WO2021109916A1 - 空调器的智能送风调节方法及空调器 - Google Patents

空调器的智能送风调节方法及空调器 Download PDF

Info

Publication number
WO2021109916A1
WO2021109916A1 PCT/CN2020/131760 CN2020131760W WO2021109916A1 WO 2021109916 A1 WO2021109916 A1 WO 2021109916A1 CN 2020131760 W CN2020131760 W CN 2020131760W WO 2021109916 A1 WO2021109916 A1 WO 2021109916A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
humidity
space
temperature
air
Prior art date
Application number
PCT/CN2020/131760
Other languages
English (en)
French (fr)
Inventor
刘鹏
孙强
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021109916A1 publication Critical patent/WO2021109916A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the invention relates to the technical field of smart home furnishings, in particular to an air conditioner intelligent air supply adjustment method and an air conditioner.
  • the existing air-conditioning air supply technology is basically controlled according to the set parameters.
  • This control logic is relatively mechanized and easy to generalize. It cannot really understand the user's actual use environment, let alone what kind of comfort the user really needs at this moment. wind.
  • An object of the present invention is to provide an intelligent air supply adjustment method for an air conditioner.
  • a further object of the present invention is to make the air supply volume of the air conditioner more in line with the needs of users.
  • Another further object of the present invention is to provide an air conditioner having the above-mentioned functions.
  • an intelligent air supply adjustment method for an air conditioner including:
  • obtaining temperature parameters, humidity parameters of the training space, and a three-dimensional model of the training space includes:
  • Identify at least one object deployed in the training space scan the training space through infrared rays to obtain multiple space vectors of the training space, and establish a three-dimensional model of the training space based on the multiple space vectors;
  • establishing a spatial temperature and humidity three-dimensional model of the training space according to temperature parameters, humidity parameters, and three-dimensional models including:
  • the temperature and humidity values of each space vector are superimposed at the same time to establish a three-dimensional model of the spatial temperature and humidity of the training space.
  • adjusting the air supply volume of the air conditioner based on the spatial temperature and humidity three-dimensional model includes:
  • the temperature value and the humidity value are respectively compared with the preset standard temperature threshold and the preset standard humidity threshold, and the air supply volume of the air conditioner is adjusted according to the comparison result.
  • adjusting the air supply volume of the air conditioner according to the comparison result includes:
  • the air supply speed of the air conditioner is adjusted, and the swing leaf at the air outlet of the air conditioner is adjusted to change the air supply angle.
  • adjusting the air supply speed of the air supply component in the air conditioner according to the comparison result includes:
  • the temperature value is less than the standard temperature threshold and/or the humidity value is less than the standard humidity threshold, reduce the air supply speed of the air conditioner;
  • the air supply speed of the air conditioner remains unchanged.
  • adjusting the swing leaf at the air outlet of the air conditioner to change the air supply angle includes:
  • adjusting the angle of the swing blade at the air outlet of the air conditioner based on the distance includes:
  • the swing blade is controlled to swing back and forth within the preset angle range.
  • identifying the indoor environment space where the air conditioner is currently located and constructing at least one training space includes:
  • the indoor environment space is spatially divided to obtain at least one sub-environment space, and a corresponding training space is constructed based on the sub-environment space.
  • an air conditioner including:
  • the controller includes a memory and a processor, and the memory stores a computer program.
  • the computer program is executed by the processor, it is used to realize the intelligent air supply adjustment method of the air conditioner according to any one of the above items.
  • the present invention provides an intelligent air supply adjustment method of an air conditioner and an air conditioner.
  • a training space is constructed by first identifying the indoor environment space where the air conditioner is located, and then the humidity parameters in the training space are obtained After the temperature parameters and the three-dimensional model, the above-mentioned humidity parameters, temperature parameters and the three-dimensional model are combined to establish a spatial temperature and humidity three-dimensional model of the training space, and then the air supply volume of the air conditioner is adjusted based on the spatial temperature and humidity three-dimensional model.
  • the air conditioner can be intelligently controlled to adjust the air supply volume according to the actual use environment of the indoor user, so that the air blown by the air conditioner can be in line with the current indoor space environmental state. Matching, more in line with user needs, thereby enhancing the comfort experience of indoor users.
  • the solution provided by the present invention compares the current temperature value and humidity value of the object with the preset standard temperature threshold and the preset standard humidity threshold through the constructed temperature and humidity three-dimensional model, which can effectively obtain the current environmental conditions, and also The influence of the current operating state of the air supply components of the air conditioner on the environment can be estimated, so that the air supply volume can be used as a variable to intelligently and efficiently adjust the air supply volume of the air conditioner.
  • Fig. 1 is a schematic flow chart of a method for intelligent air supply adjustment of an air conditioner according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of an air outlet of an air conditioner according to an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of an air conditioner according to an embodiment of the present invention.
