WO2019144938A1 - 一种基于温冷感的睡眠模式控制方法和空调器 - Google Patents

一种基于温冷感的睡眠模式控制方法和空调器 Download PDF

Info

Publication number
WO2019144938A1
WO2019144938A1 PCT/CN2019/073214 CN2019073214W WO2019144938A1 WO 2019144938 A1 WO2019144938 A1 WO 2019144938A1 CN 2019073214 W CN2019073214 W CN 2019073214W WO 2019144938 A1 WO2019144938 A1 WO 2019144938A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
subjective
human body
air
body surface
Prior art date
Application number
PCT/CN2019/073214
Other languages
English (en)
French (fr)
Inventor
马林
刘聚科
程永甫
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019144938A1 publication Critical patent/WO2019144938A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/66Sleep mode

Definitions

  • the present invention relates to the field of air conditioning equipment, and in particular, to a sleep mode control method and an air conditioner based on a warm and cold feeling.
  • the air conditioner is used for cooling or dehumidification in the summer and heating in the winter. It can adjust the indoor temperature, so that the air-conditioned room can reach the comfortable environment of warm winter and cool summer. While the air conditioner guarantees the comfort of the air-conditioned room, the air conditioner manufacturer has been working on the development of new technical solutions, which reduces the energy consumption of the air conditioner and improves the efficiency of the air conditioner.
  • Prior art air conditioners are usually provided with a sleep mode. If it is in the cooling condition, after entering the sleep mode, after the indoor temperature reaches the set temperature or the running time reaches 1 hour, the set temperature is automatically increased by 1 °C, and after another hour, the temperature is further increased by 1 °C. If, under heating conditions, after entering the sleep mode, the set temperature is automatically reduced by 2 ° C after 1 hour of operation, and then decreased by 3 ° C after 1 hour of operation.
  • the invention provides a sleep mode control method based on the warm and cold feeling, and performs sleep mode control according to the subjective comfort of the accurately detected person, thereby improving user comfort.
  • a sleep mode control method based on warmth and coldness includes the following steps:
  • the air conditioner enters a sleep mode
  • the camera detects whether the human body is covered or not. If it is a non-cover state, it determines the subjective temperature and coldness level of the human body. If the subjective warmth of the human body deviates from the comfort level, the body surface temperature is detected and the current subjective temperature and coldness level is called. Corresponding first air supply temperature correction value, controlling the supply air temperature to be the sum of the body surface temperature and the first supply air temperature correction value until the subjective temperature and coldness level of the human body is a comfort level; if the cover is in a state, determining The subjective temperature and coldness level of the human body.
  • the human body surface temperature is detected and the second supply air temperature correction value corresponding to the current subjective temperature and coldness level is called to control the supply air temperature for the human body.
  • the sum of the body surface temperature and the second supply air temperature correction value until the subjective warmth level of the human body is a comfort level.
  • the air supply direction and the air supply temperature of the air conditioner can be controlled according to an accurate human sleep state, so that the user can also have a good air-conditioning experience during the sleep process, and at the same time achieve energy saving. the goal of.
  • an air conditioner which adopts a sleep mode control method based on a warm and cold feeling.
  • the control method includes the following steps:
  • the air conditioner enters a sleep mode
  • the camera detects whether the human body is covered or not. If it is a non-cover state, it determines the subjective temperature and coldness level of the human body. If the subjective warmth of the human body deviates from the comfort level, the body surface temperature is detected and the current subjective temperature and coldness level is called. Corresponding first air supply temperature correction value, controlling the supply air temperature to be the sum of the body surface temperature and the first supply air temperature correction value until the subjective temperature and coldness level of the human body is a comfort level; if the cover is in a state, determining The subjective temperature and coldness level of the human body.
  • the human body surface temperature is detected and the second supply air temperature correction value corresponding to the current subjective temperature and coldness level is called to control the supply air temperature for the human body.
  • the sum of the body surface temperature and the second supply air temperature correction value until the subjective warmth level of the human body is a comfort level.
  • the air conditioner disclosed by the invention has the advantages of high comfort and good intelligence.
  • FIG. 1 is a flow chart of a method for controlling sleep mode based on temperature and cooling feeling disclosed in the present invention
  • FIG. 2 is a flow chart of a method for detecting subjective temperature and cooling in the control method disclosed in FIG. 1;
  • FIG. 3 is a flow chart of another detection method for subjective temperature and cooling feeling in the control method disclosed in FIG. 1;
  • FIG. 4 is a schematic block diagram of an air conditioner disclosed in the present invention.
  • the following disclosure provides many different embodiments or examples for implementing different structures of the present invention.
  • the components and arrangements of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention.
  • the present invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of simplicity and clarity, and is not in the nature of the description of the various embodiments and/or arrangements discussed.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. Embodiments such that the first and second features may not be in direct contact.
