WO2018119621A1 - 起重机的作业控制方法、系统及起重机 - Google Patents

起重机的作业控制方法、系统及起重机 Download PDF

Info

Publication number
WO2018119621A1
WO2018119621A1 PCT/CN2016/112277 CN2016112277W WO2018119621A1 WO 2018119621 A1 WO2018119621 A1 WO 2018119621A1 CN 2016112277 W CN2016112277 W CN 2016112277W WO 2018119621 A1 WO2018119621 A1 WO 2018119621A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
obstacle
distance
boom
hung
Prior art date
Application number
PCT/CN2016/112277
Other languages
English (en)
French (fr)
Inventor
单增海
朱长建
李立晶
柴君飞
李磊
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to EP16925194.9A priority Critical patent/EP3560881B1/en
Priority to PCT/CN2016/112277 priority patent/WO2018119621A1/zh
Priority to US16/474,476 priority patent/US11603294B2/en
Priority to CA3048545A priority patent/CA3048545C/en
Publication of WO2018119621A1 publication Critical patent/WO2018119621A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track
    • B66C15/045Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/06Arrangements or use of warning devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the invention relates to the technical field of engineering machinery, in particular to a working control method, system and crane for a crane.
  • both the crane and the suspended object may collide with obstacles in the surrounding environment, for example, the arm of the crane boom collides with the high-voltage line, and the suspended object collides with the wall.
  • the crane operator is mainly relied on to observe the surrounding environment to avoid collision between the crane or the suspended object and the obstacle.
  • due to factors such as limited viewing field of the operating room and obstruction of the visual field it is difficult for the operator to know the change of the obstacle in the surrounding environment in real time. Therefore, in a complicated work environment, it is often necessary to assist a person in hoisting work.
  • the assistants need to observe at different locations around the crane. When there is a danger of collision, the operator is reminded by telephone, walkie-talkie, etc. However, when the support personnel are not able to observe or the reminder is not timely, it may still cause a collision risk.
  • the virtual wall technology is a technology to avoid collisions with obstacles during crane operation.
  • the basic idea is to set the working boundary of the crane by artificial means.
  • the specific method is as follows: Before the crane lifting operation starts, the obstacle is determined. Relative to the position of the crane; then set the upper, lower, front and rear and left and right boundaries of the crane operation; during the lifting operation, an alarm is issued when the crane approaches the boundary of the operation to remind the operator to ensure the safety of the lifting operation.
  • the working boundary can only prevent the crane from actively colliding with obstacles, but it cannot avoid moving obstacles to collide with the crane. For example, a crane enters a moving obstacle within the boundary of a crane, such as another crane. When the crane is working within the set working boundary, the two cranes may collide, but at this time the crane does not Will alarm, so the safety of the crane operation cannot be guaranteed;
  • the boundary of the job is a static boundary. As long as the working environment changes, it needs to be manually reset.
  • the working boundary is set for the crane and cannot solve the problem that the suspended object collides with the obstacle.
  • a work control method for a crane includes: dynamically scanning an object within a crane working range to acquire three-dimensional spatial information of the object using a 3D imaging device, the object including a crane and an obstacle,
  • the three-dimensional spatial information includes three-dimensional spatial coordinates; determining a distance of the obstacle to a preset position of the crane based on three-dimensional coordinate coordinates of the crane and the obstacle; determining that the obstacle is to the preset position Whether the distance is smaller than a preset distance corresponding to the preset position; if the distance from the obstacle to the preset position is less than a preset distance corresponding to the preset position, an alert is performed.
  • the obstacle comprises an obstacle in motion.
  • the predetermined position comprises a swivel center and/or an arm head of the boom.
  • the determining, by the three-dimensional space coordinates of the crane and the obstacle, the distance of the obstacle to a preset position of the crane comprises: using a center of rotation of the crane as a three-dimensional relative coordinate Determining a three-dimensional relative coordinate of the obstacle and the preset position; determining a distance of the obstacle to the preset position according to the three-dimensional relative coordinate of the obstacle and the preset position .
  • the preset distance corresponding to the preset position includes an alarm distance and an early warning distance, where the early warning distance is greater than the alarm distance; and if the distance from the obstacle to the preset position is less than And performing the warning according to the preset distance corresponding to the preset position, if the distance between the obstacle and the warning distance is between the alarm distance and the early warning distance, if the obstacle is If the distance from the preset position to the preset position is less than the alarm distance, an alarm is issued.
  • the object further includes an object to be hung; the method further comprising: determining the obstacle based on the three-dimensional coordinate of the object to be hung and the obstacle after lifting the object to be hung a distance from the object to the object to be hung; determining whether the distance from the obstacle to the object to be hung is smaller than a preset distance corresponding to the object to be hung; if the distance from the object to the object to be hung is less than The preset distance corresponding to the object to be hung is alerted.
  • the object further includes an object to be hung; the method further comprising: determining a three-dimensional space of the crane and the object to be hung with an origin of the crane as a origin of a three-dimensional relative coordinate system Relative coordinate; obtaining working state information of the crane before lifting the object to be hung, the working state information including a current turning angle, a current telescopic length of the boom, a current variable angle of the boom, and a current lifting of the hook Height; controlling the crane to perform a swinging motion, a telescopic movement of the boom, a luffing action of the boom, and a lifting and lowering action of the hook according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information, to hang The object to be hoisted.
  • the lifting action for lifting the object to be hung includes: determining a target swing angle according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information; and controlling the crane to perform a swiveling action to achieve the Determining the angle of rotation of the target; determining whether performing the luffing action alone enables the projection of the hook to coincide with the object to be hoisted; if so, controlling the crane to perform a luffing action such that the projection of the hook is in weight with the object to be hoisted; And controlling the crane to separately perform the telescopic movement of the boom to make the projection of the hook coincide with the object to be suspended, or to control the crane to perform the luffing action of the boom and the telescopic action of
  • the control crane separately performs the telescopic movement of the boom to make the projection of the hook coincide with the object to be suspended, or control the crane to perform the luffing action of the boom and the telescopic action of the boom to make the crane
  • the projection of the hook with the object to be suspended includes: determining a time T 1 required to separately perform the telescopic movement of the boom to make the projection of the hook coincide with the object to be suspended, and performing the luffing action and the boom of the boom
  • the telescopic action is such that the projection of the hook is combined with the time required for the object to be hoisted to fit T 2 ; the size of T 1 and T 2 is compared; if T 1 is less than T 2 , the crane is controlled to perform the telescopic movement of the boom separately
  • the projection of the hook is made to coincide with the object to be hoisted; if T 1 is greater than T 2 , the control crane performs a luffing action of the boom and a telescopic action of the
  • the obstacle is located between the crane and the object to be hung; the method further comprising: determining a length, a width, and a height of the obstacle according to a three-dimensional coordinate of the obstacle; Wherein, the length, width and height of the obstacle are used to assist the crane boom to work across the obstacle.
  • the three-dimensional spatial information further includes color information and inverse color rate information; the method further includes: establishing a three-dimensional space model of the obstacle based on the three-dimensional spatial information of the obstacle; The image information of the three-dimensional model of the obstacle is sent to the on-board display to assist the crane operation.
  • the 3D imaging device is mounted on the movable platform to rotate over the crane to dynamically scan objects within the crane's operating range.
  • the mobile platform includes a drone.
  • a work control system for a crane includes: a 3D imaging device and a control device; the 3D imaging device for dynamically scanning an object within a crane working range to acquire a three-dimensional space of the object And transmitting, to the control device, the three-dimensional spatial information of the object, the object comprising a crane and an obstacle, the three-dimensional spatial information comprising three-dimensional spatial coordinates; the control device comprising: a distance determining unit, configured to: Determining a distance of the obstacle to a preset position of the crane based on a three-dimensional coordinate of the crane and the obstacle; a distance determining unit, configured to determine whether a distance of the obstacle to the preset position is less than The preset distance corresponding to the preset position; and the warning unit is configured to perform a warning if the distance from the obstacle to the preset position is less than a preset distance corresponding to the preset position.
  • the obstacle comprises an obstacle in motion.
  • the predetermined position comprises a swivel center and/or an arm head of the boom.
  • the distance determining unit includes: a coordinate determining module, configured to determine a three-dimensional space of the obstacle and the preset position by using a center of rotation of the crane as an origin of a three-dimensional relative coordinate system And a distance determining module, configured to determine a distance of the obstacle to the preset position according to the obstacle and the three-dimensional relative coordinate of the preset position.
  • the preset distance corresponding to the preset position includes an alarm distance and an early warning distance, and the warning distance is greater than the alarm distance; the warning unit is configured to: if the obstacle reaches the preset If the distance of the position is between the alarm distance and the warning distance, an early warning is performed; if the distance of the obstacle to the preset position is less than the alarm distance, an alarm is performed.
  • the object further includes an object to be hung; the distance determining unit is further configured to determine, according to the three-dimensional space coordinates of the object to be hung and the obstacle, after lifting the object to be hung a distance from the obstacle to the object to be hung; the distance determining unit is further configured to determine whether a distance of the obstacle to the object to be hung is smaller than a preset distance corresponding to the object to be hung; The warning unit is further configured to perform a warning if the distance of the obstacle to the object to be hung is less than a preset distance corresponding to the object to be hung.
  • the object further includes an object to be hung;
  • the control device further includes: a coordinate determining unit, configured to determine the crane and the center by using a center of rotation of the crane as an origin of a three-dimensional relative coordinate system a three-dimensional relative coordinate of the hanging object; a state obtaining unit, configured to acquire working state information of the crane before lifting the object to be hung, the working state information including a current turning angle, a current telescopic length of the boom, and a hanging a current angle of change of the arm and a current lifting height of the hook; and a control unit configured to control the crane to perform a swinging motion according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information
  • the telescopic action, the luffing action of the boom and the lifting action of the hook are used to lift the object to be hung.
