WO2018119940A1 - 一种信道接入方法及装置 - Google Patents

一种信道接入方法及装置 Download PDF

Info

Publication number
WO2018119940A1
WO2018119940A1 PCT/CN2016/113233 CN2016113233W WO2018119940A1 WO 2018119940 A1 WO2018119940 A1 WO 2018119940A1 CN 2016113233 W CN2016113233 W CN 2016113233W WO 2018119940 A1 WO2018119940 A1 WO 2018119940A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading code
receiving end
candidate
channel
matrix
Prior art date
Application number
PCT/CN2016/113233
Other languages
English (en)
French (fr)
Inventor
李明
遆光宇
Original Assignee
深圳天珑无线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳天珑无线科技有限公司 filed Critical 深圳天珑无线科技有限公司
Priority to PCT/CN2016/113233 priority Critical patent/WO2018119940A1/zh
Publication of WO2018119940A1 publication Critical patent/WO2018119940A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a channel access method and apparatus.
  • Code Division Multiple Access is a wireless access technology widely used in the prior art. It is easy to implement due to its anti-interference, anti-fading, large capacity, soft handover and anti-spectrum analysis. In recent years, code division multiple access has been increasingly favored. In code division multiple access, the allocation of communication resources is realized by the allocation of spreading codes, and each user occupies a separate spreading code for establishing communication with the base station, in the code division multiple access downlink, The user's spreading code is orthogonal or nearly orthogonal, so that when receiving at the receiving end, the receiving end can effectively recover the transmitted signal as long as it knows the unique spreading code assigned.
  • the embodiment of the present application provides a channel access method and device, which are used to solve the problem of low utilization of spectrum resources in the prior art communication system.
  • the embodiment of the present application provides a channel access method, which is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system package The second receiving end and the second sending end are included; the method is performed on the second sending end, and includes:
  • obtaining by using the candidate spreading code and the spreading code used by the first system, a target spreading code, where the target spreading code is used to identify the first system that is not occupied by the first system. Signal with minimal interference to one channel;
  • a candidate spreading code is obtained according to the autocorrelation matrix and the multipath channel matrix.
  • A is the equivalent matrix of the channel and the total mean square of the period
  • G is the multipath channel matrix
  • R is the autocorrelation matrix
  • H is the conjugate transpose.
  • A is the equivalent matrix of the channel and the total mean square of the period
  • A' is the equivalent matrix of the channel and the periodic mean square correlation of the previous calculation.
  • the aspect as described above, and any possible implementation manner, further provide an implementation manner of obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system, including:
  • J(c,q i ) is the total mean squared correlation interference value of the i-th candidate spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c represents the parameter
  • c is a general spreading code
  • q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents a transposition.
  • the embodiment of the present application provides a channel access apparatus, which is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system The second receiving end and the second sending end are included; the device is located on the second sending end, and includes:
  • a first obtaining unit configured to obtain a spreading code used by the first system, where the spreading code is used to identify a channel occupied by the first system
  • a second acquiring unit configured to obtain a candidate spreading code
  • a third obtaining unit configured to obtain a target spreading code according to the candidate spreading code and a spreading code used by the first system, where the target spreading code is used to identify a channel that is not occupied by the first system A channel in which the signal interference of the first system is the smallest.
  • An access unit configured to indicate that the second receiving end accesses a channel corresponding to the target spreading code.
  • a candidate spreading code is obtained according to the autocorrelation matrix and the multipath channel matrix.
  • A is the equivalent matrix of the channel and the total mean square of the period
  • G is the multipath channel matrix
  • R is the autocorrelation matrix
  • H is the conjugate transpose.
  • A is the equivalent matrix of the channel and the total mean square of the period
  • A' is the equivalent matrix of the channel and the periodic mean square correlation of the previous calculation.
  • the third obtaining unit is configured to:
  • J(c,q i ) is the total mean squared correlation interference value of the i-th candidate spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c represents the parameter
  • c is a general spreading code
  • q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents a transposition.
  • the channel access method provided by the embodiment of the present application is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system includes a second receiving end and a second a transmitting end; the method is performed on the second transmitting end, specifically, by obtaining a spreading code used by the first system, the spreading code is used to identify a channel occupied by the first system, and obtain a candidate spreading code, and further, Obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system, where the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least signal interference to the first system.
  • the second sending end may obtain the spreading code used by the first system, and then the second sending end may determine a target extension for the second receiving end in the second system according to the current resource usage situation.
  • the frequency code, the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that the indication can be indicated without affecting the normal communication in the first system.
  • the second receiving end accesses the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • FIG. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • Embodiment 1 of a channel access method according to an embodiment of the present application
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a channel access method provided by an embodiment of the present application;
  • FIG. 4 is a functional block diagram of a channel access apparatus according to an embodiment of the present application.
  • first, second, third, etc. may be used to describe a system or the like in the embodiments of the present application, these systems and the like should not be limited to these terms. These terms are only used to distinguish systems from each other.
  • the first system may also be referred to as a second system without departing from the scope of the embodiments of the present application.
  • the second system may also be referred to as a first system.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • the embodiment of the present application provides a channel access method.
  • the method is applied to a communication system including a first system and a second system, wherein the first system includes a first receiving end and a first transmitting end, and the second system includes a second receiving end and a second transmitting end.
  • the second receiving ends involved in the present application are all in a state to be accessed by the channel.
