of the air conditioner is to avoid the state of supplying air to the person. That is, the direction of the air supply is to avoid people blowing, specifically by adjusting The direction of the air deflector of the air conditioner, such as the air deflector of the air conditioner is driven to the upward position to avoid the air supply direction, and further, the wind speed of the air conditioner is controlled to be lower, such as controlling the air conditioner.
  • the operating wind speed is below 20% of the maximum wind speed value.
  • the clothing thermal resistance value CLO of the human body is determined according to the air temperature value Ta only in the vicinity of the human body. Since the temperature value TCL of the human body surface is further considered, the temperature of the human body surface also affects the thermal insulation performance of the human body. The temperature value TCL added to the surface of the human body is more accurate in calculating the thermal resistance value CLO of the human body.
  • FIG. 4 is a schematic flow chart of a method for controlling an air conditioner according to a third embodiment of the present invention, based on the second embodiment of the air conditioning control method of the present invention, in the present embodiment, in the vicinity of the human body
  • the air temperature value obtains the thermal resistance value of the human body garment, and further includes:
  • Step S23 acquiring a humidity value near the human body
  • step S24 the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body, the temperature value of the human body surface, and the humidity value in the vicinity of the human body.
  • the humidity value Rha of the human body accessory can be obtained based on the humidity sensor of the air conditioner in the room, and by controlling the operating parameters of the air conditioner, specifically controlling the air supply state of the air conditioner to avoid the air supply state of the person, that is, the air supply direction is avoiding Open the person to blow, specifically by adjusting the direction of the air deflector of the air conditioner, such as the air deflector of the air conditioner is driven to the upward position to avoid the direction of the air supply, and further, the wind speed of the air conditioner is controlled.
  • Low windshield such as controlling the operating wind speed of the air conditioner is below 20% of the maximum wind speed value.
  • the air temperature value Ta near the human body the temperature value TCL of the human body surface, and people
  • the humidity value Rha near the body determines the thermal resistance value CLO of the human body
  • Eres is the latent heat of breathing of the human body and is calculated based on the following formula:
  • Mh is the metabolic rate of the human body
  • Pa is the saturated water vapor partial pressure, which is calculated based on the following formula:
  • the above calculations of the human body's respiratory latent heat Eres and saturated water vapor partial pressure Pa are based on the prior art. It can be seen from the above three groups of formulas that the human body's thermal resistance value CLO is ultimately based on the air temperature value Ta near the human body, the human body. The surface temperature value TCL and the humidity value Rha near the human body are calculated and calculated.
  • FIG. 5 is a schematic flowchart diagram of a method for controlling an air conditioner according to a fourth embodiment of the present invention, based on the first or second embodiment of the air conditioning control method of the present invention described above, in this embodiment, Before the steps to obtain the comfort parameters of the human body, the steps include:
  • Step S31 acquiring heat dissipation amount of the human body
  • step S32 the comfort parameter of the human body is determined according to the thermal resistance value of the human body and the heat dissipation amount of the human body.
  • Obtaining the heat dissipation amount H of the human body is a prior art.
  • the difference between the two can be calculated by obtaining the radiation temperature in the room and the temperature value of the human body surface, and the heat dissipation amount of the human body is calculated by using the difference and the additional calculation constant.
  • H is the heat dissipation of the human body
  • TCL is the temperature value of the human body surface
  • TB is the radiation temperature value
  • is the additional calculation coefficient, according to which the heat dissipation amount H of the human body can be calculated.
  • the comfort parameter of the human body is determined.
  • the heat dissipation H parameter of the human body is added to determine the comfort parameter of the human body, so that the comfort parameter obtained is more accurate.
  • the comfort parameter value of the human body it is divided into the thermal state value M of the human body and the comfortable temperature value TSUB of the human body.
  • the comfort parameter values of the human body are determined according to the thermal resistance value CLO of the human body and the heat dissipation amount H of the human body. The way to determine.
  • the value of the thermal state of the human body is determined according to the thermal resistance value CLO of the human body and the heat dissipation amount H of the human body as follows:
  • the respective relationship can be constructed based on the heat dissipation amount H of the human body and the thermal resistance value CLO of the human body, respectively, and the simple superposition is as follows:
  • e0, e1, e2, e3...em, b0, b1, b2, b3... bn are different calculated coefficient values obtained according to experiments, m and n are positive values, and the magnitudes thereof are based on specific CLO, H and M
  • the formation formula between the data sets is determined by, for example, m is 3 and n is 2 to form the following formula:
  • fCLO*H is the relationship between CLO and H
  • f is the calculated coefficient value obtained according to the experiment.
  • fCLO*H refers to the effect of the interaction between the thermal resistance value CLO of the human body and the heat dissipation amount H of the human body on the metabolic rate of human beings, and the metabolic rate of humans also affects the state of cold and heat of the human body, so adding fCLO*H can make Calculating the body's thermal and thermal state value M is more accurate.
  • the comfortable temperature value TSUB of the human body is determined according to the thermal resistance value CLO of the human body and the heat dissipation amount H of the human body as follows:
  • g0, g1, g2, and g3 are different calculated coefficient values obtained according to experiments.
  • the size is determined according to the formation formula between the specific CLO, H and TSUB data sets. For example, by obtaining the specific values of g0, g1, g2, and g3 through experiments, the following formula can be obtained:
  • TSUB is the user's subjective comfort temperature. This formula is the influence of the thermal resistance and heat dissipation of the garment on the subjective comfort temperature of the person. In the general temperature environment, the above formula can meet the accuracy requirements of obtaining TSUB. For some extreme environments. For example, in high temperature and low temperature environments, higher order formulas are needed to meet the demand. At this time, the comfortable temperature value TSUB of the human body can be calculated based on the following formula:
  • the invention also provides an air conditioner control device.
  • FIG. 6 is a schematic diagram of functional modules of a first embodiment of an air conditioner control device for a device according to the present invention.
  • the air conditioner control device includes:
  • the temperature detecting module 10 is configured to acquire a temperature value of a surface of the human body
  • the clothing thermal resistance determining module 20 is configured to determine a thermal resistance value of the human body according to a temperature value of the human body surface;
  • the comfort parameter determining module 30 is configured to determine a comfort parameter of the human body according to the thermal resistance of the human body;
  • the control module 40 is configured to control the operation of the air conditioner according to the comfort parameter of the human body.
  • the temperature TCL of the human body surface is the temperature value of the human body surface, which can be obtained by measuring the sensor with the function of measuring the thermal image.
  • the array type infrared sensor module can obtain a thermal image when the infrared sensor scans the human body or the surrounding environment. 2
  • the thermal image can be obtained by array arrangement in which the temperature value of each small area, that is, one of the pixels, as shown in FIG. 2, the color depth of each pixel indicates that the temperature value is different and can be read.
  • the specific temperature value of each pixel is the temperature value of the human body surface.
  • the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area, because the temperature of each part of the human body surface is different, so it is reflected that the corresponding thermal image is different, so when measuring the temperature of the human body surface, It can be obtained by measuring the average of the temperature points of all the pixels of the human body corresponding to the thermal image, that is, the average temperature value of the human body surface represents the body surface temperature value TCL.
  • the clothing worn by the human body affects the evaporation of the human skin surface, it affects the evaporation of human sweat. At the same time, the clothing absorbs the sweat of the human body and makes people feel cold. Therefore, the clothing affects the human body's thermal feeling; meanwhile, when the external temperature is lowered, Clothing also affects the conduction of cold air around the human body to the skin, so the clothing also affects the cold feeling of the human body.
  • the thermal resistance of the human body is an indicator of the thermal insulation properties of the garment, expressed in CLO.
  • This formula is used to reflect the relationship between the body's thermal resistance value CLO and the body surface temperature value TCL.
  • the above fitting formula is only used to indicate that the thermal resistance value of the human body has a certain relationship with the surface temperature value of the human body, and does not limit the scope of the present invention.
  • the CLO and TCL data sets can also be based on Other fitting methods were fitted to obtain other fitting formulas.
  • the relationship between the human body's thermal resistance value CLO and the human body surface temperature value TCL can be obtained by looking up the table based on experimental data.
  • the comfort parameter value of the human body can be divided into two according to the specific rules for controlling the air conditioner, one is the cold and heat state value M of the human body, and A comfortable temperature value TSUB for the human body.
  • the thermal and thermal sensation state value M of the human body is obtained according to the thermal resistance value CLO of the human body, and the thermal resistance CLO of the human body and the cold of the human body can be obtained through experiments.
  • the relationship between the thermal state value M and the specific relationship can be obtained by fitting the formula.
  • the relationship between the thermal state value M of the human body and the clothing thermal resistance value CLO of the human body can be expressed as follows:
  • n is a positive value
  • the value is determined according to a specific fitting formula between the CLO and M data sets, for example, n is taken.
  • a value of 2 forms the following formula:
  • This formula is used to express the relationship between the thermal state value M of the human body and the thermal resistance value CLO of the human body.
  • the above fitting formula is only used to indicate that the thermal state value M of the human body has a certain relationship with the clothing thermal resistance value CLO of the human body, and does not limit the scope of the present invention, according to the M and CLO in the preliminary experiment.
  • the data set can also be fitted according to other fitting methods to obtain other fitting formulas.
  • the magnitude of the thermal sensation state value M reflects the different thermal comfort sensations of the human body.
  • the range of the final calculation result of the thermal sensation state value M - 3 ⁇ M ⁇ 3 is divided into 8 intervals, which respectively represent different human bodies. Thermal comfort feels as shown in the table below:
  • the comfort parameter value of the human body is the comfortable temperature value TSUB of the human body
  • the comfortable temperature value TSUB of the human body is obtained according to the thermal resistance value CLO of the human body
  • the thermal resistance CLO of the human body and the comfortable temperature value of the human body can be obtained through experiments.
