WO2018119942A1 - 一种信道接入方法及装置 - Google Patents

一种信道接入方法及装置 Download PDF

Info

Publication number
WO2018119942A1
WO2018119942A1 PCT/CN2016/113243 CN2016113243W WO2018119942A1 WO 2018119942 A1 WO2018119942 A1 WO 2018119942A1 CN 2016113243 W CN2016113243 W CN 2016113243W WO 2018119942 A1 WO2018119942 A1 WO 2018119942A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading code
matrix
obtaining
receiving end
target
Prior art date
Application number
PCT/CN2016/113243
Other languages
English (en)
French (fr)
Inventor
李明
遆光宇
Original Assignee
深圳天珑无线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳天珑无线科技有限公司 filed Critical 深圳天珑无线科技有限公司
Priority to PCT/CN2016/113243 priority Critical patent/WO2018119942A1/zh
Publication of WO2018119942A1 publication Critical patent/WO2018119942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a channel access method and apparatus.
  • Code division multiple access is a kind of wireless access technology widely used in the prior art. Because of its anti-interference, anti-fading, convenient implementation, large capacity, soft switching and anti-spectrum analysis, in recent years, code division Multiple access has gained more and more favor.
  • code division multiple access the allocation of communication resources is realized by the allocation of spreading codes, and each user occupies a separate spreading code for establishing communication with the base station, in the code division multiple access downlink, The user's spreading code is orthogonal or nearly orthogonal, so that when receiving at the receiving end, the receiving end can effectively recover the transmitted signal as long as it knows the unique spreading code assigned.
  • the embodiment of the present application provides a channel access method and device, which are used to solve the problem of low utilization of spectrum resources in the prior art communication system.
  • the embodiment of the present application provides a channel access method, which is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system package The second receiving end and the second sending end are included; the method is performed on the second sending end, and includes:
  • obtaining by using the candidate spreading code and the spreading code used by the first system, a target spreading code, where the target spreading code is used to identify the first system that is not occupied by the first system. Signal with minimal interference to one channel;
  • any possible implementation manner further provide an implementation manner of obtaining a spreading code used by the first system according to a signal received from the first system frequency band, including:
  • any possible implementation manner further provide an implementation manner, according to the joint matrix, obtaining a target matrix, including:
  • a target joint matrix is obtained based on a signal received from the first system band and the target transmit signal matrix.
  • B is a new transmission signal matrix
  • V is a joint matrix
  • Y is a signal received on the first system band
  • H is a conjugate transpose
  • the aspect as described above, and any possible implementation manner, further provide an implementation manner, according to the target matrix, obtaining a spreading code used by the first system, including:
  • the latest spreading code is the same as the previous spreading code, it is determined that the latest spreading code is a spreading code used by the first system.
  • s i is the ith spreading code in the new spreading code
  • L is the spreading code length
  • E is the channel parameter matrix
  • v i is the target matrix vector in the target matrix
  • H is the conjugate transpose.
  • obtaining a candidate spreading code including:
  • a candidate spreading code is obtained according to the autocorrelation matrix and the multipath channel matrix.
  • the aspect as described above, and any possible implementation manner, further provide an implementation manner of obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system, including:
  • J(c,q i ) is the total mean squared correlation interference value of the i-th candidate spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c represents the parameter
  • c is a general spreading code
  • q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents a transposition.
  • A is the equivalent matrix of the channel and PTSC
  • G is the multipath channel matrix
  • R is the autocorrelation matrix
  • H is the conjugate transpose
  • A is the equivalent matrix of the channel and PTSC
  • A' is the channel equivalent matrix obtained last time.
  • the aspect as described above, and any possible implementation manner, further provide an implementation manner of obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system, including:
  • obtaining a candidate spreading code includes:
  • a candidate spreading code for each second receiving end is obtained according to an autocorrelation matrix and a multipath channel matrix of each second receiving end.
  • the aspect as described above, and any possible implementation manner, further provide an implementation manner of obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system, including:
  • the embodiment of the present application provides a channel access apparatus, which is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system includes a The second receiving end and the second sending end; the device is located on the second sending end, and includes:
  • a receiving unit configured to receive a signal on a first system frequency band
  • a first obtaining unit configured to obtain, according to a signal received from the first system frequency band, a spreading code used by the first system, where the spreading code is used to identify a channel occupied by the first system;
  • a second acquiring unit configured to obtain a candidate spreading code
  • a third obtaining unit configured to obtain a target spreading code according to the candidate spreading code and a spreading code used by the first system, where the target spreading code is used to identify a channel that is not occupied by the first system In the middle A channel in which the signal interference of the first system is the smallest.
  • An access unit configured to indicate that the second receiving end accesses a channel corresponding to the target spreading code.
  • the first acquiring unit includes:
  • a generating module configured to generate a joint matrix including a channel parameter and a spreading code according to the signal received from the first system band and the transmission signal matrix;
  • a first obtaining submodule configured to obtain a target matrix according to the joint matrix
  • a second obtaining submodule configured to obtain, according to the target matrix, a spreading code used by the first system.
  • the above-mentioned aspect and any possible implementation manner further provide an implementation manner, where the first acquiring sub-module is configured to:
  • a target joint matrix is obtained based on a signal received from the first system band and the target transmit signal matrix.
  • first acquiring sub-module is specifically configured to:
  • a new transmit signal matrix is obtained based on the signal received from the first system band and the joint matrix, and using the following formula:
  • B is a new transmission signal matrix
  • V is a joint matrix
  • Y is a signal received on the first system band
  • H is a conjugate transpose
  • the latest spreading code is the same as the previous spreading code, it is determined that the latest spreading code is a spreading code used by the first system.
  • s i is the ith spreading code in the new spreading code
  • L is the spreading code length
  • E is the channel parameter matrix
  • v i is the target matrix vector in the target matrix
  • H is the conjugate transpose.
  • the second acquiring unit is configured to:
  • a candidate spreading code is obtained according to the autocorrelation matrix and the multipath channel matrix.
  • the second obtaining unit is specifically configured to:
  • the third obtaining unit is configured to:
  • J(c,q i ) is the total mean squared correlation interference value of the i-th spreading code vector for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c is the parameter.
  • c is a general spreading code
  • q i is a candidate spreading code
  • q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents a transposition.
  • A is a channel equivalent matrix
  • G is a multipath channel matrix
  • R is an autocorrelation matrix
  • H is a conjugate transpose
  • A is the channel equivalent matrix and A' is the channel equivalent matrix obtained last time.
  • a cyclic shifting pattern of a spreading code occupied by the ith first receiving end where S i / l is the 1-bit cyclic shift of the i-th first receiving end, and I is a unit matrix.
  • the third obtaining unit is configured to:
  • the second acquiring unit is configured to:
  • a candidate spreading code for each second receiving end is obtained according to an autocorrelation matrix and a multipath channel matrix of each second receiving end.
  • the third obtaining unit is configured to:
  • the device further includes:
  • a fourth acquiring unit configured to acquire a sum of interference values caused by the second receiving end of all the second systems in the second system to the first system after the target receiving end accesses the communication system;
  • the access unit is configured to: when the sum of the interference values is less than a preset maximum interference threshold, instruct the target receiving end to access a channel corresponding to the target spreading code.
  • the channel access method provided by the embodiment of the present application is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system includes a second receiving end and a second a transmitting end; the method is performed on the second transmitting end, specifically, by receiving a signal on the first system frequency band, and then obtaining a spreading code used by the first system according to the signal received from the first system frequency band, The spreading code is used to identify the channel occupied by the first system, thereby obtaining the candidate spreading code, and further obtaining the target spreading code according to the candidate spreading code and the spreading code used by the first system, and the target spreading code is used.
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that The second receiving end can be instructed to access the channel corresponding to the target spreading code without affecting the normal communication in the first system, thereby improving the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • FIG. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • Embodiment 1 of a channel access method according to an embodiment of the present application
  • Embodiment 3 is a schematic flowchart of Embodiment 1 of acquiring a spreading code used by a first system in the embodiment of the present application;
  • Embodiment 4 is a schematic flowchart of Embodiment 2 of acquiring a spreading code used by the first system in the embodiment of the present application;
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a channel access method provided in an embodiment of the present application
  • FIG. 6 is a schematic flowchart of Embodiment 3 of a channel access method provided in an embodiment of the present application.
  • FIG. 7 is a performance simulation diagram of a single-user access communication system in an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of Embodiment 4 of a channel access method provided in an embodiment of the present application.
  • FIG. 9 is a performance simulation diagram of a multi-user access communication system in an embodiment of the present application.
  • FIG. 10 is a functional block diagram of a channel access apparatus according to an embodiment of the present application.
  • first, second, third, etc. may be used to describe a system or the like in the embodiments of the present application, these systems and the like should not be limited to these terms. These terms are only used to distinguish systems from each other.
  • the first system may also be referred to as a second system without departing from the scope of the embodiments of the present application.
  • the second system may also be referred to as a first system.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • the embodiment of the present application provides a channel access method.
  • the method is applied to a communication system including a first system and a second system, wherein the first system includes a first receiving end and a first transmitting end, and the second system includes a second receiving end and a second transmitting end.
  • the second receiving end that is subsequently designed in this application is in the state of the channel to be accessed.
  • the number of z is not particularly limited in this embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • the system includes a first system and a second system, where the first system includes one first transmitting end and K first receiving ends, and the second system includes one second transmitting end and one second system. The second receiving end of the communication system to be accessed.
  • the signal sent by the first transmitting end can be received by the first receiving end and the second receiving end in the communication system, which is indicated by a solid line in FIG. 1; the signal sent by the second transmitting end is shown in FIG. It can be received by the first receiving end and the second receiving end in the communication system, and is indicated by a broken line in FIG.
  • the K first receiving ends have established communication with the first transmitting end, that is, the first transmitting end allocates K devices to the K first receiving ends.
  • the spreading code is not limited in this embodiment.
  • the number of Ks is at least one.
  • one second receiving end is a receiving end of a channel to be accessed, and at this time, the second receiving ends are not connected to the communication system; wherein the number of Is may be one or more One.
  • the first system may be the primary system and the second system may be the secondary system.
  • the communication system including the first system and the second system may be a code division multiple access communication system.
  • the communication between the newly accessed second receiving end and the second transmitting end is the first
  • the communication between the first receiving end and the first transmitting end in the system generates signal interference, and therefore, the embodiment of the present application
  • the channel access method is provided by blindly analyzing the signal in the first system frequency band, and after determining the channel occupied by the first system, accessing the channel with the least signal interference to the first system for the second receiving end In this way, normal communication between the first receiving end and the first transmitting end in the first system can be ensured, and the utilization of spectrum resources in the communication system can be improved.
  • FIG. 2 is a schematic flowchart of Embodiment 1 of a channel access method according to an embodiment of the present application. As shown in FIG. 2 , the method includes the following steps:
  • S201 Receive a signal on a first system frequency band.
  • the spreading code is used to identify a channel occupied by the first system.
  • the target spreading code is used to identify a channel in the channel that is not occupied by the first system that has the least interference to the signal of the first system.
  • execution body of S201-S205 may be a channel access device, and the device may be located at a second transmitting end in the communication system.
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that The second receiving end may be instructed to access the channel corresponding to the target spreading code without affecting the normal communication in the first system, thereby improving the frequency band of the communication system. Utilization rate. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the method in the present application specifically describes the method of obtaining the spreading code used by the first system according to the signal received from the first system band in S202.
  • FIG. 3 is a schematic flowchart of Embodiment 1 of acquiring a spreading code used by the first system in the embodiment of the present application.
  • the step may specifically include:
  • the signal on the first system band can be expressed as:
  • E is a multipath channel matrix, where E can be expressed as The following form:
  • a plurality of signals received from the first system band may constitute a signal matrix, and thus, the signal matrix received from the first system band may be expressed as:
  • Y is a received signal matrix composed of a plurality of signals received from the first system frequency band
  • B is a transmission signal matrix composed of a plurality of b i (m)
  • N is a Gaussian white noise
  • V is a generated joint matrix.
  • the generated joint matrix V includes channel parameters and spreading codes.
  • the ith column vector in the joint matrix V can be expressed as:
  • the least squares iterative method can be used to obtain the target matrix according to the joint matrix described above.
  • the method for obtaining the target matrix in S302 can include the following steps:
  • a target joint matrix is obtained based on the signal received from the first system band and the target transmission signal matrix.
  • the least-squares iteration principle can be utilized to obtain a new transmission signal matrix B by using the received signal matrix Y and the joint matrix V.
  • B sgn ⁇ Re[(V H V) -1 V H Y] ⁇ .
  • V is a joint matrix
  • Y is a signal matrix received on the first system band
  • H is a conjugate transpose.
  • the least squares iteration principle is again utilized to utilize the received signal.
  • the convergence results include the latest joint matrix V and the latest transmit signal matrix B.
  • the obtained convergence result is not necessarily globally optimal.
  • the correlation determination is introduced to obtain a stable signal vector satisfying the specified correlation condition in the joint matrix V. .
  • the transmission signal matrix B is reliable or not is determined.
  • the step of acquiring a stable signal vector in the joint matrix V is performed.
  • the initialization transmission signal matrix B is re-executed, and finally the convergence result is obtained until a stable transmission signal matrix B is obtained.
  • any two of the transmission signal matrices B can be obtained.
  • the correlation of the column signal vectors Therefore, when the correlation of any two columns of signal vectors in the transmission signal matrix B is greater than or equal to a preset first correlation threshold, it is considered that the obtained transmission signal matrix B is unreliable; or, when transmitting the signal matrix B When the correlation of any two columns of signal vectors is less than the preset first correlation threshold, the obtained transmission signal matrix B is considered to be reliable.
  • the correlation of any two columns of signal vectors in the transmit signal matrix B can be obtained by using the following formula:
  • ⁇ i,j is the correlation between the ith column signal vector b i and the other column signal vectors in the transmission signal matrix B, and N is the number of the second receiving ends.
  • the first correlation threshold can be preset
  • a reliable set of signal vectors is obtained in the joint matrix V.
  • the correlation between any one of the signal vectors of the joint matrix V and the other column signal vectors can be obtained, and then these signal vectors are respectively compared with a preset second correlation threshold, when there is a column of signal vectors and other signal vectors.
  • This signal vector is considered to be reliable when the correlation is greater than or equal to the preset second correlation threshold.
  • the correlation between the signal vector of any one of the transmission joint matrices V and the other column signal vectors can be obtained by using the following formula:
  • I the signal vector of the ith column in the joint matrix V Correlation with other signal vectors
  • F is the number of times the above steps are performed until convergence.
  • the second correlation threshold may be preset as an average of the correlations of all signal vectors in the joint matrix V.
  • the second correlation threshold may be preset as: When the i-th column signal vector Correlation with other signal vectors Greater than or equal to the average of all signal vectors I think the ith column signal vector It is reliable.
  • the obtained i-th column signal vector in the target matrix V can be expressed as:
  • the target matrix includes a spreading code and a signal parameter.
  • a spreading code used by the first system can be obtained in a manner similar to S302.
  • the step of obtaining a spreading code used by the first system according to the obtained target matrix by using a least squares iterative method may include:
  • the latest spreading code is the same as the previous spreading code, it is determined that the latest spreading code is the spreading code used by the first system.
  • s i is a spreading code corresponding to the ith first receiving end.
  • s i can be expressed as a column vector
  • S can be expressed as a matrix of spreading codes including a plurality of spreading code column vectors.
  • any channel parameter vector in the new channel parameter matrix E can be expressed as :
  • e is any channel parameter vector in the new channel parameter matrix E
  • K is the number of first receiving ends in the first system
  • v i is the ith signal vector in the target matrix V
  • s i is the spreading code S
  • the spreading code corresponding to the i th first receiving end, at this time, s i can be expressed as:
  • L indicates that the number of spreading codes corresponding to the i-th first receiving end obtained by the above-mentioned L steps is L.
  • a new spreading code S is obtained according to the obtained target matrix V and the new channel parameter matrix E.
  • the i-th first receiving end of the new spreading code S corresponds to The spreading code s i can be expressed as:
  • s i is the spreading code corresponding to the i th first receiving end in the new spreading code
  • L is the spreading code length
  • E is the channel parameter matrix
  • v i is the target matrix vector in the target matrix
  • H is Conjugate transposition.
  • the above steps are repeated, and so on, until the convergence stops the above steps, that is, until the obtained latest spreading code matrix is the same as the last obtained spreading code matrix, it is considered to be converged, and at this time, the above is not repeated.
  • the obtained convergence result includes the latest spreading code matrix S and the channel parameter matrix E.
  • the spreading code matrix S is obtained, and all the spreading code information used in the first system is obtained, and since the obtained joint matrix V is reliable, the spreading code matrix obtained by the least squares iterative principle is obtained. S is also reliable.
  • the embodiment of the present application provides a more specific implementation manner of acquiring a spreading code used in the first system.
  • FIG. 4 is a schematic flowchart of Embodiment 2 of acquiring a spreading code used by the first system in the embodiment of the present application. As shown in FIG. 4, the method includes the following steps:
  • S401 Receive a signal on a first system frequency band.
  • S411 Obtain a new channel parameter matrix by using a least squares iteration method according to the obtained target joint matrix and the spreading code matrix.
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that The second receiving end can be instructed to access the channel corresponding to the target spreading code without affecting the normal communication in the first system, thereby improving the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the embodiment of the present application obtains The method of obtaining the candidate spreading code is specifically described.
  • different acquisition modes may be selected to obtain candidate spreading codes.
  • the acquisition method will be explained in detail.
  • the second receiving end when the number of the second receiving end is 1 in the second system, only one second receiving end is in the state of the channel to be accessed. In this case, only the candidate corresponding to the second receiving end needs to be obtained.
  • the spread code can be used.