  • the control unit includes: a calculation module, configured to determine a target rotation angle according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information; and a determining module for determining the individual Whether the performing the luffing action enables the projection of the hook to coincide with the object to be suspended; and the control module for controlling the lifting
  • the machine performs a turning motion to achieve the target turning angle; if the luffing action alone can cause the projection of the hook to coincide with the object to be hoisted, the control crane performs a luffing action to cause the projection of the hook and the waiting If the lapping action alone does not cause the projection of the hook to coincide with the object to be suspended, the control crane separately performs the telescopic movement of the boom to make the projection of the hook coincide with the object to be hoisted, or control The crane performs the luffing action of the boom and the telescopic action of the boom to make the projection of the hook coincide with the object to be suspended; the crane is controlled
  • control module is further configured to determine a time T 1 required to separately perform the telescopic movement of the boom to make the projection of the hook coincide with the object to be suspended, and perform a luffing action and lifting of the boom
  • the telescopic action of the arm is such that the projection of the hook is combined with the time required for the object to be hoisted to be T 2 ; the size of T 1 and T 2 is compared; if T 1 is less than T 2 , the crane is controlled to perform the telescopic movement of the boom separately So that the projection of the hook is combined with the object to be suspended; if T 1 is greater than T 2 , the crane is controlled to perform the luffing action of the boom and the telescopic movement of the boom to make the projection of the hook coincide with the object to be suspended.
  • the obstacle is located between the crane and the object to be hung; the control device further includes: an obstacle information determining unit, configured to determine the three-dimensional coordinate according to the obstacle The length, width and height of the obstacle; wherein the length, width and height of the obstacle are used to assist the crane's boom to work across the obstacle.
  • an obstacle information determining unit configured to determine the three-dimensional coordinate according to the obstacle The length, width and height of the obstacle; wherein the length, width and height of the obstacle are used to assist the crane's boom to work across the obstacle.
  • the three-dimensional spatial information further includes color information and inverse color rate information; the device further includes: a model establishing unit, configured to establish a three-dimensional space of the obstacle based on the three-dimensional spatial information of the obstacle a model information transmitting unit configured to transmit image information representing a three-dimensional space model of the obstacle to an on-vehicle display to assist the crane operation.
  • a model establishing unit configured to establish a three-dimensional space of the obstacle based on the three-dimensional spatial information of the obstacle
  • a model information transmitting unit configured to transmit image information representing a three-dimensional space model of the obstacle to an on-vehicle display to assist the crane operation.
  • system further includes a movable platform for carrying the 3D imaging device to rotate over the crane to dynamically scan objects within the crane's operating range.
  • the mobile platform includes a drone.
  • a crane comprising: the work control system of the crane according to any one of the above embodiments.
  • the 3D imaging device can dynamically identify the object in the working range of the crane to acquire the three-dimensional spatial information of the object, and then perform the warning when the distance from the obstacle to the preset position of the crane is less than the preset distance.
  • the present embodiment can obtain the real-time position of the obstacle, thereby avoiding collision of the moving obstacle with certain parts of the crane and reducing the occurrence of a safety accident. , improved the crane The safety of the work.
  • the method of the embodiment does not need to manually reset the boundary, thereby saving human resources.
  • FIG. 1 is a simplified flow diagram of a work control method for a crane according to an embodiment of the present invention
  • FIG. 2 is a simplified flow diagram of a work control method for a crane according to another embodiment of the present invention.
  • FIG. 3 is a simplified flow diagram of a work control method for a crane according to still another embodiment of the present invention.
  • step 308' of FIG. 3 is a simplified flow diagram of one implementation of step 308' of FIG. 3;
  • Figure 5 is a schematic structural view of a work control system of a crane according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an implementation manner of the distance determining unit shown in FIG. 5;
  • FIG. 7 is a schematic structural view of a work control system of a crane according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an implementation manner of the control unit shown in FIG. 7.
  • Crane A lifting device that can lift and horizontally carry heavy objects within a certain range, also known as a crane.
  • Mobile crane A boom-rotating crane that uses a tire-type or crawler-type chassis to walk, consisting of two parts: the upper and the lower. When hoisting work, the vehicle is used to support the ground; the upper vehicle is hoisted by the action of luffing, telescopic, lifting, and turning.
  • Mobile cranes may include, for example, truck cranes, all terrain cranes, tire cranes, crawler cranes, and the like.
  • 3D imaging device / 3D imager spatial recognition by using optical measuring elements and fast scanning techniques to acquire three-dimensional spatial information of an object, wherein the three-dimensional spatial information may include three-dimensional spatial coordinates of the object (ie, X, Y, Z distance information) , color information (that is, R, G, B information) and inverse color rate information.
  • the 3D imaging device can transmit the three-dimensional spatial information to the processor, and the processor can reconstruct the three-dimensional image by combining the human brain imaging principle and the color related knowledge.
  • FIG. 1 is a simplified flow diagram of a work control method for a crane in accordance with one embodiment of the present invention. As shown in Figure 1, the method includes:
  • Step 102 Dynamically scan an object in a crane working range by using a 3D imaging device to acquire three-dimensional spatial information of the object, and the three-dimensional spatial information may include, but is not limited to, three-dimensional space coordinates, color information, and inverse color rate information. After acquiring the three-dimensional spatial information, the 3D imaging device can send it to the control device for subsequent processing.
  • the objects herein may include cranes and obstacles, wherein the obstacles may include obstacles in motion. It should be noted that since the crane and the obstacle are three-dimensional objects, the obtained three-dimensional space coordinates of the crane may theoretically include three-dimensional space coordinates of each point of the crane, and the three-dimensional space coordinates of the acquired obstacle may include The three-dimensional coordinates of each point of the obstacle.
  • a 3D imaging device can be mounted on a movable platform (eg, a drone, etc.) to rotate over the crane, so that objects within the crane's working range can be dynamically scanned to obtain three-dimensional spatial information of the scanned object. If the obstacles in the working range change, for example, the obstacles move out of the working range, or new obstacles enter the working range, the 3D imaging device can still obtain the three-dimensional spatial information of the obstacles changed within the working range in real time.
  • a movable platform eg, a drone, etc.
  • Step 104 determining the distance of the obstacle to the preset position of the crane based on the three-dimensional space coordinates of the crane and the obstacle.
  • the preset position of the crane can be set according to actual conditions.
  • the preset position may be a part where the crane easily collides with an obstacle, such as an arm head of the boom, and for example, the preset position may also be a central part of the crane. , for example, a center of rotation.
  • the distance of the obstacle to the preset position of the crane can be determined by:
  • the three-dimensional relative coordinates of the obstacle and the preset position are determined by taking the rotation center of the crane as the origin of the three-dimensional relative coordinate system.
  • the three-dimensional relative coordinates corresponding to the three-dimensional space coordinates of the obstacle can be obtained.
  • the preset position for example, if the preset position is the center of rotation, the relative coordinate of the three-dimensional space of the preset position is the origin; if the preset position is the arm of the boom, in one case, according to the crane
  • the corresponding relationship between the three-dimensional coordinates of the center of rotation and the relative coordinates of the three-dimensional space determines the relative coordinates of the three-dimensional space corresponding to the three-dimensional coordinates of the arm of the boom, and in another case, the relative coordinates of the three-dimensional space according to the center of rotation of the crane and Information such as arm length and angle of change determines the relative coordinates of the three-dimensional space of the arm of the boom.
  • the distance of the obstacle to the preset position is determined according to the three-dimensional relative coordinates of the obstacle and the preset position.
  • the distance from the obstacle to the preset position may be the minimum of the distance from each point of the obstacle to the preset position.
  • Step 106 Determine whether the distance of the obstacle to the preset position is less than a preset distance corresponding to the preset position. If yes, go to step 108.
  • the preset position may be one or multiple. Each preset position corresponds to a preset distance.
  • the preset distance may be set by the user as needed through the on-board display, or may be pre-stored in the control device. If the distance from the obstacle to the preset position is less than the preset distance corresponding to the preset position, it indicates that the obstacle may collide with a certain part of the crane (for example, the arm head or the body edge).
  • the preset distance corresponding to the preset position By setting the preset distance corresponding to the preset position, it is possible to prevent a certain part of the crane from colliding with the obstacle. For example, by setting the preset distance corresponding to the arm head of the boom, the arm head can be prevented from colliding with the obstacle, and the setting is prevented.
  • the preset distance corresponding to the center of rotation prevents the body edge of the crane from colliding with obstacles.
  • the specific value of the preset distance may be adjusted according to actual conditions. As a non-limiting example, the preset distance corresponding to the center of rotation may be set to be slightly larger than the maximum distance from each point of the vehicle body edge to the center of rotation.
  • Step 108 performing a warning.
  • the preset distance corresponding to the preset position may include an alarm distance and an early warning distance, wherein the warning distance is greater than the alarm distance.
  • Different warning modes can be used depending on the distance of the obstacle to the preset position. Specifically, if the distance from the obstacle to the preset position is between the alarm distance and the warning distance, that is, the obstacle is relatively close to the preset position, at this time, an early warning can be performed, for example, a warning light is turned on to remind The operator pays attention and takes appropriate measures, for example, can slow down. If the distance from the obstacle to the preset position is less than the alarm distance, that is, the obstacle is close to the preset position, the collision is likely to occur, and an alarm can be issued at this time, for example, by an alarm element such as a buzzer or a horn. In order to remind the operator to pay attention and take appropriate measures, for example, can stop the work. In addition, when an early warning or alarm is given, the corresponding text or icon can also be output to the on-board display to assist the operator.
  • the 3D imaging device can dynamically identify the object within the working range of the crane to acquire the three-dimensional spatial information of the object, and then perform the warning when the distance from the obstacle to the preset position of the crane is less than the preset distance.
  • the present embodiment can obtain the real-time position of the obstacle, thereby avoiding collision of the moving obstacle with certain parts of the crane and reducing the occurrence of a safety accident. Improve the safety of crane operations.