  • TSUB relationship with The body can obtain the relationship between the two by fitting the formula.
  • c0, c1, c2, c3...cn are different calculated coefficient values obtained according to the experiment, and n is a positive value, and the value is determined according to a specific fitting formula between the CLO and TSUB data sets, for example, N is taken.
  • a value of 2 forms the following formula:
  • This formula is used to express the relationship between the comfortable temperature value of the human body TSUB and the thermal resistance value CLO of the human body.
  • fitting formula is only used to indicate that the comfortable temperature value TSUB of the human body has a certain relationship with the clothing thermal resistance value CLO of the human body, and does not limit the scope of the present invention, according to the M and TSUB data sets in the preliminary experiment.
  • Other fitting methods can also be obtained by fitting according to other fitting methods.
  • the human body's comfortable temperature value TSUB reflects the corresponding ambient temperature value when the human body is in different comfort states. Therefore, the human body's comfortable temperature value TSUB and the human body's thermal sensation state value M are different parameters indicating the comfort of the human body.
  • the acquisition formula is different, such as based on the above fitting formula, its parameters b0, b1, b2, b3 and c0, c1, c2, c3 values Different, so the results calculated based on the above fitting formula are different.
  • the comfort parameter is specifically divided into two parameters: the thermal state value M of the human body or the comfort temperature value TSUB of the human body, when the air conditioner is controlled according to the comfort parameter, different control rules are also respectively determined according to the two parameters. .
  • the operation of the air conditioner according to the comfort parameter is as follows:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the adjustment value A of the set temperature determined according to the currently obtained human body's thermal sensation state value M can be obtained based on the following formula:
  • DelM is an empirical value parameter obtained according to the experiment. It can be seen from the above formula that the adjustment value A is different according to the magnitude of the human body's thermal sensation state value M.
  • the magnitude of the human body's thermal sensation state value M reflects the different thermal comfort sensations of the human body, including the state of partial heat, comfort, and coldness
  • the set temperature of the air conditioner is adjusted, it is necessary to determine the person according to the person. Different thermal comfort feelings are adjusted. For example, when the person feels hot, the current air conditioner set temperature value needs to be lowered. When the person feels cold, the current air conditioner set temperature value needs to be raised, and thus the adjustment is made to finally reach the person. Comfortable state. Therefore, when the set temperature value is adjusted according to the set value A of the set temperature, it is necessary to combine the magnitude of the thermal and thermal state value M of the current human body.
  • the adjustment value A is decreased for the current set temperature value. Decrease the current air conditioner set temperature value; when M is in the cold interval, increase the adjustment value A to the current set temperature value to increase the current air conditioner set temperature value; when M is in the comfort zone, the current setting The temperature value is not adjusted.
  • the size of the M value in the control of obtaining the thermal and thermal state value M of the human body according to the clothing thermal resistance value CLO of the human body can be divided into three sections, as follows:
  • M>0.5 is judged to be in a hot state
  • the set temperature value is adjusted according to the set value of the set temperature in combination with the interval in which the above M is located:
  • TS(n) is the adjusted set temperature value and TS(n-1) is the current set temperature value.
  • the DelM experiment is determined to be 2,
  • TS(n) TS(n-1)-
  • TS(n) TS(n-1)+
  • the air conditioner controls the operation of the load according to the adjusted set temperature value, such as controlling the working state of the compressor. Or further control the operating wind speed state, in order to finally control the room around the set temperature value, and finally the human body's cold and heat state value M is in a comfortable range to meet the human body's comfort requirements.
  • the operation of the air conditioner according to the comfort parameter is as follows:
  • the air conditioner is controlled to operate according to the adjusted set temperature value.
  • the comfort temperature value TSUB reflects the current comfortable state of the human body. If the comfort temperature value TSUB of the human body is high, It shows that the human body feels relatively high temperature, that is, the human body feels hot; if the human body's comfortable temperature value TSUB is low, it means that the human body feels relatively low temperature, that is, the human body feels cold.
  • the air conditioner is controlled according to the adjusted set temperature value.
  • the preset range is 26-28 ° C. If the currently obtained comfort temperature value TSUB is 29 ° C, the current temperature of the human body is high, that is, partial heat, so the air conditioner set temperature value is lowered, if current The obtained comfortable temperature value TSUB is 25 ° C, indicating that the current temperature of the human body is low, that is, it is too cold, so the air conditioner set temperature value is raised. Finally, the air conditioner is controlled to operate according to the set air temperature of the entire air conditioner.
  • the change value may be determined according to the adjusted set temperature value and the current set temperature to determine the air conditioner compressor.
  • the operating frequency such as the air conditioner operating cooling mode
  • the adjusted set temperature value is higher than the current set temperature value. If the change value is larger, the determined compression running frequency value is higher, and if the change value is smaller, the determination is made.
  • the compression run frequency value is lower.
  • the air conditioner is adjusted.
  • the fixed temperature value can also be adjusted according to the set value of the set temperature and the state of the hot and cold state. That is, the adjustment value of a set temperature can be determined by the comfort temperature value TSUB, as determined by the following formula:
  • Y is the empirical parameter value obtained according to the experiment, which can be adjusted according to different air conditioning working modes.
  • the preset interval range can be adjusted according to different air conditioning working modes, such as the cooling mode, such as the preset range is 26-28 ° C, if The comfort temperature value TSUB is greater than this preset range, indicating that the hot and cold state is too hot. If the comfort temperature value TSUB is less than the preset range, the cold and hot state is cold.
  • the set temperature of the air conditioner needs to be adjusted to the small adjustment value B; when the human body is in a cold state, the set temperature of the air conditioner needs to be adjusted to the above adjustment value B, thus achieving the combination.
  • the comfort temperature value is adjusted according to the set value of the set temperature and the state of the hot and cold state.
  • the embodiment of the invention obtains the temperature value of the surface of the human body, determines the thermal resistance value of the human body according to the temperature value of the surface of the human body, and then determines the comfort parameter of the human body according to the thermal resistance of the human body, and finally controls the air conditioner according to the comfort parameter. run. Since the thermal resistance of the human body is an important parameter affecting the comfort of the human body, the thermal resistance of the human body is used to determine the comfort parameters of the human body, and finally the air conditioner operation is controlled based on the comfort parameters of the human body, and the existing air conditioner is solved. In the comfort control, since the thermal resistance of the human body is not considered, it is difficult to provide a suitable comfortable environment for the user and thus affect the comfort of the human body, thereby improving the accuracy of the air conditioner for user comfort control.
  • the garment thermal resistance determining module 20 is also used to determine the garment thermal resistance of the garment.
  • the thermal resistance value of the human body is determined according to the air temperature value near the human body and the temperature value of the human body surface.
  • the air temperature value Ta near the human body can also be obtained based on the ambient temperature value T1 detected by the air conditioner in the room, in conjunction with the operating state of the air conditioner and the relative position of the person and the air conditioner.
  • the air supply state of the air conditioner is to avoid the state of supplying air to the person. That is, the direction of the air supply is to avoid the person blowing, specifically by adjusting the direction of the air deflector of the air conditioner, such as driving the air deflector of the air conditioner to the upward position so that the air supply direction avoids the person, and further, the control is also needed.
  • the wind speed of the air conditioner is at a lower windshield. For example, the operating wind speed of the air conditioner is controlled to be less than 20% of the maximum wind speed value.
  • the thermal resistance value CLO of the human body is obtained according to the air temperature value Ta only in the vicinity of the human body. Since the temperature value TCL of the human body surface is further considered, the temperature of the human body surface also affects the thermal insulation performance of the human body. The temperature value TCL added to the surface of the human body is more accurate in calculating the thermal resistance value CLO of the human body.
  • a third embodiment of the air conditioner control device based on the device of the present invention, based on the second embodiment of the air conditioner control device of the device of the present invention, in the present embodiment,
  • the garment thermal resistance determining module 20 is also used to determine the garment thermal resistance of the garment.
  • the thermal resistance value of the human body is determined according to the air temperature value in the vicinity of the human body, the temperature value of the human body surface, and the humidity value in the vicinity of the human body.
  • the humidity value Rha of the human body accessory can be obtained based on the humidity sensor of the air conditioner in the room, and by controlling the operating parameters of the air conditioner, specifically controlling the air supply state of the air conditioner to avoid the air supply state of the person, that is, the air supply direction is avoiding Open the person to blow, specifically by adjusting the direction of the air deflector of the air conditioner, such as the air deflector of the air conditioner is driven to the upward position to avoid the direction of the air supply, and further, the wind speed of the air conditioner is controlled.
  • Low windshield such as control
  • the operating wind speed of the air conditioner is below 20% of the maximum wind speed value.
  • the thermal resistance value CLO of the human body can be obtained based on the following formula:
  • Eres is the latent heat of breathing of the human body and is calculated based on the following formula:
  • Mh is the metabolic rate of the human body
  • Pa is the saturated water vapor partial pressure, which is calculated based on the following formula:
  • the above calculations of the human body's respiratory latent heat Eres and saturated water vapor partial pressure Pa are based on the prior art. It can be seen from the above three groups of formulas that the human body's thermal resistance value CLO is ultimately based on the air temperature value Ta near the human body, the human body. The surface temperature value TCL and the humidity value Rha near the human body are calculated and calculated.
  • the comfort parameter determination module 30 is also used to,
  • the comfort parameters of the human body are determined according to the thermal resistance value of the human body and the amount of heat dissipated by the human body.
  • Obtaining the heat dissipation amount H of the human body is a prior art.
  • the difference between the two can be calculated by obtaining the radiation temperature in the room and the temperature value of the human body surface, and the heat dissipation amount of the human body is calculated by using the difference and the additional calculation constant.
  • H is the heat dissipation of the human body
  • TCL is the temperature value of the human body surface
  • TB is the radiation temperature value
  • is the additional calculation coefficient, according to which the heat dissipation amount H of the human body can be calculated.
