WO2018120212A1 - 压力阵列检测设备、对应方法以及脉诊检测设备 - Google Patents

压力阵列检测设备、对应方法以及脉诊检测设备 Download PDF

Info

Publication number
WO2018120212A1
WO2018120212A1 PCT/CN2016/113919 CN2016113919W WO2018120212A1 WO 2018120212 A1 WO2018120212 A1 WO 2018120212A1 CN 2016113919 W CN2016113919 W CN 2016113919W WO 2018120212 A1 WO2018120212 A1 WO 2018120212A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
distribution
reflected
layer
point
Prior art date
Application number
PCT/CN2016/113919
Other languages
English (en)
French (fr)
Inventor
阳光
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2016/113919 priority Critical patent/WO2018120212A1/zh
Priority to CN201680038456.4A priority patent/CN108064146B/zh
Publication of WO2018120212A1 publication Critical patent/WO2018120212A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4854Diagnosis based on concepts of traditional oriental medicine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs

Definitions

  • the present invention relates to the field of pulse diagnosis equipment, and in particular to a pressure array detection device, a corresponding method, and a pressure array detection device.
  • the pressure detecting device mostly measures the pressure of a single point, for example, obtaining a single point of pulse diagnosis information by means of a capacitor array.
  • the more the number of capacitor arrays is set the higher the resolution, but the detection accuracy is reduced. Therefore, under the premise of ensuring the detection accuracy of the capacitor array, the existing pressure detecting device cannot provide higher resolution, and the market can only support up to 3*4 resolution.
  • a pressure array detecting device including:
  • a pressure sensing device a light source, an imaging device, and a processing device
  • the pressure sensing device is composed of a light reflecting layer and a layer of flexible material, the first surface of the flexible material layer is in contact with the pressure acting surface, the second surface is in contact with the light reflecting layer, and the reflective layer is a mark matrix composed of a plurality of mark points distributed on the spot, the mark point is not reflective or light incident on the mark point is diffusely reflected;
  • the light source is configured to emit a light beam, and after being reflected by the reflective layer, forming a corresponding reflected light spot on an imaging surface of the imaging device;
  • the image capturing device is configured to collect an image including location information of the marked dot matrix and position information of the reflected light spot;
  • the processing device is configured to process the image, and determine a pressure distribution of the pressure acting surface according to a change in position of the mark dot and a change in position of the reflected spot.
  • it also includes:
  • a memory for storing a pre-established deformation distribution model, wherein the deformation distribution model includes a pressure curve corresponding to a pressure acting surface at different pressures of different force areas, and the magnitude of the pressure curve corresponds to an offset of the marking point The amount of the pressure curve corresponds to the amount of shift in the reflected spot.
  • the processing device includes:
  • a transform module configured to perform a Fourier transform on the image representing the pressure distribution to obtain a distribution of different frequencies corresponding to different force areas
  • An inverse calculation module configured to determine a pressure distribution corresponding to each frequency by using the deformation distribution model according to a change in a position of the mark point and a change in position of the reflected light spot;
  • a stacking module for superimposing each frequency to determine the pressure distribution corresponding to the overall surface.
  • the pressure sensing device further includes a capacitor array for detecting a single point of pressure corresponding to each capacitor.
  • the capacitor array is disposed at the reflective layer position.
  • the processing device further includes:
  • a calibration module for correcting the pressure of the single point determined by the capacitor array after determining the pressure distribution of the pressure acting surface.
  • the light source is a laser light source.
  • the flexible material layer is a silica gel layer.
  • it also includes:
  • a display device for displaying a curved shape and/or a pressure distribution of the pressure acting surface.
  • the invention also provides a pulse diagnostic testing device comprising any of the above pressure array detecting devices.
  • the invention also provides a pressure array detection method, comprising:
  • a pressure sensing device to characterize an image of a pressure distribution when pressure is applied;
  • the pressure sensing device is composed of a light reflecting layer and a layer of flexible material, the first surface of the layer of flexible material and pressure Contacted by the surface, the second surface is in contact with the light reflecting layer;
  • a marking dot composed of a plurality of marking points distributed on the reflective layer, the marking point is not reflective or incident on the marking point A diffuse reflection occurs;
  • the reflective layer reflects a light beam emitted from the light source, and forms a corresponding reflected light spot on the imaging surface of the imaging device;
  • the image includes position information of the marked dot matrix and position information of the reflected light spot;
  • a pressure distribution of the pressure acting surface is determined according to a change in position of the mark dot and a change in position of the reflected spot.
  • determining the pressure distribution of the pressure acting surface according to the position change of the marking dot and the position change of the reflected light spot comprises:
  • Deformation distribution model is pre-established, and the deformation distribution model includes a pressure curve corresponding to a pressure acting surface under different pressures of different force areas, and the magnitude of the pressure curve corresponds to an offset generated by the marking point, the pressure curve The frequency corresponds to the offset of the reflected spot;
  • the method further includes:
  • Capacitor array is used to detect the pressure of a single point corresponding to each capacitor
  • the pressure distribution is corrected using a determined single point pressure.
  • it also includes:
  • the curved shape and/or pressure distribution of the pressure acting surface is displayed.
  • the flexible material layer of the pressure sensing device under the action of pressure, the flexible material layer of the pressure sensing device is deformed, so that the reflective layer adhered to the flexible material layer is also deformed. Since the marked points on the reflective layer are not reflective or the incident light is diffusely reflected, the position of the marked points in the acquired image also changes. According to the position change of the marking point on the reflective layer, the degree of lateral deformation of the pressure sensing device can be detected, and the reflected light spot formed on the imaging surface of the imaging device after the light beam emitted by the light source is reflected by the reflective layer is also deformed when the reflective layer is deformed. A displacement will occur.
  • Position information including the marker point and position information of the reflected light spot by the imaging device The images are collected. After the image is processed, the pressure distribution of the corresponding pressure acting surface is inversely calculated. It can be seen that the pressure array detecting device and the corresponding method provided by the present invention can obtain pressure detection with higher resolution. Further, the present invention provides a pulse diagnostic apparatus having the above technical advantages.
  • FIG. 1 is a structural block diagram of a specific embodiment of a pressure array detecting device provided by the present invention.
  • FIG. 2 is a first example of a specific embodiment of a pressure array detecting device provided by the present invention
  • FIG. 3 is a second example of a specific embodiment of a pressure array detecting device provided by the present invention.
  • Figure 4 is a schematic diagram showing the deformation distribution pressure curve of a single point or a different area of the contact with pressure under a certain pressure
  • FIG. 5 is a structural block diagram of a specific implementation manner of a processing apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a specific operation of a processing device in a pressure array detecting device provided by the present invention.
  • FIG. 7 is a schematic diagram of a method for determining a position of a marker point
  • Figure 8 is a schematic diagram 1 of the process of inversely calculating the surface deformation according to the marking point and the light reflecting layer;
  • FIG. 9 is a second schematic diagram of the process of calculating the surface deformation according to the mark point and the light reflecting layer;