  • the method of the embodiment does not need to manually reset the boundary, thereby saving human resources.
  • the crane can determine the distance of the obstacle to the preset position of the crane and the distance from the obstacle to the preset position of the crane by the method of the embodiment shown in FIG. 1 before or after lifting the object to be hung. Be warned when the distance is less than the preset distance to avoid collisions between certain parts of the crane and obstacles.
  • the three-dimensional spatial information acquired by the 3D imaging device may include three-dimensional spatial coordinates, color information, and inverse color rate information of the object.
  • the three-dimensional model of the obstacle can be established based on the three-dimensional spatial information of the obstacle; then, the image information representing the three-dimensional model of the obstacle can be transmitted to the on-board display to assist the crane operation. In this way, the operator can visually observe the image of the obstacle on the on-board display, thereby further improving the safety of the work.
  • the present invention also provides a method for avoiding collision between the obstacle and the object to be hoisted, which is described in detail below with reference to the embodiment shown in FIG. 2 . Description.
  • FIG. 2 is a simplified flow diagram of a work control method for a crane in accordance with another embodiment of the present invention.
  • the differences between the embodiment shown in FIG. 2 and the embodiment shown in FIG. 1 will be mainly introduced.
  • Other steps similar to those in FIG. 1 can be referred to the description of FIG. 1.
  • the method includes:
  • Step 202 Dynamically scan an object in a crane working range by using a 3D imaging device to acquire three-dimensional spatial information of the object.
  • the acquired three-dimensional space information may be sent to the control device.
  • the objects herein include cranes, obstacles, and objects to be hung, and three-dimensional spatial information includes, but is not limited to, three-dimensional space coordinates.
  • Step 204 Determine the distance of the obstacle to the preset position of the crane based on the three-dimensional space coordinates of the crane and the obstacle.
  • Step 206 Determine whether the distance of the obstacle to the preset position is less than a preset distance corresponding to the preset position. If yes, step 208 is performed.
  • Step 204' after lifting the object to be hung, the distance of the obstacle to the object to be hung is determined based on the three-dimensional space coordinates of the object to be hung and the obstacle.
  • the distance from the obstacle to the object to be hung may be the minimum of the distance from each point of the obstacle to each point of the object to be hung.
  • step 206' it is determined whether the distance from the obstacle to the object to be hung is smaller than the preset distance corresponding to the object to be hung; if so, step 208 is performed.
  • the object to be hung can be prevented from colliding with the obstacle by setting the preset distance corresponding to the object to be hung.
  • step 208 an alert is performed.
  • the specific warning manner may refer to the description of the foregoing step 108, and details are not described herein again.
  • the preset distance corresponding to the object to be hung may also include an alarm distance and an early warning distance, wherein the warning distance is greater than the alarm distance.
  • Different warning modes can also be used depending on the distance of the obstacle to the object to be hung. If the distance from the obstacle to the object to be hoisted is between the corresponding alarm distance and the warning distance, an early warning may be issued, for example, a warning light is turned on to remind the operator to pay attention and adopt corresponding treatment measures, for example, to slow down.
  • an alarm can be issued, for example, by an alarm element such as a buzzer or a horn to alert the operator to take care of the corresponding action, for example, the operation can be stopped.
  • step 202 to step 206 For the specific implementation of the foregoing step 202 to step 206, refer to the description of step 102 to step 106 shown in FIG. 1 , and details are not described herein again.
  • the present invention also provides an optimization of the crane before lifting the object to be hung
  • the method of the work path will be described in detail below in conjunction with the embodiment shown in FIG.
  • FIG. 3 is a simplified flow diagram of a method of operation control of a crane according to still another embodiment of the present invention.
  • the differences between the embodiment shown in FIG. 3 and the embodiment shown in FIG. 1 will be mainly introduced.
  • Other steps similar to those in FIG. 1 can be referred to the description of FIG. 1.
  • the method includes:
  • Step 302 Dynamically scan an object in a crane working range by using a 3D imaging device to acquire three-dimensional spatial information of the object, for example, the acquired three-dimensional space information may be sent to the control device.
  • the objects herein include cranes, obstacles, and objects to be hung, and three-dimensional spatial information includes, but is not limited to, three-dimensional space coordinates.
  • Step 304 determining the distance of the obstacle to the preset position of the crane based on the three-dimensional space coordinates of the crane and the obstacle.
  • Step 306 Determine whether the distance of the obstacle to the preset position is less than a preset distance corresponding to the preset position. If yes, step 308 is performed.
  • Step 308 performing a warning.
  • step 304' the three-dimensional relative coordinates of the crane and the object to be hung are determined by taking the center of rotation of the crane as the origin of the three-dimensional relative coordinate system.
  • the three-dimensional relative coordinates corresponding to the three-dimensional coordinates of the points of the crane and the points of the object to be suspended can be obtained.
  • Step 306 ′ obtaining the working state information of the crane before lifting the object to be hung, wherein the working state information may include the current turning angle, the current telescopic length of the boom, the current variable angle of the boom and the current lifting of the hook height.
  • Step 308 ′ controlling the crane to perform the swinging motion, the telescopic movement of the boom, the luffing action of the boom and the lifting and lowering action of the hook according to the relative coordinate of the three-dimensional space of the crane and the object to be hung and the working state information, so as to lift the object to be hung .
  • step 302 to step 308 For the specific implementation of the foregoing step 302 to step 308, refer to the description of step 102 to step 108 shown in FIG. 1 , and details are not described herein again.
  • the crane can perform various actions according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information to hoist the object to be hung, and in the process of performing each action, the obstacle can be moved to the crane.
  • the warning is performed to ensure the safety of the operation.
  • step 308' can include:
  • Step 402 Determine target rotation according to three-dimensional relative coordinates and working state information of the crane and the object to be hung angle.
  • the relative positions of the two can be known, and the target turning angle can be determined according to the current turning angle.
  • Step 404 the crane is controlled to perform a turning motion to achieve the target turning angle, so that the boom and the object to be hung are substantially in the same plane, that is, the object to be hung is located on a straight line where the projection of the boom in the horizontal plane is located.
  • the hook can be controlled to lift a certain height to avoid collision between the hook and the leg.
  • step 406 it is judged whether the luffing action alone can cause the projection of the hook to coincide with the object to be hoisted. If yes, go to step 408, and then go to step 418; if no, go to step 410.
  • the distance between the crane and the object to be hung is d
  • the current telescopic length of the boom is l 0
  • the maximum luff angle of the boom is ⁇ max
  • the minimum luff angle of the boom is ⁇ min . It is judged whether d satisfies l 0 cos ⁇ max ⁇ d ⁇ l 0 cos ⁇ min ; if so, it means that performing the luffing action alone can make the projection of the hook and the weight of the object to be suspended; if not, it means that the luffing action alone cannot make the hanging
  • the projection of the hook is in weight with the object to be suspended.
  • control crane performs a luffing action to cause the projection of the hook to coincide with the object to be suspended.
  • Step 410 determining that the telescopic action of the boom is separately performed to make the projection of the hook coincide with the time T 1 required for the weight of the object to be suspended, and the luffing action of the boom and the telescopic action of the boom to make the projection and the hook of the hook The time required for the hanging weight to fit T 2 .
  • l is the telescopic length of the boom
  • is the angle of the boom
  • lcos ⁇ d
  • l min ⁇ l ⁇ l max ⁇ min ⁇ ⁇ ⁇ ⁇ max
  • K 2 is required for the change of the unit amplitude angle
  • the time, ⁇ is the time required to switch between the luffing action and the telescopic action.
  • the minimum value T min of T can be taken as T 2 .
  • Step 412 comparing the sizes of T 1 and T 2 . If T 1 is less than T 2 , step 414 is performed, and then step 418 is performed; if T 1 is greater than T 2 , step 416 is performed, and then step 418 is performed.
  • step 414 the crane is controlled to perform the telescopic movement of the boom separately to make the projection of the hook coincide with the object to be suspended.
  • step 416 the crane is controlled to perform the luffing action of the boom and the telescopic action of the boom to make the projection of the hook coincide with the object to be suspended.
  • step 418 the crane is controlled to perform the lifting action of the hook to lift the object to be hung.
  • the priority of each operation is, from high to low, a swing operation, a luffing operation of the boom, a telescopic movement of the boom, and a landing movement of the hook.
  • the luffing action alone can make the projection of the hook coincide with the weight of the object to be suspended
  • the efficiency of the luffing action of the boom is higher than the efficiency of the telescopic action of the boom, the hook is performed by performing the luffing action.
  • the projection and the weight of the object to be suspended can improve the working efficiency of the crane.
  • the method of taking the time is small to make the projection of the hook and the object to be hoisted, thereby further improving the working efficiency of the crane.
  • step 410 and step 412 in the step shown in FIG. 4 may not be performed, that is, in the case that the determination result in step 406 is no, step 414 may be directly performed. Step 416, and then step 418 is performed.
  • the step 404 and the step 406 shown in FIG. 4 may further include the following steps: determining whether the luffing action of the boom and/or the telescopic motion of the boom can cause the projection and the waiting of the hook Hanging weights; if yes, proceeding to step 406; if not, moving the position of the crane so that the luffing action of the boom and/or the telescopic action of the boom can cause the projection of the hook to coincide with the object to be suspended .
  • the minimum telescopic length of the boom is l min
  • the maximum telescopic length of the boom is l max
  • the maximum amplitude of the boom is ⁇ max
  • the minimum amplitude of the boom is ⁇ min .
  • the length, width and height of the obstacle can also be determined according to the three-dimensional coordinates of the obstacle; wherein the length, width and height of the obstacle are used to assist the crane boom Work across obstacles.