  • Fig. 1 is a schematic flowchart of a method for intelligent air supply adjustment of an air conditioner according to an embodiment of the present invention. Referring to Fig. 1, it can be seen that the method for intelligent air supply adjustment of an air conditioner provided by an embodiment of the present invention may include:
  • Step S102 identifying the indoor environment space where the air conditioner is currently located, and constructing at least one training space;
  • Step S104 acquiring temperature parameters, humidity parameters of the training space, and a three-dimensional model of the training space;
  • Step S106 establishing a spatial temperature and humidity three-dimensional model of the training space according to the temperature parameter, the humidity parameter and the three-dimensional model;
  • step S108 the air supply volume of the air conditioner is adjusted based on the three-dimensional model of spatial temperature and humidity.
  • the embodiment of the present invention provides an intelligent air supply adjustment method for an air conditioner.
  • a training space is constructed by first identifying the indoor environment space where the air conditioner is located, and then the humidity in the training space is obtained. After the parameters, temperature parameters, and three-dimensional model, the above-mentioned humidity parameters, temperature parameters, and three-dimensional model are combined to establish a spatial temperature and humidity three-dimensional model of the training space, and then the air supply volume of the air conditioner is adjusted based on the spatial temperature and humidity three-dimensional model.
  • the air conditioner can be intelligently controlled to adjust the air supply volume according to the actual use environment of the indoor user, so that the air blown by the air conditioner can be consistent with the current indoor space environment
  • the status is matched, which is more in line with the needs of users, thereby enhancing the comfortable experience of indoor users.
  • At least one training space can be constructed.
  • the training space can be the indoor environment space itself, or one or more subspaces in the indoor environment space.
  • it may further include: identifying the indoor environment space where the air conditioner is currently located; dividing the indoor environment space to obtain at least one sub-environment space, and constructing a corresponding training space based on the sub-environment space .
  • the space when the space is divided, it can be divided according to the layout of the indoor environment space, divided according to the distance range from the air conditioner, divided according to the user's usual activity area, and so on.
  • the user's frequent activity area in the indoor environment can be determined, especially for a larger indoor space, in the sub-environment space obtained based on the division.
  • the construction of the corresponding training space can more reflect the indoor environment layout, so that the subsequent adjustment of the air volume of the air conditioner can meet the user's needs.
  • the temperature parameters, humidity parameters of the training space, and the three-dimensional model of the training space can be obtained. Further, when obtaining the three-dimensional model of the training space, at least one object deployed in the training space can be identified, the training space is scanned by infrared rays to obtain multiple space vectors of the training space, and the three-dimensional three-dimensional model of the training space can be established based on the multiple space vectors. model.
  • the temperature parameter the infrared radiation intensity of the object can be obtained first, and the surface temperature of the object can be calculated by the radiation intensity.
  • the humidity parameters the water content of the surface of the object can be obtained, and the surface humidity of the object can be calculated by the water content.
  • the establishment of the three-dimensional model of the training space and the collection of temperature and humidity data can be completed based on infrared technology.
  • the far infrared temperature and humidity module of the air conditioner can be installed on the indoor unit of the air conditioner, and then the infrared temperature and humidity module of the air conditioner emits infrared rays, and the surface temperature of the space object is calculated by measuring the infrared radiation intensity emitted by the target. The surface moisture content of the object is calculated to calculate the surface humidity of the object.
  • a three-dimensional model of the indoor space is established through the infrared scanning results of the air conditioner, and a three-dimensional model of the space temperature and humidity is established according to the space vector temperature and humidity value.
  • I 0 represents the intensity of infrared light
  • a represents the absorption coefficient
  • H represents humidity
  • I represents the length of the optical line.
  • the three-dimensional model of the spatial temperature and humidity of the training space can be established.
  • the temperature value and humidity value of each space vector can be determined based on the surface temperature and surface humidity of each object; based on the three-dimensional model, the temperature value and humidity value of each space vector can be superimposed to establish the space temperature of the training space.
  • Three-dimensional model of humidity That is, according to the indoor space vector coordinates, the temperature and humidity data of the point coordinates can be superimposed at the same time to obtain the spatial temperature and humidity three-dimensional model of the training space.
  • the air supply volume of the air conditioner can be adjusted based on the three-dimensional model of the space temperature and humidity.
  • the specific adjustment process can be as follows:
  • the temperature value and the humidity value are respectively compared with the preset standard temperature threshold and the preset standard humidity threshold, and the air supply volume of the air conditioner is adjusted according to the comparison result. Among them, if the temperature value is greater than the standard temperature threshold and/or the humidity value is greater than the standard humidity threshold, increase the air supply speed of the air conditioner; if the temperature value is less than the standard temperature threshold and/or the humidity value is less than the standard humidity threshold, reduce the air conditioner If the temperature value is equal to the standard temperature threshold and/or the humidity value is equal to the standard humidity threshold, the air supply speed of the air conditioner remains unchanged.
  • the present invention by comparing the current temperature value and humidity value of the object with the preset standard temperature threshold and the preset standard humidity threshold, the current environmental conditions can be effectively obtained, and the current air supply components of the air conditioner can also be estimated.
