WO2018120154A1 - 用于工业机器人的平衡系统及工业机器人 - Google Patents

用于工业机器人的平衡系统及工业机器人 Download PDF

Info

Publication number
WO2018120154A1
WO2018120154A1 PCT/CN2016/113810 CN2016113810W WO2018120154A1 WO 2018120154 A1 WO2018120154 A1 WO 2018120154A1 CN 2016113810 W CN2016113810 W CN 2016113810W WO 2018120154 A1 WO2018120154 A1 WO 2018120154A1
Authority
WO
WIPO (PCT)
Prior art keywords
industrial robot
cavity
piston rod
vacuum chamber
cylinder
Prior art date
Application number
PCT/CN2016/113810
Other languages
English (en)
French (fr)
Inventor
张鹏飞
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201680086695.7A priority Critical patent/CN109641356A/zh
Priority to PCT/CN2016/113810 priority patent/WO2018120154A1/zh
Publication of WO2018120154A1 publication Critical patent/WO2018120154A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present invention relates to the field of robot balance technology, and in particular to a balance system and an industrial robot for an industrial robot.
  • Industrial robots are multi-joint robots or multi-degree-of-freedom machines for industrial applications. They can automatically perform work. They are machines that rely on their own power and control to achieve various functions. They are motor-driven motion devices.
  • the heavy-duty industrial robot (loading more than 90kg) has a relatively large two-axis load. A reasonable balancing device can make the two-axis load more balanced, the motor selection is more reasonable, and the industrial robot has better motion performance.
  • Light industrial robots (loads below 20 kg) generally do not have a balancing system. Although the load and overall quality are much smaller than that of heavy industrial robots, the two shafts are the shafts with the largest motor load among the six shafts. The motor model is generally larger than other shafts. If a reasonable balance system is used, the load of the two-axis motor can be reduced, so that the robot as a whole The power supply capacity is reduced, which is very advantageous for cost control.
  • the balance system of the existing industrial robot generally has three modes: gravity type, spring type, and hydraulic type.
  • the gravity type uses a counterweight to balance the two-axis load;
  • the spring type uses multiple sets of springs to balance the two-axis load;
  • the hydraulic type uses a combination of hydraulic and bladder-type accumulators to balance the two-axis load.
  • the gravity balance system generally has a large weight, which greatly increases the quality of the industrial robot, and the quality of the light industrial robot is particularly obvious;
  • the spring type balance system device has a large mass. When a spring type balance system is used, it is generally required to use multiple sets of spring combinations. The design scheme is complicated, and the life of the spring is limited by the number of reciprocations, and the system often needs maintenance;
  • the hydraulic balance system generally adopts a combination of a hydraulic cylinder and a double accumulator.
  • the hydraulic system is inconvenient to maintain and has a hidden danger.
  • the balance device may interfere with the two-axis motion space;
  • the balance system can provide a large balance force for heavy industrial robots.
  • the technical problem to be solved by the present invention is to provide a balance system and an industrial robot for an industrial robot, which can realize the function of balancing the two-axis load lightly, is light and reliable, and is easy to maintain, and is convenient to install, and does not bring motion interference.
  • a technical solution adopted by the present invention is to provide a balancing system for an industrial robot, comprising:
  • a cylinder disposed on a base of the industrial robot, and a cavity is disposed in the cylinder;
  • a piston rod one end of the piston rod is inserted into a cavity of the cylinder, and the other end of the piston rod is connected with a mechanical arm of the industrial robot;
  • baffle disposed in the cavity of the cylinder and coupled to one end of the piston rod to move with movement of the piston rod, and the baffle divides the cavity of the cylinder into a rodless cavity And have a rod cavity;
  • the rodless cavity is a vacuum chamber
  • the piston rod moves with the movement of the mechanical arm to convert the mechanical energy of the industrial robot And a potential energy of the vacuum chamber is stored; when the mechanical arm of the industrial robot moves in a second direction opposite to the first direction, the piston rod moves with the movement of the mechanical arm to release
  • the vacuum chamber stores energy and converts energy stored in the vacuum chamber into mechanical energy of the industrial robot.
  • the cylinder body is provided with a vent hole at a position corresponding to the rod cavity, so that the rod cavity communicates with outside air.
  • An air cleaner is disposed on the vent to isolate particulate contaminants in the outside air.
  • the air pressure in the rod cavity is 1 bar bar.
  • the cylinder body is provided with a vacuum chamber suction port at a position corresponding to the vacuum chamber to pre-vacuate the rodless chamber.
  • the air pressure in the vacuum chamber is not higher than 10 -5 bar bar.
  • a sealing ring is disposed on the baffle to seal the vacuum chamber.
  • the sealing ring is an oil-free lubricating sealing ring.
  • the load of the industrial robot does not exceed 20 kg.
  • an industrial robot including a base, a robot arm, a joint, and a balance system, wherein the joint is disposed at the bottom Between the seat and the robot arm, and the balance system is disposed at the joint, and the balance system includes:
  • a cylinder disposed on a base of the industrial robot, and a cavity is disposed in the cylinder;
  • a piston rod one end of the piston rod is inserted into a cavity of the cylinder, and the other end of the piston rod is connected with a mechanical arm of the industrial robot;