  • Figure 10 is a flow chart of a pressure array detecting method provided by the present invention.
  • Figure 11 is a flow chart showing the processing procedure in the pressure array detecting method provided by the present invention.
  • the embodiments of the present invention provide a pressure array detecting device, a corresponding method, and a pulse diagnosis detecting device, which can obtain a pressure detection with higher resolution, which will be described in detail below.
  • FIG. 1 is a structural block diagram of a specific embodiment of a pressure array detecting device according to the present invention.
  • the pressure array detecting device may include:
  • the pressure sensing device 1 is composed of a light reflecting layer and a flexible material layer, the first surface of the flexible material layer is in contact with the pressure acting surface, the second surface is in contact with the light reflecting layer; and a plurality of marking points are distributed on the light reflecting layer. a mark matrix composed of which the spot is not reflective or the light incident on the mark is diffusely reflected;
  • the light source 2 is configured to emit a light beam, and after being reflected by the reflective layer, form a corresponding reflected light spot on the imaging surface of the imaging device;
  • the imaging device 3 is configured to collect an image including position information of the marked dot matrix and position information of the reflected light spot;
  • the processing device 4 is for processing the image, and determining the pressure distribution of the pressure acting surface according to the change in the position of the marked dot and the change in the position of the reflected spot.
  • the flexible material layer of the pressure sensing device under the action of pressure, the flexible material layer of the pressure sensing device is deformed, so that the reflective layer adhered to the flexible material layer is also deformed. Since the marked points on the reflective layer are not reflective or the incident light is diffusely reflected, the position of the marked points in the acquired image also changes. According to the position change of the marking point on the reflective layer, the degree of lateral deformation of the pressure sensing device can be detected, and the reflected light spot formed on the imaging surface of the imaging device after the light beam emitted by the light source is reflected by the reflective layer is also deformed when the reflective layer is deformed. A displacement will occur.
  • An image of the position information including the mark point and the position information of the reflected light spot is acquired by the image pickup device, and after the image is processed, the pressure distribution is determined using a deformation distribution model established in advance. It can be seen that the pressure array detecting device provided by the invention can obtain a high-resolution pressure inspection. Measurement.
  • FIG. 2 and FIG. 3 An example of a specific embodiment of the pressure array detecting device provided by the present invention is shown in FIG. 2 and FIG. 3 , wherein the light source is specifically a laser light source, and the flexible material layer in the pressure sensing device is specifically a silica gel and a reflective layer. Specifically, it may be a reflective metal layer, and a plurality of marking points are regularly distributed on the reflective layer to form a marking lattice. The spot is not reflective or the light incident on the mark is diffusely reflected. Compared with other light sources, the laser light source has good directivity and small divergence angle, so the beam emission effect can be ensured to detect the pressure according to the position of the light beam.
  • the silica gel material used in the embodiment is thinner and has good applicability, and can be obviously reflected when the object to be coated is less deformed, thereby ensuring the effect of pressure detection.
  • the metal layer is used as the reflective layer to ensure a good specular reflection effect.
  • the layer of flexible material is in a state where it is not deformed initially, and the reflective layer is also not deformed. After the light beam emitted by the light source is specularly reflected by the reflective layer, a corresponding reflected light spot is formed on the imaging surface of the imaging device.
  • the layer of flexible material is deformed, and the reflective layer that is bonded to the layer of flexible material is also deformed.
  • the marking point on the light reflecting layer is shifted, and the position of the reflected light spot formed on the imaging surface of the imaging device is also shifted correspondingly after the light beam emitted by the light source is reflected by the reflective layer. Therefore, by the offset of the marking point and the offset of the light spot, the deformation of the pressure acting surface can be reflected, thereby reflecting the distribution of the pressure. It can be seen that the embodiment of the present invention can convert a tiny deformation into a highly disturbed image signal by the laser and the reflective structure.
  • the pressure curve is pre-acquired as a prior reference for the anti-decompression pressure, and the deformation distribution model is established in advance, that is, the correspondence between the different pressures of the different force-bearing surfaces and the offset of the marked points and the offset of the reflected light points is established. Therefore, according to the offset amount of the actually captured mark point and the offset amount of the reflected light spot, the corresponding pressure value can be inversely calculated, and the flow of the pressure detection can be reduced, and the efficiency of the pressure detection can be improved.
  • the deformation distribution model in the embodiment of the present invention includes a pressure curve corresponding to a pressure acting surface under different pressures of different force areas, and the amplitude of the pressure curve corresponds to an offset generated by the marking point, and the pressure curve The frequency corresponds to the offset of the reflected spot.
  • Figure 4 shows a schematic diagram of the deformation distribution pressure curve of a single point or a different area of the contact with pressure under a certain pressure, wherein the abscissa of the coordinate represents the distance from the pressure center, and the ordinate represents the magnitude of the amplitude. It can be seen that the amplitude of the pressure curve is different under different pressures. The greater the pressure, the greater the amplitude. The frequency of the pressure curve is different for different force areas.
  • the deformation distribution model contains pressure curves with different pressure and different force areas. The corresponding relationship between pressure, amplitude and frequency can be obtained through a large number of experiments.
  • the pressure array detecting apparatus may further include:
  • the memory is used for storing a pre-established deformation distribution model, and the deformation distribution model includes different pressure curves corresponding to pressure-applying surfaces under different pressures of different force areas, and the magnitude of the pressure curve corresponds to the offset of the marked points, and the pressure curve The frequency corresponds to the offset of the reflected spot.
  • the processing device 4 may specifically include the following modules:
  • the transforming module 41 is configured to perform Fourier transform on the image representing the pressure distribution to obtain a distribution of different frequencies corresponding to different force areas;
  • the inverse calculation module 42 is configured to determine a pressure distribution corresponding to each frequency by using a deformation distribution model according to a change in position of the marked point and a change in position of the reflected light spot;
  • the superposition module 43 is configured to superimpose each frequency to determine a pressure distribution corresponding to the overall curved surface.
  • the process specifically includes:
  • Step S101 Perform Fourier transform on the image representing the pressure distribution to obtain distributions of different frequencies corresponding to different force areas;
  • the two-dimensional Fourier transform is performed on the three-dimensional points in the image to obtain the frequency domain distribution, and the frequency domain content is filtered through the filter, and the filtering of each frequency is extracted to obtain the distribution of each frequency.
  • Step S102 Calling a deformation distribution model to determine a pressure distribution corresponding to each frequency according to a change in the position of the marked point and a change in the position of the reflected light spot;
  • Step S103 superimposing each frequency to determine a pressure distribution corresponding to the overall curved surface.
  • the method of decomposition can adopt the method of frequency domain bandpass, and the distribution is transferred to the frequency domain by Fourier transform, and each frequency is bandpassed separately, and then turned back to the airspace to obtain the pressure distribution corresponding to the single frequency, for each distribution.