  • the operating status has an impact on the environment, so that the air supply volume can be used as a variable to intelligently and efficiently adjust the air supply volume of the air conditioner.
  • the preset standard temperature threshold and the preset standard humidity threshold can be set according to the installation environment of the air conditioner and the size of the indoor space, which is not limited in the present invention.
  • the temperature of the space vector A (X1, Y2, Z3) is 27 degrees Celsius and the humidity is 60%.
  • can be combined with the environment, the flow of people or other factors. Set parameters.
  • the adjustment of the air supply volume can be realized by the air supply speed and air supply angle of the air supply component of the air conditioner. Therefore, the above step S3 may include: adjusting the air supply speed of the air conditioner according to the comparison result, and at the same time adjusting the swing blade at the air outlet of the air conditioner to change the air supply angle. Obtain the vector coordinates of the test point, calculate the distance between the test point and the air outlet of the air conditioner based on the vector coordinates; adjust the angle of the swing blade at the air outlet of the air conditioner based on the distance.
  • adjusting the angle of the swing leaf at the air outlet of the air conditioner based on the distance includes: comparing the distance with a preset distance threshold; if the distance is greater than or equal to the preset distance threshold, controlling the air outlet of the air conditioner to face the test point. Place and supply air. If the distance is less than the preset distance threshold, the swing blade is controlled to swing back and forth within the preset angle range.
  • the distance between the test point and the air outlet of the air conditioner can be calculated.
  • the space vector A of the above embodiment as the test point as an example, its coordinates are (X1, Y2, Z3), and the adjustment angle of the swing blade is determined by the position of the space vector A (X1, Y2, Z3).
  • the position A (X1, Y2, Z3) is more than or equal to 2 meters from the air outlet of the air conditioner, the direction of the swing blade is directly opposite to the position A (X1, Y2, Z3) to achieve direct blowing mode, that is, the direction of the air outlet and the space vector A The direction parallel to the connection direction of the center point of the air outlet.
  • the objects in the training space can be measured in real time or at certain intervals.
  • the surface temperature and surface humidity are updated.
  • the three-dimensional model of temperature and humidity in the training space can be updated simultaneously, and the air supply volume of the air conditioner can be adjusted based on the updated space temperature and humidity three-dimensional model, so that the air supply volume of the air conditioner can be adjusted. It can be adapted and adjusted according to changes in environmental parameters in the training space, so that the air conditioner can intelligently provide a more comfortable living and working environment for the user.
  • an embodiment of the present invention also provides an air conditioner 300, including:
  • the controller 320 includes a memory 321 and a processor 322.
  • the memory 321 stores a computer program. When the computer program is executed by the processor 322, it is used to implement the intelligent air supply adjustment method of the air conditioner according to any of the above embodiments.
  • the embodiment of the present invention provides an intelligent air supply adjustment method of an air conditioner and the air conditioner.
  • a training space is constructed by first identifying the indoor environment space where the air conditioner is located, and then the training space is obtained. After the humidity parameters, temperature parameters and three-dimensional model in the above, the above-mentioned humidity parameters, temperature parameters and three-dimensional model are combined to establish a spatial temperature and humidity three-dimensional model of the training space, and then the air supply volume of the air conditioner is adjusted based on the spatial temperature and humidity three-dimensional model.
  • the air conditioner can be intelligently controlled to adjust the air supply volume according to the actual use environment of the indoor user, so that the air blown by the air conditioner can be consistent with the current indoor space environment
  • the status is matched, which is more in line with the needs of users, thereby enhancing the comfortable experience of indoor users.