  • the terms “mounted” and “connected” are to be understood broadly, and may be, for example, a mechanical connection or an electrical connection, or a communication within two elements. They may be directly connected or indirectly connected through an intermediate medium.
  • the specific meanings of the above terms may be understood on a case-by-case basis.
  • step S101 the air conditioner enters a sleep mode, such as a timer or generates a control signal through a remote controller or a control panel, in a common manner in the prior art.
  • the air conditioner is equipped with a camera and an infrared sensor that can collect the absolute temperature and thermal image of the heat source.
  • step S102 the camera detects whether the human body is covered or not, and whether the human body cover is judged by image processing.
  • image processing Various similar algorithms are disclosed in the prior art, which is not the protection focus of the present invention, and details are not described herein again.
  • step S1031 if the human body is in a non-cover state, the subjective temperature and coldness level of the human body is determined.
  • the subjective sense of warmth of the human body can be detected by any of the methods disclosed in FIGS. 2 and 3.
  • Step S201 sampling the body surface temperature T of the heat source in the air-conditioned room, the ambient temperature T 0 of the air-conditioned room, and the dressing index I clo of the heat source in the air-conditioned room.
  • the body surface temperature T is detected by an infrared sensor, and the preferred sampling point is the forehead temperature of the human body.
  • a return air temperature sensor is disposed on the air return port of the air conditioner, and the ambient temperature of the air-conditioned room is sampled by the return air temperature sensor.
  • the dressing index I clo of the heat source in the air conditioner room can be obtained by analyzing the thermal image generated by the infrared sensor.
  • a more preferred method of sampling the wear index I clo is that the air conditioner establishes communication with the server, and the server retrieves real-time recommended dressing information from the weather bureau database.
  • a one-to-one correspondence between the dressing information and the dressing index I clo is pre-stored in the air conditioner, and the dressing index I clo is a dimensionless constant.
  • the dressing index I clo As the thickness of the clothes corresponding to the dressing information increases, the dressing index I clo also maintains an increasing relationship.
  • Dressing information Dressing index I clo Short-sleeved shirts, pants, shorts, shoes 0.5 Stockings, short-sleeved shirts, skirts 0.55 Shirts, trousers, socks 0.6 Shirts, dresses, socks, shoes 0.7
  • step S203 the gender of the user represented by the heat source is determined, and the subjective warm feeling has a great relationship with the gender. If the gender of the user is not determined, there is a certain degree of deviation in the judgment result. Therefore, firstly, using the camera provided on the air conditioner, combined with the algorithm for determining the gender in the image processing in the prior art, the gender of the user represented by the heat source is determined.
  • T s 0.005X + 0.3
  • T s 0.7-0.026X.
  • the subjective temperature and cold feeling Y ⁇ (-4, -2.5) is very cold
  • the subjective temperature and cooling feeling Y ⁇ (-2.5, -1.5) the subjective temperature and cold feeling level is cold.
  • Subjective temperature and cold feeling Y ⁇ (-1.5, 1.5), subjective temperature and cold feeling level is comfortable; subjective warm and cold feeling Y ⁇ (1.5, 2.5), subjective temperature and cold feeling level is hot; subjective temperature and cold feeling Y ⁇ At (2.5, 4), the subjective warmth level is very hot.
  • FIG. 3 is a flow chart showing another method for detecting a subjective temperature and cooling feeling. Specifically, the method includes the following steps:
  • Step S301 sampling the body surface temperature T in the air-conditioned room, the ambient temperature T 0 of the air-conditioned room, and the dressing index I clo of the heat source in the air-conditioned room.
  • a return air temperature sensor is disposed on the air return port of the air conditioner, and the ambient temperature of the air-conditioned room is sampled by the return air temperature sensor.
  • the dressing index I clo of the heat source in the air conditioner room can be obtained by analyzing the thermal image generated by the infrared sensor.
  • a more preferred method of sampling the wear index I clo is that the air conditioner establishes communication with the server, and the server retrieves real-time recommended dressing information from the weather bureau database.
  • a one-to-one correspondence between the dressing information and the dressing index I clo is pre-stored in the air conditioner, and the dressing index I clo is a dimensionless constant.
  • the dressing index I clo As the thickness of the garment corresponding to the dressing information increases, the dressing index I clo also maintains an increasing relationship.
  • Dressing information Dressing index I clo Short-sleeved shirts, pants, shorts, shoes 0.5 Stockings, short-sleeved shirts, skirts 0.55 Shirts, trousers, socks 0.6 Shirts, dresses, socks, shoes 0.7
  • step S304 it is determined whether the amount of heat dissipation of the body surface is greater than the set heat dissipation amount.
  • the greater the amount of heat dissipated by the human body the more people feel cold, and the smaller the amount of heat dissipated, the more people feel hot.
  • the human body In the summer, when the heat dissipation of the human body is large, even if the temperature in the room is high and the body surface temperature is high, the human body may have a subjective warmth and cold feeling due to indoor humidity and the health of the human body.