  • the area can be checked to obtain the pressure of the frequency in the area.
  • the 3D curve of the pressure acting surface based on the marked points and the reflected spots is the core of the present invention.
  • the method for determining the position of the marked point in this step is further elaborated.
  • the angle a represents the incident angle of the incident light beam of the light source
  • b is the image of the incident light beam reflected by the reflective surface after being reflected by the reflective surface.
  • the angle between the light spot formed on the surface and the point P; D is the distance between the light source and the camera.
  • a is the incident angle of the laser beam
  • P1 and P2 are marked points on the reflecting surface
  • the position information thereof can be determined by the above method of determining the position of the marking point.
  • the slope of the reflecting surface can be calculated by knowing the laser incident angle a, the coarse mirror slope K, the reflecting surface equation, and the position of the reflected light spot of the imaging device.
  • the position of the reflected light beam can be obtained by the position of the light spot reflected by the camera device, and the position of the normal line can be determined according to the angle between the exit angle and the incident angle, and the position of the reflective surface can be determined by making a vertical line according to the normal line. In this way, the slope of the reflecting surface can be calculated.
  • the specularly reflected light of the diffuse reflection edge is calculated to obtain the slope of the reflection surface.
  • the incident light has a normal angle of (180-a-b)/2; the normal angle is 180-a-(180-a-b)/2; and the mirror angle is 180-a-(180-a-b/2-90).
  • the pressure array detecting apparatus may further include: a capacitor array for detecting the pressure of a single point corresponding to each capacitor.
  • the capacitor array can be specifically disposed at the position of the reflective layer. That is, the light reflecting layer may be a separate light reflecting layer, or a conductive layer may be used to detect the capacitance value in order to detect the pressure detecting layer.
  • processing device may further include: a correction module, configured to correct the pressure of the single point determined by the capacitor array after determining the pressure distribution of the pressure acting surface.
  • a correction module configured to correct the pressure of the single point determined by the capacitor array after determining the pressure distribution of the pressure acting surface.
  • the specific correction process may be: comparing the precise pressure value of the single point acquired through the capacitor array with the measured pressure value of the corresponding single point obtained by the embodiment of the present invention, for example, obtaining a certain point through the capacitor array.
  • the pressure value is 20N
  • the measured pressure value of the corresponding point obtained in this embodiment is 25N
  • the difference between the accurate pressure value and the measured pressure value is determined, and then the measured values of other points obtained by the embodiment of the present invention are corrected.
  • Processing that is, subtracting 5N from the measured values of each other point as the corrected pressure value.
  • the pressure array detecting apparatus may further include: display means for displaying a curved shape and/or a pressure distribution of the pressure acting surface.
  • display means for displaying a curved shape and/or a pressure distribution of the pressure acting surface.
  • the invention also provides a pulse diagnostic testing device comprising any of the above pressure array detecting devices.
  • the pulse diagnosis detecting device provided by the present invention can be mutually compared, and details are not described herein again.
  • the pressure array detecting device provided by the present invention can also be used in other various pressure detecting processes.
  • the pressure array detecting method provided by the embodiment of the present invention is described below.
  • the pressure array detecting method described below and the pressure array detecting device described above can refer to each other.
  • FIG. 10 is a flowchart of a method for detecting a pressure array according to an embodiment of the present invention.
  • the method for detecting a pressure array according to FIG. 10 may include:
  • Step S201 collecting the pressure sensing device to represent the image of the pressure distribution when the pressure is applied; the pressure sensing device is composed of the reflective layer and the flexible material layer, the first surface of the flexible material layer is in contact with the pressure acting surface, and the second surface is reflective
  • the layer is laminated; a mark dot composed of a plurality of mark points is distributed on the light reflecting layer, and the light which is not reflected or incident on the mark point is diffusely reflected; the light reflecting layer reflects the light beam emitted from the light source, and is in the image pickup device
  • the image forming surface forms a corresponding reflected light spot; the image includes position information of the marked dot matrix and position information of the reflected light spot;
  • Step S202 determining a pressure distribution of the pressure acting surface according to the position change of the mark dot and the position change of the reflected light spot.
  • step S202 can be specifically implemented by the following method:
  • Step S2021 pre-establishing a deformation distribution model, wherein the deformation distribution model includes a pressure curve corresponding to a pressure-applying surface under different pressures of different force areas, and the magnitude of the pressure curve corresponds to an offset of the marked point, and the frequency of the pressure curve corresponds to the reflected light.
  • Step S2022 Perform Fourier transform on the image representing the pressure distribution to obtain distributions of different frequencies corresponding to different force areas;
  • Step S2023 determining a pressure distribution corresponding to each frequency by using a deformation distribution model according to a change in the position of the marked point and a change in the position of the reflected light spot;
  • Step S2024 superimposing each frequency to determine a pressure distribution corresponding to the overall curved surface.
  • the deformation distribution model by establishing the deformation distribution model in advance, the positional change of the marked point, the positional change of the reflected light spot, and the corresponding relationship of the pressure magnitude can be stored, so that the position change of the marked point and the position of the reflected light spot are acquired according to the acquired image.
  • the deformation distribution model can be called to directly obtain the corresponding pressure value, no need to carry out calculation processing, reduce the calculation process, and improve the speed of pressure detection.
  • the method provided by the present invention may further include: detecting a single point of pressure corresponding to each capacitor by using a capacitor array; and correcting the pressure distribution by using the determined single point pressure. Using a capacitor array to correct the pressure value can improve the accuracy of pressure detection.
  • it may further comprise: displaying a curved shape and/or a pressure distribution of the pressure acting surface.
  • the flexible material layer of the pressure sensing device under the action of pressure, the flexible material layer of the pressure sensing device is deformed, so that the reflective layer adhered to the flexible material layer is also deformed. Since the marked points on the reflective layer are not reflective or the incident light is diffusely reflected, the position of the marked points in the acquired image also changes. According to the position change of the marking point on the reflective layer, the degree of lateral deformation of the pressure sensing device can be detected, and the light spot emitted by the light source reflected by the reflective layer on the imaging surface of the imaging device is deformed when the reflective layer is deformed. A displacement occurred.
  • the image including the position information of the mark point and the position information of the light spot is acquired by the image pickup device, and after the image is processed, the pressure distribution is determined by the deformation distribution model established in advance. It can be seen that the pressure array detecting method provided by the present invention can obtain pressure detection with higher resolution.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压力阵列检测设备、对应方法以及脉诊检测设备,在压力作用下,压力传感装置(1)的柔性材料层产生形变,使得与柔性材料层贴合的反光层也随之发生形变。根据反光层上的标记点可以探测压力传感装置(1)的横向变形程度,而光源(2)出射的光束经反光层反射后在摄像装置(3)成像面形成的反射光点,在反光层发生形变时,也会发生位移。通过摄像装置(3)对包含标记点的位置信息以及反射光点的位置信息的图像进行采集。并对该图像进行处理后,反算出对应压力作用表面的压力分布。通过该压力阵列检测设备、对应方法以及脉诊检测设备,能够获得分辨率较高的压力检测。