  • the number of z is not particularly limited in this embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • the system includes a first system and a second system, where the first system includes one first transmitting end and K first receiving ends, and the second system includes one second transmitting end and one The second receiving end of the communication system to be accessed.
  • the signal sent by the first transmitting end can be received by the first receiving end and the second receiving end in the communication system, which is indicated by a solid line in FIG. 1; the signal sent by the second transmitting end is shown in FIG. It can be received by the first receiving end and the second receiving end in the communication system, and is indicated by a broken line in FIG.
  • the K first receiving ends have established communication with the first transmitting end, that is, the first transmitting end allocates K devices to the K first receiving ends.
  • the spreading code is not limited in this embodiment.
  • the number of Ks is at least one.
  • the first system may be the primary system and the second system may be the secondary system.
  • the communication system including the first system and the second system may be a code division multiple access communication system.
  • the channel access method provided by the embodiment of the present application is to access the second receiving end after obtaining the channel occupied by the first system.
  • a channel with minimal interference to the signal of the first system so as to ensure normal communication between the first receiving end and the first transmitting end in the first system, and improve the utilization of spectrum resources in the communication system.
  • FIG. 2 is a schematic flowchart of Embodiment 1 of a channel access method according to an embodiment of the present application. As shown in FIG. 2 , the method includes the following steps:
  • the spreading code is used to identify a channel occupied by the first system.
  • the target spreading code is used to identify a channel in the channel that is not occupied by the first system that has the least interference to the signal of the first system.
  • execution body of S201-S204 may be a channel access device, and the device may be located at a second transmitting end in the communication system.
  • the second sending end may obtain the spreading code used by the first system, and then the second sending end may determine a target extension for the second receiving end in the second system according to the current resource usage situation.
  • the frequency code, the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that the indication can be indicated without affecting the normal communication in the first system.
  • the second receiving end accesses the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the method for obtaining the candidate spreading code in S202 is specifically described in the embodiment of the present application, based on the channel access method provided in the first embodiment.
  • the number of the second receiving end in the second system is 1. In this case, only one second receiving end is in the state of the channel to be accessed. In this case, only the candidate corresponding to the second receiving end needs to be acquired.
  • the frequency code can be.
  • the second receiving end can obtain an autocorrelation matrix R related to its own wireless channel interference and noise. Therefore, when acquiring the autocorrelation matrix R of the second receiving end, the second transmitting end can directly The autocorrelation matrix R of the second receiving end is obtained in the second receiving end.
  • the autocorrelation matrix R of the second receiving end may be obtained, and the multipath channel matrix G between the second receiving end and the second transmitting end is obtained, and then The candidate spreading code corresponding to the second receiving end can be obtained according to the obtained autocorrelation matrix R and the multipath channel matrix G.
  • the embodiment of the present application provides a combination of the following Form 1 and Form 2 for obtaining a candidate spreading code, and obtains a candidate spreading code.
  • Form 1 according to the autocorrelation matrix R and the multipath channel matrix G, and obtain the first candidate spreading code by using the following formula:
  • A is the equivalent matrix of the channel and the periodic mean square correlation
  • G is the multipath channel matrix
  • R is the autocorrelation matrix
  • H is the conjugate transpose
  • Form 2 according to the autocorrelation matrix R and the multipath channel matrix G, and obtain the second candidate spreading code by using the following formula:
  • A is the equivalent matrix of the channel and the total mean square of the period
  • A' is the equivalent matrix of the channel and the periodic mean square correlation of the previous calculation.
  • the equivalent matrix may be obtained according to the manner described in Form 1; or it may be obtained by the method described in Form 2.
  • the candidate spreading code may include the spreading code used by the first system.
  • the transmit signal energy corresponding to the second receiving end can also be obtained:
  • P i is the transmitted signal energy corresponding to the ith second receiving end
  • is a parameter
  • the second sending end may obtain the spreading code used by the first system, and then the second sending end may determine a target extension for the second receiving end in the second system according to the current resource usage situation.
  • the frequency code, the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that the indication can be indicated without affecting the normal communication in the first system.
  • the second receiving end accesses the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the method in the present application specifically describes the method for obtaining a target spreading code according to the candidate spreading code and the spreading code used by the first system in S203.
  • the target spreading code is used to identify a channel that has the least interference to the signal of the first system in the channel that is not occupied by the first system. Therefore, it is necessary to select one target expansion among the candidate spreading codes.
  • the frequency code when the second receiving end accesses the channel corresponding to the target spreading code, the maximum interference value among the interference values caused by the first receiving end is the smallest.
  • the candidate spreading code may be acquired multiple times, and then the second receiving is performed.
  • the maximum interference value of the interference values caused by the receiving end is compared to obtain the target spreading code.
  • the maximum interference value caused by the first receiving end is the smallest.
  • obtaining the target spreading code in this manner may include the following steps:
  • the second maximum interference value is smaller than the first maximum interference value, proceed to obtain the second candidate receiving the first candidate spreading code according to the second candidate spreading code and the spreading code used by the first system, a third maximum interference value of a plurality of interference values caused by a receiving end;
  • the second receiving end accesses the spreading code corresponding to the last second largest interference value as the target spreading code.
  • the algorithm does not Convergence, it is considered that there may be a spreading code smaller than the maximum interference value caused by the candidate spreading code obtained at the first receiving end according to the candidate spreading code obtained next time; therefore, according to the above
