WO2022028063A1 - 温湿综合调节控制方法、调节设备、调节系统及介质 - Google Patents

温湿综合调节控制方法、调节设备、调节系统及介质 Download PDF

Info

Publication number
WO2022028063A1
WO2022028063A1 PCT/CN2021/096574 CN2021096574W WO2022028063A1 WO 2022028063 A1 WO2022028063 A1 WO 2022028063A1 CN 2021096574 W CN2021096574 W CN 2021096574W WO 2022028063 A1 WO2022028063 A1 WO 2022028063A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
interval
humidity
adjustment
moisture content
Prior art date
Application number
PCT/CN2021/096574
Other languages
English (en)
French (fr)
Inventor
张�浩
陶骙
黎顺全
雷俊杰
黄志刚
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to EP21853772.8A priority Critical patent/EP4155617A4/en
Publication of WO2022028063A1 publication Critical patent/WO2022028063A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts

Definitions

  • the present application relates to the technical field of virtual reality, and in particular, to a temperature and humidity comprehensive adjustment control method, adjustment device, adjustment system, and computer-readable storage medium.
  • the humidifier In order to improve the comfort of the air conditioner, the humidifier needs to be turned on when the air conditioner is turned on. Because the humidification function and temperature adjustment function can only be controlled independently. As a result, when the air conditioner performs cooling adjustment, the indoor relative humidity will be reduced. In order to ensure indoor humidity, it is necessary to turn on an independent humidification device for humidification. This results in a waste of resources and energy.
  • the main purpose of the present application is to provide a temperature and humidity comprehensive adjustment control method, adjustment device, adjustment system and computer-readable storage medium, aiming to achieve the effect of reducing the energy consumption of an air conditioner.
  • the present application provides a temperature and humidity comprehensive adjustment and control method
  • the temperature and humidity comprehensive adjustment and control method comprises the following steps:
  • the thermal comfort influencing parameter includes a user's clothing index, a user's activity level and/or a human metabolic rate.
  • the method before the step of acquiring the thermal comfort influence parameter corresponding to the user in the action space of the adjustment device and the preset relative humidity interval, the method further includes:
  • the step of obtaining the thermal comfort influence parameter corresponding to the user in the action space and the preset relative humidity interval includes:
  • the step of determining the dressing index according to the outdoor ambient temperature includes:
  • the clothing index corresponding to the acquired outdoor environmental temperature is determined.
  • the step of acquiring the outdoor ambient temperature corresponding to the space where the adjusting device is located includes:
  • the outdoor ambient temperature is determined according to the location information and the weather forecast data.
  • the method before the step of determining the clothing index according to the outdoor ambient temperature, the method further includes:
  • the step of determining the dressing index according to the outdoor ambient temperature includes:
  • the dressing index is determined according to at least one of the current season and the current solar term, the current time, and the outdoor temperature.
  • the method before the step of acquiring the thermal comfort influence parameter corresponding to the user in the action space and the preset relative humidity interval, the method further includes:
  • the step of obtaining the thermal comfort influence parameter corresponding to the user in the action space of the adjustment device and the preset relative humidity interval includes:
  • the activity amount corresponding to the user in the action space of the conditioning device is determined according to the temperature detection data, and the preset relative humidity interval is acquired.
  • the step of determining the target temperature interval according to at least one of the clothing index and the activity level and the preset relative humidity interval includes:
  • the target temperature interval is determined according to the first temperature curve and the second temperature curve.
  • the method before the step of determining the target moisture content interval according to the relative humidity interval, the method further includes:
  • the step of determining the target moisture content interval according to the relative humidity interval and the target temperature interval includes:
  • the target moisture content interval is determined according to the moisture content curve.
  • the operating parameters of the adjustment device are determined according to the current temperature, the current moisture content, the target moisture content interval and the target temperature interval in the action space, and the adjustment is controlled. Before the step of running the device according to the determined operating parameters, it further includes:
  • the current temperature and the current moisture content in the working space of the air conditioner are acquired.
  • the operating parameters of the adjustment device are determined according to the current temperature, the current moisture content, the target moisture content interval and the target temperature interval in the action space, and the adjustment is controlled.
  • the steps that the equipment operates according to the determined operating parameters include:
  • the regulating device is controlled to operate according to the determined operating parameters.
  • the conditioning device includes a temperature conditioning component and a humidity conditioning component, wherein the temperature conditioning component and the humidity conditioning component may be provided separately or integrally.
  • the present application also provides an adjustment device, the adjustment device includes: a memory, a processor, and a temperature-humidity comprehensive adjustment control program stored in the memory and running on the processor, When the temperature and humidity comprehensive adjustment control program is executed by the processor, the steps of the above-mentioned temperature and humidity comprehensive adjustment control method are realized.
  • the conditioning device is an air conditioner with a humidity conditioning function and a temperature conditioning function.
  • the present application also provides a conditioning system
  • the conditioning system includes a humidity conditioning device, a temperature conditioning device and a control unit
  • the control unit memory, the processor and the memory are stored on the memory and can be stored in the memory.
  • the temperature and humidity comprehensive adjustment control program running on the processor when the temperature and humidity comprehensive adjustment control program is executed by the processor, implements the steps of the above-mentioned temperature and humidity comprehensive adjustment control method.
  • the present application also provides a computer-readable storage medium, where a temperature-humidity comprehensive adjustment control program is stored on the computer-readable storage medium, and the temperature and humidity comprehensive adjustment control program is implemented when executed by a processor The steps of the temperature and humidity comprehensive adjustment and control method as described above.
  • a temperature and humidity comprehensive adjustment control method proposed in the embodiment of the present application first obtains the thermal comfort influence parameter corresponding to the user in the action space of the adjustment device and the preset relative humidity interval, and then, according to the thermal comfort influence parameter and the relative humidity
  • the humidity interval determines the target temperature interval, and determines the target humidity interval according to the preset relative humidity interval, and finally determines the target humidity interval according to the current temperature in the action space, the current humidity, the target humidity interval and the
  • the target temperature interval determines the operating parameters of the regulating device, and controls the regulating device to operate according to the determined operating parameters.
  • the humidity factor and temperature factor are comprehensively considered, so that the air conditioner is adjusted according to the determined operating parameter, and the adjustment is made by combining the humidity factor and the temperature factor, thus avoiding the cooling adjustment caused by the independent adjustment of the air conditioner.
  • the indoor relative humidity is reduced, the effect of reducing the energy consumption of the air conditioner is achieved.
  • the operating parameters of the air conditioner can be adjusted in combination with the humidity factor and the temperature factor, the phenomenon of degrading comfort caused by independence is also avoided, thereby achieving the effect of improving the comfort of the air conditioner.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an embodiment of the temperature and humidity comprehensive adjustment and control method of the present application
  • FIG. 3 is a schematic flowchart of another embodiment of the temperature and humidity comprehensive adjustment and control method of the present application.
  • FIG. 4 is a schematic diagram of a comfort zone involved in an embodiment of the present application.
  • the humidity factor and temperature factor are comprehensively considered, so that the air conditioner is adjusted according to the determined operating parameter, and the adjustment is made by combining the humidity factor and the temperature factor, thus avoiding the cooling adjustment caused by the independent adjustment of the air conditioner.
  • the indoor relative humidity is reduced, the effect of reducing the energy consumption of the air conditioner is achieved.
  • the operating parameters of the air conditioner can be adjusted in combination with the humidity factor and the temperature factor, the phenomenon of degrading comfort caused by independence is also avoided, thereby achieving the effect of improving the comfort of the air conditioner.
  • Fig. 1 is a schematic diagram of the terminal structure of the hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal in this embodiment of the present application may be a terminal device such as an air conditioner.
  • the terminal may include: a processor 1001 , such as a CPU, a network interface 1004 , a user interface 1003 , a memory 1005 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard, etc.
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 1005 may be high-speed RAM memory, or may be non-volatile memory, such as disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a temperature and humidity comprehensive adjustment control program.
  • the network interface 1004 is mainly used to connect to the background server, and perform data communication with the background server;
  • the processor 1001 can be used to call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and perform the following operations:
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the step of obtaining the thermal comfort influence parameter corresponding to the user in the action space and the preset relative humidity interval includes:
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the clothing index corresponding to the acquired outdoor environmental temperature is determined.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the outdoor ambient temperature is determined according to the location information and the weather forecast data.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the step of determining the dressing index according to the outdoor ambient temperature includes:
  • the dressing index is determined according to at least one of the current season and the current solar term, the current time, and the outdoor temperature.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the step of acquiring the thermal comfort influence parameter corresponding to the user in the action space of the adjustment device and the preset relative humidity interval includes:
  • the activity amount corresponding to the user in the action space of the conditioning device is determined according to the temperature detection data, and the preset relative humidity interval is acquired.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the target temperature interval is determined according to the first temperature curve and the second temperature curve.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the step of determining the target moisture content interval according to the relative humidity interval and the target temperature interval includes:
  • the target moisture content interval is determined according to the moisture content curve.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the current temperature and the current moisture content in the working space of the air conditioner are acquired.
  • processor 1001 can call the temperature and humidity comprehensive adjustment control program stored in the memory 1005, and also perform the following operations:
  • the regulating device is controlled to operate according to the determined operating parameters.
  • the temperature and humidity comprehensive adjustment and control method includes the following steps:
  • Step S10 obtaining thermal comfort influence parameters corresponding to the user in the action space of the adjustment device and a preset relative humidity interval
  • Step S20 determining a target temperature interval according to the thermal comfort influence parameter and the relative humidity interval
  • Step S30 determining a target moisture content interval according to the preset relative humidity interval.
  • Step S40 Determine the operating parameters of the adjustment device according to the current temperature, the current moisture content, the target moisture content interval and the target temperature interval in the action space, and control the adjustment device to operate according to the determined parameters. run with the above operating parameters.
  • the present application proposes a temperature and humidity comprehensive adjustment control method, which aims to realize the comprehensive humidity and temperature control of the air conditioner, thereby achieving the effect of reducing the power consumption of the air conditioner.
  • the integrated humidity and temperature control of the air conditioner can also keep the temperature and humidity of the air conditioner within a comfortable range, thereby improving the comfort of the air conditioner.
  • the thermal comfort influencing parameter is quantifiable data that affects the thermal comfort of the user, for example, may include the user's clothing index, the user's activity level, and/or the human metabolic rate.
  • the present application will be explained using an air conditioner that performs humidification and temperature regulation functions as an execution device.
  • the air conditioner may first acquire at least one of the clothing index and the activity level corresponding to the user in the action space of the air conditioner, and acquire a preset relative humidity interval.
  • the above-mentioned preset relative humidity interval can be determined by the manufacturer of the air conditioner according to experimental data, and stored in a database corresponding to the air conditioner in advance.
  • the database may be a local database of the air conditioner, and/or a network database set on the server.
  • the air conditioner is further provided with a network module, so that the air conditioner can communicate with the server, so that the air conditioner can acquire the data stored in the network database provided in the server. And/or receive the update data package sent by the network server, and update the specific value of the preset relative humidity interval stored in the local database according to the update data package sent by the network server.
  • the outdoor ambient temperature corresponding to the location of the air conditioner may be obtained first, and then the above-mentioned dressing index may be determined according to the outdoor ambient temperature.
  • the air conditioner can also be provided with an infrared detection sensor, so that the air conditioner can check the temperature detection data corresponding to the user in the action space through the infrared detection sensor, and then determine the user's clothing index and/or according to the temperature detection data. or the amount of activity mentioned above.
  • the air conditioner is provided with an outdoor temperature detection sensor, so that the air conditioner can obtain the outdoor temperature through the outdoor temperature detection sensor. And/or the above air conditioner has been connected to the network, so that the air conditioner can first determine the positioning data corresponding to the local end based on the network connected to itself, and then obtain the current time based on the network connected to itself, and/or obtain the current time according to local data. Then, the above-mentioned positioning data is sent to the server, so as to obtain weather forecast data corresponding to the above-mentioned positioning data through the server. Furthermore, the outdoor temperature is determined according to the current time and the weather forecast data.
  • the corresponding relationship between the outdoor temperature and the clothing index can be obtained, and then the clothing index corresponding to the user in the action space at the current moment can be determined according to the corresponding relationship.
  • the above-mentioned correspondence between the outdoor temperature and the clothing index may be stored in the database of the air conditioner in the form of a table, as shown in Table 1 below:
  • a temperature chart corresponding to the user in the action space can be generated according to the temperature detection data, and then the user's activity amount can be determined according to the temperature chart.
  • the target temperature interval may be determined first.
  • the manufacturer of the air conditioner may store a first somatosensory index and a second somatosensory index in the air conditioner in advance, wherein the above-mentioned first somatosensory index may be set to be smaller than the above-mentioned second somatosensory index.
  • the above-mentioned first somatosensory index and second somatosensory index refer to the PMV (Predicted Mean Vote, an evaluation index representing the thermal response of the human body) stored in the database in advance. Set the above PMV as the PMV corresponding to different regions.
  • the first and second somatosensory indices are set as PMV chn (an estimated average thermal sensation index suitable for the physique of Chinese people).
  • PMV chn an estimated average thermal sensation index suitable for the physique of Chinese people.
  • the PMV chn value is 0, the comfort is the best; when the PMV chn is a positive value, the comfort is slightly warmer, and the larger the absolute value is, the hotter it is; when the PMVchn is negative, the comfort is slightly colder, and the absolute value The bigger the colder.
  • the first somatosensory index is set to -0.2
  • the second thermal sensitivity index is set to 0.3.
  • t cl represents the clothing surface temperature, in °C
  • the calculation formula is:
  • h c convective heat transfer coefficient in W/(m2 °C), is related to the air velocity and the temperature difference between the ambient temperature and the surface of the human clothing;
  • W is the heat consumed by external work (negligible for most activities), in W/m 2 ;
  • the clothing index Ci is determined according to the outdoor ambient temperature and the corresponding season, and the value ranges from 0.3 to 1.1.
  • T1 is the air temperature, in °C
  • v ar is the air velocity (wind speed), in m/s;
  • P a is the partial pressure of water vapor, calculated according to formula (XX), and the unit is P a ;
  • b is the thermal sensitivity characteristic coefficient, which indicates the degree of deviation of the thermal sensation of the human body from the theoretical comfortable temperature. The larger the absolute value of the coefficient, the greater the degree of deviation from the relative comfortable temperature under this working condition.
  • Pa represents the partial pressure of water vapor
  • ta is the temperature value
  • the inverse temperature function can be calculated and solved, and then the first temperature curve can be determined according to the inverse temperature function. .
  • the second temperature curve may be determined according to the second somatosensory index.
  • the above target temperature range is determined according to the above temperature curve. That is to say, in the temperature graph, the temperature range with the first temperature curve as the lower boundary and the second temperature curve as the upper boundary is taken as the target temperature range.
  • first temperature boundary value and second temperature boundary value are only determined according to the clothing index or the activity level
  • one of the clothing index and the activity level can be used as the data acquired in real time, and the other can be used as the data obtained in advance. Fixed constant stored in the air conditioner.
  • a calculation model can be generated according to the above formula and stored in the air conditioner, so that after the air conditioner obtains the above-mentioned clothing index and or the above-mentioned activity amount, it can be Through the calculation model, the corresponding target temperature range can be directly obtained.
  • the moisture content interval may also be determined according to the above preset humidity interval. Specifically, the steam partial pressure value (ie the saturated steam partial pressure) in the working space of the air conditioner can be obtained first, wherein the above steam partial pressure value can be based on the Hyland-Wexler formula Calculated.
  • the target moisture content interval may be determined according to the steam partial pressure value and the relative humidity interval. 4, the preset relative humidity interval [m,n] and the first temperature curve and the second temperature curve respectively intersect with point A, point B, point C and point D, and then based on the above steam partial pressure value and Temperature value, the moisture content curves d1, d2, d3 and d4 corresponding to points A, B, C and D can be calculated respectively.
  • the boundary value corresponding to the target moisture content interval may be calculated according to the above-mentioned steam partial pressure value and the above-mentioned relative humidity interval.
  • the current temperature and current moisture content in the action space can be obtained, and then according to the current temperature, current moisture content,
  • the target moisture content interval and the target temperature interval determine the operating parameters of the air conditioner, and control the air conditioner to operate according to the determined operating parameters.
  • a first correspondence between the current temperature value and the target temperature interval, and a second correspondence between the current moisture content and the target humidity interval may be determined first, and then according to The first corresponding relationship and the second corresponding relationship determine operating parameters of the air conditioner, and control the air conditioner to operate according to the determined operating parameters.