Description

压力阵列检测设备、对应方法以及脉诊检测设备 技术领域
本发明涉及脉诊设备技术领域,特别是涉及一种压力阵列检测设备、对应方法以及压力阵列检测设备。
背景技术
目前压力检测装置多为测量单点的压力,例如通过电容阵列的方式获取单点的脉诊信息。在相同的待检测面积内,电容阵列设置个数越多,则分辨率越高,但是其检测精度会降低。因此,在要保证电容阵列的检测精度的前提下,现有的压力检测装置无法提供更高的分辨率,市面上最多也只能支持到3*4的分辨率。
鉴于此,提供一种能够获取高分辨率阵列精确压力信息的方法是本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种压力阵列检测设备、对应方法以及压力阵列检测设备,以解决现有压力检测技术分辨率较低的问题。
为解决上述技术问题,本发明提供一种压力阵列检测设备,包括:
压力传感装置、光源、摄像装置以及处理装置;
其中,所述压力传感装置由反光层以及柔性材料层构成,所述柔性材料层的第一表面与压力作用表面相接触,第二表面与所述反光层相贴合;在所述反光层上分布有多个标记点组成的标记点阵,所述标记点不反光或入射至所述标记点的光发生漫反射;
所述光源用于出射光束,经过所述反光层反射后,在所述摄像装置的成像面上形成对应的反射光点;
所述摄像装置用于对包含所述标记点阵的位置信息以及所述反射光点的位置信息的图像进行采集;
所述处理装置用于对所述图像进行处理,根据所述标记点阵的位置变化以及所述反射光点的位置变化,确定所述压力作用表面的压力分布。
可选地,还包括:
存储器,用于存储预先建立的形变分布模型,所述形变分布模型包括压力作用表面在不同受力面积不同压力下对应的压力曲线,所述压力曲线的幅值对应所述标记点发生的偏移量,所述压力曲线的频率对应所述反射光点发生的偏移量。
可选地,所述处理装置包括:
变换模块,用于对表征压力分布的所述图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
反算模块,用于根据所述标记点的位置变化以及所述反射光点的位置变化,利用所述形变分布模型确定每个频率对应的压力分布;
叠加模块,用于对每个频率进行叠加,确定整体曲面对应的压力分布。
可选地,所述压力传感装置还包括电容阵列,用于对各电容分别对应的单点的压力进行检测。
可选地,所述电容阵列设置于所述反光层位置处。
可选地,所述处理装置还包括:
校正模块,用于在确定所述压力作用表面的压力分布之后,采用所述电容阵列确定的单点的压力进行校正。
可选地,所述光源为激光光源。
可选地,所述柔性材料层为硅胶层。
可选地,还包括:
显示装置,用于对所述压力作用表面的曲面形状和/或压力分布进行显示。
本发明还提供了一种脉诊检测设备,包括上述任一种压力阵列检测设备。
本发明还提供了一种压力阵列检测方法,包括:
采集压力传感装置在压力作用时表征压力分布的图像;所述压力传感装置由反光层以及柔性材料层构成,所述柔性材料层的第一表面与压力作 用表面相接触,第二表面与所述反光层相贴合;在所述反光层上分布有多个标记点组成的标记点阵,所述标记点不反光或入射至所述标记点的光发生漫反射;所述反光层将光源出射的光束反射后,在摄像装置的成像面形成对应反射光点;所述图像包含所述标记点阵的位置信息以及所述反射光点的位置信息;
根据所述标记点阵的位置变化以及所述反射光点的位置变化,确定所述压力作用表面的压力分布。
可选地,所述根据所述标记点阵的位置变化以及所述反射光点的位置变化,确定所述压力作用表面的压力分布包括:
预先建立形变分布模型,所述形变分布模型包括压力作用表面在不同受力面积不同压力下对应的压力曲线,所述压力曲线的幅值对应所述标记点发生的偏移量,所述压力曲线的频率对应所述反射光点发生的偏移量;
对表征压力分布的所述图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
根据所述标记点的位置变化以及所述反射光点的位置变化,利用所述形变分布模型确定每个频率对应的压力分布;
对每个频率进行叠加,确定整体曲面对应的压力分布。
可选地,在所述确定所述压力作用表面的压力分布之后还包括:
采用电容阵列对各电容对应的单点的压力进行检测;
采用确定的单点的压力对所述压力分布进行校正。
可选地,还包括:
对所述压力作用表面的曲面形状和/或压力分布进行显示。
本发明所提供的压力阵列检测设备以及对应方法,在压力作用下,压力传感装置的柔性材料层产生形变,使得与柔性材料层贴合的反光层也随之发生形变。由于反光层上的标记点不反光或入射光发生漫反射,因此采集到的图像中标记点的位置也会发生变化。根据反光层上的标记点的位置变化可以探测压力传感装置的横向变形程度,而光源出射的光束经反光层反射后在摄像装置成像面形成的反射光点,在反光层发生形变时,也会发生位移。通过摄像装置对包含标记点的位置信息以及反射光点的位置信息 的图像进行采集。并对该图像进行处理后,反算出对应压力作用表面的压力分布。可见,本发明所提供的压力阵列检测设备以及对应方法,能够获得分辨率较高的压力检测。此外,本发明还提供了一种具有上述技术优点的脉诊检测设备。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的压力阵列检测设备的一种具体实施方式的结构框图;
图2为本发明所提供的压力阵列检测设备的一种具体实施方式的示例图一;
图3为本发明所提供的压力阵列检测设备的一种具体实施方式的示例图二;
图4为在某压力作用下,单点或不同面积的触点随压力变化的形变分布压力曲线示意图;
图5为本发明实施例中处理装置的一种具体实施方式的结构框图;
图6为本发明所提供的压力阵列检测设备中处理装置的具体工作示意图;
图7为标记点的位置确定方法示意图;
图8为根据标记点与反光层共同反算出表面形变的过程示意图一;