  • baffle disposed in the cavity of the cylinder and coupled to one end of the piston rod to move with movement of the piston rod, and the baffle divides the cavity of the cylinder into a rodless cavity And have a rod cavity;
  • the rodless cavity is a vacuum chamber
  • the piston rod moves with the movement of the mechanical arm to convert the mechanical energy of the industrial robot And a potential energy of the vacuum chamber is stored; when the mechanical arm of the industrial robot moves in a second direction opposite to the first direction, the piston rod moves with the movement of the mechanical arm to release
  • the vacuum chamber stores energy and converts energy stored in the vacuum chamber into mechanical energy of the industrial robot.
  • the cylinder body is provided with a vent hole at a position corresponding to the rod cavity, so that the rod cavity communicates with outside air.
  • the balancing system further comprises:
  • An air cleaner is disposed on the vent to isolate particulate contaminants in the outside air.
  • the air pressure in the rod cavity is 1 bar bar.
  • the cylinder body is provided with a vacuum chamber suction port at a position corresponding to the vacuum chamber to pre-vacuate the rodless chamber.
  • the air pressure in the vacuum chamber is not higher than 10 -5 bar bar.
  • the balancing system further comprises:
  • a sealing ring is disposed on the baffle to seal the vacuum chamber.
  • the sealing ring is an oil-free lubricating sealing ring.
  • the load of the industrial robot does not exceed 20 kg.
  • the balance system of the present invention comprises a cylinder block, a piston rod and a baffle; the baffle divides the cavity of the cylinder into a rodless cavity and a rod cavity, and the rodless cavity
  • the piston rod moves with the movement of the mechanical arm to convert the mechanical energy of the industrial robot into the potential energy of the vacuum chamber and store; when the mechanical arm of the industrial robot When moving in the second direction opposite to the first direction, the piston rod moves with the movement of the robot arm to release the energy stored in the vacuum chamber, and converts the energy stored in the vacuum chamber into the mechanical mechanism of the industrial robot.
  • the rodless chamber maintains a vacuum
  • the rod chamber is connected to the atmosphere, and the pressure difference between the two chambers is constant, so that a constant output force can be provided to balance the two-axis load without separately setting the air pressure source.
  • the load of the two-axis motor will be significantly balanced.
  • the two-axis motor model can be smaller, the motion performance is better, and the control cabinet power level can be effectively reduced. In this way, the function of balancing the two-axis load can be realized lightly, which is light and reliable, easy to maintain, and convenient to install, and does not bring motion interference.
  • FIG. 1 is a schematic structural view of an embodiment of a balancing system for an industrial robot according to the present invention
  • FIG. 2 is a schematic structural view of an embodiment of an industrial robot of the present invention.
  • FIG. 1 is a schematic structural view of an embodiment of a balancing system for an industrial robot according to the present invention.
  • the balancing system for an industrial robot includes a cylinder 1, a piston rod 2, and a baffle 3.
  • the cylinder block 1 is disposed on the base of the industrial robot, and the cylinder body 1 is provided with a cavity; one end of the piston rod 2 is inserted into the cavity of the cylinder block 1, and the other end of the piston rod 2 is connected with the mechanical arm of the industrial robot;
  • the baffle 3 is disposed in the cavity of the cylinder block 1 and is coupled to one end of the piston rod 2 to move with the movement of the piston rod 2, and the baffle 3 divides the cavity of the cylinder block 1 into a rodless cavity 12 and a rod cavity 13.
  • the piston rod that drives the connecting arm moves, thereby driving the baffle to move in the cavity, thereby causing a change in volume between the rodless cavity and the rod cavity, thereby causing energy conversion.
  • the rodless cavity is a vacuum chamber, that is, the air pressure of the rodless cavity is vacuum or ultra low pressure; when the mechanical arm of the industrial robot moves in the first direction, the piston rod moves with the movement of the mechanical arm to industrialize The mechanical energy of the robot is converted into the potential energy of the vacuum chamber and stored; for example, when the joint of the industrial robot rotates forward, the mechanical arm is lowered, and the balance system converts the mechanical energy of the industrial robot into the potential energy of the vacuum chamber and stores it.
  • the piston rod follows The movement of the arm moves to release the energy stored in the vacuum chamber and convert the energy stored in the vacuum chamber into the mechanical energy of the industrial robot; for example, when the joint of the industrial robot rotates backward, the arm is lifted up, and the balance system vacuum The energy stored in the cavity is released and converted into mechanical energy of the industrial robot.
  • the balance system of the embodiment of the invention comprises a cylinder block, a piston rod and a baffle; the baffle divides the cavity of the cylinder into a rodless cavity and a rod cavity, and the rodless cavity is a vacuum cavity, when the mechanical arm of the industrial robot is along the first
  • the piston rod moves with the movement of the robot arm to convert the mechanical energy of the industrial robot into the potential energy of the vacuum chamber and store; when the mechanical arm of the industrial robot moves in the second direction opposite to the first direction, the piston The rod moves with the movement of the robot arm to release the energy stored in the vacuum chamber and convert the energy stored in the vacuum chamber into the mechanical energy of the industrial robot.
  • the rodless chamber maintains a vacuum