  • the solution provided by the embodiment of the present invention compares the current temperature value and humidity value of the object with the preset standard temperature threshold and the preset standard humidity threshold through the constructed temperature and humidity three-dimensional model, and can effectively obtain the current environmental conditions. At the same time, it can also estimate the impact of the current operating status of the air supply components of the air conditioner on the environment, so that the air supply volume can be used as a variable to intelligently and efficiently adjust the air supply volume of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的智能送风调节方法及空调器,该方法包括:先识别空调器所处的室内环境空间以构建训练空间,再获取训练空间中的湿度参数、温度参数以及三维立体模型后,结合上述湿度参数、温度参数以及三维立体模型建立训练空间的空间温湿度三维模型,进而基于空间温湿度三维模型调节空调器的送风量。基于上述方法,通过建立室内环境空间的训练空间相关模型,可以根据室内用户的实际使用环境智能控制空调器调节送风量,使空调器吹出的风可以与当前室内空间的环境状态相匹配,更加符合使用者需求。

Description

空调器的智能送风调节方法及空调器 技术领域
本发明涉及智慧家居技术领域,特别是涉及一种空调器的智能送风调节方法及空调器。
背景技术
随着科技发展及用户生活水平的提升,普通空调单纯地制冷和制热功能已经不能满足用户的需求。在用户享受空调带来的冷热体验外,如何让用户吹更加舒适的风,已成为用户的急切需求。
现有空调送风技术基本上是根据设定的参数实现控制,这种控制逻辑比较机械化,容易以偏概全,无法真正了解用户实际使用环境,更无法了解用户此时此刻真正需要什么样舒适风。
发明内容
本发明的一个目的是要提供一种空调器的智能送风调节方法。
本发明一个进一步的目的是要使得空调器的送风量更加符合使用者需求。
本发明另一个进一步的目的是提供一种具有上述功能的空调器。
特别地,根据本发明的一个方面,提供了一种空调器的智能送风调节方法,包括:
识别空调器当前所处的室内环境空间,构建至少一个训练空间;
获取训练空间的温度参数、湿度参数以及训练空间的三维立体模型;
根据温度参数、湿度参数和三维立体模型建立训练空间的空间温湿度三维模型;
基于空间温湿度三维模型调节空调器的送风量。
可选地,获取训练空间的温度参数、湿度参数以及训练空间的三维立体模型,包括:
识别训练空间中部署的至少一个物体,通过红外线对训练空间扫描以获取训练空间的多个空间矢量,基于多个空间矢量建立训练空间的三维立体模型;并且,
获取物体基于红外线的辐射强度,通过辐射强度计算物体的表面温度;
获取物体表面的含水量,通过含水量计算物体的表面湿度。
可选地,根据温度参数、湿度参数和三维立体模型建立训练空间的空间温湿度三维模型,包括:
基于各物体的表面温度和表面湿度分别确定各空间矢量的温度数值和湿度数值;
以三维立体模型为基础,同时叠加各空间矢量的温度数值和湿度数值建立训练空间的空间温湿度三维模型。
可选地,基于空间温湿度三维模型调节空调器的送风量,包括:
基于空间温湿度三维模型在训练空间中选取待检测物体,并确定待检测物体上至少一个空间矢量作为物体的测试点;
获取测试点的温度数值和湿度数值;
将温度数值和湿度数值分别与预设标准温度阈值和预设标准湿度阈值进行比较,根据比较结果调节空调器的送风量。
可选地,根据比较结果调节空调器的送风量,包括:
根据比较结果调节空调器的送风速度,同时调节空调器出风口处摆叶以改变送风角度。
可选地,根据比较结果调节空调器中送风部件的送风速度,包括:
若温度数值大于标准温度阈值和/或湿度数值大于标准湿度阈值,则增大空调器的送风速度;
若温度数值小于标准温度阈值和/或湿度数值小于标准湿度阈值,则降低空调器的送风速度;
若温度数值等于标准温度阈值和/或湿度数值等于标准湿度阈值,则空调器的送风速度保持不变。
可选地,调节空调器出风口处摆叶以改变送风角度,包括:
获取测试点的矢量坐标,基于矢量坐标计算测试点与空调器的出风口距离;
基于距离调节空调器的出风口处摆叶的角度。
可选地,基于距离调节空调器的出风口处摆叶的角度,包括:
将距离与预设距离阈值进行比较;
若距离大于或等于预设距离阈值,则控制空调器的出风口正对测试点所处位置并进行送风;
若距离小于预设距离阈值,则控制摆叶在预设角度范围内往复摆动。
可选地,识别空调器当前所处的室内环境空间,构建至少一个训练空间,包括:
识别空调器当前所处的室内环境空间;
对室内环境空间进行空间划分以得到至少一个子环境空间,基于子环境空间构建对应的训练空间。
根据本发明的另一个方面,还提供了一种空调器,包括:
室内机;
控制器,其包括存储器和处理器,存储器存储有计算机程序,计算机程序被处理器执行时用于实现根据上述任一项的空调器的智能送风调节方法。