图9为根据标记点与反光层共同反算出表面形变的过程示意图二;
图10本发明所提供的压力阵列检测方法的流程图;
图11为本发明所提供的压力阵列检测方法中处理过程的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了压力阵列检测设备、对应方法以及脉诊检测设备,能够获得分辨率较高的压力检测,以下分别进行详细描述。
请参阅图1,图1为本发明所提供的压力阵列检测设备的一种具体实施方式的结构框图。如图1所示,该压力阵列检测设备可以包括:
压力传感装置1、光源2、摄像装置3以及处理装置4;
其中,压力传感装置1由反光层以及柔性材料层构成,柔性材料层的第一表面与压力作用表面相接触,第二表面与反光层相贴合;在反光层上分布有多个标记点组成的标记点阵,该标记点不反光或入射至标记点的光发生漫反射;
光源2用于出射光束,经过反光层反射后,在摄像装置的成像面上形成对应的反射光点;
摄像装置3用于对包含标记点阵的位置信息以及反射光点的位置信息的图像进行采集;
处理装置4用于对图像进行处理,根据标记点阵的位置变化以及反射光点的位置变化,确定压力作用表面的压力分布。
本发明所提供的压力阵列检测设备,在压力作用下,压力传感装置的柔性材料层产生形变,使得与柔性材料层贴合的反光层也随之发生形变。由于反光层上的标记点不反光或入射光发生漫反射,因此采集到的图像中标记点的位置也会发生变化。根据反光层上的标记点的位置变化可以探测压力传感装置的横向变形程度,而光源出射的光束经反光层反射后在摄像装置成像面形成的反射光点,在反光层发生形变时,也会发生位移。通过摄像装置对包含标记点的位置信息以及反射光点的位置信息的图像进行采集,对该图像进行处理后,利用预先建立的形变分布模型确定压力分布。可见,本发明所提供的压力阵列检测设备,能够获得分辨率较高的压力检 测。
本发明所提供的压力阵列检测设备的一种具体实施方式的示例图如图2以及图3所示,其中,光源具体为激光光源,压力传感装置中的柔性材料层具体为硅胶,反光层具体可以为反光金属层,反光层上规则分布有多个标记点,以组成标记点阵。标记点不反光或者入射至标记点的光发生漫反射。与其他光源相比,激光光源的方向性好,发散角小,因此能够保证光束的出射效果,以便根据光束的位置对压力进行检测。与其他材料相比,本实施例中采用的硅胶材料较薄,贴覆性好,能够在被贴覆物体发生较小的形变时较为明显的体现出来,保证压力检测的效果。而本实施例采用金属层作为反光层,则能保证较好的镜面反射效果。
参照图2,在没有压力作用下,柔性材料层为初始未发生形变的状态,反光层同样未发生形变。光源发射的光束经反光层镜面反射后,在摄像装置的成像面形成对应的反射光点。
参照图3,当有压力作用时,柔性材料层发生形变,而与该柔性材料层贴合的反光层也发生形变。此时,反光层上的标记点发生偏移,并且光源发射的光束经反光层反射后,在摄像装置的成像面形成的反射光点的位置也相应发生偏移。因此,通过标记点的偏移量以及光点的偏移量,即可反映出压力作用表面的形变情况,进而反映出压力的分布大小。可见,本发明实施例通过激光与反光结构能够将微小的形变转化为扰动剧烈的图像信号。
本申请通过预先采集压力曲线作为反解压力的先验参考,预先建立形变分布模型,即建立压力作用表面不同受力面积不同压力与标记点的偏移量、反射光点的偏移量的对应关系,这样,根据实际拍摄到的标记点的偏移量以及反射光点的偏移量,就可以反算出对应的压力值,能够减化压力检测的流程,提高压力检测的效率。
作为一种具体实施方式,本发明实施例中形变分布模型包括压力作用表面在不同受力面积不同压力下对应的压力曲线,该压力曲线的幅值对应标记点发生的偏移量,该压力曲线的频率对应反射光点发生的偏移量。图 4示出了在某压力作用下,单点或不同面积的触点随压力变化的形变分布压力曲线示意图,其中,坐标的横坐标表示距压力中心的距离,纵坐标表示幅值的大小。可见,不同压力作用下,压力曲线的幅值不同。压力越大,幅值越大。不同受力面积时,压力曲线的频率不同。受力面积越大,对应与压力中心的距离也越大,即偏移量越大,波宽越宽。形变分布模型中包含不同压力不同受力面积的压力曲线,具体可以通过大量的实验得到压力、幅值以及频率的对应关系。
在上述实施例的基础上,本发明所提供的压力阵列检测设备还可以进一步包括:
存储器,用于存储预先建立的形变分布模型,形变分布模型包括压力作用表面在不同受力面积不同压力下对应的不同的压力曲线,压力曲线的幅值对应标记点发生的偏移量,压力曲线的频率对应反射光点发生的偏移量。
如图5处理装置的一种具体实施方式的结构框图所示,处理装置4具体可以包括如下模块:
变换模块41,用于对表征压力分布的图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
反算模块42,用于根据标记点的位置变化以及反射光点的位置变化,利用形变分布模型确定每个频率对应的压力分布;
叠加模块43,用于对每个频率进行叠加,确定整体曲面对应的压力分布。
如图6所示,下面对处理装置的具体工作过程进行进一步详细阐述。该过程具体包括:
步骤S101:对表征压力分布的图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
对图像中三维点做二维傅里叶变换,得到频域分布,对频域内容做带通过滤,对每个频率的过滤进行提取,得到每个频率的分布。
步骤S102:根据标记点的位置变化以及反射光点的位置变化,调用形变分布模型确定每个频率对应的压力分布;
步骤S103:对每个频率进行叠加,确定整体曲面对应的压力分布。
本申请中如果压力源较单一,反算就很简单,直接查表即可。但很多时候是混合压力,即一个表面区的每个点压力值是不一样的。就需要将混合的压力的精确的表面分布转化成可以计算的量。因此,需要对表面分布分解。分解为多个单一的压力,计算后再累加。