  • the rod chamber is connected to the atmosphere, and the pressure difference between the two chambers is constant, so that a constant output force can be provided to balance the two-axis load without separately setting the air pressure source.
  • the load of the two-axis motor will be significantly balanced.
  • the two-axis motor model can be smaller, the motion performance is better, and the control cabinet power level can be effectively reduced. In this way, the function of balancing the two-axis load can be realized lightly, which is light and reliable, easy to maintain, and convenient to install, and does not bring motion interference.
  • the cylinder body 1 is provided with a vent hole 11 at a position corresponding to the rod cavity 13 so that the rod cavity 13 communicates with the outside air. In this way, it is possible to ensure that the air pressure of the rod chamber 13 and the rodless chamber 12 is constant as much as possible.
  • the balance system further comprises: an air cleaner 4.
  • An air cleaner 4 is disposed on the vent hole 11 to isolate particulate contaminants in the outside air. In this way, it is possible to prevent particulate contaminants in the outside air from entering the balancing system and hinder the normal operation of the balancing system.
  • the air pressure in the rod chamber 13 is 1 bar bar.
  • the cylinder block 1 is provided with a vacuum chamber suction port 14 at a position corresponding to the vacuum chamber to evacuate the rodless chamber 12 in advance.
  • the pressure in the vacuum chamber is not higher than 10 -5 bar.
  • the balance system further comprises: a sealing ring 5.
  • a seal ring 5 is provided on the baffle 3 to seal the vacuum chamber. Further, the seal ring 5 is an oil-free lubrication seal.
  • the air pressure difference between the rod cavity 13 and the rodless cavity 12 is constant, so the force is always constant, and the force is the product of the atmospheric pressure and the toroidal area of the rod cavity.
  • the constant force is beneficial for the simulation check and the appropriate selection of the motor. type. Since the rodless chamber 12 is a vacuum chamber, it is sensitive to pollution, so it is necessary to control the pollution.
  • the air filter 4 isolates the particulate pollution caused by the atmosphere, and the oil-free lubricating seal 5 is sealed while not introducing lubricating oil. The pollution brought by it effectively ensures the vacuum chamber is clean.
  • the load of industrial robots does not exceed 20 kg. That is, industrial robots are light in the usual sense Industrial robots.
  • the balancing system is mounted at the joint of an industrial robot.
  • the balance system can convert the mechanical energy of the robot body into the potential energy of the vacuum chamber; when the motor drives the joint edge of the robot
  • the balance system can release the stored potential energy and convert it into the mechanical energy of the robot body.
  • the balancing system the rodless chamber 12 maintains a vacuum, the rod chamber 13 is connected to the atmosphere, and the pressure difference between the two chambers is constant, thereby providing a constant output force to balance the two-axis load.
  • the working methods are as follows:
  • the balance system cylinder 1 is connected with the robot base, the piston rod 2 is connected with the mechanical arm; the cylinder has the rod cavity 13 always under pressure, forming a pulling force on the mechanical arm to reduce the load of the two-axis motor; the mechanical arm moves in the first direction
  • the balance system can convert the mechanical energy of the robot body into the potential energy of the vacuum chamber; when the joint of the motor-driven robot moves in the second direction (for example, when the robot is rotated backwards, the arm is tilted up)
  • the balance system can release the stored potential energy and convert it into the mechanical energy of the robot body.
  • the light-duty industrial robot's two-axis load is much smaller than the heavy-duty robot's two-axis load, it does not require excessive pressure difference and excessive torus area to provide balance force.
  • the pressure difference between atmospheric pressure and vacuum can be used. The effect is that there is no need to set the air pressure source separately.
  • the load of the two-axis motor will be significantly balanced.
  • the two-axis motor model can be smaller, the motion performance is better, and the control cabinet power level can be effectively reduced.
  • the above balance system has the following advantages: first, lighter than the gravity balance system; second, simpler than the hydraulic balance system, easy to maintain; third, longer than the spring balance system; fourth The vacuum chamber and the atmospheric pressure difference are constant, so the balance system output is constant, which is convenient for design calibration. Fifth, the design contour is simple and it is not easy to produce motion interference. Sixth, the system is easy to install, the interface is clear, and the maintenance is convenient; The cost is low, especially the overall cost reduction is more significant.
  • FIG. 2 is a schematic structural view of an embodiment of an industrial robot according to the present invention.
  • the industrial robot includes a base 100, a robot arm 200, a joint 300, and a balance system 400.
  • the joint 300 is disposed on the base 100 and the robot arm 200.
  • the balancing system 400 is disposed at the joint 300, and the balancing system 400 is any of the balancing systems described above.
  • the balancing system 400 is any of the balancing systems described above. For details, refer to the description of the balancing system described above, and no further description is provided herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种平衡系统及工业机器人,该平衡系统包括:缸体(1),设置在工业机器人的底座上;活塞杆(2),活塞杆(2)的一端插设在缸体(1)的腔体内,活塞杆(2)的另一端与工业机器人的机械臂连接;挡板(3),设置在缸体(1)的腔体内且与活塞杆(2)的一端连接以随着活塞杆(2)的移动而移动,且挡板(3)将缸体(1)的腔体分成无杆腔(12)和有杆腔(13);无杆腔(12)为真空腔,当机械臂沿第一方向运动时,活塞杆(2)随着机械臂的运动将工业机器人的机械能转换成真空腔的势能并存储;当机械臂沿与第一方向相反的第二方向运动时,活塞杆(2)随着机械臂的运动释放真空腔存储的能量,并将其转换成工业机器人的机械能。该平衡系统能够轻便地实现平衡二轴负载的功能,轻便可靠,维护简易,同时安装方便,不会带来运动干涉。