本发明提供了一种空调器的智能送风调节方法及空调器,在本发明提供的方法中,通过先识别空调器所处的室内环境空间以构建训练空间,再获取训练空间中的湿度参数、温度参数以及三维立体模型后,结合上述湿度参数、温度参数以及三维立体模型建立训练空间的空间温湿度三维模型,进而基于空间温湿度三维模型调节空调器的送风量。基于本发明提供的方法,通过建立室内环境空间的训练空间相关模型,可以根据室内用户的实际使用环境智能控制空调器调节送风量,使空调器吹出的风可以与当前室内空间的环境状态向匹配,更加符合使用者需求,从而提升室内用户舒适体验。
进一步地,本发明提供的方案通过构建的温湿度三维模型将物体当前的温度数值和湿度数值分别与预设标准温度阈值和预设标准湿度阈值进行比较,可以有效获取当前环境的状况,同时还可以估算空调器的送风部件当前的运行状态对对环境的影响,从而可以将送风量作为变量,智能且高效调节空调器的送风量。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明实施例的空调器的智能送风调节方法流程示意图;
图2是根据本发明实施例的空调器出风口示意图;
图3是根据本发明实施例的空调器结构示意图。
具体实施方式
图1是根据本发明一个实施例的空调器的智能送风调节方法流程示意图,参见图1可知,本发明实施例提供的空调器的智能送风调节方法可以包括:
步骤S102,识别空调器当前所处的室内环境空间,构建至少一个训练空间;
步骤S104,获取训练空间的温度参数、湿度参数以及训练空间的三维立体模型;
步骤S106,根据温度参数、湿度参数和三维立体模型建立训练空间的空间温湿度三维模型;
步骤S108,基于空间温湿度三维模型调节空调器的送风量。
本发明实施例提供了一种空调器的智能送风调节方法,在本发明实施例提供的方法中,通过先识别空调器所处的室内环境空间以构建训练空间,再获取训练空间中的湿度参数、温度参数以及三维立体模型后,结合上述湿度参数、温度参数以及三维立体模型建立训练空间的空间温湿度三维模型,进而基于空间温湿度三维模型调节空调器的送风量。基于本发明实施例提供的方法,通过建立室内环境空间的训练空间相关模型,可以根据室内用户的实际使用环境智能控制空调器调节送风量,使空调器吹出的风可以与当前室内空间的环境状态向匹配,更加符合使用者需求,从而提升室内用户舒适体验。
在上述步骤S102中提及,在识别出空调器所处的室内环境空间后,可构建至少一个训练空间。该训练空间可以是室内环境空间本身,或是室内环境空间中的一个或多个子空间。在本发明一可选实施例中,其可以进一步包括:识别空调器当前所处的室内环境空间;对室内环境空间进行空间划分以得到至少一个子环境空间,基于子环境空间构建对应的训练空间。可选地,在进行空间划分时,可以依据室内环境空间的布局方式进行划分、依据与空调器的距离范围进行划分、依据用户的常活动区域进行划分等等。本实施例中,通过对室内环境空间进行划分得到至少一个子环境空间,可以对用户在室内环境中常活动区域进行确定,尤其是对于较大的室内空间来讲,在基于 划分得到的子环境空间构建对应的训练空间时能够更加反映出室内环境布局,进而可以使得后续调整空调器的出风量时可以满足用户的使用需求。
参见上述步骤S104,构建出训练空间之后,即可获取训练空间的温度参数、湿度参数以及训练空间的三维立体模型。进一步地,获取训练空间的三维立体模型时,可以识别训练空间中部署的至少一个物体,通过红外线对训练空间扫描以获取训练空间的多个空间矢量,基于多个空间矢量建立训练空间的三维立体模型。可选地,在获取温度参数时,可以先获取物体基于红外线的辐射强度,通过辐射强度计算物体的表面温度。获取湿度参数时,可以获取物体表面的含水量,通过含水量计算物体的表面湿度。
也就是说,本发明实施例中可基于红外线技术完成对训练空间的三维立体模型的建立以及温湿度数据的采集。实际应用中,可以在空调器的室内机上设置空调远红外温湿度模块,进而通过该空调远红外温湿度模块发射红外线,通过测量目标发射的红外辐射强度计算出空间物体的表面温度,再通过获取物体表面含水量计算出物体表面湿度,进一步地,通过红外线对空调扫描结果建立室内空间三维立体模型,并根据空间矢量温湿度数值,建立空间温湿度三维模型。
其中,进行温度测量时,根据物料表面发射出与本身温度相关的波长红外线,根据普朗克黑体辐射定律λ mT=K,其中,λ m表示波长、T表示温度、K为常数(0.002897mK)。再根据玻尔兹曼定律得出W=εσT 4,其中,W表示总发射本领、ε表示物体黑度、σ表示玻尔兹曼常数,T表示温度。
进行湿度测量时,可以根据水在及近红外区域内的吸收峰的红外波长1.45um、1.93um和2.95um,再根据朗伯比尔定律,通过I=I 0e -a/H公式计算出湿度H。其中,I 0表示红外光强度、a表示吸收系数、H表示湿度、I表示光线路长。
进一步地,在分别获取到训练空间的温度参数、湿度参数以及训练空间的三维立体模型之后,即可建立训练空间的空间温湿度三维模型。可选地,可以基于各物体的表面温度和表面湿度分别确定各空间矢量的温度数值和湿度数值;以三维立体模型为基础,同时叠加各空间矢量的温度数值和湿度数值建立训练空间的空间温湿度三维模型。即,根据室内空间矢量坐标,同时叠加该点坐标温、湿度数据即可得到训练空间的空间温湿度三维模型。
在构建空间温湿度三维模型之后,可基于该空间温湿度三维模型调节空 调器的送风量,实际应用中,具体调节过程可以如下:
S1、基于空间温湿度三维模型在训练空间中选取待检测物体,并确定待检测物体上至少一个空间矢量作为物体的测试点;
S2、获取测试点的温度数值和湿度数值;