  • the second receiving end can obtain an autocorrelation matrix R related to its own wireless channel interference and noise. Therefore, when acquiring the autocorrelation matrix R of the second receiving end, the second transmitting end can directly The autocorrelation matrix R of the second receiving end is obtained in the second receiving end.
  • the autocorrelation matrix R of the second receiving end may be acquired, and the multipath channel matrix G between the second receiving end and the second transmitting end may be obtained, and then, according to The obtained autocorrelation matrix R and multipath channel matrix G obtain the candidate spreading code corresponding to the second receiving end.
  • the embodiment of the present application provides the following two implementation manners of acquiring a candidate spreading code when the number of the second receiving ends in the second system is 1:
  • the candidate spreading code can be obtained according to the Rank-2 method by using the following formula:
  • q i is the ith candidate spreading code in the candidate spreading code
  • j 1, 2...L
  • c represents a parameter
  • c is a general spreading code
  • G is more
  • R is the autocorrelation matrix
  • T is the transpose
  • H is the conjugate transpose.
  • Form 1 according to the autocorrelation matrix R and the multipath channel matrix G, and obtain the first candidate spreading code by using the following formula:
  • A is a channel equivalent matrix
  • G is a multipath channel matrix
  • R is an autocorrelation matrix
  • H is a conjugate transpose
  • Form 2 according to the autocorrelation matrix R and the multipath channel matrix G, and obtain the second candidate spreading code by using the following formula:
  • A is the channel equivalent matrix and A' is the equivalent matrix of the channel calculated last time.
  • a cyclic shifting pattern of a spreading code occupied by the ith first receiving end where S i / l is the 1-bit cyclic shift of the i-th first receiving end, and I is a unit matrix.
  • the channel equivalent matrix obtained by the previous calculation needs to be used. Then, the channel equivalent matrix obtained last time can be obtained according to the manner described in the first form. Or alternatively, it can be obtained by the method described in the second form.
  • the number of the second receiving ends in the second system is at least two, at this time, there are multiple second receiving ends in the state of the channel to be accessed, and at this time, each second receiving needs to be acquired.
  • the candidate spreading codes corresponding to the terminals are at least two, at this time, there are multiple second receiving ends in the state of the channel to be accessed, and at this time, each second receiving needs to be acquired.
  • the autocorrelation matrix of each second receiving end to be accessed may be expressed as:
  • y t represents the signal on the first system band received by the tth second receiving end
  • N is the number of the second receiving end
  • the total autocorrelation matrix of the second system can be expressed as:
  • R t is the autocorrelation matrix of the tth second receiving end
  • G t is the multipath channel matrix of the tth second receiving end
  • R j is The tth second receiving end corresponds to the jth transmitted signal energy matrix
  • c is a number
  • Z represents the number of second receiving ends that have been accessed
  • H represents a conjugate
  • T represents a transposition.
  • the implementation manner of acquiring the candidate spreading code corresponding to each second receiving end and the obtaining of the candidate spreading code of the second receiving end in the first case are implemented.
  • the manners are similar, and the embodiments of the present application will not be described again.
  • each of the second receiving ends has multiple candidate spreading codes. Therefore, in order to facilitate the determination of the subsequent target spreading codes, in the specific implementation process, candidate spreading times corresponding to each second receiving end may be established. Code collection.
  • the candidate spreading code may include the spreading code used by the first system.
  • the transmit signal energy corresponding to the second receiving end can also be obtained:
  • P i is the transmitted signal energy corresponding to the ith second receiving end
  • is a parameter
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that The second receiving end can be instructed to access the channel corresponding to the target spreading code without affecting the normal communication in the first system, thereby improving the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the method in the present application specifically describes the method for obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system in S204.
  • An embodiment of the present application provides an implementation manner of obtaining a target spreading code when the number of second receiving ends in the second system is 1.
  • the target spreading code is used to identify a channel that has the least interference to the signal of the first system in the channel that is not occupied by the first system. Therefore, it is necessary to select one target expansion among the candidate spreading codes.
  • the frequency code when the second receiving end accesses the channel corresponding to the target spreading code, the maximum interference value among the interference values caused by the first receiving end is the smallest.
  • acquiring the target spreading code may include the following steps:
  • the interference value of each candidate spreading code in the candidate spreading code for the first receiving end is obtained:
  • J(c,q i ) is the total mean squared interference value of the ith candidate spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c is the parameter indicating the parameter
  • c is a general spreading code
  • q i ⁇ c, q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents a transposition.
  • the second receiving end accesses the channel corresponding to each candidate spreading code, which may cause interference to the K first receiving ends.
  • the K interference values corresponding to the spreading codes are different, so in order to find a For a channel with the least interference to the signal in the first system, it is necessary to first determine some of the maximum interference values of the interference values caused by the second receiving end when accessing the channel corresponding to each candidate spreading code.
  • the number of candidate spreading codes is w, then w maximum interferences can be obtained. Value, after that, only need to select a minimum interference value among the w maximum interference values, and obtain the spreading code with the smallest maximum interference value as the target spreading code.
  • the transmitting signal energy P i corresponding to the target spreading code can be obtained according to the method described in the second embodiment. Then, the channel corresponding to the target spreading code is used to transmit the signal energy P i such that the second receiving end of the channel to be accessed accesses the designated channel.
  • the embodiment of the present application provides a more specific implementation manner of acquiring a target spreading code.
  • FIG. 5 is a schematic flowchart of Embodiment 2 of a channel access method provided in an embodiment of the present application. As shown in FIG. 5, the method includes the following steps:
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that Can be used without affecting normal communication in the first system
  • the second receiving end is instructed to access the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the method in the present application specifically describes the method for obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system in S204.
  • An embodiment of the present application provides another implementation manner of obtaining a target spreading code when the number of second receiving ends in the second system is 1.
  • the candidate spreading code of the second receiving end is obtained by using the second implementation form in the foregoing Embodiment 3.
  • the candidate spreading code may be acquired multiple times, and then the second receiving is performed.
  • the maximum interference value of the interference values caused by the receiving end is compared to obtain the target spreading code.
  • the maximum interference value caused by the first receiving end is the smallest.
  • obtaining the target spreading code in this manner may include the following steps:
  • the second receiving end accesses the spreading code corresponding to the last second largest interference value as the target spreading code.
  • the algorithm does not Convergence, it is considered that there may be a spreading code smaller than the maximum interference value caused by the candidate spreading code obtained at the first receiving end according to the candidate spreading code obtained next time; therefore, according to the above
  • a new second candidate spreading code is obtained again, and the first receiving end is obtained according to the new candidate spreading code obtained next time. The maximum interference value caused is compared with the next interference value caused by the candidate spreading code obtained this time to the first receiving end.
  • the algorithm has convergence, and it is considered that there is no spreading code smaller than the maximum interference value caused by the candidate spreading code obtained according to the candidate spreading code obtained next time according to the candidate spreading code obtained next time; Stopping the operation of obtaining the next new candidate candidate spreading code, and acquiring the spreading code corresponding to the maximum interference value caused by the last received candidate spreading code as the target spread spectrum code.
  • the embodiment of the present application provides another implementation manner of acquiring a target spreading code.
  • FIG. 6 is a method for providing a channel access method according to an embodiment of the present application. Schematic diagram of the process of the third example. As shown in FIG. 6, the method includes the following steps:
  • the autocorrelation matrix and the multipath channel matrix are processed by using the method in Form 1 in Embodiment 3 to obtain a candidate spreading code set of the second receiving end.
  • S606. Determine whether the newly obtained maximum interference value is smaller than the maximum interference value obtained last time; if yes, execute S604; if not, execute S607.
  • FIG. 7 is a performance simulation diagram of a single second receiving end access channel in the embodiment of the present application.
  • curve 1, curve 3 and curve 5 are performance simulation diagrams obtained by channel access of a single second receiving end according to the channel access method as shown in the fifth embodiment
  • curve 2, curve 4 and curve 6 A performance simulation diagram obtained by performing channel access of a single second receiving end according to the channel access method as shown in Embodiment 4.
  • curve 1 and curve 2 are performance simulation diagrams obtained when the number of first receiving ends is 2
  • curves 3 and 4 are performance simulation diagrams obtained when the number of first receiving ends is 10
  • curves 5 and 6 are A performance simulation obtained when the number of first receiving ends is 18.
  • the channel access scheme provided in Embodiment 5 has a higher success rate than the channel access scheme provided in Embodiment 4.
  • curve 2 has a higher probability of successfully accessing the communication system than a single second receiver of curve 1
  • curve 4 has a higher probability of successfully accessing the communication system than a single second receiver of curve 3
  • curve 6 Compared to curve 5 The probability that a single second receiver will successfully access the communication system is higher.
  • the probability that a single second receiving end successfully accesses the communication system is 10 when the number of first receiving ends is 10
  • the probability of the second receiving end successfully accessing the communication system is high; the curve 3 is compared with the curve 5, the curve 4 is compared with the curve 6, and the probability that the single second receiving end successfully accesses the communication system when the number of the first receiving end is 10
  • the probability that a single second receiving end successfully accesses the communication system is higher than the number of the first receiving end is 18.
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that The second receiving end can be instructed to access the channel corresponding to the target spreading code without affecting the normal communication in the first system, thereby improving the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the method in the present application specifically describes the method for obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system in S204.
  • the embodiment of the present application provides an implementation manner of obtaining a target spreading code when the number of the second receiving ends in the second system is at least two.
  • acquiring the target spreading code may include the following steps:
  • the communication system shown in FIG. 1 is taken as an example for illustration.
  • the second system has a second receiving end of a channel to be accessed
  • the first system has K first receiving ends of the accessed channels, assuming each second to be received
  • K interference values can be obtained according to each candidate spreading code, and by comparing the K interference values, one of the K interference values can be obtained.
  • each of the second receiving ends can have x maximum interference values, and all the second receiving ends in the communication system to be accessed share I ⁇ x maximum interference values.
  • the I ⁇ x maximum interference values are compared, and the candidate spreading code corresponding to the largest interference value with the smallest value is found as the target spreading code, and the second receiving end corresponding to the largest interference value with the smallest value. As the target receiver.
  • the second receiving end of the target accesses the channel corresponding to the target spreading code.
  • the number of the second receiving ends is multiple, it is considered that there may be other second receiving ends of the accessing communication system in the second system.
  • the second receiving end and the target spreading code After determining the target receiving end and the target spreading code, determining that the second receiving end of all the accessed channels of the second system is caused by the second receiving end after the target receiving end accesses the channel corresponding to the target spreading code Whether the signal interference meets the specified conditions.
  • the target receiving end is connected to the channel corresponding to the target spreading code to the first system.
  • the signal interference is still within a reasonable range, and therefore, the target receiving end is instructed to access the channel corresponding to the target spreading code.
  • the target receiving end may be affected by the channel corresponding to the target spreading code. Normal communication of a system, therefore, does not indicate that the target receiving end accesses the channel corresponding to the target spreading code.
  • the sum of the interference values caused by the second receiving end of all the second receiving systems in the second system to the first system may be obtained after the target receiving end accesses the channel corresponding to the target spreading code, and then, When the sum of the interference values is less than the preset maximum interference threshold, the target receiving end is instructed to access the channel corresponding to the target spreading code. Or, when the sum of the interference values is equal to or greater than a preset maximum interference threshold, the target receiving end is not given an access indication.
  • the transmit signal power of all the receiving ends including the first receiving end and the second receiving end may be updated.
  • the embodiment of the present application provides another implementation manner of acquiring a target spreading code.
  • FIG. 8 is a schematic flowchart of Embodiment 4 of a channel access method provided in an embodiment of the present application. As shown in FIG. 8, the method includes the following steps:
  • FIG. 9 is a performance simulation diagram of a multi-user access communication system in an embodiment of the present application.
  • the curve 1, the curve 2, the curve 3, the curve 4, and the curve 5 are the signal access proposed by the embodiment of the present application when the number of the first receiving ends is 2, 6, 10, 14, and 18, respectively.
  • the performance simulation diagram obtained by the scheme for multi-user access.
  • the second receiving that can be accessed is The success rate of the terminal is higher. At this time, more second receiving ends can be accessed without affecting the normal communication of the first system.
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • the target spreading code is used to identify a channel in the channel that is not occupied by the first system that has the least interference to the signal of the first system, so that the normal communication in the first system is not affected,
  • the second receiving end is instructed to access the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the embodiment of the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • the embodiment of the present application provides a channel access apparatus, which is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system includes a communication system to be accessed.
  • the second receiving end and the second transmitting end; the device is located at the second transmitting end.
  • FIG. 10 is a functional block diagram of a channel access apparatus according to an embodiment of the present application.
  • the device includes:
  • the receiving unit 101 is configured to receive a signal on a first system frequency band
  • the first obtaining unit 102 is configured to obtain, according to the signal received from the first system frequency band, a spreading code used by the first system, where the spreading code is used to identify a channel occupied by the first system;
  • a second obtaining unit 103 configured to obtain a candidate spreading code
  • the third obtaining unit 104 is configured to obtain a target spreading code according to the candidate spreading code and the spreading code used by the first system, where the target spreading code is used to identify the signal of the first system in the unoccupied channel of the first system.
  • One channel with the least interference is configured to obtain a target spreading code according to the candidate spreading code and the spreading code used by the first system, where the target spreading code is used to identify the signal of the first system in the unoccupied channel of the first system.
  • One channel with the least interference is configured to obtain a target spreading code according to the candidate spreading code and the spreading code used by the first system.
  • the access unit 105 is configured to indicate that the second receiving end accesses the channel corresponding to the target spreading code.
  • the first obtaining unit 102 includes:
  • the generating module 1021 is configured to generate a joint matrix including a channel parameter and a spreading code according to the signal received from the first system band and the transmission signal matrix;
  • a first obtaining submodule 1022 configured to obtain a target matrix according to the joint matrix
  • the second obtaining sub-module 1023 is configured to obtain a spreading code used by the first system according to the target matrix.
  • the first obtaining submodule 1022 is configured to:
  • a target joint matrix is obtained based on the signal received from the first system band and the target transmission signal matrix.
  • the first obtaining submodule 1022 is specifically configured to:
  • B is a new transmission signal matrix
  • V is a joint matrix
  • Y is a signal received on the first system band
  • H is a conjugate transpose
  • the second obtaining submodule 1023 is configured to:
  • the latest spreading code is the same as the previous spreading code, it is determined that the latest spreading code is the spreading code used by the first system.
  • the second obtaining submodule 1023 is specifically configured to:
  • s i is the ith spreading code in the new spreading code
  • L is the spreading code length
  • E is the channel parameter matrix
  • v i is the target matrix vector in the target matrix
  • H is the conjugate transpose.
  • the second obtaining unit 103 is configured to:
  • the candidate spreading code is obtained according to the autocorrelation matrix and the multipath channel matrix.
  • the second obtaining unit 103 is specifically configured to:
  • the candidate spreading code is obtained:
  • the third obtaining unit 104 is configured to:
  • the third obtaining unit 104 is specifically configured to:
  • J(c,q i ) is the interference value caused by the ith spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c is the parameter.
  • c is a general expansion.
  • the frequency code, q i ⁇ c, q i is a candidate spreading code, and q i/l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i , and T represents a transposition.
  • the second obtaining unit 103 is configured to:
  • the first candidate spreading code is obtained by using the following formula:
  • A is the equivalent matrix of the channel and PTSC
  • G is the multipath channel matrix
  • R is the autocorrelation matrix
  • H is the conjugate transpose
  • the second candidate spreading code is obtained by using the following formula:
  • A is the equivalent matrix of the channel and PTSC
  • A' is the channel equivalent matrix obtained last time. Representing a cyclic shifting pattern of a spreading code occupied by the ith first receiving end, S i / l is the 1-bit cyclic shift of the i-th first receiving end, and I is a unit matrix.
  • the third obtaining unit 104 is configured to:
  • the second maximum interference value is smaller than the first maximum interference value, continue to obtain the second candidate spreading code according to the second candidate spreading code and the spreading code used by the first system, a third maximum interference value of a plurality of interference values caused by a receiving end;
  • the second receiving end accesses the spreading code corresponding to the last second largest interference value as the target spreading code.
  • the second obtaining unit 103 is configured to:
  • a candidate spreading code for each second receiving end is obtained according to an autocorrelation matrix and a multipath channel matrix of each second receiving end.
  • the third obtaining unit 104 is configured to:
  • the device further includes:
  • the fourth obtaining unit 106 is configured to acquire, if the target receiving end accesses the communication system, the sum of the interference values caused by the second receiving end of all the second receiving systems in the second system to the first system;
  • the access unit 105 is configured to indicate that the target receiving end accesses the channel corresponding to the target spreading code when the sum of the interference values is less than the preset maximum interference threshold.
  • the second sending end in the second system does not need to communicate with the first sending end in the first system, and the second sending end may be based on the received signal on the first system frequency band. Determining the spreading code used by the first system, the second transmitting end can dynamically sense the use of the spreading code of the communication system by means of blind analysis according to the signal; afterwards, the second transmitting end can use according to the current resource.
  • a target spreading code is determined for the second receiving end in the second system, and the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that Can be used without affecting normal communication in the first system
  • the second receiving end is instructed to access the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), Random access memory (RAM), disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信道接入方法及装置。一方面,本申请实施例中,通过接收第一系统频带上的信号,然后,根据从第一系统频带上接收到的信号,获得第一系统采用的扩频码,该扩频码用于标识第一系统占用的信道,从而,获得候选扩频码,进而,根据候选扩频码与第一系统采用的扩频码,获得目标扩频码,目标扩频码用于标识第一系统未占用的信道中对第一系统的通信干扰最小的一个信道,最后,指示第二接收端接入该目标扩频码对应的信道。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。