Description

用于工业机器人的平衡系统及工业机器人 【技术领域】
本发明涉及机器人平衡技术领域,特别是涉及一种用于工业机器人的平衡系统及工业机器人。
【背景技术】
工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器;它是由电机驱动的运动装置。重型工业机器人(负载90kg以上)的二轴负载相对较大,合理的平衡装置可以让二轴负载更均衡,电机选型更合理,工业机器人的运动性能更好。轻型工业机器人(负载20kg以下)一般没有平衡系统。虽然负载及整体质量远小于重型工业机器人,但其二轴作为六个轴中电机负载最大的轴,电机型号一般大于其他轴,若采用合理的平衡系统,可以降低二轴电机负载,使机器人整体电源容量降低,这对于成本控制是很有利的。
现有技术中,现有工业机器人的平衡系统一般有三种方式:重力式、弹簧式以及液压式。重力式采用配重来平衡二轴负载;弹簧式采用多组弹簧来平衡二轴负载;液压式采用液压和气囊式蓄能器的组合形式来平衡二轴负载。
对于现有的三种平衡系统,都存在不同的缺点:
重力式平衡系统一般配重很大,极大增加了工业机器人整机质量,对于轻型工业机器人整机的质量影响尤其明显;
弹簧式平衡系统装置质量较大,单纯采用弹簧式平衡系统时一般需选用多组弹簧组合形式,设计方案复杂,且弹簧的寿命受往复次数限制,系统经常需要维护;
液压式平衡系统一般采用液压缸加双蓄能器的组合形式,液压系统维护不便,有泄漏隐患,当所选蓄能器体积较大时,平衡装置与二轴运动空间可能发生干涉;而且液压式平衡系统能提供的平衡力一般很大,适用于重型工业机器人。
由此可见,提供一种能够轻便地实现平衡二轴负载的功能,轻便可靠,维护简易,同时安装方便,不会带来运动干涉的工业机器人尤为重要。
【发明内容】
本发明主要解决的技术问题是提供一种用于工业机器人的平衡系统及工业机器人,能够轻便地实现平衡二轴负载的功能,轻便可靠,维护简易,同时安装方便,不会带来运动干涉。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种用于工业机器人的平衡系统,包括:
缸体,设置在所述工业机器人的底座上,且所述缸体内设置有腔体;
活塞杆,所述活塞杆的一端插设在所述缸体的腔体内,所述活塞杆的另一端与所述工业机器人的机械臂连接;
挡板,设置在所述缸体的腔体内且与所述活塞杆的一端连接以随着所述活塞杆的移动而移动,且所述挡板将所述缸体的腔体分成无杆腔和有杆腔;
其中,所述无杆腔为真空腔,当所述工业机器人的机械臂沿第一方向运动时,所述活塞杆随着所述机械臂的运动而移动,以将所述工业机器人的机械能转换成所述真空腔的势能并存储;当所述工业机器人的机械臂沿与所述第一方向相反的第二方向运动时,所述活塞杆随着所述机械臂的运动而移动,以释放所述真空腔存储的能量,并将所述真空腔存储的能量转换成所述工业机器人的机械能。
其中,所述缸体对应所述有杆腔的位置处设置有通气孔,以使所述有杆腔与外界空气相通。
其中,进一步包括:
空气滤清器,设置在所述通气孔上以隔离外界空气中的颗粒污染物。
其中,所述有杆腔内的气压为1巴bar。
其中,所述缸体在对应所述真空腔的位置处设置有真空腔抽气口,以预先将所述无杆腔抽真空。
其中,所述真空腔内的气压不高于10-5巴bar。
其中,进一步包括:
密封圈,设置在所述挡板上以密封所述真空腔。
其中,所述密封圈为无油润滑密封圈。
其中,所述工业机器人的负载不超过20公斤。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种工业机器人,其包括底座、机械臂、关节和平衡系统,其中,所述关节设置在所述底 座和所述机械臂之间,而所述平衡系统设置在所述关节处,且所述平衡系统包括:
缸体,设置在所述工业机器人的底座上,且所述缸体内设置有腔体;
活塞杆,所述活塞杆的一端插设在所述缸体的腔体内,所述活塞杆的另一端与所述工业机器人的机械臂连接;
挡板,设置在所述缸体的腔体内且与所述活塞杆的一端连接以随着所述活塞杆的移动而移动,且所述挡板将所述缸体的腔体分成无杆腔和有杆腔;