  • step S3051 if the heat dissipation amount of the body surface is greater than the set heat dissipation amount, the body surface heat dissipation amount X and the dressing compensation coefficient T r are brought into the following formula to calculate the subjective temperature cooling feeling Y:
  • step S3052 if the heat dissipation amount of the body surface is less than or equal to the set heat dissipation amount, the body surface heat dissipation amount X and the dressing compensation coefficient T r are brought into the following formula to calculate the subjective temperature cooling feeling Y:
  • the detection values of the subjective temperature and cold sense are corrected by using two different correction formulas, which can be accurately detected, especially the body surface heat dissipation is large, and at the same time
  • the actual subjective warmth and coldness of the human body under high ambient temperature and high body surface temperature reduces the probability of misjudgment and provides an accurate data basis for subsequent control.
  • the subjective temperature and cold feeling Y ⁇ (-4, -2.5) is very cold
  • the subjective temperature and cooling feeling Y ⁇ (-2.5, -1.5) the subjective temperature and cold feeling level is cold.
  • Subjective temperature and cold feeling Y ⁇ (-1.5, 1.5), subjective temperature and cold feeling level is comfortable; subjective warm and cold feeling Y ⁇ (1.5, 2.5), subjective temperature and cold feeling level is hot; subjective temperature and cold feeling Y ⁇ At (2.5, 4), the subjective warmth level is very hot.
  • the level of subjective warmth can also be divided into seven or more levels to provide a more detailed level of subjective warmth.
  • step S1031 if the human body is in a non-cover state, and the subjective warmth of the human body deviates from the comfort level.
  • the level of subjective warmth and coldness is the subjective temperature-cooling level of “hot” or “very hot” under cooling conditions, or “heating”. Cold or "very cold.”
  • Step S1041 detecting a body surface temperature and calling a first supply air temperature correction value corresponding to the current subjective temperature and cold feeling, and the first air supply temperature correction value is corresponding to the temperature and cooling level, and is stored in the air conditioning control chip.
  • the temperature set value numerically, the set of temperature set values is preferably a set of arithmetic progressions.
  • the first air supply temperature correction value corresponding to "very hot” is -4
  • the first air supply temperature correction value corresponding to "hot” is -2
  • the first supply air temperature correction value corresponding to "comfort” is 0, "cold”
  • the corresponding first supply air temperature correction value is +2, and the "very cold” corresponding first supply air temperature correction value is +4.
  • the supply air temperature is controlled as the sum of the body surface temperature and the first supply air temperature correction value until the subjective temperature and coldness level of the human body is a comfort level.
  • step S1032 if the human body is in the state of the cover, and the subjective warmth of the human body deviates from the comfort level.
  • the level of subjective warmth and coldness is the subjective temperature-cooling level of “hot” or “very hot” under cooling conditions, or “heating”. Cold or "very cold.”
  • Step S1042 detecting the body surface temperature and calling the second supply air temperature correction value corresponding to the current subjective temperature and cold feeling, and the second supply air temperature correction value is also a set corresponding to the temperature and cooling feeling level, and is stored in the air conditioning control chip.
  • the temperature set value in the numerical value is preferably a set of arithmetic progressions.
  • the second supply air temperature correction value corresponding to "very hot” is -3
  • the second supply air temperature correction value corresponding to "hot” is -1.5
  • the second supply air temperature correction value corresponding to "comfort” is 0, "cold”
  • the corresponding second supply air temperature correction value is +1.5
  • the "very cold” corresponding second supply air temperature correction value is +3.
  • the air supply temperature is controlled as the sum of the body surface temperature and the second air supply temperature correction value until the subjective temperature and coldness level of the human body is a comfort level, that is, the second air supply temperature correction value corresponding to the same temperature and cooling level is higher than the first Two supply air temperature correction values.
  • the air conditioner is simultaneously controlled to supply air to the human body area to improve user comfort. degree.
  • the air supply direction and the air supply temperature of the air conditioner can be controlled according to an accurate human sleep state, so that the user can have a good air conditioning experience during the sleep process.
  • the invention also discloses an air conditioner 1 which adopts a temperature and cooling sense based air conditioner control method as disclosed in any of the above embodiments.
  • air conditioner control method For a specific implementation of the air conditioner control method, refer to the detailed description of any one of the above embodiments and the drawings, and details are not described herein again. The same technical effect can be achieved by the air conditioner using the above air conditioner control method.
  • any process or method description in the flowcharts or otherwise described herein can be understood as representing code that includes one or more executable instructions for implementing the steps of a particular logical function or process. Modules, segments or portions, and the scope of the preferred embodiments of the invention includes additional implementations, which may not be in the order shown or discussed, including in a substantially simultaneous manner or in reverse order depending on the functionality involved. The functions are performed, which should be understood by those skilled in the art to which the embodiments of the present invention pertain.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.