  • the heat dissipation amount H parameter of the human body is added according to the thermal resistance of the human body to determine the comfort parameter of the human body, and the comfort parameter of the human body is obtained, so that the comfort parameter obtained is more accurate.
  • the specific value of the human body's comfort parameter is divided into the body's thermal state value M and the human body's comfortable temperature value TSUB. According to the human body's thermal resistance value CLO and the body's heat dissipation amount H, the human body's comfort parameter values are also different. The way to determine.
  • the value of the thermal state of the human body is determined according to the thermal resistance value CLO of the human body and the heat dissipation amount H of the human body as follows:
  • the respective relationship can be constructed based on the heat dissipation amount H of the human body and the thermal resistance value CLO of the human body, respectively, and the simple superposition is as follows:
  • e0, e1, e2, e3...em, b0, b1, b2, b3... bn are different calculated coefficient values obtained according to experiments, m and n are positive values, and the magnitudes thereof are based on specific CLO, H and M
  • the formation formula between the data sets is determined by, for example, m is 3 and n is 2 to form the following formula:
  • fCLO*H is the relationship between CLO and H
  • f is the calculated coefficient value obtained according to the experiment.
  • fCLO*H refers to the effect of the interaction between the thermal resistance value CLO of the human body and the heat dissipation amount H of the human body on the metabolic rate of human beings, and the metabolic rate of humans also affects the state of cold and heat of the human body, so adding fCLO*H can make Calculating the body's thermal and thermal state value M is more accurate.
  • the comfort parameter value of the human body is the comfortable temperature value TSUB of the human body
  • the thermal resistance value of the garment CLO and the heat dissipation of the human body H determine the comfort temperature value of the human body TSUB as follows:
  • g0, g1, g2, and g3 are different calculated coefficient values obtained according to experiments, and the size thereof is determined according to a formation fitting formula between specific CLO, H, and TSUB data sets, for example, g0, g1, g2 are obtained through experiments. After the specific value of g3, the following formula can be obtained:
  • TSUB is the user's subjective comfort temperature. This formula is the influence of the thermal resistance and heat dissipation of the garment on the subjective comfort temperature of the person. In the general temperature environment, the above formula can meet the accuracy requirements of obtaining TSUB. For some extreme environments. For example, in high temperature and low temperature environments, higher order formulas are needed to meet the demand. At this time, the comfortable temperature value TSUB of the human body can be calculated based on the following formula:
  • the invention also proposes an air conditioner.
  • the air conditioner of the present invention includes:
  • Infrared sensor module
  • One or more processors are One or more processors;
  • One or more programs wherein one or more programs are stored in the memory and configured to be executed by one or more processors, the program comprising instructions for performing the following steps:
  • the air conditioner is controlled to operate according to the comfort parameters of the human body.
  • the infrared sensor module is installed on the indoor unit of the air conditioner or a separate infrared sensor device for communicating with the air conditioner, and is used for detecting the heat generation of the human body and other objects in the room.
  • the processor acquires the temperature value of the surface of the human body according to the program stored on the memory of the air conditioner, according to the thermal image of the human body detected by the infrared sensor module, and the other control of the processor executing the program is the same as the air conditioner control method of the present invention.
  • the first embodiment is not described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器控制方法、装置及空调器,通过获取人体表面的温度值(S10),并根据获取人体表面的温度值确定人体的服装热阻值(S20),接着根据人体的服装热阻值确定人体的舒适性参数(S30),最后根据舒适性参数控制空调器运行(S40)。通过在空调器的舒适性控制中考虑人体的服装热阻,从而提高了空调器针对用户舒适性控制的准确性。

Description

空调器的控制方法、装置及空调器 技术领域
本发明涉及空调设备领域,尤其涉及一种空调器控制方法、装置及空调器。
背景技术
在空调新开发的舒适性功能中,空调器通过获取空调器所在房间温度和人体温度,并结合空调器当前运行状态获取人体的PMV冷热感状态参数,据此PMV冷热感状态参数去调整空调器的运行状态,达到人体处于舒适的目的,在具体控制时,由于人的个体的差异比较大,如每个人的穿衣多少不一样,即使同一个人,在不同环境下穿衣服多少也不一样,这样导致按照前述获取的人体的冷热感状态参数不准确,不能真正提前人的舒适性感受,因此,以此参数控制空调器会导致人在房间中不能真正处于舒适状态,不能满足人体的舒适性要求。
发明内容
本发明的主要目的在于提供空调器控制方法、装置及空调器,旨在解决上述空调现有控制规则获得人体的冷热感状态参数准确,导致以此控制空调器不能满足人体的舒适性要求的问题。