  • the above-mentioned first correspondence includes the lower boundary of the current temperature being less than the above-mentioned target temperature interval, the current temperature being within the above-mentioned target temperature interval and the upper boundary corresponding to the current temperature being greater than the target temperature interval.
  • the second correspondence includes the lower boundary of the current moisture content less than the target moisture content interval, the current moisture content within the target moisture content interval and the upper boundary corresponding to the current moisture content greater than the target moisture content interval.
  • the adjustment system when the temperature-humidity comprehensive adjustment control method is performed by an adjustment system, the adjustment system includes a humidity adjustment device, a temperature adjustment device, and a control unit.
  • the control unit is configured to determine the operating parameters of the humidity adjustment device and the temperature adjustment device based on the above-mentioned temperature and humidity comprehensive adjustment control method, so as to comprehensively control the humidity adjustment device and the temperature adjustment device to achieve the effect of temperature and humidity comprehensive adjustment.
  • the above-mentioned temperature adjusting device may be set as an air conditioner
  • the above-mentioned humidity adjusting device may be set as a humidifier.
  • the humidifier and air conditioner can be wired or wirelessly connected to the above control unit.
  • the above-mentioned control unit may be provided integrally with the humidifier or the air conditioner, or may be provided independently of the humidifier and the air conditioner. This embodiment does not specifically limit this.
  • At least one of the clothing index and activity amount corresponding to the user in the action space of the air conditioner and the preset relative humidity interval are obtained first, and then according to the clothing index and the At least one of the activity levels and the relative humidity interval determine the target temperature interval, and determine the target humidity interval according to the preset relative humidity interval, and finally determine the target humidity interval according to the current temperature, current humidity,
  • the target moisture content interval and the target temperature interval determine operating parameters of the air conditioner, and control the air conditioner to operate according to the determined operating parameters.
  • the humidity factor and temperature factor are comprehensively considered, so that the air conditioner is adjusted according to the determined operating parameter, and the adjustment is made based on the humidity factor and the temperature factor, thus avoiding the cooling adjustment caused by the independent adjustment of the air conditioner.
  • the indoor relative humidity is reduced, the effect of reducing the energy consumption of the air conditioner is achieved.
  • the operating parameters of the air conditioner can be adjusted in combination with the humidity factor and the temperature factor, the phenomenon of degrading comfort caused by independence is also avoided, thereby achieving the effect of improving the comfort of the air conditioner.
  • the above-mentioned determination of the operating parameters of the air conditioner, and the steps of controlling the air conditioner to operate according to the determined operating parameters include:
  • Step S41 determines a first correspondence between the current temperature value and the target temperature interval, and a second correspondence between the current moisture content and the target humidity interval;
  • Step S42 determining the operating parameters of the adjusting device according to the first corresponding relationship and the second corresponding relationship.
  • Step S43 controlling the adjusting device to operate according to the determined operating parameters.
  • a first correspondence between the current temperature value and the target temperature interval, and a second correspondence between the current moisture content and the target humidity interval may be determined first , and then determine the operation mode of the air conditioner according to the first and second correspondences.
  • the air conditioner stores operating parameters corresponding to different operating modes in advance, so that after determining the operating mode, the operating parameters corresponding to the determined operating mode can be obtained.
  • the mapping relationship between the first correspondence relationship and the second correspondence relationship and the operation mode may be pre-stored.
  • t1 and t4 are the extension lines of the upper boundary of the comfort zone temperature T max
  • t2 and t3 are the extension lines of the lower boundary of the comfort zone temperature T min
  • d1 is the lower temperature boundary and the humidity right boundary
  • d2 is the moisture content line between the upper temperature boundary and the humidity right boundary endpoint
  • d3 is the humidity content line between the temperature upper boundary and the humidity left boundary m endpoint
  • d4 is the temperature lower boundary and the humidity left boundary endpoint.
  • Moisture content line
  • the mapping relationship between the first corresponding relationship and the second corresponding relationship and the above-mentioned operating mode may be stored in the database in the form of a table, as shown in Table 2 below:
  • Cooling and dehumidification T>t4 d>d 2 Wait for humidity to cool down T>T max d ⁇ [d 3 , d 4 ] Cooling and humidifying T>t 3 d ⁇ d 4 Isenthalpic humidification T ⁇ [t 2 , t 1 ] d ⁇ m Warming and humidifying T ⁇ t 2 d ⁇ d 4 Wait for humidity to warm up T ⁇ Tmin d ⁇ [d 4 , d 1 ] heating and dehumidification T ⁇ t 3 d>d 1 Constant temperature dehumidification T ⁇ [t 3 , t 4 ] d>n
  • the air conditioner operates the cooling and dehumidification mode, and controls the temperature of the indoor heat exchanger to be lower than the dew point temperature for cooling, so as to achieve the purpose of cooling and dehumidification.
  • the indoor heat exchanger of the air conditioner can be controlled to cool at a temperature higher than the dew point temperature, so as to avoid humidity caused by condensation of the indoor heat exchanger. drop, so as to achieve isohumidity cooling.
  • the indoor heat exchanger of the air conditioner in order to ensure the cooling effect of the air conditioner, it is also possible to control the indoor heat exchanger of the air conditioner to be slightly lower than the dew point temperature in the isohumidity cooling mode.
  • the difference between the dew point temperature and the heat exchanger temperature is smaller than the preset difference.
  • the preset difference value can be customized by the manufacturer. Further, the operation of the humidifying device is controlled according to the difference value to maintain the indoor humidity.
  • the air conditioner In the cooling and humidifying mode, it is determined that cooling and humidification are required in the working space. Therefore, the air conditioner operates in the cooling and humidifying mode, and the cooling and humidifying of the air conditioner are avoided at the same time to prevent condensation caused by the encounter between the cooling air and the humidifying water vapor.
  • the specific method may be: first cooling and cooling without humidifying, and then turning off the cooling and air supply for humidification after the temperature is reached; or cooling and humidification are performed intermittently.
  • the air conditioner In the isenthalpy humidification mode, it is judged that the air conditioner only needs humidification, so the air conditioner can be controlled to run the humidification mode directly.
  • the air conditioner In the heating and humidifying mode, it is determined that there is a demand for humidification and heating in the action space, and the air conditioner operates in the heating and humidifying mode at this time.
  • the air conditioner In the isohumidity heating mode, it is determined that there is only heating demand in the action space. At this time, the air conditioner operates in the heating mode without humidification.
  • the air conditioner In the heating and dehumidification mode, it is determined that there is a demand for dehumidification and heating in the action space. At this time, the air conditioner operates in the dehumidification and reheating mode.
  • the evaporation temperature is controlled to be lower than the target dew point temperature for dehumidification.
  • the reheater uses the reheater to heat the dehumidified air to increase the air outlet temperature;
  • the air conditioner with electric auxiliary heat reheating according to the control method of the system, run the refrigeration to control the evaporation temperature to be lower than the target dew point temperature to dehumidify, and then control the electric auxiliary heat to dehumidify.
  • the thermal power heats the dehumidified air and increases the outlet air temperature.
  • the air conditioner In the constant temperature dehumidification mode, it is determined that there is a need to maintain the temperature and dehumidify the action space. At this time, the air conditioner operates in the constant temperature dehumidification mode, and the control method is the same as that of the heating and dehumidification.
  • the air conditioner is controlled to operate according to the determined operating parameters.
  • the current time information may also be obtained.
  • the temperature and the current time information determine the current season information, and then the clothing index is determined according to the correlation between the outdoor temperature and the seasonal information and the clothing index.
  • the above-mentioned association relationship can be pre-saved in the database in the form of a table, as shown in Table 3 below:
  • the above-mentioned dressing index can also be determined according to the twenty-four solar terms and the above-mentioned outdoor temperature. Alternatively, the above dressing index may be determined in combination with the season, the above twenty-four solar terms, and the above outdoor ambient temperature.
  • the current time information is acquired, the current season information is determined according to the outdoor temperature and the current time information, and then the correlation between the outdoor temperature and the season information and the clothing index is determined.
  • the above-mentioned clothing index is determined according to the relationship, thus achieving the effect of improving the accuracy of the obtained clothing index.
  • an embodiment of the present application also proposes an air conditioner, the air conditioner includes a memory, a processor, and a temperature and humidity comprehensive adjustment control program stored on the memory and executable on the processor, the temperature and humidity When the integrated adjustment control program is executed by the processor, the steps of the temperature and humidity integrated adjustment and control methods described in the above embodiments are realized.
  • an embodiment of the present application also proposes a computer-readable storage medium, where a temperature-humidity comprehensive adjustment control program is stored on the computer-readable storage medium, and the temperature and humidity comprehensive adjustment control program is executed by a processor to achieve the above implementations The steps of the temperature and humidity comprehensive adjustment and control method described in the example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种温湿综合调节控制方法,包括以下步骤:获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间(S10);根据热舒适影响参数以及相对湿度区间确定目标温度区间(S20);根据预设的相对湿度区间确定目标含湿量区间(S30);以及根据作用空间内的当前温度、当前含湿量、目标含湿量区间以及目标温度区间确定调节设备的运行参数,并控制调节设备根据确定的运行参数运行(S40)。