Abstract

基于温冷感的睡眠模式控制方法,包括以下步骤:空调器进入睡眠模式;摄像头检测人体是否盖被,如果为非盖被状态,则判断人体的主观温冷感等级,如果偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第一送风温度校正值,控制送风温度为人体体表温度和第一送风温度校正值之和,直至人体的主观温冷感等级为舒适等级;如果为盖被状态,则判断人体的主观温冷感等级,如果偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第二送风温度校正值,控制送风温度为人体体表温度和第二送风温度校正值之和,直至人体的主观温冷感等级为舒适。同时还公开了一种空调器。本发明具有智能化程度高的优点。

Description

一种基于温冷感的睡眠模式控制方法和空调器 技术领域
本发明涉及空气调节设备技术领域,尤其涉及一种基于温冷感的睡眠模式控制方法和空调器。
背景技术
空调器在夏季用于制冷或者除湿,在冬季用于制热,能够调节室内温度,使得空调房间能够达到冬暖夏凉的舒适环境。在空调器保证空调房间舒适性的同时,空调生产厂家一直在致力于研发新的技术方案,使得空调器的能耗降低,提高空调器的使用效率。
现有技术的空调器,通常均设置有睡眠模式。如果是制冷工况下,进入睡眠模式后,则在室内温度达到设定温度或者运转时间达到1小时后,自动将设定温度升高1℃,再运转1小时后,再升高1℃。如果时在制热工况下,进入睡眠模式后,则在运转1小时后,自动将设定温度降低2℃,再运转1小时后再降低3℃。
不难看出,在上述控制方法中,设定温度的调节均没有考虑到用户的主观舒适度,相对来说控制精度较低。
发明内容
本发明提供一种基于温冷感的睡眠模式控制方法,根据精确检测的人的主观舒适度进行睡眠模式控制,提高用户的舒适度。
一种基于温冷感的睡眠模式控制方法,包括以下步骤:
空调器进入睡眠模式;
摄像头检测人体是否盖被,如果为非盖被状态,则判断人体的主观温冷感等级,如果人体的主观温冷感偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第一送风温度校正值,控制送风温度为人体体表温度和第一送风温度校正值之和,直至人体的主观温冷感等级为舒适等级;如果为盖被状态,则判断人体的主观温冷感等级,如果人体的主观温冷感偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第二送风温度校正值,控制送风温度为人体体表温度和第二送风温度校正值之和,直至人体的主观温冷感等级为舒适等级。
通过本发明所公开的睡眠模式的控制方法,可以依据准确的人体睡眠状态控制空调器的送风方向和送风温度,使得用户在睡眠过程中也可以有良好的空调体验,同时达到节约能耗的目的。
同时还公开了一种空调器,采用基于温冷感的睡眠模式控制方法。所述控制方法包括以下步骤:
空调器进入睡眠模式;
摄像头检测人体是否盖被,如果为非盖被状态,则判断人体的主观温冷感等级,如果人体的主观温冷感偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第一送风温度校正值,控制送风温度为人体体表温度和第一送风温度校正值之和,直至人体的主观温冷感等级为舒适等级;如果为盖被状态,则判断人体的主观温冷感等级,如果人体的主观温冷感偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第二送风温度校正值,控制送风温度为人体体表温度和第二送风温度校正值之和,直至人体的主观温冷感等级为舒适等级。
本发明所公开的空调器具有舒适程度高,智能化程度好的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所公开的基于温冷感的睡眠模式控制方法的流程图;
图2为图1所公开的控制方法中主观温冷感的一种检测方法流程图;
图3为图1所公开的控制方法中主观温冷感的另一种检测方法流程图;
图4为本发明所公开的空调器的示意性框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。另外,以下描述的第一特征在第二特征之"上"的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以下参照附图,对本发明所公开的基于温冷感的睡眠模式控制方法做具体的介绍。
步骤S101,空调器采用现有技术中的常见方式进入睡眠模式,如定时器或者通过遥控器或控制面板生成控制信号等。空调器上设置有摄像头以及可以采集热源绝对温度和热图像的红外传感器。
如步骤S102,摄像头检测人体是否盖被,人体是否盖被通过图像处理判断,现有技术中公开了多种类似的算法,不是本发明的保护重点,在此不再赘述。