为实现上述目的,本发明提供的空调器控制方法,所述空调器控制方法包括:
获取人体表面的温度值;
根据所述人体表面的温度值确定人体的服装热阻值;
根据所述人体的服装热阻值确定人体的舒适性参数;
根据所述人体的舒适性参数控制空调器运行。
优选地,所述根据所述人体表面的温度值确定人体的服装热阻值步骤之前还包括:
获取人体附近的空气温度值;
所述根据所述人体表面的温度值确定人体的服装热阻值步骤替换为:
根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值。
优选地,所述根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值步骤之前还包括:
获取人体附近的湿度值;
所述根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值步骤替换为:
根据所述人体附近的空气温度值、人体表面的温度值以及人体附近的湿度值确定人体的服装热阻值。
优选地,所述人体的舒适性参数为人体的冷热感状态值,所述根据所述舒适性参数控制空调器运行步骤具体包括:
根据当前获取的冷热感状态值确定设定温度的调整值;
根据当前获取的冷热感状态值确定人的冷热感状态;
根据所述设定温度的调整值以及冷热感状态值调整设定温度值;
根据调整后的所述设定温度值控制空调器运行。
所述根据所述设定温度的调整值以及所述人的冷热感状态调整设定温度值步骤具体包括:
当所述冷热感状态为偏热时,将所述设定温度减去所述设定温度的调整值做为调整后的设定温度值;
当所述冷热感状态为偏冷时,将所述设定温度加上所述设定温度的调整值做为调整后的设定温度值。
优选地,所述人体的舒适性参数为人体的舒适温度值,所述根据所述舒适性参数控制空调器运行步骤具体包括:
判断当前的舒适温度值是否在预设区间范围内;
当所述舒适温度值不在预设区间范围内时,根据设定温度的调整值以及冷热感状态调整设定温度值;
根据调整后的所述设定温度值控制空调器运行。
优选的,所述根据所述人体的服装热阻值确定人体的舒适性参数 步骤前还包括:
获取人体的散热量;
所述根据所述人体的服装热阻确定人体的舒适性参数步骤替换为:
根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
为实现上述目的,本发明还提供一种空调器控制装置,所述空调器控制装置包括:
温度检测模块,用于获取人体表面的温度值;
服装热阻确定模块,用于根据所述人体表面的温度值确定人体的服装热阻值;
舒适性参数确定模块,用于根据所述人体的服装热阻确定人体的舒适性参数;
控制模块,根据所述人体的舒适性参数控制空调器运行。
优选地,所述服装热阻确定模块还用于,
获取人体附近的空气温度值;
根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值。
优选的,所述服装热阻确定模块还用于,
获取人体附近的湿度值;
根据所述人体附近的空气温度值、人体表面的温度值以及人体附近的湿度值确定人体的服装热阻值。
优选地,所述人体的舒适性参数为人体的舒适温度值,所述控制模块还用于,
判断当前的舒适温度值是否在预设区间范围内;
当所述舒适温度值不在预设区间范围内时,根据设定温度的调整值以及冷热感状态调整设定温度值;
根据调整后的所述设定温度值控制空调器运行。
优选地,所述舒适性参数确定模块还用于,
获取人体的散热量;
根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
为实现上述目的,本发明还提供一种空调器,所述空调器包括:
红外传感器模块;
存储器;
一个或多个处理器;以及
一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成有一个或多个处理器执行,所述程序包括用于执行以下步骤的指令:
获取人体表面的温度值;
根据所述人体表面的温度值确定人体的服装热阻值;
根据所述人体的服装热阻值确定人体的舒适性参数;
根据所述人体的舒适性参数控制空调器运行。
本发明通过获取人体表面的温度值,并根据获取人体表面的温度值确定人体的服装热阻值,接着根据人体的服装热阻确定人体的舒适性参数,最后根据舒适性参数控制空调器运行。由于人体的服装热阻是影响人体的舒适性的一个重要参数,因此通过人体的服装热阻来确定人体的舒适性参数并最后基于人体的舒适性参数控制空调器运行,解决了现有空调器的舒适性控制中由于没有考虑人体的服装热阻,导致根据舒适性控制不准确的问题,从而提高了空调器针对用户舒适性控制的准确性。
附图说明
图1为本发明空调器控制方法第一实施例的流程示意图;
图2为本发明中红外阵列传感器扫描物体的热图像示意图;
图3为本发明空调器控制方法第二实施例的流程示意图;
图4为本发明空调器控制方法第三实施例的流程示意图;
图5本发明空调器控制方法第四实施例的流程示意图;
图6为本发明的一种空调器控制装置的一实施例的功能模块图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明首先提出一种空调器控制方法。
图1为根据本发明的一个实施例的空调器控制方法的流程示意图。如图1所示,本发明第一实施例的空调器控制方法包括以下步骤:
步骤S10,获取人体表面的温度值;
人体表面的温度TCL是人体体表的温度值,可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像,如图2所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图2所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值TCL。
步骤S20,根据人体表面的温度值确定人体的服装热阻值;
由于人体穿着的服装影响人体皮肤表面的蒸发,影响了人体汗液的蒸发量,同时服装吸收了人体的汗液后也会使人感到凉,因此服装影响到了人体的热感受;同时外界温度降低时,服装又影响人体周围冷空气给对皮肤的传导,因此服装也影响到人体的冷的感受。人体的服装热阻值是服装保温性能的一个指标,用CLO表示。通过实验可以获知人体的服装热阻CLO与人体表面温度值TCL的关系,具体可 通过拟合公式获得二者之间的关系式,例如人体的服装热阻值CLO与人体表面温度值TCL可以的关系可以表示如下:
CLO=a0+a1TCL+a2TCL2+a3TCL3+…..+anTCLn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的CLO和TCL数据组之间的形成拟合公式确定,如N取值为1,a0=15,a1=-0.47形成以下公式:
CLO=15-0.47TCL
用此公式体现人体的服装热阻值CLO与人体表面温度值TCL的关系。
需要说明的是,上述拟合公式仅仅用来说明人体的服装热阻值与人体表面温度值存在一定的关系,并不限定本发明的范围,根据前期实验过程中CLO和TCL数据组也可以根据其他拟合方法拟合,获得其他拟合公式。或者人体的服装热阻值CLO与人体表面温度值TCL的关系可以基于实验数据通过查表方式获得。
步骤S30,根据人体的服装热阻确定人体的舒适性参数;
获取了人体的服装热阻值后,进一步根据其确定人体的舒适性参数,人体的舒适性参数值根据控制空调的具体规则可以分成两种,一种是人体的冷热感状态值M,另外一种为人体的舒适温度值TSUB。
当人体的舒适性参数值为人体的冷热感状态值M时,根据人体的服装热阻值CLO获取人体的冷热感状态值M,可通过实验获知人体的服装热阻CLO与人体的冷热感状态值M的关系,具体可通过拟合公式获得二者之间的关系式,例如人体的冷热感状态值M与人体的服装热阻值CLO可以的关系可以表示如下:
M=b0+b1CLO+b2CLO2+b3CLO3+…..+bnCLOn
其中b0、b1、b2、b3…bn为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的CLO和M数据组之间的形成拟合公式确定,例如n取值为2形成以下公式:
M=b0+b1CLO+b2CLO2
用此公式体现人体的冷热感状态值M与人体的服装热阻值CLO的关系。
需要说明的是,上述拟合公式仅仅用来说明人体的冷热感状态值M与人体的服装热阻值CLO存在一定的关系,并不限定本发明的范围,根据前期实验过程中M和CLO数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
冷热感状态值M的大小反映了代表了人体不同的热舒适感觉,如将冷热感状态值M最后计算结果的范围-3≤M<3分为8个区间,分别代表了人体不同的热舒适感觉,如下表所示:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
另外,当人体的舒适性参数值为人体的舒适温度值TSUB时,根据人体的服装热阻值CLO获取人体的舒适温度值TSUB,可通过实验获知人体的服装热阻CLO与人体的舒适温度值TSUB的关系,具体可通过拟合公式获得二者之间的关系式,
TSUB=c0+c1CLO+c2CLO2+c3CLO3+…..+cnCLOn
其中c0、c1、c2、c3…cn为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的CLO和TSUB数据组之间的形成拟合公式确定,例如N取值为2形成以下公式:
TSUB=c0+c1CLO+c2CLO2
用此公式体现人体的舒适温度值TSUB与人体的服装热阻值 CLO的关系。
需要说明的是,上述拟合公式仅仅用来说明人体的舒适温度值TSUB与人体的服装热阻值CLO存在一定的关系,并不限定本发明的范围,根据前期实验过程中M和TSUB数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
人体的舒适温度值TSUB反映了人体处于不同舒适状态时的对应的需求的环境温度值,因此人体的舒适温度值TSUB与人体的冷热感状态值M是不同的表示人体的舒适性的参数,虽然二者可以通过基于人体的服装热阻值CLO公式获得,其获取公式是不同的,如都基于上述拟合公式时,其参数b0、b1、b2、b3和c0、c1、c2、c3值不同,因此基于上述拟合公式计算出的结果不同。
步骤S40,根据舒适性参数控制空调器运行。
由于舒适性参数具体分为人体的冷热感状态值M或者人体的舒适温度值TSUB两种参数值,因此根据舒适性参数控制空调器运行时,也分别依据这两种参数对应不同的控制规则。
当人体的舒适性参数值为人体的冷热感状态值M时,根据舒适性参数控制空调器运行具体如下:
根据当前获取的冷热感状态值确定设定温度的调整值;
根据当前获取的冷热感状态值确定人的冷热感状态;
根据设定温度的调整值以及冷热感状态值调整设定温度值;
根据调整后的所述设定温度值控制空调器运行。
根据当前获取的人体的冷热感状态值M确定的设定温度的调整值A可以基于以下公式得到:
A=|M|/DelM
其中DelM为根据实验获取的经验值参数,从以上公式可以看出调整值A是根据人体的冷热感状态值M大小不同而不同。
由于人体的冷热感状态值M的大小反映了代表了人体不同的热舒适感觉,包括偏热、舒适、偏冷这些状态,因此当对空调器的设定温度进行调整时,需要确定根据人不同的热舒适感觉进行调整,如当人感觉偏热时需要降低当前空调器设定温度值,当人感觉偏冷时需要 升高当前空调器设定温度值,通过如此调整以最终达到人处于舒适状态。因此根据设定温度的调整值A对设定温度值进行调整时需要结合当前人体的冷热感状态值M的大小。