Description

温湿综合调节控制方法、调节设备、调节系统及介质
优先权信息
本申请要求于2020年8月7日申请的、申请号为202010793953.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及虚拟现实技术领域,尤其涉及温湿综合调节控制方法、调节设备、调节系统及计算机可读存储介质。
背景技术
为提高空调器的舒适性,在空调开启的同时,需要开启加湿器。由于加湿功能和调温功能只能独立控制。这样导致在空调器进行降温调节时,会降低室内相对湿度。为保障室内湿度,需要开启独立的加湿装置,进行加湿。这样造成资源及能源的浪费。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种温湿综合调节控制方法、调节设备、调节系统及计算机可读存储介质,旨在达成降低空调器的能耗的效果。
为实现上述目的,本申请提供一种温湿综合调节控制方法,所述温湿综合调节控制方法包括以下步骤:
获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间;
根据所述热舒适影响参数以及所述相对湿度区间确定目标温度区间;
根据所述预设的相对湿度区间确定目标含湿量区间;以及
根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根 据确定的所述运行参数运行。
在一实施例中,所述热舒适影响参数包括用户穿衣指数、用户活动量和/或人体代谢率。
在一实施例中,所述获取调节设备的作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤之前,还包括:
获取所述调节设备所在空间对应的室外环境温度;
所述获取作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤包括:
根据所述室外环境温度确定所述穿衣指数;
获取所述预设的相对湿度区间。
在一实施例中,所述根据所述室外环境温度确定所述穿衣指数的步骤包括:
根据预存的室外环境温度与穿衣指数之间的对应关系,确定获取到的所述室外环境温度对应的所述穿衣指数。
在一实施例中,所述获取所述调节设备所在空间对应的室外环境温度的步骤包括:
获取所述调节设备对应的位置信息以及天气预报数据;以及
根据所述位置信息以及所述天气预报数据,确定所述室外环境温度。
在一实施例中,所述根据所述室外环境温度确定所述穿衣指数的步骤之前,还包括:
获取当前时间;
根据所述当前时间以及所述位置信息确定所述设备所在空间对应的当前季节和/或当前节气;
所述根据所述室外环境温度确定所述穿衣指数的步骤包括:
根据所述当前季节和所述当前节气中的至少一个,以及所述当前时间以及所述室外温度确定所述穿衣指数。
在一实施例中,所述获取作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤之前,还包括:
获取所述调节设备所在环境的红外检测传感器检测的温度检测数据;
所述获取调节设备的作用空间内的用户对应的热舒适影响参数以及预设 的相对湿度区间的步骤包括:
根据所述温度检测数据确定所述调节设备的作用空间内的用户对应的所述活动量,并获取所述预设的相对湿度区间。
在一实施例中,所述根据所述穿衣指数和所述活动量中的至少一个,以及所述预设的相对湿度区间确定目标温度区间的步骤包括:
获取预存的第一热感指数和第二热感指数,其中,所述第一热感指数小于所述第二热感指数;
根据所述穿衣指数和所述活动量中的至少一个,以及所述第一热感指数和所述相对湿度区间确定第一温度曲线;
根据所述穿衣指数和所述活动量中的至少一个,以及所述第二热感指数和所述相对湿度区间确定第二温度曲线;以及
根据第一温度曲线和所述第二温度曲线确定所述目标温度区间。
在一实施例中,所述根据所述相对湿度区间确定目标含湿量区间的步骤之前,还包括:
获取所述调节设备的作用空间内的蒸汽分压值;
所述根据所述相对湿度区间及所述目标温度区间确定目标含湿量区间的步骤包括:
根据所述蒸汽分压值以及所述相对湿度区间确定含湿量曲线;
根据所述含湿量曲线确定所述目标含湿量区间。
在一实施例中,所述根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行的步骤之前,还包括:
获取所述空调器的作用空间内的所述当前温度和所述当前含湿量。
在一实施例中,所述根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行的步骤包括:
确定所述当前温度值与所述目标温度区间之间的第一对应关系,以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系;
根据所述第一对应关系与所述第二对应关系确定所述调节设备的运行参数;以及
控制所述调节设备根据确定的所述运行参数运行。
在一实施例中,所述调节设备包括温度调节组件和湿度调节组件,其中,所述温度调节组件和所述湿度调节组件可以分离设置或者一体设置。
此外,为实现上述目的,本申请还提供一种调节设备,所述调节设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的温湿综合调节控制程序,所述温湿综合调节控制程序被所述处理器执行时实现如上所述的温湿综合调节控制方法的步骤。
在一实施例中,所述调节设备为具备湿度调节功能和温度调节功能的空调器。
此外,为实现上述目的,本申请还提供一种调节系统,所述调节系统包括湿度调节装置、温度调节装置以及控制单元,所述控制单元存储器、处理器及存储在所述存储器上并可在所述处理器上运行的温湿综合调节控制程序,所述温湿综合调节控制程序被所述处理器执行时实现如上所述的温湿综合调节控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有温湿综合调节控制程序,所述温湿综合调节控制程序被处理器执行时实现如上所述的温湿综合调节控制方法的步骤。
本申请实施例提出的一种温湿综合调节控制方法先获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间,然后,根据所述热舒适影响参数以及所述相对湿度区间确定目标温度区间,并根据所述预设的相对湿度区间确定目标含湿量区间,最后根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行。由于确定运行参数时,综合考虑湿度因素和温度因素,从而使得根据确定的运行参数调节空调器是,是综合湿度因素和温度因素进行调节的,从而避免了空调器独立调节时,导致出现降温调节时,会降低室内相对湿度的现象发生, 从而达成降低空调器的能耗的效果。并且,由于可以综合湿度因素和温度因素调整空调器的运行参数,从而还避免了独立导致的舒适性下降的现象发生,从而还达成了提高空调器的舒适性的效果。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本申请温湿综合调节控制方法的一实施例的流程示意图;
图3为本申请温湿综合调节控制方法的另一实施例的流程示意图;
图4为本申请实施例涉及的舒适区域示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:
获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间;
根据所述热舒适影响参数以及所述相对湿度区间确定目标温度区间;
根据所述预设的相对湿度区间确定目标含湿量区间;以及
根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行。
由于确定运行参数时,综合考虑湿度因素和温度因素,从而使得根据确定的运行参数调节空调器是,是综合湿度因素和温度因素进行调节的,从而避免了空调器独立调节时,导致出现降温调节时,会降低室内相对湿度的现象发生,从而达成降低空调器的能耗的效果。并且,由于可以综合湿度因素和温度因素调整空调器的运行参数,从而还避免了独立导致的舒适性下降的现象发生,从而还达成了提高空调器的舒适性的效果。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构 示意图。
本申请实施例终端可以是空调器等终端设备。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘等,可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及温湿综合调节控制程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;处理器1001可以用于调用存储器1005中存储的温湿综合调节控制程序,并执行以下操作:
获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间;
根据所述热舒适影响参数以及所述相对湿度区间确定目标温度区间;
根据所述预设的相对湿度区间确定目标含湿量区间;以及