  • the crane and the object to be hung are respectively located on both sides of the wall, the crane needs to hoist the object to be hung across the wall, and also needs to cross the wall after lifting the object to be hung. Therefore, In practical applications, the crane's boom can be assisted to work across the obstacle according to the length, width and height information of the obstacle, that is, the crane can actively avoid obstacles during the operation.
  • Fig. 5 is a schematic structural view of a work control system of a crane according to an embodiment of the present invention.
  • the control system includes a 3D imaging device 501 and a control device 502.
  • the 3D imaging device 501 is configured to dynamically scan an object within the crane working range to acquire three-dimensional spatial information of the object, and transmit the three-dimensional spatial information of the object to the control device 502.
  • the objects herein include cranes and obstacles, and obstacles include moving obstacles; three-dimensional spatial information includes, but is not limited to, three-dimensional space coordinates.
  • the control device 502 includes a distance determining unit 512, a distance determining unit 522, and a warning unit 532.
  • the distance determining unit 512 is configured to determine a distance of the obstacle to a preset position of the crane based on the three-dimensional space coordinates of the crane and the obstacle, wherein the preset position may include a swivel center and/or an arm head of the boom.
  • the distance determining unit 522 is configured to determine whether the distance of the obstacle to the preset position is less than a preset distance corresponding to the preset position.
  • the warning unit 532 is configured to perform a warning if the distance from the obstacle to the preset position is less than the preset distance corresponding to the preset position.
  • the preset distance corresponding to the preset position may include an alarm distance and an early warning distance, wherein the warning distance is greater than the alarm distance, and the warning unit may be used if the distance from the obstacle to the preset position is between the alarm distance and the warning distance If there is an early warning, if the distance from the obstacle to the preset position is less than the alarm distance, an alarm is issued.
  • the 3D imaging device can dynamically identify the object within the working range of the crane and transmit the three-dimensional spatial information of the object to the control device, and the control device performs the warning when the distance from the obstacle to the preset position of the crane is less than the preset distance. .
  • the present embodiment can obtain the real-time position of the obstacle, thereby avoiding collision of the moving obstacle with certain parts of the crane and reducing the occurrence of a safety accident. Improve the safety of crane operations.
  • the method of the embodiment does not need to manually reset the boundary, thereby saving human resources.
  • control device 502 may include a plurality of components, and accordingly, the functions of the distance determining unit 512, the distance determining unit 522, and the alerting unit 532 may be implemented by using different components.
  • the processing power of a general on-board controller may be limited, and thus, the control device 502 may include a processor and an on-board controller.
  • the function of the distance determining unit 512 can be implemented using a processor, and the functions of the distance determining unit 522 and the alerting unit 532 can be implemented using an onboard controller.
  • the three-dimensional spatial information acquired by the 3D imaging device 501 may include three-dimensional spatial coordinates, color information, and inverse color rate information of the object.
  • the control device 502 can include a model building unit and an image.
  • An information sending unit configured to establish a three-dimensional space model of the obstacle based on the three-dimensional spatial information of the obstacle
  • the image information sending unit is configured to send the image information of the three-dimensional space model representing the obstacle to the on-board display to assist the crane operation . In this way, the operator can visually observe the image of the obstacle on the on-board display, thereby further improving the safety of the work.
  • the control device includes a processor and an on-board controller, the functions of the above-described model establishing unit and image information transmitting unit may be implemented by a processor.
  • FIG. 6 is a schematic structural diagram of an implementation manner of the distance determining unit shown in FIG. 5.
  • the distance determining unit 512 includes a coordinate determining module 5121 and a distance determining module 5122.
  • the coordinate determining module 5121 is configured to determine the three-dimensional relative coordinates of the obstacle and the preset position by using the swing center of the crane as the origin of the three-dimensional relative coordinate system.
  • the distance determining module 5122 is configured to determine the distance of the obstacle to the preset position according to the three-dimensional relative coordinates of the obstacle and the preset position.
  • the 3D imaging device 501 can be used to dynamically scan an object within the working range of the crane to acquire three-dimensional spatial information of the object (including but not limited to three-dimensional The spatial coordinates) and the three-dimensional spatial information of the object is sent to the control device 502, where the objects include cranes, obstacles, and objects to be hung.
  • the distance determining unit 512 can also be configured to determine the distance of the obstacle to the object to be hung based on the three-dimensional space coordinates of the object to be hung and the obstacle after lifting the object to be hung; the distance determining unit 522 further It can be used to determine whether the distance from the obstacle to the object to be hung is smaller than the preset distance corresponding to the object to be hung; the warning unit 532 can also be used if the distance from the obstacle to the object to be hung is less than the preset distance corresponding to the object to be hung, Be warned.
  • Fig. 7 is a schematic structural view of a work control system of a crane according to another embodiment of the present invention.
  • the 3D imaging device 501 is configured to dynamically scan an object within the crane working range to acquire three-dimensional spatial information of the object and transmit the three-dimensional spatial information of the object to the control device 502, where the object includes a crane, an obstacle, and a to-be-hanged object.
  • the object, the three-dimensional space information includes three-dimensional space coordinates.
  • the control device 502 includes a coordinate determining unit 542, a state acquiring unit 552, and a control unit 562 in addition to the distance determining unit 512, the distance determining unit 522, and the alerting unit 532 shown in FIG.
  • the coordinate determining unit 542 is configured to determine the three-dimensional relative coordinates of the crane and the object to be hung with the center of rotation of the crane as the origin of the three-dimensional relative coordinate system.
  • the state obtaining unit 552 is configured to acquire the working state information of the crane before lifting the object to be hung, the working state letter
  • the information includes the current angle of rotation, the current telescopic length of the boom, the current angle of the boom and the current lifting height of the hook.
  • the control unit 562 is configured to control the crane to perform the turning motion, the telescopic movement of the boom, the luffing action of the boom, and the lifting and lowering action of the hook according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information, so as to hang up to be hung object.
  • control device can control the crane to perform various actions according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information to hoist the object to be hung, and in the process of performing each action, the obstacle can be moved to the crane.
  • the warning is performed to ensure the safety of the operation.
  • FIG. 8 is a schematic structural diagram of an implementation manner of the control unit shown in FIG. 7.
  • the control unit 562 includes a calculation module 5621, a determination module 5622, and a control module 5623.
  • the calculation module 5621 is configured to determine the target rotation angle according to the three-dimensional relative coordinates of the crane and the object to be hung and the working state information.
  • the determining module 5622 is configured to determine whether performing the luffing action alone can cause the projection of the hook to coincide with the object to be hoisted.
  • the control module 5623 is configured to control the crane to perform the turning motion to achieve the target turning angle; if the luffing action alone can cause the projection of the hook to coincide with the object to be suspended, the control crane performs the luffing action to cause the projection and the waiting of the hook
  • the hanging weight is combined; if the luffing action alone cannot make the projection of the hook coincide with the weight of the object to be suspended, the control crane separately performs the telescopic movement of the boom to make the projection of the hook coincide with the object to be suspended, or control the crane to execute the boom
  • the luffing action and the telescopic action of the boom are such that the projection of the hook is in weight with the object to be suspended; the crane is controlled to perform the lifting action of the hook to lift the object to be hung.
  • the priority of each operation is, from high to low, a swing operation, a luffing operation of the boom, a telescopic movement of the boom, and a landing movement of the hook.
  • the luffing action alone can make the projection of the hook coincide with the weight of the object to be suspended
  • the efficiency of the luffing action of the boom is higher than the efficiency of the telescopic action of the boom, the hook is performed by performing the luffing action. Projection and weight of the object to be lifted can improve the efficiency of the crane
  • control module for determining 5632 may also perform the operation of the telescopic boom so that the individual projected object hanging hook to be coincident with the time required for a T 1 and performing the operation of the boom and the luffing boom
  • the telescopic action is such that the projection of the hook is combined with the time required for the object to be suspended to meet the weight T 2 ; the size of T 1 and T 2 is compared; if T 1 is less than T 2 , the control crane separately performs the telescopic movement of the boom to make the hook
  • the projection is combined with the object to be suspended; if T 1 is greater than T 2 , the crane is controlled to perform the luffing action of the boom and the telescopic movement of the boom so that the projection of the hook is in weight with the object to be suspended.
  • the control module may determine that the telescopic action of the boom is separately performed to make the projection of the hook and the object to be suspended And the time required to perform the luffing action of the boom and the telescopic movement of the boom to make the projection of the hook coincide with the weight of the object to be suspended, and select a method that takes a small time to make the projection of the hook coincide with the object to be suspended. Thereby further improving the crane Work efficiency.
  • the control device may further include an obstacle information determining unit for determining the length, width and height of the obstacle according to the three-dimensional space coordinates of the obstacle .
  • the length, width and height of the obstacle can be used to assist the crane's boom to work across the obstacle. In this way, the crane can actively avoid obstacles during operation.
  • control system of the above embodiments may further comprise a movable platform for carrying a 3D imaging device to rotate over the crane to dynamically scan objects within the crane's operating range.
  • the mobile platform can include a drone or the like.
  • the present invention also provides a crane comprising the work control system of the crane provided by any of the above embodiments.