S3、将温度数值和湿度数值分别与预设标准温度阈值和预设标准湿度阈值进行比较,根据比较结果调节空调器的送风量。其中,若温度数值大于标准温度阈值和/或湿度数值大于标准湿度阈值,则增大空调器的送风速度;若温度数值小于标准温度阈值和/或湿度数值小于标准湿度阈值,则降低空调器的送风速度;若温度数值等于标准温度阈值和/或湿度数值等于标准湿度阈值,则空调器的送风速度保持不变。本发明实施例通过将物体当前的温度数值和湿度数值分别与预设标准温度阈值和预设标准湿度阈值进行比较,可以有效获取当前环境的状况,同时还可以估算空调器的送风部件当前的运行状态对对环境的影响,从而可以将送风量作为变量,智能且高效调节空调器的送风量。其中,预设标准温度阈值和预设标准湿度阈值可根据空调器的安装环境以及室内空间大小进行设置,本发明不做限定。
举例来讲,根据模型得出空间矢量A(X1,Y2,Z3)位置温度为27摄氏度、湿度为60%,系统自动判断用户使用舒适度较低(预设人体舒适温湿度定义为温度26摄氏度、湿度52%),此时空调进入主动送风控制模式,风速调整为R=αR 0,其中R 0进入送风主动风速模式前风速,α可结合环境、人流量或是其他多种因素所设置的参数。
本实施例中,送风量的调节可以通过空调器的送风部件的送风速度以及送风角度实现。因此,上述步骤S3可以包括:根据比较结果调节空调器的送风速度,同时调节空调器出风口处摆叶以改变送风角度。获取测试点的矢量坐标,基于矢量坐标计算测试点与空调器的出风口距离;基于距离调节空调器的出风口处摆叶的角度。其中,基于距离调节空调器的出风口处摆叶的角度,包括:将距离与预设距离阈值进行比较;若距离大于或等于预设距离阈值,则控制空调器的出风口正对测试点所处位置并进行送风。若距离小于预设距离阈值,则控制摆叶在预设角度范围内往复摆动。
可选地,计算测试点与空调器的出风口距离时,可以计算测试点与空调器出风口中心点的距离。以上述实施例的空间矢量A作为测试点为例,其坐标为(X1,Y2,Z3),摆叶调整角度由空间矢量A(X1,Y2,Z3)位置决 定。当A(X1,Y2,Z3)位置距离空调出风口大于等于2米时,摆叶方向正对A(X1,Y2,Z3)位置实现直吹模式,即出风口的出风方向与空间矢量A与出风口的中心点的连接方向的平行方向。当A(X1,Y2,Z3)位置距离空调出风口小于2米时,摆叶方向与A(X1,Y2,Z3)位置成30°角度方向吹风且摆叶在位置一、位置二之间往复摆动,如图2所示。上述只是对预设角度范围以及预设距离阈值进行距离说明,实际应用中可根据不同需求进行调整,本发明不做限定。
进一步地,由于训练空间内待检测物体的空间矢量所对应的湿度值和温度值是会经常变化的,因此,本发明实施例中,可以实时或是间隔一定时间对训练空间中的各物体的表面温度和表面湿度进行更新,与此同时,可同步更新训练空间的空间温湿度三维模型,进而基于更新后的空间温湿度三维模型调整空调器的送风量,从而使得空调器的送风量可以依据训练空间中环境参数的变化进行适应调整,使得在空调器的可以智能地为使用者更加舒适的生活工作环境。
基于同一发明构思,如图3所示,本发明实施例还提供了一种空调器300,包括:
室内机310;
控制器320,其包括存储器321和处理器322,存储器321存储有计算机程序,计算机程序被处理器322执行时用于实现根据上述任一实施例所述的空调器的智能送风调节方法。
本发明实施例提供了一种空调器的智能送风调节方法及空调器,在本发明实施例提供的方法中,通过先识别空调器所处的室内环境空间以构建训练空间,再获取训练空间中的湿度参数、温度参数以及三维立体模型后,结合上述湿度参数、温度参数以及三维立体模型建立训练空间的空间温湿度三维模型,进而基于空间温湿度三维模型调节空调器的送风量。基于本发明实施例提供的方法,通过建立室内环境空间的训练空间相关模型,可以根据室内用户的实际使用环境智能控制空调器调节送风量,使空调器吹出的风可以与当前室内空间的环境状态向匹配,更加符合使用者需求,从而提升室内用户舒适体验。
进一步地,本发明实施例提供的方案通过构建的温湿度三维模型将物体当前的温度数值和湿度数值分别与预设标准温度阈值和预设标准湿度阈值 进行比较,可以有效获取当前环境的状况,同时还可以估算空调器的送风部件当前的运行状态对对环境的影响,从而可以将送风量作为变量,智能且高效调节空调器的送风量。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调器的智能送风调节方法,包括:
    识别空调器当前所处的室内环境空间,构建至少一个训练空间;
    获取所述训练空间的温度参数、湿度参数以及所述训练空间的三维立体模型;
    根据所述温度参数、湿度参数和所述三维立体模型建立所述训练空间的空间温湿度三维模型;
    基于所述空间温湿度三维模型调节所述空调器的送风量。
  2. 根据权利要求1所述的方法,其中,获取所述训练空间的温度参数、湿度参数以及所述训练空间的三维立体模型,包括:
    识别所述训练空间中部署的至少一个物体,通过红外线对所述训练空间扫描以获取所述训练空间的多个空间矢量,基于所述多个空间矢量建立所述训练空间的三维立体模型;并且,
    获取所述物体基于所述红外线的辐射强度,通过所述辐射强度计算所述物体的表面温度;
    获取所述物体表面的含水量,通过所述含水量计算所述物体的表面湿度。
  3. 根据权利要求2所述的方法,其中,所述根据所述温度参数、湿度参数和所述三维立体模型建立所述训练空间的空间温湿度三维模型,包括:
    基于各所述物体的表面温度和表面湿度分别确定各所述空间矢量的温度数值和湿度数值;
    以所述三维立体模型为基础,同时叠加各所述空间矢量的温度数值和湿度数值建立所述训练空间的空间温湿度三维模型。
  4. 根据权利要求1所述的方法,其中,所述基于所述空间温湿度三维模型调节所述空调器的送风量,包括:
    基于所述空间温湿度三维模型在所述训练空间中选取待检测物体,并确定所述待检测物体上至少一个空间矢量作为所述物体的测试点;
    获取所述测试点的温度数值和湿度数值;