如步骤S1031,如果人体为非盖被状态,则判断人体的主观温冷感等级。人体的主观温冷感等级可以通过如图2和图3中公开的任意一种方式检测判断。
具体来说,如图2所示,
步骤S201,采样空调房间内热源的体表温度T,空调房间的环境温度T 0,空调房间内热源的穿衣指数I clo
体表温度T通过红外传感器检测,优选的采样点为人体的额头温度。空调器回风口上设置有回风温度传感器,通过回风温度传感器采样空调房间的环境温度。空调器房间内热源的穿衣指数I clo可以通过对红外传感器生成的热图像分析得到。但一种更为优选的,采样穿衣指数I clo的方式为,空调器和服务器建立通信,服务器从气象局数据库中调取实时的推荐穿衣信息。在 空调器中预先存储有穿衣信息和穿衣指数I clo的一一对应关系,穿衣指数I clo为一个无量纲常数。
以下为一种可选择的穿衣信息和穿衣指数I clo之间的列表关系,随着穿衣信息对应的衣物厚度增加,穿衣指数I clo也保持递增关系。
穿衣信息 穿衣指数I clo
短袖衬衫、裤子、短裤、鞋 0.5
长袜、短袖衬衫、裙 0.55
衬衫、长裤、袜 0.6
衬衫、连衣裙、袜、鞋 0.7
步骤S202,将体表温度T、空调的环境温度T 0和空调房间内热源的穿衣指数I clo带入以下公式,计算体表散热量X;X=(h/(1+0.18h*I clo))(T-T 0),其中h=h r+h c,h r为放射热传导率,h c为对流热传导率,h优选取值8.35W/㎡℃。
步骤S203,判定热源所代表的用户的性别,主观温冷感与性别有很大的关系,如果不判断用户的性别,在判断结果上会存在一定程度的偏差。因此,首先利用设置在空调器上的摄像头,结合现有技术中图像处理判断性别的算法,判定热源所代表的用户性别。
如步骤S2041,如果用户为男性,则将体表散热量X带入以下公式,计算性别补偿T s:T s=k 1X+Q 1;如果用户为女性,则将体表散热量X带入以下公式,计算性别补偿T s:T s=Q 2-k 2X。其中k 1<k 2,Q 1<Q 2,优选的,k 1=0.005,k 2,=0.026;Q 1=0.3,Q 2=0.7。即如果用户为男性,则T s=0.005X+0.3,如果用户为女性,则T s=0.7-0.026X。通过上述性别补偿,在同样的体表散热量,如体表散热量为30时,可以对男性的主观温冷感进行正向校正,对女性的主观温冷感进行负向校正。
步骤S205,利用体表散热量和性别补偿计算主观温冷感Y,Y=Y=-K sX+M+T s,其中优选的,K s=-0.167,M=5.6。其中,常数k 1、k 2、Q 1、Q 2、K s、M的优选值均通过大量模拟实验得到。
优选的,当主观温冷感Y∈(-4,-2.5]时,主观温冷感等级为很冷,主观温冷感Y∈(-2.5,-1.5]时,主观温冷感等级为冷;主观温冷感Y∈(-1.5,1.5]时,主观温冷感等级为舒适;主观温冷感Y∈(1.5,2.5]时,主观温冷感等级为热;主观温冷感Y∈(2.5,4]时,主观温冷感等级为很热。
如图3所示为另一种检测判断主观温冷感的方法的流程图,具体来说,包括以下步骤:
步骤S301,采样空调房间内人体体表温度T,空调房间的环境温度T 0,空调房间内热源的穿衣指数I clo
空调器回风口上设置有回风温度传感器,通过回风温度传感器采样空调房间的环境温度。空调器房间内热源的穿衣指数I clo可以通过对红外传感器生成的热图像分析得到。但一种更为优选的,采样穿衣指数I clo的方式为,空调器和服务器建立通信,服务器从气象局数据库中调取实时的推荐穿衣信息。在空调器中预先存储有穿衣信息和穿衣指数I clo的一一对应关系,穿衣指数I clo为一个无量纲常数。
以下为一种可选择的穿衣信息和穿衣指数I clo之间的列表关系。随着穿衣信息对应的衣物厚度增加,穿衣指数I clo也保持递增关系。
穿衣信息 穿衣指数I clo
短袖衬衫、裤子、短裤、鞋 0.5
长袜、短袖衬衫、裙 0.55
衬衫、长裤、袜 0.6
衬衫、连衣裙、袜、鞋 0.7
步骤S302,将体表温度T、空调的环境温度T 0和空调房间内热源的穿衣指数I clo带入以下公式,计算体表散热量X;X=(h/(1+0.18h*I clo))(T-T 0),其中h=h r+h c,h r为放射热传导率,h c为对流热传导率,h优选取值8.35W/平方米。
步骤S303,将体表温度T,空调的环境温度T 0和空调房间内热源的穿衣指数I clo带入以下公式,计算穿衣补偿系数T r,T r=(I clo/(T-T 0))-T 0/T。