Description

一种信道接入方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信道接入方法及装置。
背景技术
随着信息化程度的深入,无线通信的数据量呈现出了爆炸式的增长,现有的频谱资源越来越紧张。采用固定频带划分方式进行资源分配的方法,虽然可以有效的为不同类型的通信系统和用户分配资源,避免冲突。但是,在很多划分好的频带上,已经分配的频谱资源并未得到完全的利用。在多数情况下,静态频谱划分方法的频带的利用率不足10%。如何提高现有频谱资源的利用率,是提高通信效率方向亟待解决的技术问题。
码分多址是现有技术中应用广泛的一种无线接入技术,因其自在的抗干扰,抗衰落,方便实现,容量大,可以软切换且抗频谱分析的特点,近年来,码分多址得到了越来越多的青睐。在码分多址中,通信资源的分配是通过扩频码的分配实现的,每个用户占用一个单独的扩频码,用于和基站建立通信,在码分多址下行链路中,多用户的扩频码是正交的或者近似正交的,这样在接收端进行接收时,接收端只要知道分配的唯一的扩频码,即可有效地恢复发送的信号。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:
现有技术中,无线通信系统中很多划分好的频谱资源并未得到完全利用,通信系统中频谱资源的利用率较低。
发明内容
有鉴于此,本申请实施例提供了一种信道接入方法及装置,用以解决现有技术通信系统中频谱资源的利用率较低的问题。
一方面,本申请实施例提供了一种信道接入方法,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包 括第二接收端和第二发送端;所述方法执行在所述第二发送端上,包括:
接收第一系统频带上的信号;
根据从所述第一系统频带上接收到的信号,获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
获得候选扩频码;
根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道;
指示所述第二接收端接入所述目标扩频码对应的信道。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据从所述第一系统频带上接收到的信号,获得所述第一系统采用的扩频码,包括:
根据从所述第一系统频带上接收到的信号与发送信号矩阵,生成包含信道参数和扩频码的联合矩阵;
根据所述联合矩阵,得到目标矩阵;
根据所述目标矩阵,得到所述第一系统采用的扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述联合矩阵,得到目标矩阵,包括:
根据从所述第一系统频带上接收到的信号与所述联合矩阵,得到新的发送信号矩阵;
根据从所述第一系统频带上接收到的信号和所述新的发送信号矩阵,得到新的联合矩阵;
根据从所述第一系统频带上接收到的信号与新的联合矩阵,再次得到新的发送信号矩阵;
以此类推;
当最新的联合矩阵与上一联合矩阵相同时,获取所述最新的联合矩阵中的满足指定条件的信号向量;
根据从所述第一系统频带上接收到的信号与所述信号向量,得到目标发送信号矩阵;
根据从所述第一系统频带上接收到的信号与所述目标发送信号矩阵,得到目标联合矩阵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据从所述第一系统频带上接收到的信号与所述联合矩阵,并利用以下公式,得到新的发送信号矩阵:
B=sgn{Re[(VHV)-1VHY]}
其中,B为新的发送信号矩阵,V为联合矩阵,Y为第一系统频带上接收到的信号,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述目标矩阵,得到所述第一系统采用的扩频码,包括:
根据所述目标矩阵和扩频码,得到新的信道参数;
根据所述目标矩阵和所述新的信道参数,得到新的扩频码;
根据所述目标矩阵和新的扩频码,再次得到新的信道参数;
以此类推;
当最新的扩频码与上一扩频码相同时,确定所述最新的扩频码为所述第一系统采用的扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述目标矩阵和所述新的信道参数,并利用以下公式,得到新的扩频码:
Figure PCTCN2016113243-appb-000001
其中,si为新的扩频码中的第i个扩频码,L为扩频码长度,E为信道参数矩阵,vi为目标矩阵中目标矩阵向量,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,当所述第二接收端的数目为1时,获得候选扩频码,包括:
获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间 的多径信道矩阵;
根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
qi=arg max cTGHR-1Gc
其中,qi为候选扩频码中的第i个候选扩频码,i=1,2……L,c表示参量,此时,c为一般扩频码,qi∈c,G为多径信道矩阵,R为自相关矩阵,T表示转置,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
获得所述第二接收端接入各候选扩频码对应的信道,对所述第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述候选扩频码中各候选扩频码对于所述第一接收端的干扰值:
Figure PCTCN2016113243-appb-000002
其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道和PTSC的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
或者,
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113243-appb-000003
其中,A为信道和PTSC的等效矩阵,A‘为上一次计算得到的信道等效矩阵,
Figure PCTCN2016113243-appb-000004
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113243-appb-000005
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,当所述第二接收端的数目为至少两个时,获得候选扩频码,包括:
获取每个第二接收端获得的自相关矩阵,并获取每个第二接收端与第二发 送端之间的多径信道矩阵;
根据每个第二接收端的自相关矩阵和多径信道矩阵,得到每个第二接收端的候选扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
根据每个第二接收端的候选扩频码与所述第一系统采用的扩频码,获得每个第二接收端接入对应的各候选扩频码对应的信道时,对所述第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码;并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端,作为目标接收端。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,指示所述第二接收端接入所述目标扩频码对应的信道,包括:
获取若所述目标接收端接入所述通信系统后,所述第二系统中全部接入的第二接收端对所述第一系统造成的干扰值的总和;
当所述干扰值的总和小于预设的最大干扰阈值时,指示所述目标接收端接入所述目标扩频码对应的信道。
另一方面,本申请实施例提供了一种信道接入装置,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端;所述装置位于所述第二发送端上,包括:
接收单元,用于接收第一系统频带上的信号;
第一获取单元,用于根据从所述第一系统频带上接收到的信号,获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
第二获取单元,用于获得候选扩频码;
第三获取单元,用于根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所 述第一系统的信号干扰最小的一个信道。
接入单元,用于指示所述第二接收端接入所述目标扩频码对应的信道。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一获取单元,包括:
生成模块,用于根据从所述第一系统频带上接收到的信号与发送信号矩阵,生成包含信道参数和扩频码的联合矩阵;
第一获取子模块,用于根据所述联合矩阵,得到目标矩阵;
第二获取子模块,用于根据所述目标矩阵,得到所述第一系统采用的扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一获取子模块,用于:
根据从所述第一系统频带上接收到的信号与所述联合矩阵,得到新的发送信号矩阵;
根据从所述第一系统频带上接收到的信号和所述新的发送信号矩阵,得到新的联合矩阵;
根据从所述第一系统频带上接收到的信号与新的联合矩阵,再次得到新的发送信号矩阵;
以此类推;
当最新的联合矩阵与上一联合矩阵相同时,获取所述最新的联合矩阵中的满足指定条件的信号向量;
根据从所述第一系统频带上接收到的信号与所述信号向量,得到目标发送信号矩阵;
根据从所述第一系统频带上接收到的信号与所述目标发送信号矩阵,得到目标联合矩阵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一获取子模块,具体用于:
根据从所述第一系统频带上接收到的信号与所述联合矩阵,并利用以下公式,得到新的发送信号矩阵:
B=sgn{Re[(VHV)-1VHY]}
其中,B为新的发送信号矩阵,V为联合矩阵,Y为第一系统频带上接收到的信号,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取子模块,用于:
根据所述目标矩阵和扩频码,得到新的信道参数;
根据所述目标矩阵和所述新的信道参数,得到新的扩频码;
根据所述目标矩阵和新的扩频码,再次得到新的信道参数;
以此类推;
当最新的扩频码与上一扩频码相同时,确定所述最新的扩频码为所述第一系统采用的扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取子模块,具体用于:
根据所述目标矩阵和所述新的信道参数,并利用以下公式,得到新的扩频码:
Figure PCTCN2016113243-appb-000006
其中,si为新的扩频码中的第i个扩频码,L为扩频码长度,E为信道参数矩阵,vi为目标矩阵中目标矩阵向量,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,当所述第二接收端的数目为1时,所述第二获取单元,用于:
获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述 第二获取单元,具体用于:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
qi=arg max cTGHR-1Gc
其中,qi为候选扩频码中的第i个候选扩频码,i=1,2……L,c表示参量,此时,c为一般扩频码,qi∈c,G为多径信道矩阵,R为自相关矩阵,T表示转置,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三获取单元,用于:
根据所述候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各候选扩频码对应的信道,对所述第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三获取单元,具体用于:
根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述候选扩频码中各候选扩频码对于所述第一接收端的干扰值:
Figure PCTCN2016113243-appb-000007
其中J(c,qi)为第i个扩频码向量对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi为候选扩频码,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取单元,用于:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
或者,用于:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113243-appb-000008
其中,A为信道等效矩阵,A‘为上一次计算得到的信道等效矩阵,
Figure PCTCN2016113243-appb-000009
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113243-appb-000010
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三获取单元,用于:
根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,当所 述第二接收端的数目为至少两个时,所述第二获取单元,用于:
获取每个第二接收端获得的自相关矩阵,并获取每个第二接收端与第二发送端之间的多径信道矩阵;
根据每个第二接收端的自相关矩阵和多径信道矩阵,得到每个第二接收端的候选扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三获取单元,用于:
根据每个第二接收端的候选扩频码与所述第一系统采用的扩频码,获得每个第二接收端接入对应的各候选扩频码对应的信道时,对所述第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码;并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端,作为目标接收端。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述装置还包括:
第四获取单元,用于获取若所述目标接收端接入所述通信系统后,所述第二系统中全部接入的第二接收端对所述第一系统造成的干扰值的总和;
所述接入单元,用于当所述干扰值的总和小于预设的最大干扰阈值时,指示所述目标接收端接入所述目标扩频码对应的信道。
上述技术方案中的一个技术方案具有如下有益效果:
本申请实施例提供的信道接入方法应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括待第二接收端和第二发送端;该方法执行在第二发送端上,具体的,通过接收第一系统频带上的信号,然后,根据从第一系统频带上接收到的信号,获得第一系统采用的扩频码,该扩频码用于标识第一系统占用的信道,从而,获得候选扩频码,进而,根据候选扩频码与第一系统采用的扩频码,获得目标扩频码,目标扩频码用于 标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,最后,指示第二接收端接入该目标扩频码对应的信道。本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例中通信系统示意图;
图2是本申请实施例所提供的信道接入方法的实施例一的流程示意图;
图3是本申请实施例中获取第一系统采用的扩频码的实施例一的流程示意图;
图4是本申请实施例中获取第一系统采用的扩频码的实施例二的流程示意图;
图5是本申请实施例中所提供的信道接入方法的实施例二的流程示意图;
图6是本申请实施例中所提供的信道接入方法的实施例三的流程示意图;
图7是本申请实施例中单用户接入通信系统的性能仿真图;
图8是本申请实施例中所提供的信道接入方法的实施例四的流程示意图;
图9是本申请实施例中多用户接入通信系统的性能仿真图;
图10是本申请实施例所提供的信道接入装置的功能方块图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述系统等,但这些系统等不应限于这些术语。这些术语仅用来将系统彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一系统也可以被称为第二系统,类似地,第二系统也可以被称为第一系统。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
实施例一
本申请实施例给出一种信道接入方法。该方法应用于包括第一系统和第二系统的通信系统,其中,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端。
需要说明的是,为了便于表述,本申请后续设计到的第二接收端,均处于待接入信道的状态。在实际应用过程中,第二系统中还可以存在z个已经接入信道的第二接收端,本申请实施例对z的数目不进行特别限定。
具体的,请参考图1,其为本申请实施例中通信系统示意图。如图1所示,该系统中包括第一系统和第二系统,其中第一系统包括1个第一发送端和K个第一接收端,第二系统包括1个第二发送端和I个待接入通信系统的第二接收端。
如图1所示的通信系统中,第一发送端发送的信号可以被通信系统中的第一接收端和第二接收端接收到,图1中用实线表示;第二发送端发送的信号可以被通信系统中的第一接收端和第二接收端接收到,图1中用虚线表示。
如图1所示的通信系统中,第一系统中,K个第一接收端已经与第一发送端建立了通信,也就是说,第一发送端为K个第一接收端分配了K个扩频码,此时,第一系统共占用了K个信道;其中,K的数目为至少一个,本申请实施例对此不进行特别限定。
如图1所示的通信系统中,I个第二接收端为待接入信道的接收端,此时,这些第二接收端并未接入通信系统;其中,I的数目可以为一个或多个。
在一个具体的实现过程中,第一系统可以为主系统,第二系统可以为次级系统。
在另一个具体的实现过程中,包括第一系统和第二系统的通信系统可以为码分多址通信系统。
可以理解的是,在如图1所示的通信系统中,若任意的第二接收端接入信道,新接入的这个第二接收端与第二发送端之间的通信,都会对第一系统中第一接收端和第一发送端之间的通信产生信号干扰,因此,本申请实施例 提供的信道接入方法,是通过对第一系统频带上的信号进行盲分析,在确定了第一系统占用的信道后,为第二接收端接入一个对第一系统的信号干扰最小的信道,这样,既能够保证第一系统中第一接收端与第一发送端之间的正常通信,又能够提高通信系统中的频谱资源的利用率。
基于以上构思,请参考图2,其为本申请实施例所提供的信道接入方法的实施例一的流程示意图,如图2所示,该方法包括以下步骤:
S201,接收第一系统频带上的信号。
S202,根据从第一系统频带上接收到的信号,获得第一系统采用的扩频码。
其中,该扩频码用于标识第一系统占用的通道。
S203,获取候选扩频码。
S204,根据候选扩频码与第一系统采用的扩频码,获得目标扩频码。
其中,该目标扩频码用于标识第一系统未占用的通道中对第一系统的信号干扰最小的一个信道。
S205,指示第二接收端接入该目标扩频码对应的信道。
需要说明的是,S201~S205的执行主体可以为信道接入装置,该装置可以位于通信系统中的第二发送端上。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带 利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例二
基于上述实施例一所提供的信道接入方法,本申请实施例对S202中“根据从第一系统频带上接收到的信号,获得第一系统采用的扩频码”的方法进行具体描述。
具体的,请参考图3,其为本申请实施例中获取第一系统采用的扩频码的实施例一的流程示意图。如图3所示,该步骤具体可以包括:
S301,根据从第一系统频带上接收到的信号与发送信号矩阵,生成包含信道参数和扩频码的联合矩阵。
S302,根据联合矩阵,得到目标矩阵。
S303,根据目标矩阵,得到第一系统采用的扩频码。
具体的,第一系统频带上的信号可以表示为:
Figure PCTCN2016113243-appb-000011
其中,y(m)表示第m个时隙接收到的第一系统频带上的信号,Di表示第一发送端为第i个第一接收端分配的发送功率,bi(m)表示第m个时隙发送给第i个第一接收端的信号,si为第i个第一接收端对应的扩频码,n表示高斯白噪声,E为多径信道矩阵,其中,E可以表示为以下形式:
Figure PCTCN2016113243-appb-000012
如此,由多个从第一系统频带上接收到的信号可以构成信号矩阵,,因此,从第一系统频带上接收到的信号矩阵可以表示为:
Y=VB+N
其中,Y为由多个从第一系统频带上接收到的信号构成的接收信号矩阵,B为由多个bi(m)构成发送信号矩阵,N为高斯白噪声,V为生成的联合矩阵。
需要说明的是,生成的联合矩阵V包含有信道参数和扩频码。具体的,联合矩阵V中的第i列向量可以表示为:
Figure PCTCN2016113243-appb-000013
基于此,可以利用最小二乘迭代法,根据上述的联合矩阵,得到目标矩阵,具体的,S302中获取目标矩阵的方法可以包括以下步骤:
根据从第一系统频带上接收到的信号与联合矩阵,得到新的发送信号矩阵;
根据从第一系统频带上接收到的信号和新的发送信号矩阵,得到新的联合矩阵;
根据从第一系统频带上接收到的信号和新的联合矩阵,再次得到新的发送信号矩阵;
以此类推;
当最新的联合矩阵与上一联合矩阵相同时,获取最新的联合矩阵中的满足指定条件的信号向量;
根据从第一系统频带上接收到的信号与这个信号向量,得到目标发送信号矩阵;
根据从第一系统频带上接收到的信号与目标发送信号矩阵,得到目标联合矩阵。
因此,在实际实现过程中,可以任意初始化发送信号矩阵B,其中,B∈{±1}K×N。然后,利用最小二乘迭代原理,利用接收信号矩阵Y和初始化得到的发送信号矩阵B来计算此时的联合矩阵V,此时,V=YBT(BBT)-1
之后,就可以利用最小二乘迭代原理,利用接收信号矩阵Y和联合矩阵V来获取新的发送信号矩阵B,此时,B=sgn{Re[(VHV)-1VHY]}。其中,B为新的发送信号矩阵,V为联合矩阵,Y为第一系统频带上接收到的信号矩阵,H表示共轭转置。
获取到新的发送信号矩阵之后,再次利用最小二乘迭代原理,利用接收信 号矩阵Y和新的发送信号矩阵B,得到新的联合矩阵V。
获取到新的新的联合矩阵V后,再次利用最小二乘迭代原理,利用接收信号矩阵Y和新的联合矩阵V,再次得到新的发送信号矩阵B。
之后,重复上述步骤,以此类推,直到收敛停止上述步骤,也就是,直到得到的最新的联合矩阵与上一次得到的联合矩阵相同时,认为收敛,此时,不再重复上述步骤,得到的收敛结果包括最新的联合矩阵V和最新的发送信号矩阵B。
本申请实施例中,还考虑到得到的收敛结果不一定是全局最优的,为此,引入相关性的判定,以便于在联合矩阵V中获取一列满足指定的相关性条件的稳定的信号向量。
需要说明的是,在此之前,首先要对发送信号矩阵B是否可靠进行判断,当确定发送信号矩阵B可靠时,才会执行获取联合矩阵V中一列稳定的信号向量的步骤。或者,当确定发送信号矩阵B不可靠时,则重新执行上述初始化发送信号矩阵B,最后得到收敛结果的步骤,直到得到稳定的发送信号矩阵B。
在一个具体的实现过程中,由于发送信号矩阵B中每一列的发送信号向量都应该是尽量相互独立的,因此,判断得到的发送信号矩阵B是否可靠,可以获取发送信号矩阵B中的任意两列信号向量的相关性。因此,当发送信号矩阵B中任意两列信号向量的相关性大于或者等于预设的第一相关性阈值时,就认为得到的发送信号矩阵B是不可靠的;或者,当发送信号矩阵B中任意两列信号向量的相关性都小于预设的第一相关性阈值时,就认为得到的发送信号矩阵B是可靠的。
具体的,发送信号矩阵B中任意两列信号向量的相关性可以利用以下公式获得:
Figure PCTCN2016113243-appb-000014
其中,ηi,j为发送信号矩阵B中第i列信号向量bi与其他列信号向量之间的相关性,N为第二接收端的数目。在实际应用过程中,第一相关性阈值可以预 设为
Figure PCTCN2016113243-appb-000015
当确定最新得到的联合矩阵V可靠时,为了使最新得到的联合矩阵V更加稳定,还需要考虑在一开始对发送信号矩阵B的初始化结果是否稳定。
一般而言,稳定的联合矩阵V中,各向量信号之间的相关性越高,其准确性越高。因此,可以在联合矩阵V中获取一列可靠的信号向量
Figure PCTCN2016113243-appb-000016
然后,将这列可靠的信号向量
Figure PCTCN2016113243-appb-000017
重新生成初始化的发送信号矩阵B,之后,利用最小二乘迭代法进行处理,得到最终的可靠的联合矩阵V。可以理解的是,此时得到的最终得到的联合矩阵V是根据稳定的初始化结果得到的,因此,排除了初始化结果不稳定带来的干扰,最终得到的联合矩阵V才是可靠的。
在一个具体的实现过程中,在联合矩阵V中获取一列可靠的信号向量
Figure PCTCN2016113243-appb-000018
可以通过获取联合矩阵V中任意一列信号向量与其他列信号向量之间的相关性,然后,将这些信号向量分别与预设的第二相关性阈值进行比较,当有一列信号向量与其他信号向量的相关性大于或者等于预设的第二相关性阈值时,就认为这个信号向量是可靠的。
具体的,发送联合矩阵V中任意一列信号向量与其他列信号向量之间的相关性可以利用以下公式获得:
Figure PCTCN2016113243-appb-000019
其中,
Figure PCTCN2016113243-appb-000020
为联合矩阵V中第i列信号向量
Figure PCTCN2016113243-appb-000021
与其他信号向量之间的相关性,F为执行上述步骤直至收敛的次数。
在实际应用过程中,第二相关性阈值可以预设为联合矩阵V中所有信号向量的相关性的平均值,此时,第二相关性阈值可以预设为:
Figure PCTCN2016113243-appb-000022
当第i列信号向量
Figure PCTCN2016113243-appb-000023
与其他信号向量之间的相关性
Figure PCTCN2016113243-appb-000024
大于或者等于所有信号向量的平均值
Figure PCTCN2016113243-appb-000025
时,认为第i列信号向量
Figure PCTCN2016113243-appb-000026
是可靠的。
本申请实施例中,当得到稳定的目标矩阵之后,就需要执行S303中根 据目标矩阵,得到第一系统所采用的扩频码的步骤。
得到的目标矩阵V中第i列信号向量可以表示为:
Figure PCTCN2016113243-appb-000027
目标矩阵包含有扩频码和信号参数,在具体的实现过程中,可以应用与S302类似的方式得到第一系统所采用的扩频码。
在一个具体的实现过程中,利用最小二乘迭代法,根据得到的目标矩阵,得到第一系统所采用的扩频码的步骤可以包括:
根据目标矩阵和扩频码,得到新的信道参数;
根据目标矩阵和新的信道参数,得到新的扩频码;
根据目标矩阵和新的扩频码,再次得到新的信道参数;
以此类推;
当最新的扩频码与上一扩频码相同时,确定最新的扩频码为第一系统采用的扩频码。
因此,可以先任意初始化扩频码S=[si],其中,i=1,2……k。si为第i个第一接收端对应的扩频码。在实现过程中,si可以表现为列向量,S可以表现为一个包含有多个扩频码列向量的扩频码矩阵。
然后,利用最小二乘迭代原理,根据得到的目标矩阵V和初始化的扩频码矩阵S,获取新的信道参数矩阵E,此时,新的信道参数矩阵E中任意一个信道参数向量可以表示为:
Figure PCTCN2016113243-appb-000028
其中,e为新的信道参数矩阵E中任意一个信道参数向量,K为第一系统中第一接收端的数目,vi为目标矩阵V中的第i个信号向量,si为扩频码S中第i个第一接收端对应的扩频码,此时,si可以表示为:
Figure PCTCN2016113243-appb-000029
其中,L表示经过L次上述步骤得到的第i个第一接收端对应的扩频码的数目为L个。
之后,利用最小二乘迭代原理,根据得到的目标矩阵V和新的信道参数矩阵E,获取新的扩频码S,此时,新的扩频码S中第i个第一接收端对应的扩频码si可以表示为:
Figure PCTCN2016113243-appb-000030
其中,si为新的扩频码中的第i个第一接收端对应的扩频码,L为扩频码长度,E为信道参数矩阵,vi为目标矩阵中目标矩阵向量,H表示共轭转置。