    将所述温度数值和湿度数值分别与预设标准温度阈值和预设标准湿度阈值进行比较,根据比较结果调节所述空调器的送风量。
  5. 根据权利要求4所述的方法,其中,所述根据比较结果调节所述空调 器的送风量,包括:
    根据比较结果调节所述空调器的送风速度,同时调节所述空调器出风口处摆叶以改变送风角度。
  6. 根据权利要求5所述的方法,其中,所述根据比较结果调节所述空调器中送风部件的送风速度,包括:
    若所述温度数值大于所述标准温度阈值和/或所述湿度数值大于所述标准湿度阈值,则增大所述空调器的送风速度;
    若所述温度数值小于所述标准温度阈值和/或所述湿度数值小于所述标准湿度阈值,则降低所述空调器的送风速度;
    若所述温度数值等于所述标准温度阈值和/或所述湿度数值等于所述标准湿度阈值,则所述空调器的送风速度保持不变。
  7. 根据权利要求5所述的方法,其中,所述调节所述空调器出风口处摆叶以改变送风角度,包括:
    获取所述测试点的矢量坐标,基于所述矢量坐标计算所述测试点与所述空调器的出风口距离;
    基于所述距离调节所述空调器的出风口处摆叶的角度。
  8. 根据权利要求7所述的方法,其中,所述基于所述距离调节所述空调器的出风口处摆叶的角度,包括:
    将所述距离与预设距离阈值进行比较;
    若所述距离大于或等于所述预设距离阈值,则控制所述空调器的出风口正对所述测试点所处位置并进行送风;
    若所述距离小于所述预设距离阈值,则控制所述摆叶在预设角度范围内往复摆动。
  9. 根据权利要求1所述的方法,其中,所述识别空调器当前所处的室内环境空间,构建至少一个训练空间,包括:
    识别所述空调器当前所处的室内环境空间;
    对所述室内环境空间进行空间划分以得到至少一个子环境空间,基于所述子环境空间构建对应的训练空间。
  10. 一种空调器,包括:
    室内机;
    控制器,其包括存储器和处理器,所述存储器存储有计算机程序,所述 计算机程序被所述处理器执行时用于实现根据权利要求1至9中任一项所述的空调器的智能送风调节方法。
PCT/CN2020/131760 2019-12-05 2020-11-26 空调器的智能送风调节方法及空调器 WO2021109916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911236517.XA CN110986314A (zh) 2019-12-05 2019-12-05 空调器的智能送风调节方法及空调器
CN201911236517.X 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021109916A1 true WO2021109916A1 (zh) 2021-06-10

Family

ID=70090481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131760 WO2021109916A1 (zh) 2019-12-05 2020-11-26 空调器的智能送风调节方法及空调器

Country Status (2)

Country Link
CN (1) CN110986314A (zh)
WO (1) WO2021109916A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986314A (zh) * 2019-12-05 2020-04-10 青岛海尔空调器有限总公司 空调器的智能送风调节方法及空调器
US20230151995A1 (en) * 2020-06-02 2023-05-18 Mitsubishi Electric Corporation Environmental control system
CN114251700A (zh) * 2020-09-25 2022-03-29 佛山市顺德区美的洗涤电器制造有限公司 吸油烟机及其控制方法、计算机可读存储介质
CN112484261A (zh) * 2020-12-15 2021-03-12 南京工业职业技术大学 一种具有智能多风道调控的高效节能型家用空调
ES2926362A1 (es) * 2021-04-15 2022-10-25 Univ Vigo Equipo de inspección para el modelado ambiental tridimensional de interiores basado en técnicas de aprendizaje automático
CN114185278A (zh) * 2021-12-23 2022-03-15 珠海格力电器股份有限公司 家电设备的控制方法及装置、系统、家电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472518A (zh) * 2009-08-06 2012-05-23 松下电器产业株式会社 空调机
US20170153032A1 (en) * 2015-12-01 2017-06-01 Nasser Ashgriz Virtual thermostat for a zonal temperature control
CN107355963A (zh) * 2017-07-07 2017-11-17 四川云图瑞科技有限公司 一种基于三维模型用于建筑运维设备温度监测的检测系统
JP2019002596A (ja) * 2017-06-12 2019-01-10 清水建設株式会社 温度分布計測システム、空調システム、冷却方法及びプログラム
CN109654669A (zh) * 2018-12-11 2019-04-19 珠海格力电器股份有限公司 空调器的室温显示方法、空调器及计算机可读存储介质