  • the crane may include, but is not limited to, a flow crane, such as a truck crane, an all terrain crane, a tire crane, a crawler crane, and the like.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

一种起重机的作业控制方法、系统及起重机,涉及工程机械技术领域,所述方法包括:利用3D成像装置动态扫描起重机作业范围内的物体以获取所述物体的三维空间信息,所述物体包括起重机和障碍物,所述三维空间信息包括三维空间坐标;基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离;判断所述障碍物到所述预设位置的距离是否小于所述预设位置对应的预设距离;若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示。通过上述设置,可以提高起重机作业的安全性。

Description

起重机的作业控制方法、系统及起重机 技术领域
本发明涉及工程机械技术领域,尤其是一种起重机的作业控制方法、系统及起重机。
背景技术
起重机在进行吊装作业时周围会有高压线、树木、墙体等障碍物,作业环境比较复杂,而诸如风电扇叶、罐体等被吊物体的形状也比较多变。因此,在吊装作业过程中,起重机和被吊物体均可能会与周围环境内的障碍物发生碰撞,例如,起重机吊臂的臂头与高压线碰撞、被吊物体与墙体碰撞等。一旦起重机或被吊物体与障碍物发生碰撞,轻则会造成起重机或被吊物体的损坏,重则导致安全事故。
现有技术中,在起重机吊装作业过程中,主要依靠起重机操作者人为观察周围环境来避免起重机或被吊物体与障碍物发生碰撞。然而,由于操纵室的观察视野有限、视野受障碍物阻挡等因素,操作者难以实时了解周围环境中障碍物的变化。因此,在复杂的作业环境中,往往需要多人辅助进行吊装作业。一般来说,辅助人员需要在起重机周围的不同位置进行观察,当有碰撞危险时,通过电话、对讲机等提醒操作者。但是,当辅助人员观察不力或提醒不及时,仍将可能导致碰撞危险的发生。
虚拟墙技术是一种为了避免起重机作业过程中与障碍物发生碰撞的技术,其基本思路是通过人为的方式来设定起重机的作业边界,具体方式如下:在起重机吊装作业开始前,确定障碍物相对起重机的位置;然后设置起重机作业的上下、前后及左右边界;在吊装作业过程中,当起重机接近作业边界时进行报警,以提醒操作者,从而保证吊装作业的安全性。
然而,虚拟墙技术有如下缺点:
1、作业边界只能防止起重机主动碰撞障碍物,但是无法避免运动的障碍物去碰撞起重机。例如,一台起重机的边界范围内进入了运动的障碍物,例如另一台起重机,当起重机在设定好的作业边界范围内作业时,两台起重机可能会发生碰撞,但此时起重机并不会报警,因此无法保证起重机作业的安全性;
2、作业边界是静止的边界,只要作业环境发生变化,就需要人工重新设定;
3、作业边界是针对起重机设置的,无法解决被吊物体与障碍物碰撞的问题。
发明内容
本发明的一个目的是:提高起重机作业的安全性。
根据本发明的一方面,提供一种起重机的作业控制方法,包括:利用3D成像装置动态扫描起重机作业范围内的物体以获取所述物体的三维空间信息,所述物体包括起重机和障碍物,所述三维空间信息包括三维空间坐标;基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离;判断所述障碍物到所述预设位置的距离是否小于所述预设位置对应的预设距离;若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示。
在一个实施例中,所述障碍物包括移动中的障碍物。
在一个实施例中,所述预设位置包括回转中心和/或吊臂的臂头。
在一个实施例中,所述基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离包括:以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述障碍物和所述预设位置的三维空间相对坐标;根据所述障碍物和所述预设位置的三维空间相对坐标确定所述障碍物到所述预设位置的距离。
在一个实施例中,所述预设位置对应的预设距离包括报警距离和预警距离,所述预警距离大于所述报警距离;所述若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示包括:若所述障碍物到所述预设位置的距离介于所述报警距离与所述预警距离之间,则进行预警;若所述障碍物到所述预设位置的距离小于所述报警距离,则进行报警。
在一个实施例中,所述物体还包括待吊物体;所述方法还包括:在吊起所述待吊物体后,基于所述待吊物体和所述障碍物的三维空间坐标确定所述障碍物到所述待吊物体的距离;判断所述障碍物到所述待吊物体的距离是否小于所述待吊物体对应的预设距离;若所述障碍物到所述待吊物体的距离小于所述待吊物体对应的预设距离,则进行警示。
在一个实施例中,所述物体还包括待吊物体;所述方法还包括:以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述起重机和所述待吊物体的三维空间相对坐标;获取起重机在吊起所述待吊物体之前的工作状态信息,所述工作状态信息包括当前回转角度、吊臂的当前伸缩长度、吊臂的当前变幅角度和吊钩的当前起升高度;根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起所述待吊物体。
在一个实施例中,所述根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起所述待吊物体包括:根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息确定目标回转角度;控制起重机执行回转动作,以达到所述目标回转角度;判断单独执行变幅动作是否能使得吊钩的投影与所述待吊物体重合;若是,则控制起重机执行变幅动作以使得吊钩的投影与所述待吊物体重合;若否,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;控制起重机执行吊钩的起落动作,以吊起所述待吊物体。
在一个实施例中,所述控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合包括:确定单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T1以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T2;比较T1与T2的大小;若T1小于T2,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;若T1大于T2,则控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合。
在一个实施例中,所述障碍物位于所述起重机和所述待吊物体之间;所述方法还包括:根据所述障碍物的三维空间坐标确定所述障碍物的长度、宽度和高度;其中,所述障碍物的长度、宽度和高度用以辅助起重机的吊臂跨过所述障碍物进行作业。
在一个实施例中,所述三维空间信息还包括颜色信息和反色率信息;所述方法还包括:基于所述障碍物的三维空间信息建立所述障碍物的三维空间模型;将表示所述障碍物的三维空间模型的图像信息发送到车载显示器,以便辅助起重机作业。
在一个实施例中,通过可移动平台搭载所述3D成像装置在起重机上方旋转,以动态扫描起重机作业范围内的物体。
在一个实施例中,所述可移动平台包括无人机。
根据本发明的另一方面,提供一种起重机的作业控制系统,包括:3D成像装置和控制装置;所述3D成像装置,用于动态扫描起重机作业范围内的物体以获取所述物体的三维空间信息,并将所述物体的三维空间信息发送至所述控制装置,所述物体包括起重机和障碍物,所述三维空间信息包括三维空间坐标;所述控制装置包括:距离确定单元,用于 基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离;距离判断单元,用于判断所述障碍物到所述预设位置的距离是否小于所述预设位置对应的预设距离;和警示单元,用于若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示。
在一个实施例中,所述障碍物包括移动中的障碍物。
在一个实施例中,所述预设位置包括回转中心和/或吊臂的臂头。
在一个实施例中,所述距离确定单元包括:坐标确定模块,用于以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述障碍物和所述预设位置的三维空间相对坐标;距离确定模块,用于根据所述障碍物和所述预设位置的三维空间相对坐标确定所述障碍物到所述预设位置的距离。
在一个实施例中,所述预设位置对应的预设距离包括报警距离和预警距离,所述预警距离大于所述报警距离;所述警示单元,用于若所述障碍物到所述预设位置的距离介于所述报警距离与所述预警距离之间,则进行预警;若所述障碍物到所述预设位置的距离小于所述报警距离,则进行报警。
在一个实施例中,所述物体还包括待吊物体;所述距离确定单元,还用于在吊起所述待吊物体后,基于所述待吊物体和所述障碍物的三维空间坐标确定所述障碍物到所述待吊物体的距离;所述距离判断单元,还用于判断所述障碍物到所述待吊物体的距离是否小于所述待吊物体对应的预设距离;所述警示单元,还用于若所述障碍物到所述待吊物体的距离小于所述待吊物体对应的预设距离,则进行警示。
在一个实施例中,所述物体还包括待吊物体;所述控制装置还包括:坐标确定单元,用于以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述起重机和所述待吊物体的三维空间相对坐标;状态获取单元,用于获取起重机在吊起所述待吊物体之前的工作状态信息,所述工作状态信息包括当前回转角度、吊臂的当前伸缩长度、吊臂的当前变幅角度和吊钩的当前起升高度;和控制单元,用于根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起所述待吊物体。
在一个实施例中,所述控制单元包括:计算模块,用于根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息确定目标回转角度;判断模块,用于判断单独执行变幅动作是否能使得吊钩的投影与所述待吊物体重合;和控制模块,用于控制起重 机执行回转动作,以达到所述目标回转角度;若单独执行变幅动作能使得吊钩的投影与所述待吊物体重合,则控制起重机执行变幅动作以使得吊钩的投影与所述待吊物体重合;若单独执行变幅动作不能使得吊钩的投影与所述待吊物体重合,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;控制起重机执行吊钩的起落动作,以吊起所述待吊物体。