  • a new second candidate spreading code is obtained again, and the first receiving end is obtained according to the new candidate spreading code obtained next time. The maximum interference value caused is compared with the next interference value caused by the candidate spreading code obtained this time to the first receiving end.
  • the algorithm has convergence, and it is considered that there is no spreading code smaller than the maximum interference value caused by the candidate spreading code obtained according to the candidate spreading code obtained next time according to the candidate spreading code obtained next time; Stopping the operation of obtaining the next new candidate candidate spreading code, and acquiring the spreading code corresponding to the maximum interference value caused by the last received candidate spreading code as the target spread spectrum code.
  • the interference value caused by the second receiving end to the first receiving end when accessing a candidate spreading code is obtained.
  • J(c,q i ) is the total mean squared interference value of the ith candidate spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c is the parameter.
  • q i ⁇ c, q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents transposition.
  • only one second receiving end after determining the target spreading code, may obtain the transmitted signal energy P i corresponding to the target spreading code according to the method described in the second embodiment, and then The channel corresponding to the target spreading code is used to transmit the signal energy P i such that the second receiving end of the channel to be accessed accesses the designated channel.
  • the second sending end may obtain the spreading code used by the first system, and then the second sending end may determine a target extension for the second receiving end in the second system according to the current resource usage situation.
  • the frequency code, the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that the indication can be indicated without affecting the normal communication in the first system.
  • the second receiving end accesses the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the embodiment of the present application provides a specific implementation method of the foregoing channel access method.
  • FIG. 3 is a schematic flowchart of Embodiment 2 of a channel access method according to an embodiment of the present application. As shown in FIG. 3, the method includes the following steps:
  • the second sending end may obtain the spreading code used by the first system, and then the second sending end may determine a target extension for the second receiving end in the second system according to the current resource usage situation.
  • the frequency code, the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that the indication can be indicated without affecting the normal communication in the first system.
  • the second receiving end accesses the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the embodiment of the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • the embodiment of the present application provides a channel access apparatus, which is applied to a communication system including a first system and a second system, where the first system includes a first receiving end and a first transmitting end, and the second system includes a communication system to be accessed.
  • the second receiving end and the second transmitting end; the device is located on the second transmitting end.
  • FIG. 4 is a functional block diagram of a channel access apparatus according to an embodiment of the present application.
  • the device comprises:
  • the first obtaining unit 41 is configured to obtain, according to the signal received from the first system frequency band, a spreading code used by the first system, where the spreading code is used to identify a channel occupied by the first system;
  • a second obtaining unit 42 configured to obtain a candidate spreading code
  • the third obtaining unit 43 is configured to obtain a target spreading code according to the candidate spreading code and the spreading code used by the first system, where the target spreading code is used to identify a signal in the first system that is not occupied by the first system.
  • One channel with the least interference is configured to obtain a target spreading code according to the candidate spreading code and the spreading code used by the first system, where the target spreading code is used to identify a signal in the first system that is not occupied by the first system.
  • the access unit 44 is configured to indicate that the second receiving end accesses the channel corresponding to the target spreading code.
  • the second obtaining unit 42 is configured to:
  • the candidate spreading code is obtained according to the autocorrelation matrix and the multipath channel matrix.
  • the second obtaining unit 42 is specifically configured to:
  • the first candidate spreading code is obtained by using the following formula:
  • A is the equivalent matrix of the channel and the total mean square of the period
  • G is the multipath channel matrix
  • R is the autocorrelation matrix
  • H is the conjugate transpose.
  • the second obtaining unit 42 is specifically configured to:
  • the second candidate spreading code is obtained by using the following formula:
  • A is the equivalent matrix of the channel and the total mean square of the period
  • A' is the equivalent matrix of the channel and the periodic mean square correlation of the previous calculation.
  • the third obtaining unit 43 is configured to:
  • the second maximum interference value is smaller than the first maximum interference value, continue to obtain the second candidate spreading code according to the second candidate spreading code and the spreading code used by the first system, a third maximum interference value of a plurality of interference values caused by a receiving end;
  • the second receiving end accesses the spreading code corresponding to the last second largest interference value as the target spreading code.
  • the third obtaining unit 43 is further configured to:
  • the interference value caused by the second receiving end to the first receiving end when accessing a candidate spreading code is obtained:
  • J(c,q i ) is the total mean squared correlation interference value of the i-th candidate spreading code for the first receiving end
  • M is the number of decomposable multipaths of the multipath channel
  • c represents the parameter
  • c is a general spreading code
  • q i / l represents a 1-bit cyclic right shift of the i-th candidate spreading code q i
  • T represents a transposition.
  • the second sending end may obtain the spreading code used by the first system, and then the second sending end may determine a target extension for the second receiving end in the second system according to the current resource usage situation.
  • the frequency code, the target spreading code is used to identify a channel in the unoccupied channel of the first system that has the least interference to the signal of the first system, so that the indication can be indicated without affecting the normal communication in the first system.
  • the second receiving end accesses the channel corresponding to the target spreading code, which improves the frequency band utilization of the communication system. Therefore, the technical solution provided by the embodiment of the present application can solve the problem that the utilization rate of spectrum resources in the communication system in the prior art is low.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信道接入方法及装置。一方面,本申请实施例中,通过获得第一系统采用的扩频码,该扩频码用于标识第一系统占用的信道,从而,获得候选扩频码,进而,根据候选扩频码与第一系统采用的扩频码,获得目标扩频码,目标扩频码用于标识第一系统未占用的信道中对第一系统的通信干扰最小的一个信道,最后,指示第二接收端接入该目标扩频码对应的信道。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。