根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取所述调节设备所在空间对应的室外环境温度;
所述获取作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤包括:
根据所述室外环境温度确定所述穿衣指数;
获取所述预设的相对湿度区间。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
根据预存的室外环境温度与穿衣指数之间的对应关系,确定获取到的所述室外环境温度对应的所述穿衣指数。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取所述调节设备对应的位置信息以及天气预报数据;以及
根据所述位置信息以及所述天气预报数据,确定所述室外环境温度。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取当前时间;
根据所述当前时间以及所述位置信息确定所述设备所在空间对应的当前季节和/或当前节气;
所述根据所述室外环境温度确定所述穿衣指数的步骤包括:
根据所述当前季节和所述当前节气中的至少一个,以及所述当前时间以及所述室外温度确定所述穿衣指数。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取所述调节设备所在环境的红外检测传感器检测的温度检测数据;
所述获取调节设备的作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤包括:
根据所述温度检测数据确定所述调节设备的作用空间内的用户对应的所述活动量,并获取所述预设的相对湿度区间。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取预存的第一热感指数和第二热感指数,其中,所述第一热感指数小于所述第二热感指数;
根据所述穿衣指数和所述活动量中的至少一个,以及所述第一热感指数 和所述相对湿度区间确定第一温度曲线;
根据所述穿衣指数和所述活动量中的至少一个,以及所述第二热感指数和所述相对湿度区间确定第二温度曲线;以及
根据第一温度曲线和所述第二温度曲线确定所述目标温度区间。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取所述调节设备的作用空间内的蒸汽分压值;
所述根据所述相对湿度区间及所述目标温度区间确定目标含湿量区间的步骤包括:
根据所述蒸汽分压值以及所述相对湿度区间确定含湿量曲线;
根据所述含湿量曲线确定所述目标含湿量区间。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
获取所述空调器的作用空间内的所述当前温度和所述当前含湿量。
进一步地,处理器1001可以调用存储器1005中存储的温湿综合调节控制程序,还执行以下操作:
确定所述当前温度值与所述目标温度区间之间的第一对应关系,以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系;
根据所述第一对应关系与所述第二对应关系确定所述调节设备的运行参数;以及
控制所述调节设备根据确定的所述运行参数运行。
参照图2,在本申请温湿综合调节控制方法的一实施例中,所述温湿综合调节控制方法包括以下步骤:
步骤S10、获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间;
步骤S20、根据所述热舒适影响参数以及所述相对湿度区间确定目标温度区间;
步骤S30、根据所述预设的相对湿度区间确定目标含湿量区间;以及
步骤S40、根据所述作用空间内的当前温度、当前含湿量、所述目标含湿 量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行。
在传统空调器中,温度控制和湿度控制是独立进行,导致传统空调器在降温调节时会降低室内相对湿度。为保障室内湿度,需要开启独立的加湿装置,进行加湿。这样提高了空调器的能耗,存在空调器能耗较高的缺陷。为解决传统空调器的上述缺陷,本申请提出一种温湿综合调节控制方法,旨在实现综合湿度和温度对空调器进行控制,从而达成降低空调器的功耗的效果。并且,综合湿度和温度控制空调器,还可以使得空调器温度湿度均保持在舒适范围内,从而提高空调器的舒适度。
在本实施例中,所述热舒适影响参数为影响到用户热舒适的可量化数据,例如,可以包括用户穿衣指数、用户活动量和/或人体代谢率。以下,以举办加湿和调温功能的空调器作为执行设备,解释本申请。
空调器可以先获取空调器的作用空间内的用户对应的穿衣指数和活动量中的至少一个,以及获取预设的相对湿度区间。可以理解的是,上述预设的相对湿度区间可以由空调器的生产者根据实验数据确定,并预先保存在空调器对应的数据库中。可以理解的是,该数据库可以是空调器的本地数据库,和/或设置于服务器的网络数据库。其中,空调器还设置有网络模块,使得空调器可以与服务器通信,从而使得空调器可以获取设置于服务器的网络数据库中保存的数据。和/或接收网络服务器下发的更新数据包,并根据网络服务器下发的更新数据包,更新本的数据库中保存的上述预设相对湿度区间的具体数值。
具体地,可以先获取空调器所在位置对应的室外环境温度,然后根据室外环境温度确定上述穿衣指数。和/或空调器也可以设置有红外检测传感器,使得所述空调器可以通过红外检测传感器检查作用空间内的用户对应的温度检测数据,然后根据所述温度检测数据确定用户的穿衣指数和/或上述活动量。
空调器和设置有室外温度检测传感器,使得空调器可以通过上述室外温度检测传感器获取上述室外温度。和/或上述空调器已经连接网络,使得空调器可以先基于自身连接的网络确定本端对应的定位数据,然后基于自身连接的网络获取当前时间,和/或根据本地数据获取当前时间。然后将上述定位数据发送至服务器,以通过服务器获取上述定位数据对应的天气预报数据。进 而根据上述当前时间和上述天气预报数据,确定上述室外温度。
作为一种可选实现方式,当确定上述室外温度后,可以获取上述室外温度与上述穿衣指数之间的对应关系,然后根据上述对应关系确定当前时刻,作用空间内的用户对应的穿衣指数。
示例性地,上述室外温度与穿衣指数之间的对应可以以表格的形式保存在空调器的数据库中,如下表1所示:
表1:
室外环境温度T4/℃ 穿衣指数
T4>32 0.3
30≤T4≤32 0.5
26≤T4<30 0.7
22<T4<26 0.7
17<T4≤22 0.9
10≤T4≤17 1.0
T4<10 1.1
当获取到上述温度检测数据后,可以根据上述温度检测数据生成作用空间内的用户对应的温度分别图表,然后根据该温度分别图表确定用户的上述活动量。
进一步地,当空调器获取到上述穿衣指数和/或上述活动量中国的至少一个,以及上述预设的相对湿度区间后,可以先确定目标温度区间。
具体地,空调器的生产者可以预先在空调器中保存第一体感指数和第二体感指数,其中,上述第一体感指数可以设置为小于上述第二体感指数。其中,上述第一体感指数和第二体感指数,是指预先保存在数据库中的PMV(Predicted Mean Vote,表征人体热反应的评价指标),可以理解的是,根据空调器的应用地区不同,可以将上述PMV设置为不同地区对应的PMV。例如,当上述空调器的应用地区为中国时,上述第一体感指数和第二体感指数设置为PMV chn(适合中国人体质的预计平均热感觉指数)。其中,PMV chn值为0时,舒适度最佳;PMV chn为正值时,舒适感稍微偏热状态,绝对值越大越热;PMV chn为负值时,舒适感稍微偏冷状态,绝对值越大越冷。
示例性地,在本实施例将上述第一体感指数设置为-0.2,上述第二热感指 数设置为0.3。
由于PMV chn可以根据以下公式计算:
Figure PCTCN2021096574-appb-000001
其中:t cl表示服装表面温度,单位℃,计算公式为:
Figure PCTCN2021096574-appb-000002
h c对流换热系数,单位W/(m2·℃),与空气流速和环境温度与人体服装表面的温差有关;
Figure PCTCN2021096574-appb-000003
f cl着装时人的体表面积与裸露时人的体表面积之比,其中:
Figure PCTCN2021096574-appb-000004
M为代谢率,单位W/m 2,根据GB/T33658-2017,取值M=70W/m 2
W为外部做功消耗的热量(对于大多数活动可忽略不计),单位W/m 2
I cl为服装热阻,单位m 2·℃/W,按I cl=穿衣指数Ci×0.155计算,穿衣指数Ci根据室外环境温度和对应的季节进行确定,取值范围为0.3~1.1。
T1为空气温度,单位℃;
Figure PCTCN2021096574-appb-000005
为平均辐射温度,单位℃,近似取为空气温度T1;
v ar为空气流速(风速),单位m/s;
P a为水蒸气分压力,根据式(X-X)计算得出,单位为P a