在一个实施例中,所述控制模块还用于确定单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T1以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T2;比较T1与T2的大小;若T1小于T2,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;若T1大于T2,则控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合。
在一个实施例中,所述障碍物位于所述起重机和所述待吊物体之间;所述控制装置还包括:障碍物信息确定单元,用于根据所述障碍物的三维空间坐标确定所述障碍物的长度、宽度和高度;其中,所述障碍物的长度、宽度和高度用以辅助起重机的吊臂跨过所述障碍物进行作业。
在一个实施例中,所述三维空间信息还包括颜色信息和反色率信息;所述装置还包括:模型建立单元,用于基于所述障碍物的三维空间信息建立所述障碍物的三维空间模型;图像信息发送单元,用于将表示所述障碍物的三维空间模型的图像信息发送到车载显示器,以便辅助起重机作业。
在一个实施例中,所述系统还包括:可移动平台,用于搭载所述3D成像装置在起重机上方旋转,以动态扫描起重机作业范围内的物体。
在一个实施例中,所述可移动平台包括无人机。
根据本发明的又一方面,提供一种起重机,包括:上述任意一个实施例所述的起重机的作业控制系统。
本发明实施例利用3D成像装置可以动态识别起重机作业范围内的物体以获取物体的三维空间信息,进而在障碍物到起重机的预设位置的距离小于预设距离时进行警示。与现有技术相比,即便障碍物是移动的,本实施例也可以获取到障碍物的实时位置,从而可以避免移动中的障碍物与起重机的某些部位的碰撞,减少了安全事故的发生,提高了起重机 作业的安全性。另外,起重机的作业范围发生变化时,本实施例的方法也无需人工重新设定边界,节约了人力资源。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例的起重机的作业控制方法的简化流程示意图;
图2是根据本发明另一个实施例的起重机的作业控制方法的简化流程示意图;
图3是根据本发明又一个实施例的起重机的作业控制方法的简化流程示意图;
图4是图3所示步骤308’的一个实现方式的简化流程示意图;
图5是根据本发明一个实施例的起重机的作业控制系统的结构示意图;
图6是图5所示距离确定单元的一个实现方式的结构示意图;
图7是根据本发明另一个实施例的起重机的作业控制系统的结构示意图;
图8是图7所示控制单元的一个实现方式的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
首先对本发明中的相关术语进行解释:
起重机:在一定范围内能垂直提升和水平搬运重物的起重机械,又称吊车。
流动式起重机:利用轮胎式或履带式底盘行走的动臂旋转起重机,由上车和下车两部分组成。在吊装作业时,下车用于支撑地面;上车通过变幅、伸缩、起升、回转等动作完成吊装作业。流动式起重机例如可以包括汽车起重机、全地面起重机、轮胎式起重机、履带式起重机等。
3D成像装置/3D成像仪:通过利用光学测量元件和快速扫描技术进行空间辨识以获取物体的三维空间信息,其中三维空间信息可以包括物体的三维空间坐标(也即X,Y,Z距离信息)、颜色信息(也即R,G,B信息)和反色率信息。3D成像装置可以将三维空间信息发送给处理器,处理器可以结合人脑成像原理和色彩学相关知识重构三维图像。
图1是根据本发明一个实施例的起重机的作业控制方法的简化流程示意图。如图1所示,该方法包括:
步骤102,利用3D成像装置动态扫描起重机作业范围内的物体以获取物体的三维空间信息,三维空间信息可以包括但不限于三维空间坐标、颜色信息和反色率信息。3D成像装置在获取到三维空间信息后可以将其发送至控制装置进行后续处理。
这里的物体可以包括起重机和障碍物,其中,障碍物可以包括移动中的障碍物。需要说明的是,由于起重机和障碍物均为三维立体物体,因此,获取到的起重机的三维空间坐标理论上可以包括起重机的每一点的三维空间坐标,获取到的障碍物的三维空间坐标可以包括障碍物的每一点的三维空间坐标。
例如,可以通过可移动平台(例如无人机等)搭载3D成像装置在起重机上方旋转,从而可以动态扫描到起重机作业范围内的物体以获取扫描到的物体的三维空间信息。如果作业范围内的障碍物发生变化,例如障碍物移出作业范围,或者有新的障碍物进入作业范围,3D成像装置仍可以实时获取到作业范围内变化后的障碍物的三维空间信息。
步骤104,基于起重机和障碍物的三维空间坐标确定障碍物到起重机的预设位置的距离。
起重机的预设位置可以根据实际情况来设定,例如,预设位置可以是起重机容易与障碍物发生碰撞的部位,例如吊臂的臂头等;又例如,预设位置还可以是起重机的中心部位,例如回转中心等。
在一个实现方式中,可以通过如下方式来确定障碍物到起重机的预设位置的距离:
首先,以起重机的回转中心作为三维空间相对坐标系的原点,确定障碍物和预设位置的三维空间相对坐标。
根据起重机的回转中心的三维空间坐标和三维空间相对坐标(也即原点)的对应关系,可以得到障碍物的三维空间坐标对应的三维空间相对坐标。对于预设位置来说,例如,如果预设位置是回转中心,则预设位置的三维空间相对坐标即为原点;如果预设位置是吊臂的臂头,则一种情况下,可以根据起重机的回转中心的三维空间坐标和三维空间相对坐标的对应关系确定吊臂的臂头的三维空间坐标对应的三维空间相对坐标,另一种情况下,可以根据起重机的回转中心的三维空间相对坐标以及臂长、变幅角度等信息确定吊臂的臂头的三维空间相对坐标。
然后,根据障碍物和预设位置的三维空间相对坐标确定障碍物到预设位置的距离。
这里,障碍物到预设位置的距离可以是障碍物的各点到预设位置的距离中的最小值。
步骤106,判断障碍物到预设位置的距离是否小于预设位置对应的预设距离。若是,则执行步骤108。
在实际应用中,预设位置可以是一个,也可以是多个。每个预设位置对应一个预设距离。预设距离可以是用户通过车载显示器来按需设定的,或者也可以是预先存储在控制装置中的。若障碍物到预设位置的距离小于预设位置对应的预设距离,则表示障碍物有可能与起重机的某个部位(例如臂头或车身边缘)碰撞。
通过设定预设位置对应的预设距离可以防止起重机的某个部位与障碍物碰撞,例如,通过设定吊臂的臂头对应的预设距离可以防止臂头与障碍物碰撞,通过设定回转中心对应的预设距离可以防止起重机的车身边缘与障碍物碰撞。另外,预设距离的具体值可以根据实际情况进行调整,作为一个非限制性示例,可以将回转中心对应的预设距离设定为略大于车身边缘的各点到回转中心最大的距离。
步骤108,进行警示。
在一个实现方式中,预设位置对应的预设距离可以包括报警距离和预警距离,其中,预警距离大于报警距离。
根据障碍物到预设位置的距离的大小可以采用不同的警示方式。具体来说,若障碍物到预设位置的距离介于报警距离与预警距离之间,也即,障碍物距离预设位置比较近了,此时,可以进行预警,例如开启警示灯,以提醒操作人员注意并采用相应的处理措施,例如可以减速。若障碍物到预设位置的距离小于报警距离,也即,障碍物距离预设位置已经很近,碰撞很有可能发生,此时可以进行报警,例如通过蜂鸣器或喇叭等报警元件进行报警,以提醒操作人员注意并采用相应的处理措施,例如可以停止作业。另外,在进行预警或报警时,还可以输出相应的文字或图标至车载显示器,以辅助提醒操作人员。
本实施例中,利用3D成像装置可以动态识别起重机作业范围内的物体以获取物体的三维空间信息,进而在障碍物到起重机的预设位置的距离小于预设距离时进行警示。与现有技术相比,即便障碍物是移动的,本实施例也可以获取到障碍物的实时位置,从而可以避免移动中的障碍物与起重机的某些部位的碰撞,减少了安全事故的发生,提高了起重机作业的安全性。另外,起重机的作业范围发生变化时,本实施例的方法也无需人工重新设定边界,节约了人力资源。
需要说明的是,起重机在吊起待吊物体之前或之后均可以通过图1所示实施例的方法确定障碍物到起重机的预设位置的距离,并在障碍物到起重机的预设位置的距离小于预设距离时进行警示,从而避免起重机的某些部位与障碍物发生碰撞。
在一个实施例中,3D成像装置获取到的三维空间信息可以包括物体的三维空间坐标、颜色信息和反色率信息。在这种情况下,可以基于障碍物的三维空间信息建立障碍物的三维空间模型;然后,可以将表示障碍物的三维空间模型的图像信息发送到车载显示器,以便辅助起重机作业。如此,操作人员可以在车载显示器上直观地观察到障碍物的图像,从而可以进一步提升作业的安全性。
考虑到在吊起待吊物体之后,待吊物体也可能与障碍物发生碰撞,本发明还提供了一种避免障碍物与待吊物体发生碰撞的方法,下面结合图2所示实施例进行详细说明。
图2是根据本发明另一个实施例的起重机的作业控制方法的简化流程示意图。接下来将重点介绍图2所示实施例与图1所示实施例的不同之处,其他与图1类似的步骤可以参见图1的描述。如图2所示,该方法包括:
步骤202,利用3D成像装置动态扫描起重机作业范围内的物体以获取物体的三维空间信息,例如可以将获取到的三维空间信息发送到控制装置。这里的物体包括起重机、障碍物和待吊物体,三维空间信息包括但不限于三维空间坐标。
步骤204,基于起重机和障碍物的三维空间坐标确定障碍物到起重机的预设位置的距离。
步骤206,判断障碍物到预设位置的距离是否小于预设位置对应的预设距离。若是,则执行步骤208。
步骤204’,在吊起待吊物体后,基于待吊物体和障碍物的三维空间坐标确定障碍物到待吊物体的距离。
这里,障碍物到待吊物体的距离可以是障碍物的各点到待吊物体的各点的距离中的最小值。
步骤206’,判断障碍物到待吊物体的距离是否小于待吊物体对应的预设距离;若是,则执行步骤208。
若障碍物到待吊物体的距离小于待吊物体对应的预设距离,则表明障碍物可能要与待吊物体碰撞。因此,通过设定待吊物体对应的预设距离可以防止待吊物体与障碍物碰撞。
步骤208,进行警示。
在障碍物到预设位置的距离小于预设位置对应的预设距离的情况下,具体的警示方式可以参照上述步骤108的描述,在此不再赘述。
在障碍物到待吊物体的距离小于待吊物体对应的预设距离的情况下,类似地,待吊物体对应的预设距离也可以包括报警距离和预警距离,其中,预警距离大于报警距离。根据障碍物到待吊物体的距离的大小也可以采用不同的警示方式。若障碍物到待吊物体的距离介于对应的报警距离与预警距离之间,则可以进行预警,例如开启警示灯,以提醒操作人员注意并采用相应的处理措施,例如可以减速。若障碍物到待吊物体的距离小于对应的报警距离,则可以进行报警,例如通过蜂鸣器或喇叭等报警元件进行报警,以提醒操作人员注意并采用相应的处理措施,例如可以停止作业。
上述步骤202-步骤206的具体实现可以参见图1所示的步骤102-步骤106的描述,在此不再赘述。
本实施例不仅可以避免起重机的某些部位与障碍物碰撞,而且可以避免被吊起的待吊物体与障碍物碰撞,从而进一步减少了安全事故的发生,进一步提高了起重机作业的安全性。