Description

一种信道接入方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信道接入方法及装置。
背景技术
随着信息化程度的深入,无线通信的数据量呈现出了爆炸式的增长,现有的频谱资源越来越紧张。采用固定频带划分方式进行资源分配的方法,虽然可以有效的为不同类型的通信系统和用户分配资源,避免冲突。但是,在很多划分好的频带上,已经分配的频谱资源并未得到完全的利用。在多数情况下,静态频谱划分方法的频带的利用率不足10%。如何提高现有频谱资源的利用率,是提高通信效率方向亟待解决的技术问题。
码分多址(Code Division Multiple Access,CDMA)是现有技术中应用广泛的一种无线接入技术,因其自在的抗干扰,抗衰落,方便实现,容量大,可以软切换且抗频谱分析的特点,近年来,码分多址得到了越来越多的青睐。在码分多址中,通信资源的分配是通过扩频码的分配实现的,每个用户占用一个单独的扩频码,用于和基站建立通信,在码分多址下行链路中,多用户的扩频码是正交的或者近似正交的,这样在接收端进行接收时,接收端只要知道分配的唯一的扩频码,即可有效地恢复发送的信号。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:
现有技术中,无线通信系统中很多划分好的频谱资源并未得到完全利用,通信系统中频谱资源的利用率较低。
发明内容
有鉴于此,本申请实施例提供了一种信道接入方法及装置,用以解决现有技术通信系统中频谱资源的利用率较低的问题。
一方面,本申请实施例提供了一种信道接入方法,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包 括第二接收端和第二发送端;所述方法执行在所述第二发送端上,包括:
获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
获得候选扩频码;
根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道;
指示所述第二接收端接入所述目标扩频码对应的信道。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,获得候选扩频码,包括:
获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113233-appb-000001
其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道 和周期总均方相关的等效矩阵,
Figure PCTCN2016113233-appb-000002
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113233-appb-000003
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述第二接收端接入一个候选扩频码时对所述第一接收端造成的干扰值:
Figure PCTCN2016113233-appb-000004
其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
另一方面,本申请实施例提供了一种信道接入装置,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统 包括第二接收端和第二发送端;所述装置位于所述第二发送端上,包括:
第一获取单元,用于获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
第二获取单元,用于获得候选扩频码;
第三获取单元,用于根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道。
接入单元,用于指示所述第二接收端接入所述目标扩频码对应的信道。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取单元,用于:
获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取单元,具体用于:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取单元,具体用于:
根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113233-appb-000005
其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道 和周期总均方相关的等效矩阵,
Figure PCTCN2016113233-appb-000006
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113233-appb-000007
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三获取单元,用于:
根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三获取单元,还具体用于:
根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述第二接收端接入一个候选扩频码时对所述第一接收端造成的干扰值:
Figure PCTCN2016113233-appb-000008
其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
上述技术方案中的一个技术方案具有如下有益效果:
本申请实施例提供的信道接入方法应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括待第二接收端和第二发送端;该方法执行在第二发送端上,具体的,通过获得第一系统采用的扩频码,该扩频码用于标识第一系统占用的信道,并获得候选扩频码,进而,根据候选扩频码与第一系统采用的扩频码,获得目标扩频码,目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,最后,指示第二接收端接入该目标扩频码对应的信道。本申请实施例中,第二发送端可以获取第一系统所采用的扩频码,之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例中通信系统示意图;
图2是本申请实施例所提供的信道接入方法的实施例一的流程示意图;
图3是本申请实施例所提供的信道接入方法的实施例二的流程示意图;
图4是本申请实施例所提供的信道接入装置的功能方块图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的 实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述系统等,但这些系统等不应限于这些术语。这些术语仅用来将系统彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一系统也可以被称为第二系统,类似地,第二系统也可以被称为第一系统。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
实施例一