之后,重复上述步骤,以此类推,直到收敛停止上述步骤,也就是,直到得到的最新的扩频码矩阵与上一次得到的扩频码矩阵相同时,认为收敛,此时,不再重复上述步骤,得到的收敛结果包括最新的扩频码矩阵S和信道参数矩阵E。
如此,获得了扩频码矩阵S,就得到了第一系统中所采用的全部扩频码信息,并且,由于得到的联合矩阵V是可靠的,利用最小二乘迭代原理得到的扩频码矩阵S也是可靠的。
为了更具体的说明本方案,本申请实施例给出一种更具体的获取第一系统所采用的扩频码的实现方式。
具体的,请参考图4,其为本申请实施例中获取第一系统所采用的扩频码的实施例二的流程示意图。如图4所示,该方法包括以下步骤:
S401,接收第一系统频带上的信号。
S402,任意初始化发送信号矩阵。
S403,根据接收到的第一系统频带上的信号与发送信号矩阵,利用最小二乘迭代法获得新的联合矩阵。
S404,根据接收到的第一系统频带上的信号与新的联合矩阵,利用最小二乘迭代法获得新的发送信号矩阵。
S405,判断是否收敛;若是,执行S406;若否,执行S403。
S406,判断得到的发送信号矩阵是否可靠;若是,执行S407;若否,执 行S402。
S407,在得到的联合矩阵中筛选出一列满足指定条件的信号向量。
S408,根据接收到的第一系统频带上的信号与这列信号向量,得到目标发送信号矩阵。
S409,根据接收到的第一系统频带上的信号与目标发送信号矩阵,得到目标联合矩阵。
S410,任意初始化扩频码矩阵。
S411,根据得到的目标联合矩阵与扩频码矩阵,利用最小二乘迭代法获得新的信道参数矩阵。
S412,根据得到的目标联合矩阵与新的信道参数矩阵,利用最小二乘迭代法获得新的扩频码矩阵。
S413,判断是否收敛;若是,执行S414;若否,执行S411。
S414,确定收敛的扩频码矩阵中的扩频码为第一系统所采用的扩频码。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例三
基于上述实施例一所提供的信道接入方法,本申请实施例对S203中“获 得候选扩频码”的方法进行具体描述。
具体的,根据第二系统中的第二接收端的数目的不同,可以选择不同的获取方式获得候选扩频码。以下,分情况对获取方式进行具体解释。
第一种情况,当第二系统中第二接收端的数目为1时,此时,只有一个第二接收端处于待接入信道的状态,此时,只需要获取这个第二接收端对应的候选扩频码即可。
在第二系统中,第二接收端可以得到一个与自身的无线信道干扰和噪声相关的自相关矩阵R,因此,在获取第二接收端的自相关矩阵R时,第二发送端可以直接在第二接收端中获取到这个第二接收端的自相关矩阵R。
在获取候选扩频码的一个具体的实现过程中,可以获取第二接收端的自相关矩阵R,并获取第二接收端与第二发送端之间的多径信道矩阵G,之后,就可以根据得到的自相关矩阵R和多径信道矩阵G得到这个第二接收端对应的候选扩频码。
为了具体说明本方案,本申请实施例给出当第二系统中第二接收端的数目为1时的获取候选扩频码的以下两种实现方式:
第一种实现方式,根据自相关矩阵R和多径信道矩阵G,可以根据Rank-2方法,利用以下公式,得到候选扩频码:
qi=arg max cTGHR-1Gc
其中,qi为候选扩频码中的第i个候选扩频码,j=1,2……L,c表示参量,此时,c为一般扩频码,qi∈c,G为多径信道矩阵,R为自相关矩阵,T表示转置,H表示共轭转置。
第二种实现方式,连续使用以下形式一和形式二的组合方式,获取候选扩频码。
形式一、根据自相关矩阵R和多径信道矩阵G,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
形式二、根据自相关矩阵R和多径信道矩阵G,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113243-appb-000031
其中,A为信道等效矩阵,A‘为上一次计算得到的信道的等效矩阵,
Figure PCTCN2016113243-appb-000032
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113243-appb-000033
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
需要说明的是,利用形式二获取第二候选扩频码时,需要利用上一次计算得到的信道等效矩阵,那么,上一次计算得到的信道等效矩阵可以是根据形式一所述的方式得到的;或者,也可以是利用形式二所述的方式得到的。
第二种情况,当第二系统中第二接收端的数目为至少两个时,此时,有多个第二接收端处于待接入信道的状态,此时,就需要获取每个第二接收端各自对应的候选扩频码。
需要说明的是,当有多个待接入通信系统的第二接收端时,每个待接入的第二接收端的自相关矩阵可以表达为:
Figure PCTCN2016113243-appb-000034
其中,yt表示第t个第二接收端接收到的第一系统频带上的信号,N为第二接收端的数目。
当第t个第二接收端接入信道后,第二系统的总自相关矩阵可以表示为:
Figure PCTCN2016113243-appb-000035
其中,
Figure PCTCN2016113243-appb-000036
为第t个第二接收端接入信号后的总自相关矩阵,Rt为第t个第二接收端的自相关矩阵,Gt为第t个第二接收端的多径信道矩阵,Rj为第t个第二接收端对应第j个发送信号能量矩阵,c为编号,Z表示已经接入的第二接收端的数目,H表示共轭,T表示转置。
当待接入信道的第二接收端的数目为多个时,获取每个第二接收端各自对应的候选扩频码的实现方式与第一种情况中获取第二接收端的候选扩频码的实现方式类似,本申请实施例对此不再进行赘述。
此外,考虑到每个第二接收端都有多个候选扩频码,因此,为了便于后续目标扩频码的确定,在具体实现过程中,可以建立每个第二接收端对应的候选扩频码集合。
需要说明的是,候选扩频码中可能包含有第一系统所采用的扩频码。
此外,还可以根据自相关矩阵R、多径信道矩阵G和得到的候选扩频码向量,还可以得到这个第二接收端对应的发送信号能量:
Figure PCTCN2016113243-appb-000037
其中,Pi为第i个第二接收端对应的发送信号能量,γ为参数。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例四
基于上述实施例一所提供的信道接入方法,本申请实施例对S204中“根据候选扩频码与第一系统采用的扩频码,获得目标扩频码”的方法进行具体描述。
本申请实施例给出当第二系统中第二接收端的数目为1时的一种获得目标扩频码的实现方式。
本申请实施例中,目标扩频码是用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,因此,就需要在这些候选扩频码中,选择一个目标扩频码,当第二接收端接入这个目标扩频码对应的信道时,对第一接收端造成的干扰值中的最大干扰值最小。
基于此,获取目标扩频码可以包括以下步骤:
根据候选扩频码与第一系统采用的扩频码,获得第二接收端接入各候选扩频码对应的信道时,对第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为目标扩频码。
在一个具体的实现过程中,根据候选扩频码与第一系统采用的扩频码,并利用以下公式,获得候选扩频码中各候选扩频码对于所述第一接收端的干扰值:
Figure PCTCN2016113243-appb-000038
其中,J(c,qi)为第i个候选扩频码对于第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示c表示参量,此时,c为一般扩频码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
可以理解的是,当第一接收端的数目为K个时,假设第二接收端接入每个候选扩频码对应的信道,都会对这K个第一接收端造成干扰,因此,可以得到每个扩频码对应的的K个干扰值。并且,考虑到若第二接收端接入不同的扩频码对应的信道时,对这K个第一接收端各自与第一发送端之间的通讯造成的信号干扰不同,因此,为了找到一个对第一系统中的信号干扰最小的一个信道,需要先确定第二接收端接入各候选扩频码对应的信道时,对第一接收端造成的干扰值中的若干最大干扰值。
基于此,若候选扩频码的数目为w个,那么,就可以得到w个最大干扰 值,之后,只需要在这w个最大干扰值中选择一个最小的干扰值,并获取这个最大干扰值最小的扩频码为目标扩频码。
进而,将这个待接入信道的第二接收端接入任意扩频码对应的信道时,可以根据上述实施例二中所述的方法,获得这个目标扩频码对应的发送信号能量Pi,然后利用这个目标扩频码对应的信道,以发送信号能量Pi使得这个待接入信道的第二接收端接入指定的信道。
为了更具体的说明本方案,本申请实施例给出一种更具体的获取目标扩频码的实现方式。
具体的,请参考图5,其为本申请实施例中所提供的信道接入方法的实施例二的流程示意图。如图5所示,该方法包括以下步骤:
S501,获取第二接收端得到的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵。
S502,根据自相关矩阵和多径信道矩阵,利用Rank-2方法,得到第二接收端的候选扩频码集合。
S503,获得候选扩频码集合中各候选扩频码对应于各第一接收端的最大干扰值。
S504,确定一个最大干扰值最小的一个扩频码为目标扩频码。
S505,指示第二接收端接入这个目标扩频码对应的信道。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前 提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例五
基于上述实施例一所提供的信道接入方法,本申请实施例对S204中“根据候选扩频码与第一系统采用的扩频码,获得目标扩频码”的方法进行具体描述。
本申请实施例给出当第二系统中第二接收端的数目为1时,获得目标扩频码的另一种实现方式。
本申请实施例中,使用上述实施例三中的第二种实现形式获取这个第二接收端的候选扩频码。
更具体的,为了进一步得到对第一系统中各第一接收端与第一发送端之间的通信干扰最小的一个信道,因此,可以多次获取候选扩频码,之后,通过将第二接收端接入每次获取到的候选扩频码时对第一接收端造成的若干干扰值中的最大干扰值,与第二接收端接入上一次获取到的各候选扩频码时对第一接收端造成的若干干扰值中的最大干扰值进行比较,以得到目标扩频码,当第二接收端接入目标扩频码对应的信道时,对第一接收端造成的最大干扰值最小。
在具体的实现过程中,通过这种方式获取目标扩频码,可以包括以下步骤:
根据第一候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第二最大干扰值;
当第二最大干扰值小于第一最大干扰值时,继续根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收 端造成的若干干扰值中的一个第三最大干扰值;
当第三最大干扰值大于或者等于第二最大干扰值时,获取第二接收端接入上一个第二最大干扰值对应的扩频码,作为目标扩频码。
这样,当根据本次的候选扩频码得到的对第一接收端造成的最大干扰值小于根据上一次获取到的候选扩频码得到的对第一接收端造成的最大干扰值时,算法不收敛,认为根据下次得到候选扩频码中可能会存在比根据此次得到的候选扩频码得到的对第一接收端造成的最大干扰值更小的扩频码;因此,继续根据上述的实施例三种的第二种实现方式中的形式二所述的方法,再次得到一个新的第二候选扩频码,并根据下次得到的这个新的候选扩频码得到对第一接收端造成的最大干扰值,与根据本次得到候选扩频码得到的对第一接收端造成的最大干扰值进行下一轮的比较。
或者,当根据本次的候选扩频码得到的对第一接收端造成的的最大干扰值等于或者大于根据上一次获取到的候选扩频码得到的对第一接收端造成的最大干扰值时,算法存在收敛,认为根据下次得到的候选扩频码中肯能不会存在比根据此次得到的候选扩频码得到的对第一接收端造成的最大干扰值更小的扩频码;因此,停止执行获得下一个新的第二候选扩频码的操作,并获取根据上一次获取到的候选扩频码得到的对第一接收端造成的最大干扰值对应的扩频码为目标扩频码。
可以理解的是,本申请实施例中,根据每个候选扩频码得到对第一接收端造成的最大干扰值的实现方式与实施例五所述的方式一致,在此,不再进行赘述。
并且,由于只有一个第二接收端,在确定目标扩频码后,指示这个第二接收端接入通信系统的方式与实施例五所述的方法一致,在此也不做赘述。
为了更具体的说明本方案,本申请实施例给出另一种更具体的获取目标扩频码的实现方式。
具体的,请参考图6,其为本申请实施例中所提供的信道接入方法的实 施例三的流程示意图。如图6所示,该方法包括以下步骤:
S601,获取第二接收端得到的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵。
S602,利用实施例三中形式一所述的方法处理自相关矩阵和多径信道矩阵,得到这个第二接收端的候选扩频码集合。
S603,获取第一候选扩频码集合中,根据各候选扩频码得到的对各第一接收端造成的若干干扰值中的一个最大干扰值。
S604,利用实施例三中形式二所述的方法处理自相关矩阵和多径信道矩阵,重新得到这个第二接收端的候选扩频码集合。
S605,获取新得到的第二候选扩频码集合中,根据各候选扩频码得到的对各第一接收端造成的若干干扰值中的一个最大干扰值。
S606,判断新得到的最大干扰值是否小于上一次得到的最大干扰值;若是,执行S604;若否,执行S607。
S607,确定上一次得到的最大干扰值最小的一个扩频码为目标扩频码。
S608,指示第二接收端接入这个目标扩频码对应的信道。
请参考图7,其为本申请实施例中单个第二接收端接入信道的性能仿真图。如图7所示,曲线1、曲线3和曲线5为根据如实施例五所示的信道接入方法进行单个第二接收端的信道接入得到的性能仿真图,曲线2、曲线4和曲线6为根据如实施例四所示的信道接入方法进行单个第二接收端的信道接入得到的性能仿真图。其中,曲线1和曲线2是在第一接收端的数目为2时得到的性能仿真图,曲线3和曲线4是在第一接收端的数目为10时得到的性能仿真图,曲线5和曲线6是在第一接收端的数目为18时得到的性能仿真图。
如图7所示,对于有单个第二接收端接入信道的情况,实施例五提供的信道接入方案比实施例四提供的信道接入方案的成功率高。例如,曲线2相较于曲线1的单个第二接收端成功接入通信系统的概率更高,曲线4相较于曲线3的单个第二接收端成功接入通信系统的概率更高,曲线6相较于曲线5 的单个第二接收端成功接入通信系统的概率更高。