其中,所述无杆腔为真空腔,当所述工业机器人的机械臂沿第一方向运动时,所述活塞杆随着所述机械臂的运动而移动,以将所述工业机器人的机械能转换成所述真空腔的势能并存储;当所述工业机器人的机械臂沿与所述第一方向相反的第二方向运动时,所述活塞杆随着所述机械臂的运动而移动,以释放所述真空腔存储的能量,并将所述真空腔存储的能量转换成所述工业机器人的机械能。
其中,所述缸体对应所述有杆腔的位置处设置有通气孔,以使所述有杆腔与外界空气相通。
其中,所述平衡系统进一步包括:
空气滤清器,设置在所述通气孔上以隔离外界空气中的颗粒污染物。
其中,所述有杆腔内的气压为1巴bar。
其中,所述缸体在对应所述真空腔的位置处设置有真空腔抽气口,以预先将所述无杆腔抽真空。
其中,所述真空腔内的气压不高于10-5巴bar。
其中,所述平衡系统进一步包括:
密封圈,设置在所述挡板上以密封所述真空腔。
其中,所述密封圈为无油润滑密封圈。
其中,所述工业机器人的负载不超过20公斤。
本发明的有益效果是:区别于现有技术的情况,本发明的平衡系统包括缸体、活塞杆以及挡板;挡板将缸体的腔体分成无杆腔和有杆腔,无杆腔为真空腔,当工业机器人的机械臂沿第一方向运动时,活塞杆随着机械臂的运动而移动,以将工业机器人的机械能转换成真空腔的势能并存储;当工业机器人的机械臂沿与第一方向相反的第二方向运动时,活塞杆随着机械臂的运动而移动以释放真空腔存储的能量,并将真空腔存储的能量转换成所述工业机器人的机械 能。由于无杆腔保持真空,有杆腔连接大气,两腔压差恒定,因此能提供恒定的输出力来平衡二轴负载,且又不需要单独设置气压源。相比于没有该平衡系统的同负载级别工业机器人,二轴电机的负载会得到明显均衡,二轴电机型号可以更小,运动性能更佳,控制柜电源级别也会有效降低。通过这种方式,能够轻便地实现平衡二轴负载的功能,轻便可靠,维护简易,同时安装方便,不会带来运动干涉。
【附图说明】
图1是本发明用于工业机器人的平衡系统一实施方式的结构示意图;
图2是本发明工业机器人一实施方式的结构示意图。
【具体实施方式】
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,均属于本发明保护的范围。
参见图1,图1是本发明用于工业机器人的平衡系统一实施方式的结构示意图。该用于工业机器人的平衡系统包括:缸体1、活塞杆2以及挡板3。
缸体1设置在工业机器人的底座上,且缸体1内设置有腔体;活塞杆2的一端插设在缸体1的腔体内,活塞杆2的另一端与工业机器人的机械臂连接;挡板3设置在缸体1的腔体内且与活塞杆2的一端连接以随着活塞杆2的移动而移动,且挡板3将缸体1的腔体分成无杆腔12和有杆腔13。当机械臂运动时,带动连接机械臂的活塞杆移动,进而带动挡板在腔体内运动,从而导致无杆腔和有杆腔之间体积的变化,进而导致能量的转化。
其中,无杆腔为真空腔,也即无杆腔的气压为真空或超低气压;当工业机器人的机械臂沿第一方向运动时,活塞杆随着机械臂的运动而移动,以将工业机器人的机械能转换成真空腔的势能并存储;例如:当工业机器人的关节向前转动时,机械臂下俯,平衡系统将工业机器人的机械能转换成真空腔的势能而存储起来。
当工业机器人的机械臂沿与第一方向相反的第二方向运动时,活塞杆随着 机械臂的运动而移动,以释放真空腔存储的能量,并将真空腔存储的能量转换成工业机器人的机械能;例如:当工业机器人的关节向后转动时,机械臂上仰,平衡系统将真空腔存储的能量释放出来,转换为工业机器人的机械能。
本发明实施方式的平衡系统包括缸体、活塞杆以及挡板;挡板将缸体的腔体分成无杆腔和有杆腔,无杆腔为真空腔,当工业机器人的机械臂沿第一方向运动时,活塞杆随着机械臂的运动而移动,以将工业机器人的机械能转换成真空腔的势能并存储;当工业机器人的机械臂沿与第一方向相反的第二方向运动时,活塞杆随着机械臂的运动而移动,以释放真空腔存储的能量,并将真空腔存储的能量转换成所述工业机器人的机械能。由于无杆腔保持真空,有杆腔连接大气,两腔压差恒定,因此能提供恒定的输出力来平衡二轴负载,且又不需要单独设置气压源。相比于没有该平衡系统的同负载级别工业机器人,二轴电机的负载会得到明显均衡,二轴电机型号可以更小,运动性能更佳,控制柜电源级别也会有效降低。通过这种方式,能够轻便地实现平衡二轴负载的功能,轻便可靠,维护简易,同时安装方便,不会带来运动干涉。