a为热敏感特性系数,表示人体对热环境的敏感度,系数越大,该工况下对热环境变化越敏感,舒适区间就会变窄,取a=0.0260;
b为热敏感特性系数,表示人体热感觉对理论舒适温度的偏差程度,系数绝对值越大,该工况下相对舒适温度偏离程度越大,系数为正表示为耐寒惧热,系数为负表示耐寒惧寒,取b=-0.2074;
Pa表示水蒸气分压力;
ta为温度值;
H——相对湿度;
基于上式可知,当确定上述第一体感指数和第二体感指数后,由于除穿衣指数和活动量之外的其它参数均为固定常数,或者空调器可以直接确定的运行参数值,因此,可以基于上述公式,根据所述穿衣指数、所述活动量以及所述第一热感指数和所述相对湿度区间,可以计算求解出温度反函数,进 而根据该温度反函数确定第一温度曲线。同理,可以根据第二体感指数确定第二温度曲线。并根据上述温度曲线确定上述目标温度区间。即将以在温度图标中,将以上述第一温度曲线为下边界,将上述第二温度曲线为上边界的温度区间作为该目标温度区间。可以理解的是,当仅根据穿衣指数或者活动量确定上述第一温度边界值和第二温度边界值时,可以将穿衣指数和活动量中的一个作为实时获取的数据,另一个作为预先保存在空调器中的固定常数。
可以理解的是,为降低空调器处理器的运算量,降低系统开销,可以根据上述公式生成一计算模型保存至空调器中,使得空调器获取到上述穿衣指数和或上述活动量后,可以通过该计算模型,直接得出对应的目标温度区间。
进一步地。还可以根据上述预设湿度区间,确定含湿量区间。具体地,可以先获取所述空调器的作用空间内的蒸汽分压值(即饱和水蒸汽分压力),其中,上述蒸汽分压值可以根据Hyland-Wexler(海兰·韦克斯勒)公式计算得到。
当确定上述蒸汽分压值后,可以根据所述蒸汽分压值以及所述相对湿度区间确定所述目标含湿量区间。其中,参照图4,预设的相对湿度区间[m,n]与第一温度曲线和第二温度曲线分别相交与A点、B点、C点和D点,然后基于上述蒸汽分压值及温度值,可以计算出A点、B点、C点和D点分别对应的含湿量曲线d1、d2、d3和d4。
具体地,可以根据上述蒸汽分压值和上述相对湿度区间,计算目标含湿量区间对应的边界值。其中,当确定上述目含湿量区间和上述目标温度区间后,可以获取所述作用空间内的当前温度和当前含湿量,然后根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述空调器的运行参数,并控制所述空调器根据确定的所述运行参数运行。
具体地,可以先确定所述当前温度值与所述目标温度区间之间的第一对应关系,以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系,然后根据所述第一对应关系与所述第二对应关系确定所述空调器的运行参数,并控制所述空调器根据确定的所述运行参数运行。
需要说明的是,上述第一对应关系包括当前温度小于上述目标温度区间的下边界,当前温度处于上述目标温度区间内和当前温度大于目标温度区间 对应的上边界。第二对应关系包括当前含湿量小于上述目标含湿量区间的下边界,当前含湿量处于上述目标含湿量区间内和当前含湿量大于目标含湿量区间对应的上边界。当确定上述运行参数后,可以控制所述空调器根据确定的运行参数运行。
需要说明的是,当执行该温湿综合调节控制方法的为调节系统时,该调节系统包括湿度调节装置、温度调节装置以及控制单元。其中,控制单元用于基于上述温湿综合调节控制方法确定湿度调节装置和温度调节装置的运行参数,从而综合控制湿度调节装置和温度调节装置,以实现温湿综合调节的效果。其中,上述温度调节装置可以设置为空调器,上述湿度调节装置可以设置为加湿器。加湿器和空调器可以通过有线或者无线的方式与上述控制单元。上述控制单元可以与加湿器或者空调器一体设置,也可以独立于加湿器与空调器设置。本实施例对此不作具体限定。
在本实施例公开的技术方案中,先获取空调器的作用空间内的用户对应的穿衣指数和活动量中的至少一个以及预设的相对湿度区间,然后根据所述穿衣指数和所述活动量中的至少一个以及所述相对湿度区间确定目标温度区间,并根据所述预设的相对湿度区间确定目标含湿量区间,最后根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述空调器的运行参数,并控制所述空调器根据确定的所述运行参数运行。由于确定运行参数时,综合考虑湿度因素和温度因素,从而使得根据确定的运行参数调节空调器是,是综合湿度因素和温度因素进行调节的,从而避免了空调器独立调节时,导致出现降温调节时,会降低室内相对湿度的现象发生,从而达成降低空调器的能耗的效果。并且,由于可以综合湿度因素和温度因素调整空调器的运行参数,从而还避免了独立导致的舒适性下降的现象发生,从而还达成了提高空调器的舒适性的效果。
在一实施例中,基于上述实施例,在另一实施例中,上述根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述空调器的运行参数,并控制所述空调器根据确定的所述运行参数运行的步骤包括:
步骤S41确定所述当前温度值与所述目标温度区间之间的第一对应关系, 以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系;
步骤S42、根据所述第一对应关系与所述第二对应关系确定所述调节设备的运行参数;以及
步骤S43、控制所述调节设备根据确定的所述运行参数运行。
在本实施例中,可以先确定所述当前温度值与所述目标温度区间之间的第一对应关系,以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系,然后根据上述第一对应关系和第二对应关系确定空调器的运行模式。而空调器预先保存了不同运行模式对应的运行参数,使得确定运行模式后,可以获取确定的运行模式对应的运行参数。
具体地,可以将预先保存上述第一对应关系与第二对应关系与上述运行模式的映射关系。其中,可以理解的是,参照图4,t1、t4是舒适区温度上边界T max延长线,t2、t3是舒适区温度下边界T min延长线;d1是温度下边界与湿度右边界n端点的含湿量线,d2是温度上边界与湿度右边界端点的含湿量线,d3是温度上边界与湿度左边界m端点的含湿量线,d4是温度下边界与湿度左边界端点的含湿量线。示例性地,第一对应关系与第二对应关系与上述运行模式的映射关系可以以表格的形式保存在数据库中,如下表2所示:
表2:
运行模式 第一对应关系 第二对应关系
降温除湿 T>t4 d>d 2
等湿降温 T>T max d∈[d 3,d 4]
降温加湿 T>t 3 d<d 4
等焓加湿 T∈[t 2,t 1] d<m
升温加湿 T<t 2 d<d 4
等湿升温 T<T min d∈[d 4,d 1]
升温除湿 T<t 3 d>d 1
恒温除湿 T∈[t 3,t 4] d>n
其中,降温除湿模式下,判定作用空间内有除湿和制冷需求,此时空调运行制冷除湿模式,控制室内换热器的温度低于露点温度进行制冷,以实现降温除湿的目的。
等湿降温模式下,判定作用空间内只有降温需求,需要保持湿度,因此 可以控制空调器的室内换热器以高于露点温度的状态进行制冷,从而避免因室内换热器凝露而导致湿度下降,从而实现等湿降温。
在一实施例中,为保障空调器的制冷效果,也可以在等湿降温模式下,控制空调器的室内换热器略低于露点温度。当换热器温度低于露点温度时,露点温度与还换热器温度之间的差值小于预设差值。其中该预设差值可以由生产者自定义设置。进而,根据所述差值控制加湿装置运行,以保持室内湿度。
降温加湿模式下,判定作用空间内需要降温并加湿,因此空调运行制冷加湿模式,空调器制冷与加湿避免同时进行,防止制冷冷风与加湿水蒸气相遇导致凝露。具体方式可以是,先制冷降温不加湿,温度达到后关闭制冷送风加湿;或者是制冷与加湿间歇进行。
等焓加湿模式下,判断空调器只有加湿需求,因此可以控制空调器直接运行加湿模式。
升温加湿模式下,判定作用空间内有加湿和制热需求,此时空调运行制热加湿模式。
等湿升温模式下,判定作用空间内仅有制热需求,此时空调运行制热模式,不进行加湿。
升温除湿模式下,判定作用空间内有除湿和制热需求,此时空调运行除湿再热模式,对于具有热回收再热系统,则按照该系统控制方法,控制蒸发温度低于目标露点温度除湿,然后利用再热器加热除湿后的空气提高出风温度;对于电辅热再热的空调器,则按照该系统的控制方法,运行制冷使得控制蒸发温度低于目标露点温度除湿,然后控制电辅热功率加热除湿后空气,提高出风温度。
恒温除湿模式下,判定作用空间内有保持温度并除湿的需求,此时空调运行恒温除湿模式,控制方法与升温除湿相同。
进一步地,当前确定运行参数后,控制所述空调器根据确定的所述运行参数运行。
在本实施例公开的技术方案中,先确定所述当前温度值与所述目标温度区间之间的第一对应关系,以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系,然后根据所述第一对应关系与所述第二对应关系确定所述 空调器的运行参数,并控制所述空调器根据确定的所述运行参数运行。这样达成了综合湿度因素和温度因素综合调节空调器的效果。