为了控制的方便,可以根据冷热感状态值M的大小划分为偏热、舒适、偏冷这三个状态区间,当M处于偏热区间时,对当前的设定温度值减少调整值A以降低当前空调器设定温度值;当M处于偏冷区间时,对当前的设定温度值增加调整值A以增加当前空调器设定温度值;当M处于舒适区间时,对当前的设定温度值不做调整。
例如,可以根据上述根据人体的服装热阻值CLO获取人体的冷热感状态值M的控制中M值的大小分为三个区间,具体如下:
-0.5≤M≤-0.5判断为舒适状态;
M>0.5判断为偏热状态;
M<-0.5判断为偏冷状态,
根据设定温度的调整值A结合上述M所处的区间对设定温度值进行调整:
-0.5≤M≤-0.5时,设定温度值不调整;
M>0.5时,TS(n)=TS(n-1)-A=TS(n-1)-|M|/DelM;
M<-0.5时,TS(n)=TS(n-1)+A=TS(n-1)+|M|/DelM,
其中TS(n)为调整后的设定温度值,TS(n-1)为当前的设定温度值。
例如DelM实验确定为2,
当M计算为2时即处于偏热区间时,设定温度调整公式如下:
TS(n)=TS(n-1)-|M|/DelM=TS(n-1)-2/2=TS(n-1)-1;
当M计算为-2时即处于偏冷区间时,设定温度调整公式如下:
TS(n)=TS(n-1)+|M|/DelM=TS(n-1)+2/2=TS(n-1)+1。
根据设定温度的调整值以及当前人体的冷热感状态值对设定温度值调整完成后,空调器根据此调整后的设定温度值来控制负载的运行,如控制压缩机的工作状态,或进一步控制运行风速状态,以最终将房间控制在设定温度值左右,最终时人体的冷热感状态值M处于舒适范围从而满足人体的舒适性要求。
当人体的舒适性参数值为人体的舒适温度值TSUB时,根据舒适 性参数控制空调器运行具体如下:
判断当前的舒适温度值是否在预设区间范围内;
当舒适温度值不在预设区间范围内时,调整空调器的设定温度值;
根据调整后的设定温度值控制空调器运行。
由于人体的舒适温度值TSUB反映了人体处于不同舒适状态时的对应的需求的环境温度值,因此通过舒适温度值TSUB大小反映了人体的当前的舒适状态,如果人体的舒适温度值TSUB偏高,说明人体感觉到比较高的温度即人体感觉比较热;如果人体的舒适温度值TSUB偏低,说明人体感觉到比较低的温度即人体感觉比较冷。
因此通过判断当前的舒适温度值TSUB是否在预设范围内,如果不在预设范围内说明人体当前感觉不舒适,需要调整空调器的设定温度值。并根据调整后的设定温度值控制空调器运行。
例如:预设范围是26-28℃,如果当前获取得到的舒适温度值TSUB为29℃,说明人体感觉的当前温度偏高,即偏热,因此将空调器设定温度值调低,如果当前获取得到的舒适温度值TSUB为25℃,说明人体感觉的当前温度偏低,即偏冷因此将空调器设定温度值调高。最后根据整后的空调器设定温度控制空调器运行。
进一步的,根据调整后的空调器设定温度控制空调器运行时,如果是针对变频空调器,可根据调整后的设定温度值和当前设定温度确定变化值以此确定空调器压缩机的运行频率,例如空调器运行制冷模式,调整后的设定温度值比当前的设定温度值高,如果变化值越大,则确定的压缩运行频率值越高,如果变化值越小,则确定的压缩运行频率值越底。
进一步的当舒适温度值不在预设区间范围内时,调整空调器的设定温度值具体还可以根据设定温度的调整值以及冷热感状态调整设定温度值。即由舒适温度值TSUB可以确定一个设定温度的调整值,如通过以下公式确定:
B=|TSUB-Y|;
其中Y为根据实验获取的经验参数值可根据不同的空调工作模式调整,如制冷模式下Y取值27,当前获取得到的舒适温度值TSUB 为29℃,B=2;当前获取得到的舒适温度值TSUB为25℃,B=2。
然后根据舒适温度值TSUB是否大于预设区间范围可以确定当前人体的冷热感状态,上述预设区间范围可根据不同的空调工作模式调整,如制冷模式如预设范围是26-28℃,如果舒适温度值TSUB大于此预设范围说明冷热感状态偏热,如果舒适温度值TSUB小于此预设范围说明冷热感状态偏冷。当人体处于偏热状态时,空调器的设定温度需要往小调整上述调整值B;当人体处于偏冷状态时,空调器的设定温度需要往大调整上述调整值B,如此实现了结合舒适温度值根据设定温度的调整值以及冷热感状态调整设定温度值。
本发明实施例通过获取人体表面的温度值,并根据获取人体表面的温度值确定人体的服装热阻值,接着根据人体的服装热阻确定人体的舒适性参数,最后根据舒适性参数控制空调器运行。由于人体的服装热阻是影响人体的舒适性的一个重要参数,因此通过人体的服装热阻来确定人体的舒适性参数并最后基于人体的舒适性参数控制空调器运行,解决了现有空调器的舒适性控制中由于没有考虑人体的服装热阻导致难以为用户提供一个合适的舒适环境进而影响人体舒适性,从而提高了空调器针对用户舒适性控制的准确性。
J进一步的,参照图3,图3为根据本发明的第二实施例的空调器控制方法的流程示意图,基于上述本发明的空调控制方法第一实施例,在本实施例中,在根据人体附近的空气温度值获取人体的服装热阻值步骤,还包括:
步骤S21,获取人体附近的空气温度值;
步骤S22,根据人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值。
人体附近的空气温度值Ta也可以基于房间内空调器检测到环境温度值T1,结合空调器的运行状态以及人与空调的相对位置获取。
进一步的,在获取人体附近的空气温度值时,为了检测温度值的准确性,对空调器的运行状态有相关要求,最基本的是空调器的送风状态为避开人送风的状态,即送风方向是避开人吹,具体可通过调整 空调器导风板的方向,如将空调器的导风板打到向上的位置以使得送风方向避开人,进一步的,还需要控制空调器的风速处于较低的风挡,如控制空调器的运行风速处于最大风速值的20%以下。通过让空调器的送风方向处于避开人方向以及风速处于低风状态能避免风速吹到人身上影响获得人体附近的空气温度值Ta准确性。
根据人体附近的空气温度值Ta和人体表面的温度值TCL获取人体的服装热阻值CLO时,可以基于以下公式获取:
CLO=d1Ta+d2TCL+d3
其中d1、d2、d3为根据实验获得的不同的计算系数值。
相对第一实施例中根据只根据人体附近的空气温度值Ta确定人体的服装热阻值CLO,由于进一步考虑了人体表面的温度值TCL,而人体表面的温度也会影响到服装保温性能,因此加入人体表面的温度值TCL计算人体的服装热阻值CLO更加准确。
进一步的,参照图4,图4为根据本发明的第三实施例的空调器控制方法的流程示意图,基于上述本发明的空调控制方法第二实施例,在本实施例中,在根据人体附近的空气温度值获取人体的服装热阻值步骤,还包括:
步骤S23,获取人体附近的湿度值;
步骤S24,根据人体附近的空气温度值、人体表面的温度值以及人体附近的湿度值确定人体的服装热阻值。
人体附件的湿度值Rha可以基于房间内空调器的湿度传感器获得,并通过控制空调器的运行参数,具体为控制空调器的送风状态为避开人的送风状态,即送风方向是避开人吹,具体可通过调整空调器导风板的方向,如将空调器的导风板打到向上的位置以使得送风方向避开人,进一步的,还需要控制空调器的风速处于较低的风挡,如控制空调器的运行风速处于最大风速值的20%以下。通过让空调器的送风方向处于避开人方向以及风速处于低风状态能避免风速吹到人身上影响获得人体附件的湿度值Rha准确性。
根据人体附近的空气温度值Ta、人体表面的温度值TCL以及人 体附近的湿度值Rha确定人体的服装热阻值CLO时,可以基于以下公式获取:
CLO=(d0+d1TCL+d2Mh)/d3*(Mh-Eres)
其中d0、d1、d2、d3为根据实验获得的不同的计算系数值,Mh为人体的代谢率,此参数正常人一般取值为58.15,如通过实验获取d0、d1、d2、d3具体值后,人体的服装热阻值CLO的上述公式如下:
CLO=(35-TCL-0.05d2Mh)/0.155*(58.15-Eres)
Eres为人体的呼吸潜热,基于以下公式计算:
Eres=0.0173Mh(5.87-Rha*Pa)
其中:Mh为人体的代谢率,Pa是饱和水蒸气分压力,基于以下公式计算:
Pa=0.6106*e^((17.269*Ta)/(237.3+Ta))
以上人体的呼吸潜热Eres和饱和水蒸气分压力Pa的计算都是基于现有技术,通过以上三组公式可以看出,人体的服装热阻值CLO最终是基于人体附近的空气温度值Ta、人体表面的温度值TCL以及人体附近的湿度值Rha三个参数计算获得。
进一步的,参照图5,图5为根据本发明的第四实施例的空调器控制方法的流程示意图,基于上述本发明的空调控制方法第一或第二实施例,在本实施例中,在获取人体的舒适性参数时步骤前,还包括:
步骤S31,获取人体的散热量;
步骤S32,根据人体的服装热阻值和人体的散热量,确定人体的舒适性参数。
获取人体的散热量H为现有技术,如可以通过获取房间内辐射温度以及人体表面的温度值计算二者的差值,通过此差值结合附加的计算常数计算得到人体的散热量,基于以下公式:
H=Φ(TCL-TB)
其中H为人体的散热量,TCL为人体表面的温度值,TB为辐射温度值,Φ为附加计算系数,根据此公式可计算得到人体的散热量H。
在实施例1根据人体的服装热阻确定人体的舒适性参数基础上 加入人体的散热量H参数来确定人体的舒适性参数,这样得到的舒适性参数更加准确。
具体的根据人体的舒适性参数值分为人体的冷热感状态值M和人体的舒适温度值TSUB,根据人体的服装热阻值CLO和人体的散热量H确定人体的舒适性参数值也有不同的确定方式。
当人体的舒适性参数值为人体的冷热感状态值M时,根据人体的服装热阻值CLO和人体的散热量H确定人体的冷热感状态值M如下:
可以通过分别基于人体的散热量H和人体的服装热阻值CLO构建各自的关系式再简单叠加,如以下关系式:
M=e0+e1H+e2H2+e3H3+…..+emCLOm+b0+b1CLO+b2CLO2+b3CLO3+…..+bnCLOn
其中e0、e1、e2、e3…em,b0、b1、b2、b3…bn为根据实验获得的不同的计算系数值,m、n为正数值,其取值大小依据具体的CLO、H和M数据组之间的形成拟合公式确定,例如m取值为3、n取值为2形成以下公式:
M=e0+e1H+e2H2+e3H3+b0+b1CLO+b2CLO2
进一步的,在以上公式基础上,还可以加入CLO和H相互影响的关系式,如以下公式:
M=e0+e1H+e2H2+e3H3+b0+b1CLO+b2CLO2+fCLO*H
其中fCLO*H为CLO和H相互影响的关系式,f为根据实验获得计算系数值。
fCLO*H是指人体的服装热阻值CLO与人体的散热量H交互作用对人的代谢率的作用,而人的代谢率也影响到人体的冷热感状态,因此加入fCLO*H能使得计算人体的冷热感状态值M更加准确。
当人体的舒适性参数值为人体的舒适温度值TSUB时,根据人体的服装热阻值CLO和人体的散热量H确定人体的舒适温度值TSUB如下:
TSUB=g0+g1CLO+g2H+g3CLO*H
其中g0、g1、g2、g3为根据实验获得的不同的计算系数值, 其大小依据具体的CLO、H和TSUB数据组之间的形成拟合公式确定,例如通过实验获取g0、g1、g2、g3具体值后可以得到如下公式:
TSUB=25-0.8CLO-0.04H-0.07CLO*H
这里g0=25,g1=-0.8,g2=-0.04,g3=-0.07
TSUB是用户主观舒适感觉温度,此公式是表示服装热阻和散热量对人的主观舒适感觉温度的影响,在一般温度环境中上述公式可以满足获取TSUB的准确性要求;而对于一些极端的环境比如高温和低温环境,则需要更高阶的公式才能满足需求,此时可以基于以下公式计算人体的舒适温度值TSUB:
TSUB=j0+j1CLO+j2CLO2+j3H+j4H2+j5CLO*H
本发明还提供一种空调器控制装置。
参照图6,图6为本发明装置的空调器控制装置第一实施例的功能模块示意图。
在本实施例中,所述空调器控制装置包括:
温度检测模块10,用于获取人体表面的温度值;
服装热阻确定模块20,用于根据人体表面的温度值确定人体的服装热阻值;
舒适性参数确定模块30,用于根据人体的服装热阻确定人体的舒适性参数;
控制模块40,用于根据人体的舒适性参数控制空调器运行。
人体表面的温度TCL是人体体表的温度值,可通过具有测量热图像功能的传感器测量读取得到,例如阵列式红外传感器模块,其红外传感器扫描人体或者周围环境时会得到热图像,如图2所示,热图像通过阵列排布方式可以获得其中每个小区域即其中一个像素的温度值,如图2所示每个像素的颜色深浅表示了其温度值的高低不同,并可读取每个像素的具体温度值。热红外传感器扫描人体时同样会得到一定面积区域的热图像,因为人体表面的各个地方的温度是不相同的,因此反映到对应的热图像也不相同,因此测量人体表面的温度时 可以通过测量人体对应热图像所有像素的温度点取平均值的方式获取,即人体表面的平均温度值表示人体表面温度值TCL。
由于人体穿着的服装影响人体皮肤表面的蒸发,影响了人体汗液的蒸发量,同时服装吸收了人体的汗液后也会使人感到凉,因此服装影响到了人体的热感受;同时外界温度降低时,服装又影响人体周围冷空气给对皮肤的传导,因此服装也影响到人体的冷的感受。人体的服装热阻值是服装保温性能的一个指标,用CLO表示。通过实验可以获知人体的服装热阻CLO与人体表面温度值TCL的关系,具体可通过拟合公式获得二者之间的关系式,例如人体的服装热阻值CLO与人体表面温度值TCL可以的关系可以表示如下:
CLO=a0+a1TCL+a2TCL2+a3TCL3+…..+anTCLn
其中a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的CLO和TCL数据组之间的形成拟合公式确定,如N取值为1,a0=15,a1=-0.47形成以下公式:
CLO=15-0.47TCL
用此公式体现人体的服装热阻值CLO与人体表面温度值TCL的关系。
需要说明的是,上述拟合公式仅仅用来说明人体的服装热阻值与人体表面温度值存在一定的关系,并不限定本发明的范围,根据前期实验过程中CLO和TCL数据组也可以根据其他拟合方法拟合,获得其他拟合公式。或者人体的服装热阻值CLO与人体表面温度值TCL的关系可以基于实验数据通过查表方式获得。
获取了人体的服装热阻值后,进一步根据其获取人体的舒适性参数,人体的舒适性参数值根据控制空调的具体规则可以分成两种,一种是人体的冷热感状态值M,另外一种为人体的舒适温度值TSUB。
当人体的舒适性参数值为人体的冷热感状态值M时,根据人体的服装热阻值CLO获取人体的冷热感状态值M,可通过实验获知人体的服装热阻CLO与人体的冷热感状态值M的关系,具体可通过拟合公式获得二者之间的关系式,例如人体的冷热感状态值M与人体的服装热阻值CLO可以的关系可以表示如下:
M=b0+b1CLO+b2CLO2+b3CLO3+…..+bnCLOn
其中b0、b1、b2、b3…bn为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的CLO和M数据组之间的形成拟合公式确定,例如n取值为2形成以下公式:
M=b0+b1CLO+b2CLO2
用此公式体现人体的冷热感状态值M与人体的服装热阻值CLO的关系。
需要说明的是,上述拟合公式仅仅用来说明人体的冷热感状态值M与人体的服装热阻值CLO存在一定的关系,并不限定本发明的范围,根据前期实验过程中M和CLO数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
冷热感状态值M的大小反映了代表了人体不同的热舒适感觉,如将冷热感状态值M最后计算结果的范围-3≤M<3分为8个区间,分别代表了人体不同的热舒适感觉,如下表所示:
冷热感状态值 冷热感区间 热舒适感
-3≤M<-2 区间8
-2<M≤-1 区间7 有点冷
-1<M≤0.5 区间6
-0.5≤M<0 区间5 舒适
0≤M≤0.5 区间4 舒适
0.5<M≤1 区间3
1<M≤2 区间2 有点热
2<M≤3 区间1
另外,当人体的舒适性参数值为人体的舒适温度值TSUB时,根据人体的服装热阻值CLO获取人体的舒适温度值TSUB,可通过实验获知人体的服装热阻CLO与人体的舒适温度值TSUB的关系,具 体可通过拟合公式获得二者之间的关系式,
TSUB=c0+c1CLO+c2CLO2+c3CLO3+…..+cnCLOn
其中c0、c1、c2、c3…cn为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的CLO和TSUB数据组之间的形成拟合公式确定,例如N取值为2形成以下公式:
TSUB=c0+c1CLO+c2CLO2
用此公式体现人体的舒适温度值TSUB与人体的服装热阻值CLO的关系。
需要说明的是,上述拟合公式仅仅用来说明人体的舒适温度值TSUB与人体的服装热阻值CLO存在一定的关系,并不限定本发明的范围,根据前期实验过程中M和TSUB数据组也可以根据其他拟合方法拟合,获得其他拟合公式。
人体的舒适温度值TSUB反映了人体处于不同舒适状态时的对应的需求的环境温度值,因此人体的舒适温度值TSUB与人体的冷热感状态值M是不同的表示人体的舒适性的参数,虽然二者可以通过基于人体的服装热阻值CLO公式获得,其获取公式是不同的,如都基于上述拟合公式时,其参数b0、b1、b2、b3和c0、c1、c2、c3值不同,因此基于上述拟合公式计算出的结果不同。
由于舒适性参数具体分为人体的冷热感状态值M或者人体的舒适温度值TSUB两种参数值,因此根据舒适性参数控制空调器运行时,也分别依据这两种参数对应不同的控制规则。
当人体的舒适性参数值为人体的冷热感状态值M时,根据舒适性参数控制空调器运行具体如下:
根据当前获取的冷热感状态值确定设定温度的调整值;
根据当前获取的冷热感状态值确定人的冷热感状态;
根据设定温度的调整值以及冷热感状态值调整设定温度值;
根据调整后的所述设定温度值控制空调器运行。
根据当前获取的人体的冷热感状态值M确定的设定温度的调整值A可以基于以下公式得到:
A=|M|/DelM
其中DelM为根据实验获取的经验值参数,从以上公式可以看出调整值A是根据人体的冷热感状态值M大小不同而不同。
由于人体的冷热感状态值M的大小反映了代表了人体不同的热舒适感觉,包括偏热、舒适、偏冷这些状态,因此当对空调器的设定温度进行调整时,需要确定根据人不同的热舒适感觉进行调整,如当人感觉偏热时需要降低当前空调器设定温度值,当人感觉偏冷时需要升高当前空调器设定温度值,通过如此调整以最终达到人处于舒适状态。因此根据设定温度的调整值A对设定温度值进行调整时需要结合当前人体的冷热感状态值M的大小。
为了控制的方便,可以根据冷热感状态值M的大小划分为偏热、舒适、偏冷这三个状态区间,当M处于偏热区间时,对当前的设定温度值减少调整值A以降低当前空调器设定温度值;当M处于偏冷区间时,对当前的设定温度值增加调整值A以增加当前空调器设定温度值;当M处于舒适区间时,对当前的设定温度值不做调整。
例如,可以根据上述根据人体的服装热阻值CLO获取人体的冷热感状态值M的控制中M值的大小分为三个区间,具体如下:
-0.5≤M≤-0.5判断为舒适状态;
M>0.5判断为偏热状态;
M<-0.5判断为偏冷状态,
根据设定温度的调整值A结合上述M所处的区间对设定温度值进行调整:
-0.5≤M≤-0.5时,设定温度值不调整;
M>0.5时,TS(n)=TS(n-1)-A=TS(n-1)-|M|/DelM;
M<-0.5时,TS(n)=TS(n-1)+A=TS(n-1)+|M|/DelM,
其中TS(n)为调整后的设定温度值,TS(n-1)为当前的设定温度值。
例如DelM实验确定为2,
当M计算为2时即处于偏热区间时,设定温度调整公式如下:
TS(n)=TS(n-1)-|M|/DelM=TS(n-1)-2/2=TS(n-1)-1;
当M计算为-2时即处于偏冷区间时,设定温度调整公式如下:
TS(n)=TS(n-1)+|M|/DelM=TS(n-1)+2/2=TS(n-1)+1。
根据设定温度的调整值以及当前人体的冷热感状态值对设定温度值调整完成后,空调器根据此调整后的设定温度值来控制负载的运行,如控制压缩机的工作状态,或进一步控制运行风速状态,以最终将房间控制在设定温度值左右,最终时人体的冷热感状态值M处于舒适范围从而满足人体的舒适性要求。
当人体的舒适性参数值为人体的舒适温度值TSUB时,根据舒适性参数控制空调器运行具体如下:
判断当前的舒适温度值是否在预设区间范围内;
当舒适温度值不在预设区间范围内时,调整空调器的设定温度值;
根据调整后的设定温度值控制空调器运行。
由于人体的舒适温度值TSUB反映了人体处于不同舒适状态时的对应的需求的环境温度值,因此通过舒适温度值TSUB大小反映了人体的当前的舒适状态,如果人体的舒适温度值TSUB偏高,说明人体感觉到比较高的温度即人体感觉比较热;如果人体的舒适温度值TSUB偏低,说明人体感觉到比较低的温度即人体感觉比较冷。
因此通过判断当前的舒适温度值TSUB是否在预设范围内,如果不在预设范围内说明人体当前感觉不舒适,需要调整空调器的设定温度值。并根据调整后的设定温度值控制空调器运行。
例如:预设范围是26-28℃,如果当前获取得到的舒适温度值TSUB为29℃,说明人体感觉的当前温度偏高,即偏热,因此将空调器设定温度值调低,如果当前获取得到的舒适温度值TSUB为25℃,说明人体感觉的当前温度偏低,即偏冷因此将空调器设定温度值调高。最后根据整后的空调器设定温度控制空调器运行。
进一步的,根据调整后的空调器设定温度控制空调器运行时,如果是针对变频空调器,可根据调整后的设定温度值和当前设定温度确定变化值以此确定空调器压缩机的运行频率,例如空调器运行制冷模式,调整后的设定温度值比当前的设定温度值高,如果变化值越大,则确定的压缩运行频率值越高,如果变化值越小,则确定的压缩运行频率值越底。
进一步的当舒适温度值不在预设区间范围内时,调整空调器的设 定温度值具体还可以根据设定温度的调整值以及冷热感状态调整设定温度值。即由舒适温度值TSUB可以确定一个设定温度的调整值,如通过以下公式确定:
B=|TSUB-Y|;
其中Y为根据实验获取的经验参数值可根据不同的空调工作模式调整,如制冷模式下Y取值27,当前获取得到的舒适温度值TSUB为29℃,B=2;当前获取得到的舒适温度值TSUB为25℃,B=2。
然后根据舒适温度值TSUB是否大于预设区间范围可以确定当前人体的冷热感状态,上述预设区间范围可根据不同的空调工作模式调整,如制冷模式如预设范围是26-28℃,如果舒适温度值TSUB大于此预设范围说明冷热感状态偏热,如果舒适温度值TSUB小于此预设范围说明冷热感状态偏冷。当人体处于偏热状态时,空调器的设定温度需要往小调整上述调整值B;当人体处于偏冷状态时,空调器的设定温度需要往大调整上述调整值B,如此实现了结合舒适温度值根据设定温度的调整值以及冷热感状态调整设定温度值。
本发明实施例通过获取人体表面的温度值,并根据获取人体表面的温度值确定人体的服装热阻值,接着根据人体的服装热阻确定人体的舒适性参数,最后根据舒适性参数控制空调器运行。由于人体的服装热阻是影响人体的舒适性的一个重要参数,因此通过人体的服装热阻来确定人体的舒适性参数并最后基于人体的舒适性参数控制空调器运行,解决了现有空调器的舒适性控制中由于没有考虑人体的服装热阻导致难以为用户提供一个合适的舒适环境进而影响人体舒适性,从而提高了空调器针对用户舒适性控制的准确性。