如图7所示,对于有单个第二接收端接入通信系统的情况,当第一系统的空闲度较高时,单个第二接收端成功接入通信系统的概率较高。例如,曲线1相较于曲线3,曲线2相较于曲线4,当第一接收端的数目为2时单个第二接收端成功接入通信系统的概率,比第一接收端的数目为10时单个第二接收端成功接入通信系统的概率高;曲线3相较于曲线5,曲线4相较于曲线6,当第一接收端的数目为10时单个第二接收端成功接入通信系统的概率,比第一接收端的数目为18时单个第二接收端成功接入通信系统的概率高。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例六
基于上述实施例一所提供的信道接入方法,本申请实施例对S204中“根据候选扩频码与第一系统采用的扩频码,获得目标扩频码”的方法进行具体描述。
本申请实施例给出当第二系统中第二接收端的数目为至少两个时的一种获得目标扩频码的实现方式。
此时,有多个第二接收端处于待接入信道的状态,因此,为了不影响第 一系统的正常通信,因此,可以在待接入通信系统的多个第二接收端中,每次只选择一个第二接收端接入通信系统,这样,每次都只获取一个对第一系统的信号干扰最小的一个扩频码和第二接收端。
具体的,当待接入信道的第二接收端的数目为多个时,获取目标扩频码可以包括以下步骤:
根据每个第二接收端的候选扩频码与第一系统采用的扩频码,获得每个第二接收端接入对应的各候选扩频码对应的信道时,对第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为目标扩频码;并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端,作为目标接收端。
需要说明的是,获取每个候选扩频码对于第一接收端的干扰值的方法,与实施例四中所采用的方式类似,在此不再进行赘述。
以如图1所示的通信系统为例进行举例说明。
图1所示的通信系统中,第二系统中有I个待接入信道的第二接收端,第一系统中有K个已接入信道的第一接收端,假设每个第二待接收端都有x个候选扩频码。那么,图1中的I个第二接收端中,当每个第二接收端接入对应的各候选扩频码时,都会对K个第一接收端与第一发送端之间的通信产生信号干扰,因此,根据每个候选扩频码都能得到K个干扰值,将这K个干扰值进行比较,就能得到K个干扰值中的1个最大干扰值。这样,每个第二接收端都可以有x个最大干扰值,全部的待接入通信系统中的第二接收端就共有I×x个最大干扰值。
之后,将这I×x个最大干扰值进行比较,找到数值最小的一个最大干扰值对应的候选扩频码作为目标扩频码,同时,这个数值最小的一个最大干扰值对应的第二接收端就作为目标接收端。
最后,就可以指示这个目标第二接收端接入这个目标扩频码对应的信道。
需要说明的是,当第二接收端的数目为多个时,考虑到第二系统中可能已将存在接入通信系统的其他第二接收端,此时,为了不影响第一系统的正常通信,可以在确定目标接收端和目标扩频码后,判断若将该目标接收端接入目标扩频码对应的信道后,第二系统所有已接入信道的第二接收端对第一系统造成的信号干扰是否满足指定条件。
具体的,若第二系统中所有已接入信道的第二接收端对第一系统造成的信号干扰满足指定条件,就认为目标接收端接入目标扩频码对应的信道后对第一系统的信号干扰仍处于合理范围内,因此,指示目标接收端接入目标扩频码对应的信道。或者,若第二系统中所有已接入信道的第二接收端对第一系统造成的信号干扰不满足指定条件,就认为目标接收端接入目标扩频码对应的信道后,可能会影响第一系统的正常通信,因此,不指示目标接收端接入目标扩频码对应的信道。
在一个具体的实现过程中,可以获取若目标接收端接入目标扩频码对应的信道后,第二系统中全部接入的第二接收端对第一系统造成的干扰值的总和,然后,当干扰值的总和小于预设的最大干扰阈值时,指示目标接收端接入目标扩频码对应的信道。或者,当干扰值的总和等于或者大于预设的最大干扰阈值时,不对目标接收端作接入指示。
可以理解的是,当目标接收端接入到目标扩频码对应的信道中之后,可以对包括第一接收端和第二接收端在内的全部接收端的发送信号功率进行更新。
为了更具体的说明本方案,本申请实施例给出另一种更具体的获取目标扩频码的实现方式。
具体的,请参考图8,其为本申请实施例中所提供的信道接入方法的实施例四的流程示意图。如图8所示,该方法包括以下步骤:
S801,确定待接入通信系统的多个第二接收端。
S802,获取每个第二接收端的自相关矩阵,并获取每个第二接收端与第 二发送端之间的多径信道矩阵。
S803,根据已接入的第二接收端,更新总自相关矩阵。
S804,按照实施例五所述的方法,获取每个第二接收端接入对应的各候选扩频码对应的信道时,对第一接收端造成的干扰值中的若干最大干扰值。
S805,获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为目标扩频码,并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端为目标接收端。
S806,获取若目标接收端接入目标扩频码对应的信道后,第二系统中全部接入的第二接收端对所述第一系统造成的干扰值的总和。
S807,判断干扰值的总和是否小于预设的最大干扰阈值;若是,执行S808;若否,执行S803。
S808,指示目标接收端接入目标扩频码对应的信道。
请参考图9,其为本申请实施例中多用户接入通信系统的性能仿真图。如图9所示,曲线1、曲线2、曲线3、曲线4和曲线5分别是在第一接收端的数目为2、6、10、14、18时,利用本申请实施例提出的信号接入方案进行多用户接入得到的性能仿真图。
如图9所示,对于有多个第二接收端接入通信系统的情况,在第一接收端的空闲度较高时,和/或,最大干扰阈值较高时,可以接入的第二接收端的成功率更高,此时,在不影响第一系统的正常通信的前提下,可以接入更多的第二接收端。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标 扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例七
基于上述实施例一所提供的信道接入方法,本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
本申请实施例给出一种信道接入装置,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括待接入通信系统的第二接收端和第二发送端;该装置位于第二发送端。
具体的,请参考图10,其为本申请实施例所提供的信道接入装置的功能方块图。如图10所示,该装置包括:
接收单元101,用于接收第一系统频带上的信号;
第一获取单元102,用于根据从第一系统频带上接收到的信号,获得第一系统采用的扩频码,扩频码用于标识第一系统占用的信道;
第二获取单元103,用于获得候选扩频码;
第三获取单元104,用于根据候选扩频码与第一系统采用的扩频码,获得目标扩频码,目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道。
接入单元105,用于指示第二接收端接入目标扩频码对应的信道。
具体的,第一获取单元102,包括:
生成模块1021,用于根据从第一系统频带上接收到的信号与发送信号矩阵,生成包含信道参数和扩频码的联合矩阵;
第一获取子模块1022,用于根据联合矩阵,得到目标矩阵;
第二获取子模块1023,用于根据目标矩阵,得到第一系统采用的扩频码。
其中,第一获取子模块1022,用于:
根据从第一系统频带上接收到的信号与联合矩阵,得到新的发送信号矩阵;
根据从第一系统频带上接收到的信号和新的发送信号矩阵,得到新的联合矩阵;
根据从第一系统频带上接收到的信号和新的联合矩阵,再次得到新的发送信号矩阵;
以此类推;
当最新的联合矩阵与上一联合矩阵相同时,获取最新的联合矩阵中的满足指定条件的信号向量;
根据从第一系统频带上接收到的信号与这个信号向量,得到目标发送信号矩阵;
根据从第一系统频带上接收到的信号与目标发送信号矩阵,得到目标联合矩阵。
在一个具体的实现过程中,第一获取子模块1022,具体用于:
根据从第一系统频带上接收到的信号与联合矩阵,并利用以下公式,得到新的发送信号矩阵:
B=sgn{Re[(VHV)-1VHY]}
其中,B为新的发送信号矩阵,V为联合矩阵,Y为第一系统频带上接收到的信号,H表示共轭转置。
其中,第二获取子模块1023,用于:
根据目标矩阵和扩频码,得到新的信道参数;
根据目标矩阵和新的信道参数,得到新的扩频码;
根据目标矩阵和新的扩频码,再次得到新的信道参数;
以此类推;
当最新的扩频码与上一扩频码相同时,确定最新的扩频码为第一系统采用的扩频码。
在一个具体的实现过程中,第二获取子模块1023,具体用于:
根据目标矩阵和新的信道参数,并利用以下公式,得到新的扩频码:
Figure PCTCN2016113243-appb-000039
其中,si为新的扩频码中的第i个扩频码,L为扩频码长度,E为信道参数矩阵,vi为目标矩阵中目标矩阵向量,H表示共轭转置。
具体的,本申请实施例中,当第二接收端的数目为1时,第二获取单元103,用于:
获取第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
根据自相关矩阵与多径信道矩阵,得到候选扩频码。
在一个具体的实现过程中,第二获取单元103,具体用于:
根据自相关矩阵与多径信道矩阵,并利用以下公式,得到候选扩频码:
qi=arg max cTGHR-1Gc
其中,qi为候选扩频码中的第i个候选扩频码,i=1,2……L,c表示参量,此时,c为一般扩频码,qi∈c,G为多径信道矩阵,R为自相关矩阵,T表示转置,H表示共轭转置。
具体的,第三获取单元104,用于:
根据候选扩频码与第一系统采用的扩频码,获得第二接收端接入各候选扩频码对应的信道时,对第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为目标扩频码。
在一个具体的实现过程中,第三获取单元104,具体用于:
根据候选扩频码与第一系统采用的扩频码,并利用以下公式,获得候选扩频码中各候选扩频码对于第一接收端的干扰值:
Figure PCTCN2016113243-appb-000040
其中,J(c,qi)为第i个扩频码对于第一接收端造成的干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi为候选扩频码,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
具体的,本申请实施例中,第二获取单元103,用于:
根据自相关矩阵与多径信道矩阵,并利用以下公式得到第一候选扩频码:
A=GHR G
其中,A为信道和PTSC的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
或者,用于:
根据自相关矩阵与多径信道矩阵,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113243-appb-000041
其中,A为信道和PTSC的等效矩阵,A‘为上一次计算得到的信道等效矩阵,
Figure PCTCN2016113243-appb-000042
表示第i个第一接收端占用的扩频码的循环移位形式,
Figure PCTCN2016113243-appb-000043
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
具体的,第三获取单元104,用于:
根据第一候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第二候选扩频码时,对第一接收端造成的若干干扰值中的一个第二最大干扰值;
当第二最大干扰值小于第一最大干扰值时,继续根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第二候选扩频码时,对第一接收端造成的若干干扰值中的一个第三最大干扰值;
当第三最大干扰值大于或者等于第二最大干扰值时,获取第二接收端接入上一个第二最大干扰值对应的扩频码,作为目标扩频码。
具体的,本申请实施例中,当第二接收端的数目为至少两个时,第二获取单元103,用于:
获取每个第二接收端获得的自相关矩阵,并获取每个第二接收端与第二发送端之间的多径信道矩阵;
根据每个第二接收端的自相关矩阵和多径信道矩阵,得到每个第二接收端的候选扩频码。
此时,第三获取单元104,用于:
根据每个第二接收端的候选扩频码与第一系统采用的扩频码,获得每个第二接收端接入对应的各候选扩频码对应的信道时,对第一接收端造成的干扰值中的若干最大干扰值;
获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为目标扩频码;并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端,作为目标接收端。
在一个具体的实现过程中,该装置还包括:
第四获取单元106,用于获取若目标接收端接入通信系统后,第二系统中全部接入的第二接收端对所述第一系统造成的干扰值的总和;
接入单元105,用于当干扰值的总和小于预设的最大干扰阈值时,指示目标接收端接入目标扩频码对应的信道。
由于本实施例中的各单元能够执行图2所示的方法,本实施例未详细描述的部分,可参考对图2的相关说明。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二系统中的第二发送端与第一系统中的第一发送端不需要进行通信状况的通信,第二发送端可以根据接收到的第一系统频带上的信号,确定第一系统所采用的扩频码,通过这种根据信号进行盲分析的方式,第二发送端可以动态感知通信系统的扩频码使用情况;之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前 提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、 随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以 存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (30)