在一实施例中,基于上述任一实施例,在又一实施例中,为提高获取到的穿衣指数的准确性,还可以在获取到室外环境温度后,获取当前时间信息,根据上述室外温度及当前时间信息确定当前季节信息,进而根据上述室外温度及上述季节信息与上述穿衣指数之间的关联关系确定上述穿衣指数。其中,上述该关联关系可以以表格的形式预先保存与数据库中,如下表3所示:
表3:
室外环境温度T4/℃ 季节、天气状况 穿衣指数
T4>32 炎热 0.3
30≤T4≤32 夏季 0.5
26≤T4<30 初夏 0.7
22<T4<26 初夏,4月-10月 0.7
22<T4<26 初冬,11月-3月 0.9
17<T4≤22 初冬 0.9
10≤T4≤17 冬季 1.0
T4<10 寒冷 1.1
需要说明的是,还可以根据二十四节气及上述室外换温度确定上述穿衣指数。或者结合季节以及上述二十四节气和上述室外环境温度确定上述穿衣指数。
在本实施例中,在获取到室外环境温度后,获取当前时间信息,根据上述室外温度及当前时间信息确定当前季节信息,进而根据上述室外温度及上述季节信息与上述穿衣指数之间的关联关系确定上述穿衣指数,这样达成了提高获取到的穿衣指数的准确性的效果。
此外,本申请实施例还提出一种空调器,所述空调器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的温湿综合调节控制程序,所述温湿综合调节控制程序被所述处理器执行时实现如上各个实施例所述的温湿综合调节控制方法的步骤。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有温湿综合调节控制程序,所述温湿综合调节控制程序被处理器执行时实现如上各个实施例所述的温湿综合调节控制方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是空调器等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种温湿综合调节控制方法,其中,所述温湿综合调节控制方法包括以下步骤:
    获取调节设备作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间;
    根据所述热舒适影响参数以及所述相对湿度区间确定目标温度区间;
    根据所述预设的相对湿度区间确定目标含湿量区间;以及
    根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行。
  2. 如权利要求1所述的温湿综合调节控制方法,其中,所述热舒适影响参数包括用户穿衣指数、用户活动量和/或人体代谢率。
  3. 如权利要求2所述的温湿综合调节控制方法,其中,所述获取调节设备的作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤之前,还包括:
    获取所述调节设备所在空间对应的室外环境温度;
    所述获取作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤包括:
    根据所述室外环境温度确定所述穿衣指数;
    获取所述预设的相对湿度区间。
  4. 如权利要求3所述的温湿综合调节控制方法,其中,所述根据所述室外环境温度确定所述穿衣指数的步骤包括:
    根据预存的室外环境温度与穿衣指数之间的对应关系,确定获取到的所述室外环境温度对应的所述穿衣指数。
  5. 如权利要求3所述的温湿综合调节控制方法,其中,所述获取所述调节设备所在空间对应的室外环境温度的步骤包括:
    获取所述调节设备对应的位置信息以及天气预报数据;以及
    根据所述位置信息以及所述天气预报数据,确定所述室外环境温度。
  6. 如权利要求5所述的温湿综合调节控制方法,其中,所述根据所述室外环境温度确定所述穿衣指数的步骤之前,还包括:
    获取当前时间;
    根据所述当前时间以及所述位置信息确定所述设备所在空间对应的当前季节和/或当前节气;
    所述根据所述室外环境温度确定所述穿衣指数的步骤包括:
    根据所述当前季节和所述当前节气中的至少一个,以及所述当前时间以及所述室外温度确定所述穿衣指数。
  7. 如权利要求2所述的温湿综合调节控制方法,其中,所述获取作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤之前,还包括:
    获取所述调节设备所在环境的红外检测传感器检测的温度检测数据;
    所述获取调节设备的作用空间内的用户对应的热舒适影响参数以及预设的相对湿度区间的步骤包括:
    根据所述温度检测数据确定所述调节设备的作用空间内的用户对应的所述活动量,并获取所述预设的相对湿度区间。
  8. 如权利要求1所述的温湿综合调节控制方法,其中,所述根据所述穿衣指数和所述活动量中的至少一个,以及所述预设的相对湿度区间确定目标温度区间的步骤包括:
    获取预存的第一热感指数和第二热感指数,其中,所述第一热感指数小于所述第二热感指数;
    根据所述穿衣指数和所述活动量中的至少一个,以及所述第一热感指数和所述相对湿度区间确定第一温度曲线;
    根据所述穿衣指数和所述活动量中的至少一个,以及所述第二热感指数和所述相对湿度区间确定第二温度曲线;以及
    根据第一温度曲线和所述第二温度曲线确定所述目标温度区间。
  9. 如权利要求1所述的温湿综合调节控制方法,其中,所述根据所述相对湿度区间确定目标含湿量区间的步骤之前,还包括:
    获取所述调节设备的作用空间内的蒸汽分压值;
    所述根据所述相对湿度区间确定目标含湿量区间的步骤包括:
    根据所述蒸汽分压值、所述目标温度区间及所述相对湿度区间确定含湿量曲线;
    根据所述含湿量曲线确定所述目标含湿量区间。
  10. 如权利要求1所述的温湿综合调节控制方法,其中,所述根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行的步骤之前,还包括:
    获取所述空调器的作用空间内的所述当前温度和所述当前含湿量。
  11. 如权利要求10所述的温湿综合调节控制方法,其中,所述根据所述作用空间内的当前温度、当前含湿量、所述目标含湿量区间以及所述目标温度区间确定所述调节设备的运行参数,并控制所述调节设备根据确定的所述运行参数运行的步骤包括:
    确定所述当前温度值与所述目标温度区间之间的第一对应关系,以及所述当前含湿量与所述目标含湿量区间之间的第二对应关系;
    根据所述第一对应关系与所述第二对应关系确定所述调节设备的运行参数;以及
    控制所述调节设备根据确定的所述运行参数运行。
  12. 如权利要求1所述的温湿综合调节控制方法,其中,所述调节设备包括温度调节组件和湿度调节组件,其中,所述温度调节组件和所述湿度调 节组件可以分离设置或者一体设置。
  13. 一种调节设备,其中,所述调节设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的温湿综合调节控制程序,所述温湿综合调节控制程序被所述处理器执行时实现如权利要求1至12中任一项所述的温湿综合调节控制方法的步骤。
  14. 如权利要求13所述的调节设备,其中,所述调节设备为具备湿度调节功能和温度调节功能的空调器。
  15. 一种调节系统,其中,所述调节系统包括湿度调节装置、温度调节装置以及控制单元,所述控制单元存储器、处理器及存储在所述存储器上并可在所述处理器上运行的温湿综合调节控制程序,所述温湿综合调节控制程序被所述处理器执行时实现如权利要求1至12中任一项所述的温湿综合调节控制方法的步骤。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有温湿综合调节控制程序,所述温湿综合调节控制程序被处理器执行时实现如权利要求1至12中任一项所述的温湿综合调节控制方法的步骤。
PCT/CN2021/096574 2020-08-07 2021-05-28 温湿综合调节控制方法、调节设备、调节系统及介质 WO2022028063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21853772.8A EP4155617A4 (en) 2020-08-07 2021-05-28 COMPREHENSIVE TEMPERATURE AND HUMIDITY ADJUSTMENT CONTROL METHOD AND ADJUSTMENT DEVICE, ADJUSTMENT SYSTEM AND SUPPORT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010793953.3A CN114061038B (zh) 2020-08-07 2020-08-07 温湿综合调节控制方法、调节设备、调节系统及介质
CN202010793953.3 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022028063A1 true WO2022028063A1 (zh) 2022-02-10