本申请实施例给出一种信道接入方法。该方法应用于包括第一系统和第二系统的通信系统,其中,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端。
需要说明的是,为了便于表述,本申请后续涉及到的第二接收端,均处于待接入信道的状态。在实际应用过程中,第二系统中还可以存在z个已经接入信道的第二接收端,本申请实施例对z的数目不进行特别限定。
具体的,请参考图1,其为本申请实施例中通信系统示意图。如图1所示,该系统中包括第一系统和第二系统,其中第一系统包括1个第一发送端和K个第一接收端,第二系统包括1个第二发送端和1个待接入通信系统的第二接收端。
如图1所示的通信系统中,第一发送端发送的信号可以被通信系统中的第一接收端和第二接收端接收到,图1中用实线表示;第二发送端发送的信号可以被通信系统中的第一接收端和第二接收端接收到,图1中用虚线表示。
如图1所示的通信系统中,第一系统中,K个第一接收端已经与第一发送端建立了通信,也就是说,第一发送端为K个第一接收端分配了K个扩频码,此时,第一系统共占用了K个信道;其中,K的数目为至少一个,本申请实施例对此不进行特别限定。
在一个具体的实现过程中,第一系统可以为主系统,第二系统可以为次级系统。
在另一个具体的实现过程中,包括第一系统和第二系统的通信系统可以为码分多址通信系统。
可以理解的是,在如图1所示的通信系统中,若任意的第二接收端接入信道,新接入的这个第二接收端与第二发送端之间的通信,都会对第一系统中第一接收端和第一发送端之间的通信产生信号干扰,因此,本申请实施例提供的信道接入方法,是在获得第一系统占用的信道后,为第二接收端接入一个对第一系统的信号干扰最小的信道,这样,既能够保证第一系统中第一接收端与第一发送端之间的正常通信,又能够提高通信系统中的频谱资源的利用率。
基于以上构思,请参考图2,其为本申请实施例所提供的信道接入方法的实施例一的流程示意图,如图2所示,该方法包括以下步骤:
S201,获得第一系统采用的扩频码。
其中,该扩频码用于标识第一系统占用的通道。
S202,获取候选扩频码。
S203,根据候选扩频码与第一系统采用的扩频码,获得目标扩频码。
其中,该目标扩频码用于标识第一系统未占用的通道中对第一系统的信号干扰最小的一个信道。
S204,指示第二接收端接入该目标扩频码对应的信道。
需要说明的是,S201~S204的执行主体可以为信道接入装置,该装置可以位于通信系统中的第二发送端上。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二发送端可以获取第一系统所采用的扩频码,之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例二
基于上述实施例一所提供的信道接入方法,本申请实施例对S202中“获得候选扩频码”的方法进行具体描述。
本申请实施例中,第二系统中第二接收端的数目为1,此时,只有一个第二接收端处于待接入信道的状态,此时,只需要获取这个第二接收端对应的候选扩频码即可。
在第二系统中,第二接收端可以得到一个与自身的无线信道干扰和噪声相关的自相关矩阵R,因此,在获取第二接收端的自相关矩阵R时,第二发送端可以直接在第二接收端中获取到这个第二接收端的自相关矩阵R。
在获取候选扩频码的一个具体的实现过程中,可以获取第二接收端的自相关矩阵R,并获取第二接收端与第二发送端之间的多径信道矩阵G,之后, 就可以根据得到的自相关矩阵R和多径信道矩阵G得到这个第二接收端对应的候选扩频码。
为了具体说明本方案,本申请实施例给出获取候选扩频码的以下形式一和形式二的组合方式,获取候选扩频码。
形式一、根据自相关矩阵R和多径信道矩阵G,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置;
形式二、根据自相关矩阵R和多径信道矩阵G,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113233-appb-000009
其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道和周期总均方相关的等效矩阵,
Figure PCTCN2016113233-appb-000010
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113233-appb-000011
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
需要说明的是,利用形式二获取第二候选扩频码时,需要利用上一次计算得到的信道和周期总均方相关的等效矩阵,那么,上一次计算得到的信道和周期总均方相关的等效矩阵可以是根据形式一所述的方式得到的;或者,也可以是利用形式二所述的方式得到的。
需要说明的是,候选扩频码中可能包含有第一系统所采用的扩频码。
此外,还可以根据自相关矩阵R、多径信道矩阵G和得到的候选扩频码向量,还可以得到这个第二接收端对应的发送信号能量:
Figure PCTCN2016113233-appb-000012
其中,Pi为第i个第二接收端对应的发送信号能量,γ为参数。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二发送端可以获取第一系统所采用的扩频码,之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例三
基于上述实施例一所提供的信道接入方法,本申请实施例对S203中“根据候选扩频码与第一系统采用的扩频码,获得目标扩频码”的方法进行具体描述。
本申请实施例中,目标扩频码是用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,因此,就需要在这些候选扩频码中,选择一个目标扩频码,当第二接收端接入这个目标扩频码对应的信道时,对第一接收端造成的干扰值中的最大干扰值最小。
更具体的,为了进一步得到对第一系统中各第一接收端与第一发送端之间的通信干扰最小的一个信道,因此,可以多次获取候选扩频码,之后,通过将第二接收端接入每次获取到的候选扩频码时对第一接收端造成的若干干扰值中的最大干扰值,与第二接收端接入上一次获取到的各候选扩频码时对第一接收端造成的若干干扰值中的最大干扰值进行比较,以得到目标扩频码,当第二接收端接入目标扩频码对应的信道时,对第一接收端造成的最大干扰值最小。
在具体的实现过程中,通过这种方式获取目标扩频码,可以包括以下步骤:
根据第一候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第二最大干扰值;
当第二最大干扰值小于第一最大干扰值时,继续根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第三最大干扰值;
当第三最大干扰值大于或者等于第二最大干扰值时,获取第二接收端接入上一个第二最大干扰值对应的扩频码,作为目标扩频码。
这样,当根据本次的候选扩频码得到的对第一接收端造成的最大干扰值小于根据上一次获取到的候选扩频码得到的对第一接收端造成的最大干扰值时,算法不收敛,认为根据下次得到候选扩频码中可能会存在比根据此次得到的候选扩频码得到的对第一接收端造成的最大干扰值更小的扩频码;因此,继续根据上述的实施例三种的第二种实现方式中的形式二所述的方法,再次得到一个新的第二候选扩频码,并根据下次得到的这个新的候选扩频码得到对第一接收端造成的最大干扰值,与根据本次得到候选扩频码得到的对第一接收端造成的最大干扰值进行下一轮的比较。