分解的方法可采用频域带通的方法,通过傅里叶变换将分布转到频域,对每个频率单独带通,再转回空域,得到该单一频率对应的压力分布,对每个分布区域做查表即可得到该区域该频率的压力。
根据标记点以及反射光点得到压力作用表面的3D曲线是本发明的核心。下面对本步骤中标记点的位置确定方法进行进一步详细阐述,请参照图7,图中角度a表示光源入射光束的入射角,b为入射到P点的光束经反光面反射后,在摄像装置成像面上形成的光点与P点的角度;D为光源与相机的距离。根据几何公式计算可得,
Pz=D/[tan(a)+tan(b)],其中,Px,y在图像中已知,因此P(x,y,z)被确定。根据上式则反射面上所有标记点的空间位置均可得出。
下面对根据标记点与反光层共同反算出表面形变的过程进行进一步详细阐述。本实施例中可以采用两种具体的算法,一种采用两个参考点中间的点计算反射面的斜率,如图8所示。另一种采用参考点附件的点计算反射面的斜率,如图9所示。
参照图8,a为激光光束入射角度,P1以及P2为反射面上的标记点,其位置信息可以由上述确定标记点位置的方法进行确定。已知激光入射角度a、粗略反射镜斜率K、反射面方程以及摄像装置反射光点的位置,即可计算得到反射面的斜率。由摄像装置反射光点的位置可以得到反射光束的出射角,而根据出射角以及入射角之间的夹角即可确定法线的位置,而根据法线做垂线即可确定反射面的位置,这样即可计算得到反射面的斜率。
参照图9,取漫反射边缘的镜面反射光进行计算,得到反射面斜率。其中,入射光与法向角度为(180-a-b)/2;法向角度为180-a-(180-a-b)/2;镜面角度为180-a-(180-a-b/2-90)。
本发明所提供的压力阵列检测设备还可以进一步包括:电容阵列,用于对各电容分别对应的单点的压力进行检测。
电容阵列可以具体设置于反光层位置处。即,反光层可以为单独的反光层,也可以用导电操了做成用来探测电容值,以便检测压力的探测层。
进一步地,处理装置还可以包括:校正模块,用于在确定压力作用表面的压力分布之后,采用电容阵列确定的单点的压力进行校正。
通过采用电容阵列获取单点的精确压力值,并与通过图像反算出的压力值比较,从而对得到的压力分布进行校正,提高了压力的检测准确度。
具体校正的过程可以为:将通过电容阵列获取到的单点的精确压力值与通过本发明实施例获取的对应单点的测量压力值进行比较,例如,在通过电容阵列获取到某一点的精确压力值为20N,本实施例获取的对应点的测量压力值为25N的情况下,确定精确压力值以及测量压力值的差值,然后对本发明实施例获取到的其他点的测量值均进行校正处理,即将其他每一点的测量值均减去5N作为校正后的压力值。
此外,作为一种具体实施方式,本发明所提供的压力阵列检测设备还可以包括:显示装置,用于对压力作用表面的曲面形状和/或压力分布进行显示。通过这样的设置可以方便用户的查看,及时更新当前压力检测信息,更加具有实用性。
本发明还提供了一种脉诊检测设备,包括上述任一种压力阵列检测设备。
本发明所提供的脉诊检测设备的具体设置与压力阵列检测设备可相互对照,在此不再赘述。当然,需要指出的是,本发明所提供的压力阵列检测设备还可以用于其他多种压力的检测过程中。
下面对本发明实施例提供的压力阵列检测方法进行介绍,下文描述的压力阵列检测方法与上文描述的压力阵列检测装置可相互对应参照。
图10为本发明实施例提供的压力阵列检测方法的流程图,参照图10压力阵列检测方法可以包括:
步骤S201:采集压力传感装置在压力作用时表征压力分布的图像;压力传感装置由反光层以及柔性材料层构成,柔性材料层的第一表面与压力作用表面相接触,第二表面与反光层相贴合;在反光层上1分布有多个标记点组成的标记点阵,标记点不反光或入射至标记点的光发生漫反射;反光层将光源出射的光束反射后,在摄像装置的成像面形成对应反射光点;图像包含标记点阵的位置信息以及反射光点的位置信息;
步骤S202:根据标记点阵的位置变化以及反射光点的位置变化,确定压力作用表面的压力分布。
参照图11,步骤S202可以具体通过下述方法进行实施:
步骤S2021:预先建立形变分布模型,形变分布模型包括压力作用表面在不同受力面积不同压力下对应的压力曲线,压力曲线的幅值对应标记点发生的偏移量,压力曲线的频率对应反射光点发生的偏移量;
步骤S2022:对表征压力分布的图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
步骤S2023:根据标记点的位置变化以及反射光点的位置变化,利用形变分布模型确定每个频率对应的压力分布;
步骤S2024:对每个频率进行叠加,确定整体曲面对应的压力分布。
本实施例通过预先建立形变分布模型,可以将标记点的位置变化、反射光点的位置变化以及压力大小的对应关系进行存储,这样根据采集图像获取到标记点的位置变化以及反射光点的位置变化后,调用形变分布模型就可以直接得到对应的压力值,不需要再进行计算处理,减化了计算的流程,提高了压力检测的速度。
在上述任一实施例的基础上,本发明所提供的方法还可以进一步包括:采用电容阵列对各电容对应的单点的压力进行检测;采用确定的单点的压力对压力分布进行校正。采用电容阵列对压力值进行校正,可以提高压力检测的准确性。
此外,优选地,还可以进一步包括:对压力作用表面的曲面形状和/或压力分布进行显示。通过这样的设置可以方便用户的查看,及时更新当前压力检测信息,更加具有实用性。