另外,考虑到起重机在吊起待吊物体之前需要进行多步操作,在保证安全作业的前提下,为了提高起重机的作业效率,本发明还提供了一种在吊起待吊物体之前优化起重机的 作业路径的方法,下面结合图3所示实施例进行详细说明。
图3是根据本发明又一个实施例的起重机的作业控制方法的简化流程示意图。接下来将重点介绍图3所示实施例与图1所示实施例的不同之处,其他与图1类似的步骤可以参见图1的描述。如图3所示,该方法包括:
步骤302,利用3D成像装置动态扫描起重机作业范围内的物体以获取物体的三维空间信息,例如可以将获取到的三维空间信息发送到控制装置。这里的物体包括起重机、障碍物和待吊物体,三维空间信息包括但不限于三维空间坐标。
步骤304,基于起重机和障碍物的三维空间坐标确定障碍物到起重机的预设位置的距离。
步骤306,判断障碍物到预设位置的距离是否小于预设位置对应的预设距离。若是,则执行步骤308。
步骤308,进行警示。
步骤304’,以起重机的回转中心作为三维空间相对坐标系的原点,确定起重机和待吊物体的三维空间相对坐标。
根据起重机的回转中心的三维空间坐标和三维空间相对坐标(也即原点)的对应关系,可以得到起重机的各点以及待吊物体的各点的三维空间坐标对应的三维空间相对坐标。
步骤306’,获取起重机在吊起待吊物体之前的工作状态信息,这里,工作状态信息可以包括当前回转角度、吊臂的当前伸缩长度、吊臂的当前变幅角度和吊钩的当前起升高度。
步骤308’,根据起重机和待吊物体的三维空间相对坐标以及工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起待吊物体。
上述步骤302-步骤308的具体实现可以参见图1所示的步骤102-步骤108的描述,在此不再赘述。
本实施例中,可以根据起重机和待吊物体的三维空间相对坐标以及工作状态信息控制起重机执行各动作以吊起待吊物体,并且,在执行各动作的过程中可以在障碍物到起重机的预设位置的距离小于预设距离时进行警示,从而保证作业的安全性。
图4是图3所示步骤308’的一个实现方式的简化流程示意图。如图4所示,步骤308’可以包括:
步骤402,根据起重机和待吊物体的三维空间相对坐标和工作状态信息确定目标回转 角度。
根据起重机和待吊物体的三维空间相对坐标可以获知二者的相对位置,进而根据当前回转角度可以确定目标回转角度。
步骤404,控制起重机执行回转动作,以达到目标回转角度,从而使得吊臂与待吊物体基本在同一平面上,也即,待吊物体位于吊臂在水平面的投影所在的直线上。
优选地,在控制起重机执行回转动作之前,可以先控制吊钩起升一定高度,以避免吊钩与支腿的碰撞。
步骤406,判断单独执行变幅动作是否能使得吊钩的投影与待吊物体重合。若是,则执行步骤408,之后执行步骤418;若否,则执行步骤410。
假设起重机和待吊物体之间的距离为d,吊臂的当前伸缩长度为l0,吊臂的最大变幅角度为αmax,吊臂的最小变幅角度为αmin。判断d是否满足l0cosαmax<d<l0cosαmin;若是,则表示单独执行变幅动作能使得吊钩的投影与待吊物体重合;若否,则表示单独执行变幅动作不能使得吊钩的投影与待吊物体重合。
步骤408,控制起重机执行变幅动作以使得吊钩的投影与待吊物体重合。
步骤410,确定单独执行吊臂的伸缩动作以使得吊钩的投影与待吊物体重合所需的时间T1以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合所需的时间T2
首先介绍一种确定T1的方法:
假设起重机和待吊物体之间的距离为d,吊臂的当前变幅角度为α0,吊臂的当前伸缩长度为l0,则可以确定吊臂的目标伸缩长度l1=d/cosα0。因此,根据公式T1=K1(l1-l0)即可得到T1的值,其中K1为吊臂单位长度的变化所需的时间。
下面介绍一种确定T2的方法:
执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合的时间可以表示为T=K1(l-l0)+K2(α-α0)+ε。
其中,l为吊臂的伸缩长度,α为吊臂的变幅角度,lcosα=d,lmin≤l≤lmax,αmin≤α≤αmax,K2为单位变幅角度的变化所需的时间,ε为变幅动作与伸缩动作之间切换所需的时间。
T随着l和α的变化而变化,因此,在满足lcosα=d、lmin≤l≤lmax、αmin≤α≤αmax的条件下,可以得到T的最小值Tmin。可以将T的最小值Tmin作为T2
步骤412,比较T1与T2的大小。若T1小于T2,则执行步骤414,之后执行步骤418; 若T1大于T2,执行步骤416,之后执行步骤418。
步骤414,控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与待吊物体重合。
步骤416,控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合。
步骤418,控制起重机执行吊钩的起落动作,以吊起待吊物体。
上述实现方式中,各动作的优先级从高至低依次为回转动作、吊臂的变幅动作、吊臂的伸缩动作和吊钩的起落动作。在单独执行变幅动作能使得吊钩的投影与待吊物体重合的情况下,由于吊臂的变幅动作的效率高于吊臂的伸缩动作的效率,因此通过执行变幅动作使得吊钩的投影与待吊物体重合可以提高起重机的作业效率。进一步地,在单独执行变幅动作不能使得吊钩的投影与待吊物体重合的情况下,选择花费时间小的方式使得吊钩的投影与待吊物体重合,从而可以进一步提高起重机的作业效率。
需要说明的是,在另一个实现方式中,也可以不执行图4所示步骤中的步骤410和步骤412,也即,在步骤406的判断结果为否的情况下,可以直接执行步骤414或步骤416,进而执行步骤418。
在又一个实现方式中,图4所示的步骤404与步骤406之间还可以包括如下步骤:判断执行吊臂的变幅动作和/或吊臂的伸缩动作是否能使得吊钩的投影与待吊物体重合;若是,则继续执行步骤406;若否,则可以移动起重机的位置,以使得执行吊臂的变幅动作和/或吊臂的伸缩动作能使得吊钩的投影与待吊物体重合。
下面介绍一种判断执行吊臂的变幅动作和/或吊臂的伸缩动作是否能使得吊钩的投影与待吊物体重合的方式。
假设起重机和待吊物体之间的距离为d,吊臂的最小伸缩长度为lmin,吊臂的最大伸缩长度为lmax,吊臂的最大变幅角度为αmax,吊臂的最小变幅角度为αmin。判断d是否满足lmincosαmax<d<lmaxcosαmin;若是,则表明执行吊臂的变幅动作和/或吊臂的伸缩动作能使得吊钩的投影与待吊物体重合;若否,则表明执行吊臂的变幅动作和/或吊臂的伸缩动作不能使得吊钩的投影与待吊物体重合。
此外,如果障碍物位于起重机和待吊物体之间,还可以根据障碍物的三维空间坐标确定障碍物的长度、宽度和高度;其中,障碍物的长度、宽度和高度用以辅助起重机的吊臂跨过障碍物进行作业。例如,障碍物为墙体,起重机和待吊物体分别位于墙体的两侧,则起重机需要跨过墙体来吊起待吊物体,并且在吊起待吊物体之后也需要跨过墙体。因此, 在实际应用中,可以根据障碍物的长度、宽度和高度信息来辅助起重机的吊臂跨过障碍物进行作业,也即,起重机在作业过程中可以进行主动避障。
图5是根据本发明一个实施例的起重机的作业控制系统的结构示意图。如图5所示,该控制系统包括3D成像装置501和控制装置502。
3D成像装置501用于动态扫描起重机作业范围内的物体以获取物体的三维空间信息,并将物体的三维空间信息发送至控制装置502。这里的物体包括起重机和障碍物,障碍物包括移动中的障碍物;三维空间信息包括但不限于三维空间坐标。
控制装置502包括距离确定单元512、距离判断单元522和警示单元532。
距离确定单元512用于基于起重机和障碍物的三维空间坐标确定障碍物到起重机的预设位置的距离,其中,预设位置可以包括回转中心和/或吊臂的臂头。
距离判断单元522用于判断障碍物到预设位置的距离是否小于预设位置对应的预设距离。
警示单元532用于若障碍物到预设位置的距离小于预设位置对应的预设距离,则进行警示。在一个实现方式中,预设位置对应的预设距离可以包括报警距离和预警距离,其中预警距离大于报警距离,警示单元可以用于若障碍物到预设位置的距离介于报警距离与预警距离之间,则进行预警;若障碍物到预设位置的距离小于报警距离,则进行报警。
本实施例中,利用3D成像装置可以动态识别起重机作业范围内的物体并将物体的三维空间信息发送至控制装置,控制装置在障碍物到起重机的预设位置的距离小于预设距离时进行警示。与现有技术相比,即便障碍物是移动的,本实施例也可以获取到障碍物的实时位置,从而可以避免移动中的障碍物与起重机的某些部位的碰撞,减少了安全事故的发生,提高了起重机作业的安全性。另外,起重机的作业范围发生变化时,本实施例的方法也无需人工重新设定边界,节约了人力资源。
需要指出的是,控制装置502可以包括多个部件,相应地,距离确定单元512、距离判断单元522和警示单元532的功能可以利用不同的部件来实现。例如,在实际应用中,一般的车载控制器的处理能力可能有限,因此,控制装置502可以包括处理器和车载控制器。例如,距离确定单元512的功能可以利用处理器来实现,而距离判断单元522和警示单元532的功能可以利用车载控制器来实现。
在一个实施例中,3D成像装置501获取到的三维空间信息可以包括物体的三维空间坐标、颜色信息和反色率信息。该实施例中,控制装置502可以包括模型建立单元和图像 信息发送单元,模型建立单元用于基于障碍物的三维空间信息建立障碍物的三维空间模型,图像信息发送单元用于将表示障碍物的三维空间模型的图像信息发送到车载显示器,以便辅助起重机作业。如此,操作人员可以在车载显示器上直观地观察到障碍物的图像,从而可以进一步提升作业的安全性。应理解,在控制装置包括处理器和车载控制器的情况下,上述模型建立单元和图像信息发送单元的功能可以利用处理器来实现。
图6是图5所示距离确定单元的一个实现方式的结构示意图。如图6所示,距离确定单元512包括坐标确定模块5121和距离确定模块5122。坐标确定模块5121用于以起重机的回转中心作为三维空间相对坐标系的原点,确定障碍物和预设位置的三维空间相对坐标。距离确定模块5122用于根据障碍物和预设位置的三维空间相对坐标确定障碍物到预设位置的距离。
为了避免障碍物与待吊物体发生碰撞,在一个实施例中,参见图5,3D成像装置501可以用于动态扫描起重机作业范围内的物体以获取物体的三维空间信息(其包括但不限于三维空间坐标),并将物体的三维空间信息发送至控制装置502,这里的物体包括起重机、障碍物和待吊物体。相应地,该实施例中,距离确定单元512还可以用于在吊起待吊物体后,基于待吊物体和障碍物的三维空间坐标确定障碍物到待吊物体的距离;距离判断单元522还可以用于判断障碍物到待吊物体的距离是否小于待吊物体对应的预设距离;警示单元532还可以用于若障碍物到待吊物体的距离小于待吊物体对应的预设距离,则进行警示。