或者,当根据本次的候选扩频码得到的对第一接收端造成的的最大干扰值等于或者大于根据上一次获取到的候选扩频码得到的对第一接收端造成的最大干扰值时,算法存在收敛,认为根据下次得到的候选扩频码中肯能不会存在比根据此次得到的候选扩频码得到的对第一接收端造成的最大干扰值更小的扩频码;因此,停止执行获得下一个新的第二候选扩频码的操作,并获取根据上一次获取到的候选扩频码得到的对第一接收端造成的最大干扰值对应的扩频码为目标扩频码。
在一个具体的实现过程中,根据候选扩频码与第一系统采用的扩频码,并利用以下公式,获得第二接收端接入一个候选扩频码时对第一接收端造成的干扰值:
Figure PCTCN2016113233-appb-000013
其中,J(c,qi)为第i个候选扩频码对于第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
并且,本申请实施例中,只有一个第二接收端,在确定目标扩频码后,可以根据上述实施例二中所述的方法,获得这个目标扩频码对应的发送信号能量Pi,然后利用这个目标扩频码对应的信道,以发送信号能量Pi使得这个待接入信道的第二接收端接入指定的信道。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二发送端可以获取第一系统所采用的扩频码,之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例四
基于上述实施例一所提供的信道接入方法,本申请实施例给出一种上述信道接入方法的具体实现方法。
具体的,请参考图3,其为本申请实施例所提供的信道接入方法的实施例二的流程示意图。如图3所示,该方法包括以下步骤:
S301,获取第二接收端得到的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵。
S302,利用实施例三中形式一所述的方法处理自相关矩阵和多径信道矩阵,得到这个第二接收端的候选扩频码集合。
S303,获取第一候选扩频码集合中,根据各候选扩频码得到的对各第一接收端造成的若干干扰值中的一个最大干扰值。
S304,利用实施例三中形式二所述的方法处理自相关矩阵和多径信道矩阵,重新得到这个第二接收端的候选扩频码集合。
S305,获取新得到的第二候选扩频码集合中,根据各候选扩频码得到的对各第一接收端造成的若干干扰值中的一个最大干扰值。
S306,判断新得到的最大干扰值是否小于上一次得到的最大干扰值;若是,执行S304;若否,执行S307。
S307,确定上一次得到的最大干扰值最小的一个扩频码为目标扩频码。
S308,指示第二接收端接入这个目标扩频码对应的信道。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二发送端可以获取第一系统所采用的扩频码,之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
实施例五
基于上述实施例一所提供的信道接入方法,本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
本申请实施例给出一种信道接入装置,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括待接入通信系统的第二接收端和第二发送端;该装置位于第二发送端上。
具体的,请参考图4,其为本申请实施例所提供的信道接入装置的功能方块图。如图4所示,该装置包括:
第一获取单元41,用于根据从第一系统频带上接收到的信号,获得第一系统采用的扩频码,扩频码用于标识第一系统占用的信道;
第二获取单元42,用于获得候选扩频码;
第三获取单元43,用于根据候选扩频码与第一系统采用的扩频码,获得目标扩频码,目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道。
接入单元44,用于指示第二接收端接入目标扩频码对应的信道。
具体的,本申请实施例中,第二获取单元42,用于:
获取第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
根据自相关矩阵与多径信道矩阵,得到候选扩频码。
在一个具体的实现过程中,第二获取单元42,具体用于:
根据自相关矩阵与多径信道矩阵,并利用以下公式得到第一候选扩频码:
A=GH R G
其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置。
在一个具体的实现过程中,第二获取单元42,具体用于:
根据自相关矩阵与多径信道矩阵,并利用以下公式得到第二候选扩频码:
Figure PCTCN2016113233-appb-000014
其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道和周期总均方相关的等效矩阵,
Figure PCTCN2016113233-appb-000015
表示第i个第一接收端占用的扩频码的循环移位形式,其中,
Figure PCTCN2016113233-appb-000016
Si/l为第i个第一接收端的l位循环右移,I为单位阵。
具体的,本申请实施例中,第三获取单元43,用于:
根据第一候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第一候选扩频码时,对第一接收端造成的若干干扰值中的一个第一最大干扰值;
根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第二候选扩频码时,对第一接收端造成的若干干扰值中的一个第二最大干扰值;
当第二最大干扰值小于第一最大干扰值时,继续根据第二候选扩频码与第一系统采用的扩频码,获得第二接收端接入各第二候选扩频码时,对第一接收端造成的若干干扰值中的一个第三最大干扰值;
当第三最大干扰值大于或者等于第二最大干扰值时,获取第二接收端接入上一个第二最大干扰值对应的扩频码,作为目标扩频码。
在一个具体的实现过程中,第三获取单元43,还具体用于:
根据候选扩频码与第一系统采用的扩频码,并利用以下公式,获得第二接收端接入一个候选扩频码时对第一接收端造成的干扰值:
Figure PCTCN2016113233-appb-000017
其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
由于本实施例中的各单元能够执行图2所示的方法,本实施例未详细描述的部分,可参考对图2的相关说明。
本申请实施例的技术方案具有以下有益效果:
本申请实施例中,第二发送端可以获取第一系统所采用的扩频码,之后,第二发送端可以根据当前的资源使用情况,为第二系统中的第二接收端确定一个目标扩频码,这个目标扩频码用于标识第一系统未占用的信道中对第一系统的信号干扰最小的一个信道,这样,就可以在不影响第一系统中的正常通信的前提下,指示第二接收端接入目标扩频码对应的信道,提高了通信系统的频带利用率。因此,本申请实施例提供的技术方案能够解决现有技术中通信系统中频谱资源的利用率较低的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描 述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (12)