步骤S304,判定体表散热量是否大于设定散热量。人体散热量越大,人越觉得冷,人体散热量越小,人越觉得热。在夏季,当人体散热量较大时,即使室内的温度较高、人体体表温度也较高,人体也有可能由于室内湿度以及人体本身健康情况的原因出现主观温冷感为冷的情况。因此,当人体散热量较高时,需要对这种情况谨慎对待,尤其是人体在睡眠的状态下,以人体主观温冷感作为控制基础,可以将环境温度保持在最合理的情况。如果是由于人体本身的健康情况导致出现上述情况,空调器的及时响应也能为后续的 救助提供有利的环境。因此希望得到一个更为准确的人体主观温冷感检测值作为下一步控制的参考。通过大量的实验和理论指导,得到一个最容易出现上述情况的临界阈值,并将这一临界阈值作为设定散热量。
如步骤S3051,如果体表散热量大于设定散热量,则将体表散热量X和穿衣补偿系数T r带入以下公式,计算主观温冷感Y:
Y=-k 1X+Q 1+T r
如步骤S3052,如果体表散热量小于等于所述设定散热量,则将体表散热量X和穿衣补偿系数T r带入以下公式,计算主观温冷感Y:
Y=-k 2X+Q 2+T r
其中k 1<k 2,Q 1<Q 2,优选的,设定散热量为30W/㎡,k 1=0.09,k 2,=0.2;Q 1=1.5,Q 2=7.5。即当体表散热量大于30W/㎡时,Y=-0.09X+1.5+T r,当体表散热量小于30W/㎡时,Y=-0.2X+7.5+T r
在体表散热量高于或低于设定散热量时,利用两组不同的校正公式对主观温冷感的检测值进行校正,可以精确的检测出,尤其是人体体表散热量大,同时环境温度高、体表温度高的情况下的人体实际主观温冷感,降低误判的概率,为后续的控制提供准确的数据基础。
优选的,当主观温冷感Y∈(-4,-2.5]时,主观温冷感等级为很冷,主观温冷感Y∈(-2.5,-1.5]时,主观温冷感等级为冷;主观温冷感Y∈(-1.5,1.5]时,主观温冷感等级为舒适;主观温冷感Y∈(1.5,2.5]时,主观温冷感等级为热;主观温冷感Y∈(2.5,4]时,主观温冷感等级为很热。
也可以将主观温冷感的等级划分为7个或者更多,以提供更为细致的主观温冷感等级。
如图1所示,在步骤S1031中,如果人体为非盖被状态,且人体的主观温冷感偏离舒适等级。以划分为五个温冷感等级为例,偏离主观温冷感的等级即为,主观温冷感等级为制冷工况下的“热”或“很热”,或者制热工况下的“冷”或“很冷”。
步骤S1041,检测人体体表温度并调用当前主观温冷感所对应的第一送风温度校正值,第一送风温度校正值为一组与温冷感等级对应的,存储在空调控制芯片中的温度设定值,从数值上说,该组温度设定值优选为一组等差数列。“很热”对应的第一送风温度校正值为-4,“热”对应的第一送风温度校正值为-2,“舒适”对应的第一送风温度校正值为0,“冷”对应的第 一送风温度校正值为+2,“很冷”对应的第一送风温度校正值为+4。控制送风温度为人体体表温度和第一送风温度校正值之和,直至人体的主观温冷感等级为舒适等级。
类似的,在步骤S1032中,如果人体为盖被状态,且人体的主观温冷感偏离舒适等级。以划分为五个温冷感等级为例,偏离主观温冷感的等级即为,主观温冷感等级为制冷工况下的“热”或“很热”,或者制热工况下的“冷”或“很冷”。
步骤S1042,检测人体体表温度并调用当前主观温冷感所对应的第二送风温度校正值,第二送风温度校正值同样为一组与温冷感等级对应的,存储在空调控制芯片中的温度设定值,从数值上说,该组温度设定值优选为一组等差数列。“很热”对应的第二送风温度校正值为-3,“热”对应的第二送风温度校正值为-1.5,“舒适”对应的第二送风温度校正值为0,“冷”对应的第二送风温度校正值为+1.5,“很冷”对应的第二送风温度校正值为+3。控制送风温度为人体体表温度和第二送风温度校正值之和,直至人体的主观温冷感等级为舒适等级,即对应同一温冷感等级的第二送风温度校正值高于第二送风温度校正值。
当送风温度达到人体体表温度和第一送风温度校正值或人体体表温度和第二送风温度校正值之和后,同时控制空调器朝向人体所在区域送风,以提高用户的舒适度。
通过上述睡眠模式的控制方法,可以依据准确的人体睡眠状态控制空调器的送风方向和送风温度,使得用户在睡眠过程中也可以有良好的空调体验。
本发明还公开了一种空调器1,采用如上述任意一个实施例所公开的基于温冷感的空调器控制方法。空调器控制方法的具体实施方式参见如上述任意一个实施例和说明书附图的详细描述,在此不再赘述。采用上述空调器控制方法的空调器可以实现同样的技术效果。
需要说明的是,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施 例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
在本说明书的描述中,参考术语“一些实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