Family

ID=80119873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096574 WO2022028063A1 (zh) 2020-08-07 2021-05-28 温湿综合调节控制方法、调节设备、调节系统及介质

Country Status (3)

Country Link
EP (1) EP4155617A4 (zh)
CN (1) CN114061038B (zh)
WO (1) WO2022028063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381163A (zh) * 2023-05-29 2023-07-04 宁德时代新能源科技股份有限公司 湿度检测方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738951B (zh) * 2022-03-28 2024-02-20 海尔(深圳)研发有限责任公司 室内空气的调节方法、调节装置和智能家居系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133589A (ja) * 2008-12-03 2010-06-17 Panasonic Corp 空気調和機
JP2010151337A (ja) * 2008-12-24 2010-07-08 Daikin Ind Ltd 空調システム
CN104456841A (zh) * 2014-11-13 2015-03-25 重庆大学 一种基于热舒适评价的热湿环境综合控制空调系统及方法
CN106016620A (zh) * 2016-06-15 2016-10-12 湖南大学 空调系统的节能、热舒适控制方法
CN109323409A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 空调器及其控制方法、装置
CN110030699A (zh) * 2019-04-04 2019-07-19 珠海格力电器股份有限公司 一种空调设备控制方法、空调和存储介质
CN110454930A (zh) * 2018-05-08 2019-11-15 中国科学院理化技术研究所 一种基于人体最佳热舒适度估算的空调控制方法与装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285579A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 空調制御装置
CN102042653B (zh) * 2009-10-15 2013-01-02 珠海格力电器股份有限公司 空调及空调控制方法
JP4852159B2 (ja) * 2010-02-24 2012-01-11 株式会社東芝 画像処理装置、画像処理方法および空調制御装置
CN102192569B (zh) * 2010-03-11 2013-08-07 珠海格力电器股份有限公司 基于热舒适区的空调控制方法
JP5988196B2 (ja) * 2012-03-29 2016-09-07 パナソニックIpマネジメント株式会社 機器制御装置、機器制御システムおよびプログラム
CN103375876B (zh) * 2012-04-25 2015-09-16 珠海格力电器股份有限公司 空调器及其控制方法、装置和空调器的除湿控制方法
CN102778002A (zh) * 2012-07-09 2012-11-14 广东美的电器股份有限公司 控制人体热舒适感觉的空调器及控制方法
CN103542490B (zh) * 2012-07-16 2016-09-14 珠海格力电器股份有限公司 空调睡眠环境下的湿度控制方法及装置
CN105003998A (zh) * 2014-04-17 2015-10-28 美的集团股份有限公司 空调器的舒适性控制方法及装置
CN107062532B (zh) * 2017-03-07 2020-08-04 青岛海尔空调器有限总公司 空调器的控制方法
CN109539462A (zh) * 2018-11-14 2019-03-29 海信(山东)空调有限公司 空调控制方法及装置
CN110274356A (zh) * 2019-06-17 2019-09-24 湖南大学 计及用户热舒适度的空调分散式控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133589A (ja) * 2008-12-03 2010-06-17 Panasonic Corp 空気調和機
JP2010151337A (ja) * 2008-12-24 2010-07-08 Daikin Ind Ltd 空調システム
CN104456841A (zh) * 2014-11-13 2015-03-25 重庆大学 一种基于热舒适评价的热湿环境综合控制空调系统及方法
CN106016620A (zh) * 2016-06-15 2016-10-12 湖南大学 空调系统的节能、热舒适控制方法
CN110454930A (zh) * 2018-05-08 2019-11-15 中国科学院理化技术研究所 一种基于人体最佳热舒适度估算的空调控制方法与装置
CN109323409A (zh) * 2018-09-30 2019-02-12 广东美的制冷设备有限公司 空调器及其控制方法、装置
CN110030699A (zh) * 2019-04-04 2019-07-19 珠海格力电器股份有限公司 一种空调设备控制方法、空调和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155617A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381163A (zh) * 2023-05-29 2023-07-04 宁德时代新能源科技股份有限公司 湿度检测方法、装置、电子设备及存储介质
CN116381163B (zh) * 2023-05-29 2024-02-23 宁德时代新能源科技股份有限公司 湿度检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP4155617A4 (en) 2023-11-29
EP4155617A1 (en) 2023-03-29
CN114061038A (zh) 2022-02-18
CN114061038B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN108317694B (zh) 一种基于温冷感的睡眠模式控制方法和空调器
WO2022028063A1 (zh) 温湿综合调节控制方法、调节设备、调节系统及介质
CN103542490B (zh) 空调睡眠环境下的湿度控制方法及装置
CN103307701B (zh) 空调系统人体舒适度的控制方法及空调器
WO2018076743A1 (zh) 一种智能空调器温度控制方法、系统及智能空调
US8615327B2 (en) Device and method for humidity estimation
WO2019105028A1 (zh) 空调器及其控制方法和装置
WO2018120626A1 (zh) 空调器的控制方法、装置及空调器
CN108444080A (zh) 空调器的控制方法以及空调器
CN106871360B (zh) 空调器的控制方法
CN104456841A (zh) 一种基于热舒适评价的热湿环境综合控制空调系统及方法
CN106196515A (zh) 中央空调系统的能效控制方法及装置
CN108317692B (zh) 基于穿衣补偿的温冷感空调器控制方法和空调器
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
KR102369914B1 (ko) 겉보기 온도 기반 자동 전환 온도 조절기 시스템, 및 공조 공간의 겉보기 온도 결정과 겉보기 온도 자동 제어 방법
WO2019104790A1 (zh) 空调器及其控制方法和装置
CN106885339B (zh) 空调器的控制方法
CN109579237A (zh) 空调温度控制方法、存储介质及空调
WO2020052149A1 (zh) 室内机、其变风量控制方法、空调器、计算机设备及存储介质
CN106482305A (zh) 空调器的控制方法
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN107062532B (zh) 空调器的控制方法
CN106556114B (zh) 空调器、加湿控制装置及其空调器的湿度控制方法
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
CN107084471B (zh) 空调器的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021853772

Country of ref document: EP

Effective date: 20221220

NENP Non-entry into the national phase

Ref country code: DE