  1. 一种信道接入方法,其特征在于,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端;所述方法执行在所述第二发送端上,包括:
    获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
    获得候选扩频码;
    根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道;
    指示所述第二接收端接入所述目标扩频码对应的信道。
  2. 据权利要求1所述的方法,其特征在于,获得候选扩频码,包括:
    获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
    根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
    A=GH R G
    其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式,得到候选扩频码:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩 频码:
    Figure PCTCN2016113233-appb-100001
    其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道和周期总均方相关的等效矩阵,
    Figure PCTCN2016113233-appb-100002
    表示第i个第一接收端占用的扩频码的循环移位形式,其中,
    Figure PCTCN2016113233-appb-100003
    Si/l为第i个第一接收端的l位循环右移,I为单位阵。
  5. 根据权利要求3和4所述的方法,其特征在于,根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,包括:
    根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
    根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
    当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
    当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
  6. 根据权利要求5所述的方法,其特征在于,根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述第二接收端接入一个候选扩频码时对所述第一接收端造成的干扰值:
    Figure PCTCN2016113233-appb-100004
    其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频 码,qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
  7. 一种信道接入装置,其特征在于,应用于包括第一系统和第二系统的通信系统,第一系统包括第一接收端和第一发送端,第二系统包括第二接收端和第二发送端;所述装置位于所述第二发送端上,包括:
    第一获取单元,用于获得所述第一系统采用的扩频码,所述扩频码用于标识所述第一系统占用的信道;
    第二获取单元,用于获得候选扩频码;
    第三获取单元,用于根据所述候选扩频码与所述第一系统采用的扩频码,获得目标扩频码,所述目标扩频码用于标识所述第一系统未占用的信道中对所述第一系统的信号干扰最小的一个信道;
    接入单元,用于指示所述第二接收端接入所述目标扩频码对应的信道。
  8. 根据权利要求7所述的装置,其特征在于,所述第二获取单元,用于:
    获取所述第二接收端的自相关矩阵,并获取第二接收端与第二发送端之间的多径信道矩阵;
    根据所述自相关矩阵与所述多径信道矩阵,得到候选扩频码。
  9. 根据权利要求8所述的装置,其特征在于,所述第二获取单元,具体用于:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第一候选扩频码:
    A=GH R G
    其中,A为信道和周期总均方相关的等效矩阵,G为多径信道矩阵,R为自相关矩阵,H表示共轭转置。
  10. 根据权利要求8所述的装置,其特征在于,所述第二获取单元,具体用于:
    根据所述自相关矩阵与所述多径信道矩阵,并利用以下公式得到第二候选扩频码:
    Figure PCTCN2016113233-appb-100005
    其中,A为信道和周期总均方相关的等效矩阵,A‘为上一次计算得到的信道和周期总均方相关的等效矩阵,
    Figure PCTCN2016113233-appb-100006
    表示第i个第一接收端占用的扩频码的循环移位形式,其中,
    Figure PCTCN2016113233-appb-100007
    Si/l为第i个第一接收端的l位循环右移,I为单位阵。
  11. 根据权利要求9和10所述的装置,其特征在于,所述第三获取单元,用于:
    根据所述第一候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第一候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第一最大干扰值;
    根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第二最大干扰值;
    当所述第二最大干扰值小于所述第一最大干扰值时,继续根据所述第二候选扩频码与所述第一系统采用的扩频码,获得所述第二接收端接入各第二候选扩频码时,对所述第一接收端造成的若干干扰值中的一个第三最大干扰值;
    当所述第三最大干扰值大于或者等于所述第二最大干扰值时,获取所述第二接收端接入上一个第二最大干扰值对应的扩频码,作为所述目标扩频码。
  12. 根据权利要求11所述的装置,其特征在于,所述第三获取单元,还具体用于:
    根据所述候选扩频码与所述第一系统采用的扩频码,并利用以下公式,获得所述第二接收端接入一个候选扩频码时对所述第一接收端造成的干扰值:
    Figure PCTCN2016113233-appb-100008
    其中,J(c,qi)为第i个候选扩频码对于所述第一接收端造成的周期总均方相关干扰值,M为多径信道的的可分解多径数目,c表示参量,此时,c为一般扩频码, qi∈c,qi/l表示第i个候选扩频码qi的l位循环右移,T表示转置。
PCT/CN2016/113233 2016-12-29 2016-12-29 一种信道接入方法及装置 WO2018119940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113233 WO2018119940A1 (zh) 2016-12-29 2016-12-29 一种信道接入方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113233 WO2018119940A1 (zh) 2016-12-29 2016-12-29 一种信道接入方法及装置