其中,缸体1对应有杆腔13的位置处设置有通气孔11,以使有杆腔13与外界空气相通。通过这种方式,能够尽量保证有杆腔13与无杆腔12气压恒定。
其中,平衡系统进一步包括:空气滤清器4。空气滤清器4设置在通气孔11上以隔离外界空气中的颗粒污染物。通过这种方式,能够避免外界空气中的颗粒污染物进入平衡系统而妨碍平衡系统的正常工作。
其中,有杆腔13内的气压为1巴bar。
其中,缸体1在对应真空腔的位置处设置有真空腔抽气口14,以预先将无杆腔12抽真空。
其中,真空腔内的气压不高于10-5巴bar。
其中,平衡系统进一步包括:密封圈5。密封圈5设置在挡板3上以密封真空腔。进一步,密封圈5为无油润滑密封圈。
有杆腔13与无杆腔12气压差恒定,因此作用力始终恒定,作用力为大气压与有杆腔环面面积的乘积,恒定的作用力有利于进行仿真校核以及对电机作出合适的选型。由于无杆腔12为真空腔,对污染较敏感,因此需对污染进行控制,空气滤清器4隔离大气带来的颗粒污染,无油润滑密封圈5在密封的同时,不引入润滑油挥发带来的污染,有效保证真空腔洁净。
其中,工业机器人的负载不超过20公斤。即工业机器人为通常意义上的轻 型工业机器人。
该平衡系统安装于工业机器人的关节处。当电机驱动机器人的关节沿第一方向运动时(例如:向前转动时,机械臂下俯),平衡系统可将机器人本体的机械能转换为真空腔的势能存储起来;当电机驱动机器人的关节沿与第一方向相反的第二方向运动时(例如:向后转动时,机械臂上仰),平衡系统可将存储的势能释放出来转换为机器人本体的机械能。
该平衡系统,无杆腔12保持真空,有杆腔13连接大气,两腔压差恒定,因此能提供恒定的输出力来平衡二轴负载。工作方式具体如下:
该平衡系统缸体1与机器人底座连接,活塞杆2与机械臂连接;气缸有杆腔13始终处于受压状态,对机械臂形成拉力,以减少二轴电机负载;机械臂沿第一方向运动时(例如:往下运动),平衡系统可将机器人本体的机械能转换为真空腔的势能存储起来;当电机驱动机器人的关节沿第二方向运动时(例如:向后转动时,机械臂上仰),平衡系统可将存储的势能释放出来转换为机器人本体的机械能。
由于轻型工业机器人二轴负载远小于重型机器人二轴负载,因此不需要过大的压差和过大的环面面积来提供平衡力,使用大气压与真空的压差即可,这样既起到了平衡的效果,又不需要单独设置气压源。相比于没有该平衡系统的同负载级别工业机器人,二轴电机的负载会得到明显均衡,二轴电机型号可以更小,运动性能更佳,控制柜电源级别也会有效降低。
上述的平衡系统,具有如下的优点:第一、比重力式平衡系统质量更轻;第二、比液压式平衡系统结构简单,维护方便;第三、比弹簧式平衡系统寿命更长;第四、真空腔与大气压差恒定,因此平衡系统出力恒定,方便设计校核;第五、设计轮廓简洁,不易产生运动干涉;第六、系统整体安装方便,接口清晰,维护方便;第七、结构简单,成本低,特别是对整体成本的降低较显著。
参见图2,图2是本发明工业机器人一实施方式的结构示意图,该工业机器人包括:底座100、机械臂200、关节300和平衡系统400,其中,关节300设置在底座100和机械臂200之间,而平衡系统400设置在关节300处,且平衡系统400为上述平衡系统中的任一平衡系统,具体内容请参见上述平衡系统的说明,在此不再赘叙。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接 运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种用于工业机器人的平衡系统,其特征在于,包括:
    缸体,设置在所述工业机器人的底座上,且所述缸体内设置有腔体;
    活塞杆,所述活塞杆的一端插设在所述缸体的腔体内,所述活塞杆的另一端与所述工业机器人的机械臂连接;
    挡板,设置在所述缸体的腔体内且与所述活塞杆的一端连接,以随着所述活塞杆的移动而移动,且所述挡板将所述缸体的腔体分成无杆腔和有杆腔;