  1. 一种基于温冷感的睡眠模式控制方法,其特征在于,包括以下步骤:
    空调器进入睡眠模式;
    摄像头检测人体是否盖被,如果为非盖被状态,则判断人体的主观温冷感等级,如果人体的主观温冷感偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第一送风温度校正值,控制送风温度为人体体表温度和第一送风温度校正值之和,直至人体的主观温冷感等级为舒适等级;如果为盖被状态,则判断人体的主观温冷感等级,如果人体的主观温冷感偏离舒适等级,则检测人体体表温度并调用当前主观温冷感等级所对应的第二送风温度校正值,控制送风温度为人体体表温度和第二送风温度校正值之和,直至人体的主观温冷感等级为舒适等级。
  2. 根据权利要求1所述的基于温冷感的睡眠模式控制方法,其特征在于,对应同一温冷感等级的第一送风温度校正值高于第二送风温度校正值。
  3. 根据权利要求2所述的基于温冷感的睡眠模式控制方法,其特征在于,当送风温度达到人体体表温度和第一送风温度之和或达到人体体表温度和第二送风温度之和时控制空调器朝向人体所在区域送风。
  4. 根据权利要求3所述的基于温冷感的睡眠模式控制方法,其特征在于,
    所述主观温冷感通过以下方法检测:
    采样人体体表温度T,空调房间的环境温度T 0,空调房间内热源的穿衣指数I clo
    将体表温度T、空调的环境温度T 0和空调房间内热源的穿衣指数I clo带入以下公式,计算热源体表散热量X;X=(h/(1+0.18h*I clo))(T-T 0),其中h=h r+h c,h r为放射热传导率,h c为对流热传导率;
    判定热源所代表的用户性别:
    如果用户为男性,则根据下式计算性别补偿:
    T s=k 1X+Q 1
    如果用户为女性,则根据下式计算性别补偿:
    T s=Q 2-k 2X;其中k 1,k 2,Q 1,Q 2为常数,k 1<k 2,Q 1<Q 2
    计算主观温冷感Y,Y=-K sX+M+T s,其中K s,M为常数;
    根据所述主观温冷感Y的数值判定主观温冷感等级。
  5. 根据权利要求3所述的基于温冷感的睡眠模式控制方法,其特征在于,所述主观温冷感通过以下方法检测:
    采样空调房间内热源的体表温度T,空调房间的环境温度T 0,空调房间内热源的穿衣指数I clo
    将体表温度T、空调的环境温度T 0和空调房间内热源的穿衣指数I clo带入以下公式,计算热源体表散热量X;X=(h/(1+0.18h*I clo))(T-T 0),其中h=h r+h c,h r为放射热传导率,h c为对流热传导率;
    将体表温度T,空调的环境温度T 0和空调房间内热源的穿衣指数I clo带入以下公式,计算穿衣补偿系数T r,T r=(I clo/(T-T 0))-T 0/T;
    判定体表散热量是否大于设定散热量:
    如果大于所述设定散热量,则将体表散热量X和穿衣补偿系数T r带入以下公式,计算主观温冷感Y:
    Y=-k 1X+Q 1+T r
    如果小于等于所述设定散热量,则将体表散热量X和穿衣补偿系数T r带入以下公式,计算主观温冷感Y:
    Y=-k 2X+Q 2+T r;其中k 1,k 2,Q 1,Q 2为常数,k 1<k 2,Q 1<Q 2
    根据所述主观温冷感Y的数值判定主观温冷感等级。
  6. 根据权利要求4或5所述的基于温冷感的空调器控制方法,其特征在于,根据穿衣信息和穿衣指数I clo的对应关系确定所述穿衣指数I clo,空调器接收来自服务器的穿衣信息。
  7. 一种空调器,其特征在于,采用如权利要求1至6任一项所述的空调器控制方法。
PCT/CN2019/073214 2018-01-26 2019-01-25 一种基于温冷感的睡眠模式控制方法和空调器 WO2019144938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810077968.2A CN108317694B (zh) 2018-01-26 2018-01-26 一种基于温冷感的睡眠模式控制方法和空调器
CN201810077968.2 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019144938A1 true WO2019144938A1 (zh) 2019-08-01