本发明所提供的压力阵列检测方法,在压力作用下,压力传感装置的柔性材料层产生形变,使得与柔性材料层贴合的反光层也随之发生形变。由于反光层上的标记点不反光或入射光发生漫反射,因此采集到的图像中标记点的位置也会发生变化。根据反光层上的标记点的位置变化可以探测压力传感装置的横向变形程度,而光源出射的光束经反光层反射后在摄像装置成像面形成的光点,在反光层发生形变时,也会发生位移。通过摄像装置对包含标记点的位置信息以及光点的位置信息的图像进行采集,对该图像进行处理后,利用预先建立的形变分布模型确定压力分布。可见,本发明所提供的压力阵列检测方法,能够获得分辨率较高的压力检测。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的压力阵列检测设备、对应方法以及压力阵列检测设备进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核 心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 一种压力阵列检测设备,其特征在于,包括:
    压力传感装置、光源、摄像装置以及处理装置;
    其中,所述压力传感装置由反光层以及柔性材料层构成,所述柔性材料层的第一表面与压力作用表面相接触,第二表面与所述反光层相贴合;在所述反光层上分布有多个标记点组成的标记点阵,所述标记点不反光或入射至所述标记点的光发生漫反射;
    所述光源用于出射光束,经过所述反光层反射后,在所述摄像装置的成像面上形成对应的反射光点;
    所述摄像装置用于对包含所述标记点阵的位置信息以及所述反射光点的位置信息的图像进行采集;
    所述处理装置用于对所述图像进行处理,根据所述标记点阵的位置变化以及所述反射光点的位置变化,确定所述压力作用表面的压力分布。
  2. 如权利要求1所述的压力阵列检测设备,其特征在于,还包括:
    存储器,用于存储预先建立的形变分布模型,所述形变分布模型包括压力作用表面在不同受力面积不同压力下对应的压力曲线,所述压力曲线的幅值对应所述标记点发生的偏移量,所述压力曲线的频率对应所述反射光点发生的偏移量。
  3. 如权利要求2所述的压力阵列检测设备,其特征在于,所述处理装置包括:
    变换模块,用于对表征压力分布的所述图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
    反算模块,用于根据所述标记点的位置变化以及所述反射光点的位置变化,利用所述形变分布模型确定每个频率对应的压力分布;
    叠加模块,用于对每个频率进行叠加,确定整体曲面对应的压力分布。
  4. 如权利要求1至3任一项所述的压力阵列检测设备,其特征在于,所述压力传感装置还包括电容阵列,用于对各电容分别对应的单点的压力进行检测。
  5. 如权利要求4所述的压力阵列检测设备,其特征在于,所述电容阵 列设置于所述反光层位置处。
  6. 如权利要求5所述的压力阵列检测设备,其特征在于,所述处理装置还包括:
    校正模块,用于在确定所述压力作用表面的压力分布之后,采用所述电容阵列确定的单点的压力进行校正。
  7. 如权利要求1至3任一项所述的压力阵列检测设备,其特征在于,所述光源为激光光源。
  8. 如权利要求1至3任一项所述的压力阵列检测设备,其特征在于,所述柔性材料层为硅胶层。
  9. 如权利要求1至3任一项所述的压力阵列检测设备,其特征在于,还包括:
    显示装置,用于对所述压力作用表面的曲面形状和/或压力分布进行显示。
  10. 一种脉诊检测设备,其特征在于,包括如权利要求1至9任一项所述的压力阵列检测设备。
  11. 一种压力阵列检测方法,其特征在于,包括:
    采集压力传感装置在压力作用时表征压力分布的图像;其中,所述压力传感装置由反光层以及柔性材料层构成,所述柔性材料层的第一表面与压力作用表面相接触,第二表面与所述反光层相贴合;在所述反光层上分布有多个标记点组成的标记点阵,所述标记点不反光或入射至所述标记点的光发生漫反射;所述反光层将光源出射的光束反射后,在摄像装置的成像面形成对应反射光点;所述图像包含所述标记点阵的位置信息以及所述反射光点的位置信息;
    根据所述标记点阵的位置变化以及所述反射光点的位置变化,确定所述压力作用表面的压力分布。
  12. 如权利要求11所述的方法,其特征在于,所述根据所述标记点阵的位置变化以及所述反射光点的位置变化,确定所述压力作用表面的压力分布包括:
    预先建立形变分布模型,所述形变分布模型包括压力作用表面在不同 受力面积不同压力下对应的压力曲线,所述压力曲线的幅值对应所述标记点发生的偏移量,所述压力曲线的频率对应所述反射光点发生的偏移量;
    对表征压力分布的所述图像进行傅里叶变换,得到不同受力面积对应的不同频率的分布;
    根据所述标记点的位置变化以及所述反射光点的位置变化,利用所述形变分布模型确定每个频率对应的压力分布;
    对每个频率进行叠加,确定整体曲面对应的压力分布。
  13. 如权利要求11或12所述的方法,其特征在于,在所述确定所述压力作用表面的压力分布之后还包括:
    采用电容阵列对各电容对应的单点的压力进行检测;
    采用确定的单点的压力对所述压力分布进行校正。
  14. 如权利要求11或12所述的方法,其特征在于,还包括:
    对所述压力作用表面的曲面形状和/或压力分布进行显示。
PCT/CN2016/113919 2016-12-30 2016-12-30 压力阵列检测设备、对应方法以及脉诊检测设备 WO2018120212A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/113919 WO2018120212A1 (zh) 2016-12-30 2016-12-30 压力阵列检测设备、对应方法以及脉诊检测设备
CN201680038456.4A CN108064146B (zh) 2016-12-30 2016-12-30 压力阵列检测设备、对应方法以及脉诊检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113919 WO2018120212A1 (zh) 2016-12-30 2016-12-30 压力阵列检测设备、对应方法以及脉诊检测设备