Publications (1)

Publication Number Publication Date
WO2018119940A1 true WO2018119940A1 (zh) 2018-07-05

Family

ID=62707735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113233 WO2018119940A1 (zh) 2016-12-29 2016-12-29 一种信道接入方法及装置

Country Status (1)

Country Link
WO (1) WO2018119940A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803432A (zh) * 2007-09-21 2010-08-11 高通股份有限公司 使用功率和衰减曲线的干扰管理
CN102378188A (zh) * 2010-08-18 2012-03-14 鼎桥通信技术有限公司 复合码相关性的评估方法和设备
CN103190104A (zh) * 2010-11-05 2013-07-03 阿尔卡特朗讯 网络节点和方法
US20140341260A1 (en) * 2013-05-20 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) Robust, Fast Unused-Code Detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803432A (zh) * 2007-09-21 2010-08-11 高通股份有限公司 使用功率和衰减曲线的干扰管理
CN102378188A (zh) * 2010-08-18 2012-03-14 鼎桥通信技术有限公司 复合码相关性的评估方法和设备
CN103190104A (zh) * 2010-11-05 2013-07-03 阿尔卡特朗讯 网络节点和方法
US20140341260A1 (en) * 2013-05-20 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) Robust, Fast Unused-Code Detection

Similar Documents

Publication Publication Date Title
US9866418B2 (en) Cognitive multi-user OFDMA
WO2021190652A1 (zh) 无线局域网感知方法、网络设备及芯片
US8213344B2 (en) Method and apparatus for antenna allocation on a multi-radio platform
KR102382913B1 (ko) 이동통신시스템에서의 QoS 보장을 위한 무선자원 스케줄링 방법 및 장치
US20170094054A1 (en) Methods of sharing a wifi hotspot and associated electronic devices
WO2016074157A1 (en) Method, apparatus, system and computer program
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
KR20160061048A (ko) 무선 랜 서비스를 제공하기 위한 방법 및 그 전자 장치
WO2020108506A1 (zh) 干扰源识别方法、相关设备及计算机存储介质
WO2018119940A1 (zh) 一种信道接入方法及装置
US11122548B2 (en) Device-to-device communication method and terminal device
JP7199551B2 (ja) リソース予約方法および関連デバイス
WO2018119939A1 (zh) 一种信道接入方法及装置
WO2018119941A1 (zh) 一种信道接入方法及装置
WO2018059281A1 (zh) 一种随机接入方法、装置及系统
CN110557842B (zh) 一种信号发送方法、装置及系统
US11930519B2 (en) Mechanism of measurement sharing and restriction for CSI-RS and SSB based UE activities in NR
WO2017004994A1 (zh) 空闲信道评估方法和装置
WO2018119943A1 (zh) 一种信道识别方法及装置
WO2018119942A1 (zh) 一种信道接入方法及装置
WO2024012558A1 (zh) Srs与上行资源的冲突处理方法、终端及网络侧设备
CN111224761A (zh) 一种上行调度方法及装置
WO2023207804A1 (zh) 信道接入方法、装置及通信设备
KR102078261B1 (ko) 통신 네트워크 시스템 및 통신 네트워크 시스템 내 기지국에서 데이터를 송수신하는 방법
JP5747577B2 (ja) コグニティブ無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925159

Country of ref document: EP

Kind code of ref document: A1