Family

ID=62888521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073214 WO2019144938A1 (zh) 2018-01-26 2019-01-25 一种基于温冷感的睡眠模式控制方法和空调器

Country Status (2)

Country Link
CN (1) CN108317694B (zh)
WO (1) WO2019144938A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317694B (zh) * 2018-01-26 2019-12-31 青岛海尔空调器有限总公司 一种基于温冷感的睡眠模式控制方法和空调器
CN109506338B (zh) * 2018-11-21 2019-10-25 珠海格力电器股份有限公司 空调的控制方法、装置和空调
CN110895010B (zh) * 2019-11-08 2023-11-17 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
CN112050398A (zh) * 2020-08-31 2020-12-08 青岛海尔空调器有限总公司 空调器及其控制方法
CN112503741B (zh) * 2020-12-03 2021-12-14 珠海格力电器股份有限公司 空气调节设备及其控制方法、装置及存储介质
CN113375276B (zh) * 2021-06-28 2022-07-19 海信(广东)空调有限公司 空调器控制方法和空调器
CN113685992A (zh) * 2021-07-29 2021-11-23 重庆海尔空调器有限公司 一种防踢被的空调控制方法及装置
CN114017892B (zh) * 2021-11-22 2023-03-10 宁波奥克斯电气股份有限公司 一种睡眠模式控制方法、装置、可读存储介质及空调器
CN114636232A (zh) * 2022-03-18 2022-06-17 青岛海尔空调器有限总公司 用于修正热舒适度模型的方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940043A (zh) * 2014-04-17 2014-07-23 美的集团股份有限公司 空调器的舒适性控制方法及装置
CN104110786A (zh) * 2013-12-30 2014-10-22 广东美的制冷设备有限公司 智能空调及其睡眠控制装置和方法
CN105091205A (zh) * 2014-05-22 2015-11-25 邯郸美的制冷设备有限公司 空调器及其检测装置和空调器的检测方法、控制方法
CN105371438A (zh) * 2015-12-01 2016-03-02 青岛海尔空调器有限总公司 基于热成像的空调控制方法
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN108317694A (zh) * 2018-01-26 2018-07-24 青岛海尔空调器有限总公司 一种基于温冷感的睡眠模式控制方法和空调器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006494B (zh) * 2014-05-22 2017-06-06 邯郸美的制冷设备有限公司 空调器控制系统、空调器和空调器控制方法
CN104006491B (zh) * 2014-05-22 2017-06-06 美的集团股份有限公司 空调器和空调器控制方法
CN104006495B (zh) * 2014-05-22 2017-06-27 美的集团股份有限公司 空调器和空调器控制方法
CN104776551B (zh) * 2014-12-22 2017-09-15 珠海格力电器股份有限公司 一种空调下睡眠状态监测方法、装置及空调
JP6090383B2 (ja) * 2015-07-31 2017-03-08 ダイキン工業株式会社 空調制御システム
CN105371436B (zh) * 2015-12-01 2019-01-15 青岛海尔空调器有限总公司 空调睡眠控制方法
CN105485852B (zh) * 2015-12-30 2018-05-08 美的集团武汉制冷设备有限公司 基于体表温度的空调控制方法及装置
CN107560080A (zh) * 2017-09-05 2018-01-09 青岛海尔空调器有限总公司 空调控制方法及控制装置
CN107576022B (zh) * 2017-09-12 2020-12-11 广东美的制冷设备有限公司 空调器的控制方法、空调器、及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110786A (zh) * 2013-12-30 2014-10-22 广东美的制冷设备有限公司 智能空调及其睡眠控制装置和方法
CN103940043A (zh) * 2014-04-17 2014-07-23 美的集团股份有限公司 空调器的舒适性控制方法及装置
CN105091205A (zh) * 2014-05-22 2015-11-25 邯郸美的制冷设备有限公司 空调器及其检测装置和空调器的检测方法、控制方法
CN105371438A (zh) * 2015-12-01 2016-03-02 青岛海尔空调器有限总公司 基于热成像的空调控制方法
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN108317694A (zh) * 2018-01-26 2018-07-24 青岛海尔空调器有限总公司 一种基于温冷感的睡眠模式控制方法和空调器

Also Published As

Publication number Publication date
CN108317694A (zh) 2018-07-24
CN108317694B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019144938A1 (zh) 一种基于温冷感的睡眠模式控制方法和空调器
CN104896663A (zh) 空调器送风方式的调整方法、调整系统及空调器
TWI581642B (zh) 智能空調控制系統及其智能控制方法
WO2019144937A1 (zh) 基于穿衣补偿的温冷感空调器控制方法和空调器
WO2018076743A1 (zh) 一种智能空调器温度控制方法、系统及智能空调
CN108361926B (zh) 一种基于温冷感的空调器控制方法和空调器
JP6334299B2 (ja) 空調制御装置、空調制御方法、及びプログラム
CN103542490B (zh) 空调睡眠环境下的湿度控制方法及装置
WO2018233147A1 (zh) 新风机及其的控制方法和装置
CN110887175B (zh) 空调器的控制方法及空调器
WO2020164227A1 (zh) 用于空调器的控制方法
JP2011069577A (ja) 空気調和制御システム、空気調和制御方法、空気調和制御装置及び空気調和制御プログラム
CN106352476A (zh) 空调蒸发器自清洁的控制方法及装置
JP2022161933A (ja) 体感温度に基づいた自動スイッチオーバーサーモスタットシステム、及び空調された空間の体感温度を判定して自動制御する方法
Zhang et al. Smart indoor humidity and condensation control in the spring in hot-humid areas
WO2022028063A1 (zh) 温湿综合调节控制方法、调节设备、调节系统及介质
WO2020052483A1 (zh) 用于空调器的控制方法及空调器
CN105571077B (zh) 一种空调节能控制器温度调节方法
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2019144939A1 (zh) 一种基于温冷感的空调器控制方法和空调器
CN108317691B (zh) 基于性别补偿的温冷感空调器控制方法和空调器
CN105066356A (zh) 一种基于养老环境热舒适区的空调自动调整方法
WO2020000553A1 (zh) 空气调节设备及其控制方法和装置
WO2018120625A1 (zh) 空调器的控制方法、装置及空调器
JPWO2020035907A1 (ja) 空調装置、制御装置、空調方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743771

Country of ref document: EP

Kind code of ref document: A1