  1. 一种信道接入方法,其特征在于,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端;所述方法执行在所述第二发送端上,包括:
    接收第一系统频带上的信号;
    根据从所述第一系统频带上接收到的信号,获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
    获得候选扩频码;
    根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道;
    指示所述第二接收端接入所述目标扩频码对应的信道。
  2. 根据权利要求1所述的方法,其特征在于,根据从所述第一系统频带上接收到的信号,获得所述第一系统采用的扩频码,包括:
    根据从所述第一系统频带上接收到的信号与发送信号矩阵,生成包含信道参数和扩频码的联合矩阵;
    根据所述联合矩阵,得到目标矩阵;
    根据所述目标矩阵,得到所述第一系统采用的扩频码。
  3. 根据权利要求2所述的方法,其特征在于,根据所述联合矩阵,得到目标矩阵,包括:
    根据从所述第一系统频带上接收到的信号与所述联合矩阵,得到新的发送信号矩阵;
    根据从所述第一系统频带上接收到的信号和所述新的发送信号矩阵,得到新的联合矩阵;
    根据从所述第一系统频带上接收到的信号与新的联合矩阵,再次得到新的发 送信号矩阵;
    以此类推;
    当最新的联合矩阵与上一联合矩阵相同时,获取所述最新的联合矩阵中的满足指定条件的信号向量;
    根据从所述第一系统频带上接收到的信号与所述信号向量,得到目标发送信号矩阵;
    根据从所述第一系统频带上接收到的信号与所述目标发送信号矩阵,得到目标联合矩阵。
  4. 根据权利要求3所述的方法,其特征在于,根据从所述第一系统频带上接收到的信号与所述联合矩阵,并利用以下公式,得到新的发送信号矩阵:
    B=sgn{Re[(VHV)-1VHY]}
    其中,B为新的发送信号矩阵,V为联合矩阵,Y为第一系统频带上接收到的信号,H表示共轭转置。
  5. 根据权利要求2所述的方法,其特征在于,根据所述目标矩阵,得到所述第一系统采用的扩频码,包括:
    根据所述目标矩阵和扩频码,得到新的信道参数;
    根据所述目标矩阵和所述新的信道参数,得到新的扩频码;
    根据所述目标矩阵和新的扩频码,再次得到新的信道参数;
    以此类推;
    当最新的扩频码与上一扩频码相同时,确定所述最新的扩频码为所述第一系统采用的扩频码。
  6. 根据权利要求5所述的方法,其特征在于,根据所述目标矩阵和所述新的信道参数,并利用以下公式,得到新的扩频码:
    Figure PCTCN2016113243-appb-100001
    其中,si为新的扩频码中的第i个第一接收端对应的扩频码,L为扩频码长度, E为信道参数矩阵,vi为目标矩阵中目标矩阵向量,H表示共轭转置。
  7. 根据权利要求1所述的方法,其特征在于,当所述第二接收端的数目为1时,获得候选扩频码,包括:
    获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
    根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
  8. 根据权利要求7所述的方法,其特征在于,根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
    qi=arg maxcTGHR-1Gc
    其中,qi为候选扩频码中的第i个候选扩频码,i=1,2……L,c表示参量,此时,c为一般扩频码,qi∈c,G为多径信道矩阵,R为自相关矩阵,T表示转置,H表示共轭转置。
  9. 根据权利要求8所述的方法,其特征在于,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
    根据所述候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各候选扩频码对应的信道,对所述第一接收端造成的干扰值中的若干最大干扰值;
    获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码。
  10. 根据权利要求9所述的方法,其特征在于,根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述候选扩频码中各候选扩频码对于所述第一接收端的干扰值:
    Figure PCTCN2016113243-appb-100002
    其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频 码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
  11. 根据权利要求7所述的方法,其特征在于,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
    A=GH R G
    其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
    或者,
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
    Figure PCTCN2016113243-appb-100003
    其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道和周期总均方相关的等效矩阵,
    Figure PCTCN2016113243-appb-100004
    表示第i个第一接收端占用的扩频码的循环移位形式,其中,
    Figure PCTCN2016113243-appb-100005
    Si/l为第i个第一接收端的l位循环右移,I为单位阵。
  12. 根据权利要求11所述的方法,其特征在于,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
    根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
    根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
    当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选 扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
    当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
  13. 根据权利要求1所述的方法,其特征在于,当所述第二接收端的数目为至少两个时,获得候选扩频码,包括:
    获取每个第二接收端获得的自相关矩阵,并获取每个第二接收端与第二发送端之间的多径信道矩阵;
    根据每个第二接收端的自相关矩阵和多径信道矩阵,得到每个第二接收端的候选扩频码。
  14. 根据权利要求13所述的方法,其特征在于,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
    根据每个第二接收端的候选扩频码与所述第一系统采用的扩频码,获得每个第二接收端接入对应的各候选扩频码对应的信道时,对所述第一接收端造成的干扰值中的若干最大干扰值;
    获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码;并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端,作为目标接收端。
  15. 根据权利要求14所述的方法,其特征在于,指示所述第二接收端接入所述目标扩频码对应的信道,包括:
    获取若所述目标接收端接入所述通信系统后,所述第二系统中全部接入的第二接收端对所述第一系统造成的干扰值的总和;
    当所述干扰值的总和小于预设的最大干扰阈值时,指示所述目标接收端接入所述目标扩频码对应的信道。
  16. 一种信道接入装置,其特征在于,应用于包括第一系统和第二系统的 通信系统,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端;所述装置位于所述第二发送端上,包括:
    接收单元,用于接收第一系统频带上的信号;
    第一获取单元,用于根据从所述第一系统频带上接收到的信号,获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
    第二获取单元,用于获得候选扩频码;
    第三获取单元,用于根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道;
    接入单元,用于指示所述第二接收端接入所述目标扩频码对应的信道。
  17. 根据权利要求16所述的装置,其特征在于,所述第一获取单元,包括:
    生成模块,用于根据从所述第一系统频带上接收到的信号与发送信号矩阵,生成包含信道参数和扩频码的联合矩阵;
    第一获取子模块,用于根据所述联合矩阵,得到目标矩阵;
    第二获取子模块,用于根据所述目标矩阵,得到所述第一系统采用的扩频码。
  18. 根据权利要求17所述的装置,其特征在于,所述第一获取子模块,用于:
    根据从所述第一系统频带上接收到的信号与所述联合矩阵,得到新的发送信号矩阵;
    根据从所述第一系统频带上接收到的信号和所述新的发送信号矩阵,得到新的联合矩阵;
    根据从所述第一系统频带上接收到的信号与新的联合矩阵,再次得到新的发送信号矩阵;
    以此类推;
    当最新的联合矩阵与上一联合矩阵相同时,获取所述最新的联合矩阵中的满 足指定条件的信号向量;
    根据从所述第一系统频带上接收到的信号与所述信号向量,得到目标发送信号矩阵;
    根据从所述第一系统频带上接收到的信号与所述目标发送信号矩阵,得到目标联合矩阵。
  19. 根据权利要求18所述的装置,其特征在于,所述第一获取子模块,具体用于:
    根据从所述第一系统频带上接收到的信号与所述联合矩阵,并利用以下公式,得到新的发送信号矩阵:
    B=sgn{Re[(VHV)-1VHY]}
    其中,B为新的发送信号矩阵,V为联合矩阵,Y为第一系统频带上接收到的信号,H表示共轭转置。
  20. 根据权利要求17所述的装置,其特征在于,所述第二获取子模块,用于:
    根据所述目标矩阵和扩频码,得到新的信道参数;
    根据所述目标矩阵和所述新的信道参数,得到新的扩频码;
    根据所述目标矩阵和新的扩频码,再次得到新的信道参数;
    以此类推;
    当最新的扩频码与上一扩频码相同时,确定所述最新的扩频码为所述第一系统采用的扩频码。
  21. 根据权利要求20所述的装置,其特征在于,所述第二获取子模块,具体用于:
    根据所述目标矩阵和所述新的信道参数,并利用以下公式,得到新的扩频码:
    Figure PCTCN2016113243-appb-100006
    其中,si为新的扩频码中的第i个扩频码,L为扩频码长度,E为信道参数矩 阵,vi为目标矩阵中目标矩阵向量,H表示共轭转置。
  22. 根据权利要求16所述的装置,其特征在于,当所述第二接收端的数目为1时,所述第二获取单元,用于:
    获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
    根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
  23. 根据权利要求22所述的装置,其特征在于,所述第二获取单元,具体用于:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
    qi=arg maxcTGHR-1Gc
    其中,qi为候选扩频码中的第i个候选扩频码,i=1,2……L,c表示参量,此时,c为一般扩频码,qi∈c,G为多径信道矩阵,R为自相关矩阵,T表示转置,H表示共轭转置。
  24. 根据权利要求23所述的装置,其特征在于,所述第三获取单元,用于:
    根据所述候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各候选扩频码对应的信道时,对所述第一接收端造成的干扰值中的若干最大干扰值;
    获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码。
  25. 根据权利要求24所述的装置,其特征在于,所述第三获取单元,具体用于:
    根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述候选扩频码中各候选扩频码对于所述第一接收端的干扰值:
    Figure PCTCN2016113243-appb-100007
    其中,J(c,qi)为第i个扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi为候选扩频码,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
  26. 根据权利要求22所述的装置,其特征在于,所述第二获取单元,用于:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
    A=GH R G
    其中,A为信道的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
    或者,用于:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
    Figure PCTCN2016113243-appb-100008
    其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道和周期总均方相关的等效矩阵,
    Figure PCTCN2016113243-appb-100009
    表示第i个第一接收端占用的扩频码的循环移位形式,其中,
    Figure PCTCN2016113243-appb-100010
    Si/l为第i个第一接收端的l位循环右移,I为单位阵。
  27. 根据权利要求26所述的装置,其特征在于,所述第三获取单元,用于:
    根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
    根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
    当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
    当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
  28. 根据权利要求16所述的装置,其特征在于,当所述第二接收端的数目为至少两个时,所述第二获取单元,用于:
    获取每个第二接收端获得的自相关矩阵,并获取每个第二接收端与第二发送端之间的多径信道矩阵;
    根据每个第二接收端的自相关矩阵和多径信道矩阵,得到每个第二接收端的候选扩频码。
  29. 根据权利要求28所述的装置,其特征在于,所述第三获取单元,用于:
    根据每个第二接收端的候选扩频码与所述第一系统采用的扩频码,获得每个第二接收端接入对应的各候选扩频码对应的信道时,对所述第一接收端造成的干扰值中的若干最大干扰值;
    获取若干最大干扰值中最小的一个最大干扰值对应的扩频码,作为所述目标扩频码;并获取若干最大干扰值中最小的一个最大干扰值对应的第二接收端,作为目标接收端。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    第四获取单元,用于获取若所述目标接收端接入所述通信系统后,所述第二系统中全部接入的第二接收端对所述第一系统造成的干扰值的总和;
    所述接入单元,用于当所述干扰值的总和小于预设的最大干扰阈值时,指示所述目标接收端接入所述目标扩频码对应的信道。
PCT/CN2016/113243 2016-12-29 2016-12-29 一种信道接入方法及装置 WO2018119942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113243 WO2018119942A1 (zh) 2016-12-29 2016-12-29 一种信道接入方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113243 WO2018119942A1 (zh) 2016-12-29 2016-12-29 一种信道接入方法及装置