CN110300874A (zh) * 2017-03-28 2019-10-01 松下知识产权经营株式会社 环境控制系统和环境控制方法
CN110986314A (zh) * 2019-12-05 2020-04-10 青岛海尔空调器有限总公司 空调器的智能送风调节方法及空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206478749U (zh) * 2017-02-14 2017-09-08 美的集团股份有限公司 空调柜机和空调器
CN107023936A (zh) * 2017-03-09 2017-08-08 广东美的制冷设备有限公司 一种空调器控制方法和空调器
CN107525238B (zh) * 2017-08-22 2020-09-11 广东美的制冷设备有限公司 空调器控制方法、红外信号收发器及空调器
KR102130402B1 (ko) * 2017-11-28 2020-07-07 인하대학교 산학협력단 열화상 카메라를 이용한 실내 온열 환경 평가 장치 및 그 방법
CN108518820B (zh) * 2018-06-13 2021-03-19 广东美的制冷设备有限公司 空调器控制方法、终端、空调器及计算机可读存储介质
CN108731221B (zh) * 2018-06-25 2020-08-21 珠海格力电器股份有限公司 空调控制方法及装置
CN109708259A (zh) * 2018-12-24 2019-05-03 珠海格力电器股份有限公司 空调器的控制方法及装置、存储介质和处理器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472518A (zh) * 2009-08-06 2012-05-23 松下电器产业株式会社 空调机
US20170153032A1 (en) * 2015-12-01 2017-06-01 Nasser Ashgriz Virtual thermostat for a zonal temperature control
CN110300874A (zh) * 2017-03-28 2019-10-01 松下知识产权经营株式会社 环境控制系统和环境控制方法
JP2019002596A (ja) * 2017-06-12 2019-01-10 清水建設株式会社 温度分布計測システム、空調システム、冷却方法及びプログラム
CN107355963A (zh) * 2017-07-07 2017-11-17 四川云图瑞科技有限公司 一种基于三维模型用于建筑运维设备温度监测的检测系统
CN109654669A (zh) * 2018-12-11 2019-04-19 珠海格力电器股份有限公司 空调器的室温显示方法、空调器及计算机可读存储介质
CN110986314A (zh) * 2019-12-05 2020-04-10 青岛海尔空调器有限总公司 空调器的智能送风调节方法及空调器

Also Published As

Publication number Publication date
CN110986314A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021109916A1 (zh) 空调器的智能送风调节方法及空调器
US9644857B1 (en) Virtual thermostat for a zonal temperature control
CN107525237B (zh) 一种智能空调器控制方法及智能空调器
JP7055218B2 (ja) 空気調和機、空気調和機制御方法及びプログラム
WO2020258779A1 (zh) 空调器的控制方法及控制系统
JP5238679B2 (ja) 空調制御装置、空調制御方法及び輻射温度計測装置
CN109405213B (zh) 空调器及其控制方法、控制装置、可读存储介质
CN105423502A (zh) 空调送风控制方法及装置
JP5038757B2 (ja) 空調制御システム
CN104279710A (zh) 空调控制方法、系统及空调设备
CN105465966A (zh) 空调送风控制方法及装置
CN106765962A (zh) 空调器的控制方法、装置及空调器
WO2019075821A1 (zh) 一种多媒体教室空调控制方法
CN105571066A (zh) 空调送风控制方法及装置
CN110207336A (zh) 多联机的控制方法、控制装置及可读存储介质
CN106705391A (zh) 一种暖通空调系统的操控方法、装置及系统
CN206771648U (zh) 控制空调的系统以及空调器
CN112178785A (zh) 一种空调器除湿控制方法及除湿控制设备
JP2011027301A (ja) 空調制御装置
JP2020517899A (ja) エアコン無風感自動制御方法、エアコン及びコンピュータ読み取り可能な記憶媒体
CN109114772A (zh) 空调、空调的调节方法、装置、电子设备和存储介质
KR101799754B1 (ko) 쾌적한 환경 조성을 위한 지능형 항상성 유지 시스템 및 방법
CN105546741B (zh) 一种空调及其控制方法
CN105546746A (zh) 空调送风控制方法及装置
CN105241001A (zh) 一种参数调整方法及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895931

Country of ref document: EP

Kind code of ref document: A1