    其中,所述无杆腔为真空腔,当所述工业机器人的机械臂沿第一方向运动时,所述活塞杆随着所述机械臂的运动而移动,以将所述工业机器人的机械能转换成所述真空腔的势能并存储;当所述工业机器人的机械臂沿与所述第一方向相反的第二方向运动时,所述活塞杆随着所述机械臂的运动而移动,以释放所述真空腔存储的能量,并将所述真空腔存储的能量转换成所述工业机器人的机械能。
  2. 根据权利要求1所述的平衡系统,其特征在于,所述缸体对应所述有杆腔的位置处设置有通气孔,以使所述有杆腔与外界空气相通。
  3. 根据权利要求2所述的平衡系统,其特征在于,进一步包括:
    空气滤清器,设置在所述通气孔上以隔离外界空气中的颗粒污染物。
  4. 根据权利要求1所述的平衡系统,其特征在于,所述缸体在对应所述真空腔的位置处设置有真空腔抽气口,以预先将所述无杆腔抽真空。
  5. 根据权利要求1所述的平衡系统,其中,所述真空腔内的气压不高于10-5巴bar。
  6. 根据权利要求1所述的平衡系统,其特征在于,进一步包括:
    密封圈,设置在所述挡板上以密封所述真空腔。
  7. 根据权利要求6所述的平衡系统,其特征在于,所述密封圈为无油润滑密封圈。
  8. 根据权利要求1所述的平衡系统,其特征在于,所述工业机器人的负载不超过20公斤。
  9. 一种工业机器人,其包括底座、机械臂、关节和平衡系统,其特征在于,所述关节设置在所述底座和所述机械臂之间,而所述平衡系统设置在所述关节处,且所述平衡系统包括:
    缸体,设置在所述工业机器人的底座上,且所述缸体内设置有腔体;
    活塞杆,所述活塞杆的一端插设在所述缸体的腔体内,所述活塞杆的另一端与所述工业机器人的机械臂连接;
    挡板,设置在所述缸体的腔体内且与所述活塞杆的一端连接以随着所述活塞杆的移动而移动,且所述挡板将所述缸体的腔体分成无杆腔和有杆腔;
    其中,所述无杆腔为真空腔,当所述工业机器人的机械臂沿第一方向运动时,所述活塞杆随着所述机械臂的运动而移动,以将所述工业机器人的机械能转换成所述真空腔的势能并存储;当所述工业机器人的机械臂沿与所述第一方向相反的第二方向运动时,所述活塞杆随着所述机械臂的运动而移动,以释放所述真空腔存储的能量,并将所述真空腔存储的能量转换成所述工业机器人的机械能。
  10. 根据权利要求9所述的工业机器人,其特征在于,所述缸体对应所述有杆腔的位置处设置有通气孔,以使所述有杆腔与外界空气相通。
  11. 根据权利要求10所述的工业机器人,其特征在于,所述平衡系统进一步包括:
    空气滤清器,设置在所述通气孔上以隔离外界空气中的颗粒污染物。
  12. 根据权利要求9所述的工业机器人,其特征在于,所述有杆腔内的气压为1巴bar。
  13. 根据权利要求9所述的工业机器人,其特征在于,所述缸体在对应所述真空腔的位置处设置有真空腔抽气口,以预先将所述无杆腔抽真空。
  14. 根据权利要求9所述的工业机器人,其特征在于,所述真空腔内的气压不高于10-5巴bar。
  15. 根据权利要求9所述的工业机器人,其特征在于,所述平衡系统进一步包括:
    密封圈,设置在所述挡板上以密封所述真空腔。
  16. 根据权利要求15所述的工业机器人,其特征在于,所述密封圈为无油润滑密封圈。
  17. 根据权利要求9所述的工业机器人,其特征在于,所述工业机器人的负载不超过20公斤。
PCT/CN2016/113810 2016-12-30 2016-12-30 用于工业机器人的平衡系统及工业机器人 WO2018120154A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680086695.7A CN109641356A (zh) 2016-12-30 2016-12-30 用于工业机器人的平衡系统及工业机器人
PCT/CN2016/113810 WO2018120154A1 (zh) 2016-12-30 2016-12-30 用于工业机器人的平衡系统及工业机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113810 WO2018120154A1 (zh) 2016-12-30 2016-12-30 用于工业机器人的平衡系统及工业机器人