进一步的,基于本发明装置的空调器控制装置的第二实施例,基于上述本发明装置的空调器控制装置第一实施例,在本实施例中,
服装热阻确定模块20还用于,
获取人体附近的空气温度值;
根据人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值。
人体附近的空气温度值Ta也可以基于房间内空调器检测到环境温度值T1,结合空调器的运行状态以及人与空调的相对位置获取。
进一步的,在获取人体附近的空气温度值时,为了检测温度值的准确性,对空调器的运行状态有相关要求,最基本的是空调器的送风状态为避开人送风的状态,即送风方向是避开人吹,具体可通过调整空调器导风板的方向,如将空调器的导风板打到向上的位置以使得送风方向避开人,进一步的,还需要控制空调器的风速处于较低的风挡,如控制空调器的运行风速处于最大风速值的20%以下。通过让空调器的送风方向处于避开人方向以及风速处于低风状态能避免风速吹到人身上影响获得人体附近的空气温度值Ta准确性。
根据人体附近的空气温度值Ta和人体表面的温度值TCL获取人体的服装热阻值CLO时,可以基于以下公式获取:
CLO=d1Ta+d2TCL+d3
其中d1、d2、d3为根据实验获得的不同的计算系数值。
相对第一实施例中根据只根据人体附近的空气温度值Ta获取人体的服装热阻值CLO,由于进一步考虑了人体表面的温度值TCL,而人体表面的温度也会影响到服装保温性能,因此加入人体表面的温度值TCL计算人体的服装热阻值CLO更加准确。
进一步的,基于本发明装置的空调器控制装置的第三实施例,基于上述本发明装置的空调器控制装置第二实施例,在本实施例中,
服装热阻确定模块20还用于
获取人体附近的湿度值;
根据所述人体附近的空气温度值、人体表面的温度值以及人体附近的湿度值确定人体的服装热阻值。
人体附件的湿度值Rha可以基于房间内空调器的湿度传感器获得,并通过控制空调器的运行参数,具体为控制空调器的送风状态为避开人的送风状态,即送风方向是避开人吹,具体可通过调整空调器导风板的方向,如将空调器的导风板打到向上的位置以使得送风方向避开人,进一步的,还需要控制空调器的风速处于较低的风挡,如控 制空调器的运行风速处于最大风速值的20%以下。通过让空调器的送风方向处于避开人方向以及风速处于低风状态能避免风速吹到人身上影响获得人体附件的湿度值Rha准确性。
根据人体附近的空气温度值Ta、人体表面的温度值TCL以及人体附近的湿度值Rha获取人体的服装热阻值CLO时,可以基于以下公式获取:
CLO=(d0+d1TCL+d2Mh)/d3*(Mh-Eres)
其中d0、d1、d2、d3为根据实验获得的不同的计算系数值,Mh为人体的代谢率,此参数正常人一般取值为58.15,如通过实验获取d0、d1、d2、d3具体值后,人体的服装热阻值CLO的上述公式如下:
CLO=(35-TCL-0.05d2Mh)/0.155*(58.15-Eres)
Eres为人体的呼吸潜热,基于以下公式计算:
Eres=0.0173Mh(5.87-Rha*Pa)
其中:Mh为人体的代谢率,Pa是饱和水蒸气分压力,基于以下公式计算:
Pa=0.6106*e^((17.269*Ta)/(237.3+Ta))
以上人体的呼吸潜热Eres和饱和水蒸气分压力Pa的计算都是基于现有技术,通过以上三组公式可以看出,人体的服装热阻值CLO最终是基于人体附近的空气温度值Ta、人体表面的温度值TCL以及人体附近的湿度值Rha三个参数计算获得。
进一步的,基于本发明装置的空调器控制装置的第四实施例,基于上述本发明装置的空调器控制装置第一或第二实施例,在本实施例中,
舒适性参数确定模块30还用于,
获取人体的散热量;
根据人体的服装热阻值和人体的散热量,确定人体的舒适性参数。
获取人体的散热量H为现有技术,如可以通过获取房间内辐射温度以及人体表面的温度值计算二者的差值,通过此差值结合附加的计算常数计算得到人体的散热量,基于以下公式:
H=Φ(TCL-TB)
其中H为人体的散热量,TCL为人体表面的温度值,TB为辐射温度值,Φ为附加计算系数,根据此公式可计算得到人体的散热量H。
在实施例1根据人体的服装热阻确定人体的舒适性参数基础上加入人体的散热量H参数来获取人体的舒适性参数,这样得到的舒适性参数更加准确。
具体的根据人体的舒适性参数值分为人体的冷热感状态值M和人体的舒适温度值TSUB,根据人体的服装热阻值CLO和人体的散热量H获取人体的舒适性参数值也有不同的确定方式。
当人体的舒适性参数值为人体的冷热感状态值M时,根据人体的服装热阻值CLO和人体的散热量H确定人体的冷热感状态值M如下:
可以通过分别基于人体的散热量H和人体的服装热阻值CLO构建各自的关系式再简单叠加,如以下关系式:
M=e0+e1H+e2H2+e3H3+…..+emCLOm+b0+b1CLO+b2CLO2+b3CLO3+…..+bnCLOn
其中e0、e1、e2、e3…em,b0、b1、b2、b3…bn为根据实验获得的不同的计算系数值,m、n为正数值,其取值大小依据具体的CLO、H和M数据组之间的形成拟合公式确定,例如m取值为3、n取值为2形成以下公式:
M=e0+e1H+e2H2+e3H3+b0+b1CLO+b2CLO2
进一步的,在以上公式基础上,还可以加入CLO和H相互影响的关系式,如以下公式:
M=e0+e1H+e2H2+e3H3+b0+b1CLO+b2CLO2+fCLO*H
其中fCLO*H为CLO和H相互影响的关系式,f为根据实验获得计算系数值。
fCLO*H是指人体的服装热阻值CLO与人体的散热量H交互作用对人的代谢率的作用,而人的代谢率也影响到人体的冷热感状态,因此加入fCLO*H能使得计算人体的冷热感状态值M更加准确。
当人体的舒适性参数值为人体的舒适温度值TSUB时,根据人体 的服装热阻值CLO和人体的散热量H确定人体的舒适温度值TSUB如下:
TSUB=g0+g1CLO+g2H+g3CLO*H
其中g0、g1、g2、g3为根据实验获得的不同的计算系数值,其大小依据具体的CLO、H和TSUB数据组之间的形成拟合公式确定,例如通过实验获取g0、g1、g2、g3具体值后可以得到如下公式:
TSUB=25-0.8CLO-0.04H-0.07CLO*H
这里g0=25,g1=-0.8,g2=-0.04,g3=-0.07
TSUB是用户主观舒适感觉温度,此公式是表示服装热阻和散热量对人的主观舒适感觉温度的影响,在一般温度环境中上述公式可以满足获取TSUB的准确性要求;而对于一些极端的环境比如高温和低温环境,则需要更高阶的公式才能满足需求,此时可以基于以下公式计算人体的舒适温度值TSUB:
TSUB=j0+j1CLO+j2CLO2+j3H+j4H2+j5CLO*H
本发明还提出一种空调器。
本发明的空调器包括:
红外传感器模块;
存储器;
一个或多个处理器;以及
一个或多个程序,其中一个或多个程序被存储在所述存储器中,并且被配置成有一个或多个处理器执行,程序包括用于执行以下步骤的指令:
获取人体表面的温度值;
根据人体附近的空气温度值,确定人体的服装热阻值;
根据人体的服装热阻,确定人体的舒适性参数;
根据人体的舒适性参数,控制空调器运行。
其中红外传感器模块安装在空调器室内机上,或者与空调器通讯的单独红外传感器装置,用于检测房间内包括人体和其他物体的热成 像,处理器通过执行存储在空调器的存储器上的程序,根据红外传感器模块检测到的人体的热图像,获取人体表面的温度值,处理器执行程序的其他控制同本发明的空调器控制方法的第一实施例,在此不再赘述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种空调器控制方法,其特征在于,所述空调器控制方法包括:
    获取人体表面的温度值;
    根据所述人体表面的温度值确定人体的服装热阻值;
    根据所述人体的服装热阻值确定人体的舒适性参数;
    根据所述人体的舒适性参数控制空调器运行。
  2. 如权利要求1所述的空调器控制方法,其特征在于,所述根据所述人体表面的温度值确定人体的服装热阻值步骤之前还包括:
    获取人体附近的空气温度值;
    所述根据所述人体表面的温度值确定人体的服装热阻值步骤替换为:
    根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值。
  3. 如权利要求2所述的空调器控制方法,其特征在于,所述根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值步骤之前还包括:
    获取人体附近的湿度值;
    所述根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值步骤替换为:
    根据所述人体附近的空气温度值、人体表面的温度值以及人体附近的湿度值确定人体的服装热阻值。
  4. 如权利要求1所述的空调器控制方法,其特征在于,所述人体的舒适性参数为人体的冷热感状态值,所述根据所述舒适性参数控制空调器运行步骤具体包括:
    根据当前获取的冷热感状态值确定设定温度的调整值;
    根据当前获取的冷热感状态值确定人的冷热感状态;
    根据所述设定温度的调整值以及所述人的冷热感状态值调整设定温度值;
    根据调整后的所述设定温度值控制空调器运行。
  5. 如权利要求4所述的空调器控制方法,其特征在于,所述根据所述设定温度的调整值以及冷热感状态调整设定温度值步骤具体包括:
    当所述冷热感状态为偏热时,将所述设定温度减去所述设定温度的调整值做为调整后的设定温度值;
    当所述冷热感状态为偏冷时,将所述设定温度加上所述设定温度的调整值做为调整后的设定温度值。
  6. 如权利要求1所述的空调器控制方法,其特征在于,所述人体的舒适性参数为人体的舒适温度值,所述根据所述舒适性参数控制空调器运行步骤具体包括:
    判断当前的舒适温度值是否在预设区间范围内;
    当所述舒适温度值不在预设区间范围内时,根据设定温度的调整值以及冷热感状态调整设定温度值;
    根据调整后的所述设定温度值控制空调器运行。
  7. 如权利要求1所述的空调器控制方法,其特征在于,所述根据所述人体的服装热阻值确定人体的舒适性参数步骤前还包括:
    获取人体的散热量;
    所述根据所述人体的服装热阻确定人体的舒适性参数步骤替换为:
    根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
  8. 如权利要求2所述的空调器控制方法,其特征在于,所述根 据所述人体的服装热阻值确定人体的舒适性参数步骤前还包括:
    获取人体的散热量;
    所述根据所述人体的服装热阻确定人体的舒适性参数步骤替换为:
    根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
  9. 如权利要求3所述的空调器控制方法,其特征在于,所述根据所述人体的服装热阻值确定人体的舒适性参数步骤前还包括:
    获取人体的散热量;
    所述根据所述人体的服装热阻确定人体的舒适性参数步骤替换为:
    根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
  10. 如权利要求4所述的空调器控制方法,其特征在于,所述根据所述人体的服装热阻值确定人体的舒适性参数步骤前还包括:
    获取人体的散热量;
    所述根据所述人体的服装热阻确定人体的舒适性参数步骤替换为:
    根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
  11. 如权利要求1所述的空调器控制方法,其特征在于,所述获取人体附近的空气温度值时,空调器的送风状态为避开人送风的状态。
  12. 一种空调器控制装置,其特在于,所述一种空调器控制装置包括:
    温度检测模块,用于获取人体表面的温度值;
    服装热阻确定模块,用于根据所述人体表面的温度值确定人体的 服装热阻值;
    舒适性参数确定模块,用于根据所述人体的服装热阻确定人体的舒适性参数;
    控制模块,根据所述人体的舒适性参数控制空调器运行。
  13. 如权利要求12所述的空调器控制装置,其特征在于,所述服装热阻确定模块还用于,
    获取人体附近的空气温度值;
    根据所述人体附近的空气温度值和人体表面的温度值确定人体的服装热阻值。
  14. 如权利要求13所述的空调器控制装置,其特征在于,所述服装热阻确定模块还用于,
    获取人体附近的湿度值;
    根据所述人体附近的空气温度值、人体表面的温度值以及人体附近的湿度值确定人体的服装热阻值。
  15. 如权利要求12所述的空调器控制装置,其特征在于,所述人体的舒适性参数为人体的舒适温度值,所述控制模块还用于,
    判断当前的舒适温度值是否在预设区间范围内;
    当所述舒适温度值不在预设区间范围内时,根据设定温度的调整值以及冷热感状态调整设定温度值;
    根据调整后的所述设定温度值控制空调器运行。
  16. 如权利要求12所述的空调器控制装置,其特征在于,所述舒适性参数确定模块还用于,
    获取人体的散热量;
    根据所述人体的服装热阻值和人体的散热量确定所述人体的舒适性参数。
  17. 一种空调器,包括:
    红外传感器模块;
    存储器;
    一个或多个处理器;以及
    一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成有一个或多个处理器执行,所述程序包括用于执行以下步骤的指令:
    获取人体表面的温度值;
    根据所述人体表面的温度值确定人体的服装热阻值;
    根据所述人体的服装热阻值确定人体的舒适性参数;
    根据所述人体的舒适性参数控制空调器运行。
PCT/CN2017/086207 2016-12-27 2017-05-26 空调器的控制方法、装置及空调器 WO2018120626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611230534.9A CN106765962A (zh) 2016-12-27 2016-12-27 空调器的控制方法、装置及空调器
CN201611230534.9 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018120626A1 true WO2018120626A1 (zh) 2018-07-05

Family

ID=58922874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086207 WO2018120626A1 (zh) 2016-12-27 2017-05-26 空调器的控制方法、装置及空调器

Country Status (2)

Country Link
CN (1) CN106765962A (zh)
WO (1) WO2018120626A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749070A (zh) * 2019-10-29 2020-02-04 珠海格力电器股份有限公司 空调器及其出风参数的确定方法、装置和存储介质
CN113741585A (zh) * 2021-09-10 2021-12-03 清华大学 一种基于个性化热需求的智能动态温控方法及智能加热服

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765963A (zh) * 2016-12-27 2017-05-31 美的集团武汉制冷设备有限公司 空调器的控制方法、装置及空调器
CN107560116B (zh) * 2017-08-21 2019-11-22 奥克斯空调股份有限公司 一种空调控制方法及系统
CN107818206B (zh) * 2017-10-20 2021-01-15 沈阳建筑大学 一种人体和环境之间热交换的多目标解析方法
CN108317692B (zh) * 2018-01-26 2020-03-31 青岛海尔空调器有限总公司 基于穿衣补偿的温冷感空调器控制方法和空调器
CN108317691B (zh) * 2018-01-26 2020-05-29 青岛海尔空调器有限总公司 基于性别补偿的温冷感空调器控制方法和空调器
CN108444080A (zh) * 2018-03-29 2018-08-24 广东美的制冷设备有限公司 空调器的控制方法以及空调器
CN109654682B (zh) * 2018-11-30 2021-12-03 广东美的制冷设备有限公司 空调器的控制方法、控制终端以及空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257821A (ja) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH06288598A (ja) * 1993-04-01 1994-10-11 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
CN105003998A (zh) * 2014-04-17 2015-10-28 美的集团股份有限公司 空调器的舒适性控制方法及装置
CN105241023A (zh) * 2015-10-30 2016-01-13 广东美的制冷设备有限公司 空调器的控制方法、系统以及着衣量检测方法和装置
CN106765963A (zh) * 2016-12-27 2017-05-31 美的集团武汉制冷设备有限公司 空调器的控制方法、装置及空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184359A (ja) * 1988-01-14 1989-07-24 Daikin Ind Ltd 空気調和機の制御装置
KR20060029096A (ko) * 2004-09-30 2006-04-04 삼성전자주식회사 공기조화기의 쾌적운전 제어장치 및 그 방법
CN104833049B (zh) * 2015-04-27 2017-08-15 广东美的制冷设备有限公司 空调器的导风条控制方法和空调系统
CN106016636B (zh) * 2016-07-29 2019-08-27 广东美的制冷设备有限公司 空调器的控制方法及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257821A (ja) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH06288598A (ja) * 1993-04-01 1994-10-11 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
CN105003998A (zh) * 2014-04-17 2015-10-28 美的集团股份有限公司 空调器的舒适性控制方法及装置
CN105241023A (zh) * 2015-10-30 2016-01-13 广东美的制冷设备有限公司 空调器的控制方法、系统以及着衣量检测方法和装置
CN106765963A (zh) * 2016-12-27 2017-05-31 美的集团武汉制冷设备有限公司 空调器的控制方法、装置及空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749070A (zh) * 2019-10-29 2020-02-04 珠海格力电器股份有限公司 空调器及其出风参数的确定方法、装置和存储介质
CN113741585A (zh) * 2021-09-10 2021-12-03 清华大学 一种基于个性化热需求的智能动态温控方法及智能加热服

Also Published As

Publication number Publication date
CN106765962A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018120626A1 (zh) 空调器的控制方法、装置及空调器
CN104501358B (zh) 空调器控制方法和系统
WO2018076743A1 (zh) 一种智能空调器温度控制方法、系统及智能空调
CN106225161B (zh) 空调控制方法及装置
CN110715415B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN110887174B (zh) 空调器的控制方法及空调器
CN104896663A (zh) 空调器送风方式的调整方法、调整系统及空调器
CN105020836B (zh) 空调器的舒适性控制方法及装置
WO2019144938A1 (zh) 一种基于温冷感的睡眠模式控制方法和空调器
CN105003998A (zh) 空调器的舒适性控制方法及装置
JP2018066555A (ja) 睡眠環境制御システムおよび方法
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
JP2011085323A (ja) 湿度推定装置および湿度推定方法
WO2019144937A1 (zh) 基于穿衣补偿的温冷感空调器控制方法和空调器
CN110887175B (zh) 空调器的控制方法及空调器
CN106705387B (zh) 空调器控制方法、装置及空调器
WO2021109916A1 (zh) 空调器的智能送风调节方法及空调器
CN106052037A (zh) 空调器摆风的控制方法和控制装置
CN109668266B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN109668267B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN106288204B (zh) 变频空调舒适制冷控制方法
JP6668010B2 (ja) 空調制御装置、空調制御方法、および空調制御プログラム
CN106225165A (zh) 基于冷热感值的导风条调节方法和装置
WO2020164227A1 (zh) 用于空调器的控制方法
CN106196481A (zh) 基于冷热感值的导风条调节方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885586

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17885586

Country of ref document: EP

Kind code of ref document: A1