Publications (1)

Publication Number Publication Date
WO2018119942A1 true WO2018119942A1 (zh) 2018-07-05

Family

ID=62707188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113243 WO2018119942A1 (zh) 2016-12-29 2016-12-29 一种信道接入方法及装置

Country Status (1)

Country Link
WO (1) WO2018119942A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374772A (zh) * 2001-03-14 2002-10-16 上海大唐移动通信设备有限公司 一种宽带码分多址系统中扩频码的分配方法
WO2006127617A2 (en) * 2005-05-23 2006-11-30 Navini Networks, Inc. Method and system for interference reduction
CN1996982A (zh) * 2005-12-31 2007-07-11 方正通信技术有限公司 一种确定直接序列扩频ofdm中fft窗口位置的方法
CN101803432A (zh) * 2007-09-21 2010-08-11 高通股份有限公司 使用功率和衰减曲线的干扰管理
CN103190104A (zh) * 2010-11-05 2013-07-03 阿尔卡特朗讯 网络节点和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374772A (zh) * 2001-03-14 2002-10-16 上海大唐移动通信设备有限公司 一种宽带码分多址系统中扩频码的分配方法
WO2006127617A2 (en) * 2005-05-23 2006-11-30 Navini Networks, Inc. Method and system for interference reduction
CN1996982A (zh) * 2005-12-31 2007-07-11 方正通信技术有限公司 一种确定直接序列扩频ofdm中fft窗口位置的方法
CN101803432A (zh) * 2007-09-21 2010-08-11 高通股份有限公司 使用功率和衰减曲线的干扰管理
CN103190104A (zh) * 2010-11-05 2013-07-03 阿尔卡特朗讯 网络节点和方法

Similar Documents

Publication Publication Date Title
WO2016074157A1 (en) Method, apparatus, system and computer program
JP6300918B2 (ja) D2d発見信号の送信方法及び送信装置
JP2016535479A (ja) メッセージ処理方法、mme選択方法、および装置
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
WO2018171507A1 (zh) 一种收发物理随机接入信道前导码序列的方法及装置
US20170105214A1 (en) Wireless communication using a channel schedule
CN111246508A (zh) 干扰源识别方法、相关设备及计算机存储介质
US20230291658A1 (en) Method for Processing Partial Input Missing of AI Network, and Device
WO2018119942A1 (zh) 一种信道接入方法及装置
US20160338126A1 (en) Information transmission method and apparatus
WO2015180009A1 (zh) 一种配置导频的方法及装置
WO2018119943A1 (zh) 一种信道识别方法及装置
WO2018000430A1 (en) Resource multiplexing and allocation schemes for uplink beam reference signal in massive mimo system
WO2018119941A1 (zh) 一种信道接入方法及装置
JP2019531625A (ja) 通信方法、ネットワーク・デバイスおよび端末デバイス
WO2018119939A1 (zh) 一种信道接入方法及装置
CN115278716A (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2021000264A1 (zh) 终端和基站
WO2016172849A1 (zh) 信道估计方法、装置和系统
WO2018119940A1 (zh) 一种信道接入方法及装置
WO2023036309A1 (zh) 参考信号序列生成方法、装置、设备及介质
WO2023109759A1 (zh) Prach传输方法、装置及终端
JP2022501957A (ja) マルチtrpシステムの干渉を管理するための方法及びシステム
US11831388B2 (en) Beam switching
EP3776935A1 (en) Message and rate based user grouping in non-orthogonal multiple access (noma) networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925005

Country of ref document: EP

Kind code of ref document: A1