Publications (1)

Publication Number Publication Date
WO2018120154A1 true WO2018120154A1 (zh) 2018-07-05

Family

ID=62706784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113810 WO2018120154A1 (zh) 2016-12-30 2016-12-30 用于工业机器人的平衡系统及工业机器人

Country Status (2)

Country Link
CN (1) CN109641356A (zh)
WO (1) WO2018120154A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098319A (zh) * 2020-01-19 2020-05-05 路邦科技授权有限公司 一种工业级机械臂多联控制系统
CN114055447A (zh) * 2021-11-29 2022-02-18 彭丽 一种基于柔性牵引方式的摆臂消重力平衡方法
CN114131584A (zh) * 2021-12-21 2022-03-04 彭丽 一种人体骨骼运动辅助平衡方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465424A (en) * 1981-06-29 1984-08-14 Fujitsu Fanuc Limited Industrial robot
WO2003039819A1 (fr) * 2001-11-09 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Dispositif d'assistance articulaire de jambe pour un robot deplacable de type jambe
CN101505926A (zh) * 2006-09-27 2009-08-12 Abb公司 在平衡装置中带有压缩空气供应的机器人
CN102471043A (zh) * 2009-07-15 2012-05-23 学校法人庆应义塾 载荷补偿装置
CN104070536A (zh) * 2013-03-29 2014-10-01 发那科株式会社 具备平衡器装置的工业用机器人
CN205043806U (zh) * 2015-10-14 2016-02-24 南京埃斯顿机器人工程有限公司 工业机器人第二关节平衡机构
CN105829035A (zh) * 2013-12-25 2016-08-03 川崎重工业株式会社 平衡器装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015148370A1 (en) * 2014-03-24 2015-10-01 Abb Technology Ag Hydraulic/pneumatic cylinder as balancer units

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465424A (en) * 1981-06-29 1984-08-14 Fujitsu Fanuc Limited Industrial robot
WO2003039819A1 (fr) * 2001-11-09 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Dispositif d'assistance articulaire de jambe pour un robot deplacable de type jambe
CN101505926A (zh) * 2006-09-27 2009-08-12 Abb公司 在平衡装置中带有压缩空气供应的机器人
CN102471043A (zh) * 2009-07-15 2012-05-23 学校法人庆应义塾 载荷补偿装置
CN104070536A (zh) * 2013-03-29 2014-10-01 发那科株式会社 具备平衡器装置的工业用机器人
CN105829035A (zh) * 2013-12-25 2016-08-03 川崎重工业株式会社 平衡器装置
CN205043806U (zh) * 2015-10-14 2016-02-24 南京埃斯顿机器人工程有限公司 工业机器人第二关节平衡机构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098319A (zh) * 2020-01-19 2020-05-05 路邦科技授权有限公司 一种工业级机械臂多联控制系统
CN114055447A (zh) * 2021-11-29 2022-02-18 彭丽 一种基于柔性牵引方式的摆臂消重力平衡方法
CN114131584A (zh) * 2021-12-21 2022-03-04 彭丽 一种人体骨骼运动辅助平衡方法

Also Published As

Publication number Publication date
CN109641356A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2018120154A1 (zh) 用于工业机器人的平衡系统及工业机器人
CN206510069U (zh) 用于工业机器人的平衡系统及工业机器人
CN105583821A (zh) 流体驱动多维自适应机器人手装置
US20120186379A1 (en) Industrial robot
CN110421544A (zh) 一种电液混合驱动的双臂移动机器人
CN109502015A (zh) 一种用于临近空间太阳能无人机的起落架减震结构
CN105856185A (zh) 活塞驱动磁流柔性机器人手装置
CN208179542U (zh) 一种新型伸缩机械手
CN108757805A (zh) 一种快速自平衡空气弹簧
CN202955055U (zh) 一种重力平衡装置以及使用该重力平衡装置的工业机器人
CN108045970B (zh) 四轴码垛工业机器人
CN111792367B (zh) 一种使用吸力配重的五轴搬运机器人
CN109641348A (zh) 用于工业机器人的平衡系统及工业机器人
CN206510028U (zh) 用于工业机器人的平衡系统及工业机器人
CN105774861A (zh) 一种家庭搬运机器人
CN113562301B (zh) 一种智能物流装备用转运装置及其转运方法
CN209192090U (zh) 一种适用多工况的麦克纳姆轮车
CN207480574U (zh) 一种多功能机械手
CN213471227U (zh) 一种机器人机械抓手
CN106315457A (zh) 自走液压起降式夹持装卸机
CN114734428B (zh) 一种用于重载高精度对接任务的吊篮吸附式六自由度并联机器人
CN213235614U (zh) 一种内置气腔储气节能油缸
CN109661295A (zh) 用于工业机器人的平衡系统及工业机器人
CN209970782U (zh) 一种机器人平衡装置
CN220094597U (zh) 一种耐高温可精密跟随物料平行抓取物料的机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925846

Country of ref document: EP

Kind code of ref document: A1