Publications (1)

Publication Number Publication Date
WO2018120212A1 true WO2018120212A1 (zh) 2018-07-05

Family

ID=62138143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113919 WO2018120212A1 (zh) 2016-12-30 2016-12-30 压力阵列检测设备、对应方法以及脉诊检测设备

Country Status (2)

Country Link
CN (1) CN108064146B (zh)
WO (1) WO2018120212A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563116A (zh) * 2020-11-03 2022-05-31 兰州大学 一种压力损伤检测用传感器阵列
CN115752833A (zh) * 2022-12-07 2023-03-07 之江实验室 一种阵列式MXene柔性薄膜传感器及其应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174200A (zh) * 2019-06-14 2019-08-27 安徽华米信息科技有限公司 压力检测装置、终端
CN110455454B (zh) * 2019-06-28 2020-06-30 北京化工大学 一种基于视觉的多阵列点三维力测量方法及其装置
CN110793674B (zh) * 2019-10-25 2021-04-23 北京化工大学 一种基于视觉的压力传感器阵列及其制造方法
CN111664976B (zh) * 2020-06-19 2021-08-20 北京化工大学 基于视觉光环的阵列化压力测量方法、装置及制备方法
CN113432709B (zh) * 2021-06-25 2023-08-08 湖南工业大学 一种基于图形学的可视化机械故障诊断方法
CN114235239A (zh) * 2021-12-20 2022-03-25 北京有竹居网络技术有限公司 压力检测方法、装置和电子设备
CN114659678A (zh) * 2022-04-12 2022-06-24 深圳市松果体机器人科技有限公司 面形柔性触觉传感器
CN114659460A (zh) * 2022-04-12 2022-06-24 深圳市松果体机器人科技有限公司 一种采集按摩信号的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085014A2 (en) * 2000-05-10 2001-11-15 Motorola, Inc. Method for obtaining blood pressure data from optical sensor
EP1211633A1 (en) * 2000-11-28 2002-06-05 STMicroelectronics S.r.l. Texile-like capacitive pressure sensor and method of mapping the pressure exerted at points of a surface of a flexible and pliable object, particularly of a sail
CN1853093A (zh) * 2003-09-16 2006-10-25 株式会社东京大学Tlo 光学式触觉传感器和使用该传感器的力矢量分布再构成法
CN205049267U (zh) * 2015-09-30 2016-02-24 福建上润精密仪器有限公司 非接触式压力检测装置
CN205322331U (zh) * 2016-01-29 2016-06-22 石家庄职业技术学院 一种基于足底压力形变的步态识别装置
CN106092382A (zh) * 2016-07-20 2016-11-09 山东大学 一种基于弹性体三维形变的触觉传感器及检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411609A (zh) * 2007-10-19 2009-04-22 阮刚 一种接触面形变的传感方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085014A2 (en) * 2000-05-10 2001-11-15 Motorola, Inc. Method for obtaining blood pressure data from optical sensor
EP1211633A1 (en) * 2000-11-28 2002-06-05 STMicroelectronics S.r.l. Texile-like capacitive pressure sensor and method of mapping the pressure exerted at points of a surface of a flexible and pliable object, particularly of a sail
CN1853093A (zh) * 2003-09-16 2006-10-25 株式会社东京大学Tlo 光学式触觉传感器和使用该传感器的力矢量分布再构成法
CN205049267U (zh) * 2015-09-30 2016-02-24 福建上润精密仪器有限公司 非接触式压力检测装置
CN205322331U (zh) * 2016-01-29 2016-06-22 石家庄职业技术学院 一种基于足底压力形变的步态识别装置
CN106092382A (zh) * 2016-07-20 2016-11-09 山东大学 一种基于弹性体三维形变的触觉传感器及检测方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563116A (zh) * 2020-11-03 2022-05-31 兰州大学 一种压力损伤检测用传感器阵列
CN114563116B (zh) * 2020-11-03 2023-02-03 兰州大学 一种压力损伤检测用传感器阵列
CN115752833A (zh) * 2022-12-07 2023-03-07 之江实验室 一种阵列式MXene柔性薄膜传感器及其应用
CN115752833B (zh) * 2022-12-07 2023-08-08 之江实验室 一种阵列式MXene柔性薄膜传感器及其应用

Also Published As

Publication number Publication date
CN108064146B (zh) 2020-11-13
CN108064146A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2018120212A1 (zh) 压力阵列检测设备、对应方法以及脉诊检测设备
JP5390900B2 (ja) 物体の3d座標を決定するための方法及び装置
EP2416113B1 (en) Position and orientation measurement apparatus and position and orientation measurement method
US8600147B2 (en) System and method for remote measurement of displacement and strain fields
JP4811567B2 (ja) 撮影画像を用いた構造物における応力計測方法
JP2002257529A (ja) 被観察体の姿勢検出方法およびこれを用いた装置
Stanić et al. A technology for sewer pipe inspection (part 1): Design, calibration, corrections and potential application of a laser profiler
Peng Algorithms and models for 3-D shape measurement using digital fringe projections
JP5477658B2 (ja) キャリブレーション用校正治具、校正治具を備えた3次元計測システム
JP4843544B2 (ja) 3次元画像補正方法及びその装置
KR102285007B1 (ko) 초음파 스캐너의 탐촉자의 위치 및 자세 추적을 이용한 초음파 영상 제공 장치 및 방법
WO2018120168A1 (zh) 一种视觉检测方法及系统
WO2019189417A1 (ja) 音響解析装置および音響解析方法
CN105865378A (zh) 一种平面度检测方法
CN105261061B (zh) 一种识别冗余数据的方法及装置
JP4855278B2 (ja) カメラパラメータ取得装置
Yao An ultrasonic method for 3D reconstruction of surface topography
JP2008529180A (ja) コイン受付部に導入されたコインの正確な中心を決定する方法
JP5487946B2 (ja) カメラ画像の補正方法およびカメラ装置および座標変換パラメータ決定装置
JP3370418B2 (ja) 3次元形状測定システム
KR100875620B1 (ko) 초음파 영상 시스템 및 방법
JPH1114327A (ja) 3次元形状計測方法及びその装置
US11566888B1 (en) Systems and methods for automatic measurement and scanning of complex surfaces
CN110726996A (zh) 深度模组测距方法、深度相机及移动终端
Marrugo et al. Toward an automatic 3D measurement of skin wheals from skin prick tests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925858

Country of ref document: EP

Kind code of ref document: A1