本实施例不仅可以避免起重机的某些部位与障碍物碰撞,而且可以避免被吊起的待吊物体与障碍物碰撞,从而进一步减少了安全事故的发生,进一步提高了起重机作业的安全性。
图7是根据本发明另一个实施例的起重机的作业控制系统的结构示意图。该实施例中,3D成像装置501用于动态扫描起重机作业范围内的物体以获取物体的三维空间信息并将物体的三维空间信息发送至控制装置502,这里的物体包括起重机、障碍物和待吊物体,三维空间信息包括三维空间坐标。控制装置502除了包括图5所示的距离确定单元512、距离判断单元522和警示单元532外,还包括坐标确定单元542、状态获取单元552和控制单元562。
坐标确定单元542用于以起重机的回转中心作为三维空间相对坐标系的原点,确定起重机和待吊物体的三维空间相对坐标。
状态获取单元552用于获取起重机在吊起待吊物体之前的工作状态信息,工作状态信 息包括当前回转角度、吊臂的当前伸缩长度、吊臂的当前变幅角度和吊钩的当前起升高度。
控制单元562用于根据起重机和待吊物体的三维空间相对坐标以及工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起待吊物体。
本实施例中,控制装置可以根据起重机和待吊物体的三维空间相对坐标以及工作状态信息控制起重机执行各动作以吊起待吊物体,并且,在执行各动作的过程中可以在障碍物到起重机的预设位置的距离小于预设距离时进行警示,从而保证作业的安全性。
图8是图7所示控制单元的一个实现方式的结构示意图。如图8所示,控制单元562包括计算模块5621、判断模块5622和控制模块5623。计算模块5621用于根据起重机和待吊物体的三维空间相对坐标以及工作状态信息确定目标回转角度。判断模块5622用于判断单独执行变幅动作是否能使得吊钩的投影与待吊物体重合。控制模块5623用于控制起重机执行回转动作,以达到目标回转角度;若单独执行变幅动作能使得吊钩的投影与待吊物体重合,则控制起重机执行变幅动作以使得吊钩的投影与待吊物体重合;若单独执行变幅动作不能使得吊钩的投影与待吊物体重合,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合;控制起重机执行吊钩的起落动作,以吊起待吊物体。
上述实现方式中,各动作的优先级从高至低依次为回转动作、吊臂的变幅动作、吊臂的伸缩动作和吊钩的起落动作。在单独执行变幅动作能使得吊钩的投影与待吊物体重合的情况下,由于吊臂的变幅动作的效率高于吊臂的伸缩动作的效率,因此通过执行变幅动作使得吊钩的投影与待吊物体重合可以提高起重机的作业效率
在一个实现方式中,控制模块5632还可以用于确定单独执行吊臂的伸缩动作以使得吊钩的投影与待吊物体重合所需的时间T1以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合所需的时间T2;比较T1与T2的大小;若T1小于T2,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与待吊物体重合;若T1大于T2,则控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合。
上述实现方式中,在单独执行变幅动作不能使得吊钩的投影与待吊物体重合的情况下,控制模块可以确定单独执行吊臂的伸缩动作以使得吊钩的投影与待吊物体重合所需的时间以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与待吊物体重合所需的时间,并选择花费时间小的方式使得吊钩的投影与待吊物体重合,从而可以进一步提高起重机的 作业效率。
考虑到障碍物位于起重机和待吊物体之间的情况,在一个实施例中,控制装置还可以包括障碍物信息确定单元,用于根据障碍物的三维空间坐标确定障碍物的长度、宽度和高度。这里,障碍物的长度、宽度和高度可以用以辅助起重机的吊臂跨过障碍物进行作业。如此,起重机在作业时可以进行主动避障。
此外,上述各实施例的控制系统还可以包括可移动平台,用于搭载3D成像装置在起重机上方旋转,以动态扫描起重机作业范围内的物体。示例性地,可移动平台可以包括无人机等。
本发明还提供了一种起重机,其包括上述任意一个实施例提供的起重机的作业控制系统。在一个实施例中,起重机可以包括但不限于流式起重机,例如汽车起重机、全地面起重机、轮胎式起重机、履带式起重机等。
本说明书中各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似的部分相互参见即可。对于系统实施例而言,由于其与方法实施例基本对应,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好地说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (27)

  1. 一种起重机的作业控制方法,其特征在于,包括:
    利用3D成像装置动态扫描起重机作业范围内的物体以获取所述物体的三维空间信息,所述物体包括起重机和障碍物,所述三维空间信息包括三维空间坐标;
    基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离;
    判断所述障碍物到所述预设位置的距离是否小于所述预设位置对应的预设距离;
    若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示。
  2. 根据权利要求1所述的方法,其特征在于,所述障碍物包括移动中的障碍物。
  3. 根据权利要求1所述的方法,其特征在于,所述预设位置包括回转中心和/或吊臂的臂头。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离包括:
    以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述障碍物和所述预设位置的三维空间相对坐标;
    根据所述障碍物和所述预设位置的三维空间相对坐标确定所述障碍物到所述预设位置的距离。
  5. 根据权利要求1所述的方法,其特征在于,所述预设位置对应的预设距离包括报警距离和预警距离,所述预警距离大于所述报警距离;
    所述若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示包括:
    若所述障碍物到所述预设位置的距离介于所述报警距离与所述预警距离之间,则进行预警;
    若所述障碍物到所述预设位置的距离小于所述报警距离,则进行报警。
  6. 根据权利要求1所述的方法,其特征在于,所述物体还包括待吊物体;
    所述方法还包括:
    在吊起所述待吊物体后,基于所述待吊物体和所述障碍物的三维空间坐标确定所述障碍物到所述待吊物体的距离;
    判断所述障碍物到所述待吊物体的距离是否小于所述待吊物体对应的预设距离;
    若所述障碍物到所述待吊物体的距离小于所述待吊物体对应的预设距离,则进行警示。
  7. 根据权利要求1所述的方法,其特征在于,所述物体还包括待吊物体;
    所述方法还包括:
    以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述起重机和所述待吊物体的三维空间相对坐标;
    获取起重机在吊起所述待吊物体之前的工作状态信息,所述工作状态信息包括当前回转角度、吊臂的当前伸缩长度、吊臂的当前变幅角度和吊钩的当前起升高度;
    根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起所述待吊物体。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起所述待吊物体包括:
    根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息确定目标回转角度;
    控制起重机执行回转动作,以达到所述目标回转角度;
    判断单独执行变幅动作是否能使得吊钩的投影与所述待吊物体重合;
    若是,则控制起重机执行变幅动作以使得吊钩的投影与所述待吊物体重合;
    若否,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;
    控制起重机执行吊钩的起落动作,以吊起所述待吊物体。
  9. 根据权利要求8所述的方法,其特征在于,所述控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合包括:
    确定单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T1以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T2
    比较T1与T2的大小;
    若T1小于T2,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;
    若T1大于T2,则控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合。
  10. 根据权利要求1所述的方法,其特征在于,所述障碍物位于所述起重机和所述待吊物体之间;
    所述方法还包括:
    根据所述障碍物的三维空间坐标确定所述障碍物的长度、宽度和高度;其中,所述障碍物的长度、宽度和高度用以辅助起重机的吊臂跨过所述障碍物进行作业。
  11. 根据权利要求1所述的方法,其特征在于,所述三维空间信息还包括颜色信息和反色率信息;
    所述方法还包括:
    基于所述障碍物的三维空间信息建立所述障碍物的三维空间模型;
    将表示所述障碍物的三维空间模型的图像信息发送到车载显示器,以便辅助起重机作业。
  12. 根据权利要求1-11任意一项所述的方法,其特征在于,通过可移动平台搭载所述3D成像装置在起重机上方旋转,以动态扫描起重机作业范围内的物体。
  13. 根据权利要求12所述的方法,其特征在于,所述可移动平台包括无人机。
  14. 一种起重机的作业控制系统,其特征在于,包括:3D成像装置和控制装置;
    所述3D成像装置,用于动态扫描起重机作业范围内的物体以获取所述物体的三维空间信息,并将所述物体的三维空间信息发送至所述控制装置,所述物体包括起重机和障碍物,所述三维空间信息包括三维空间坐标;
    所述控制装置包括:
    距离确定单元,用于基于所述起重机和所述障碍物的三维空间坐标确定所述障碍物到所述起重机的预设位置的距离;
    距离判断单元,用于判断所述障碍物到所述预设位置的距离是否小于所述预设位置对应的预设距离;和
    警示单元,用于若所述障碍物到所述预设位置的距离小于所述预设位置对应的预设距离,则进行警示。
  15. 根据权利要求14所述的系统,其特征在于,所述障碍物包括移动中的障碍物。
  16. 根据权利要求14所述的系统,其特征在于,所述预设位置包括回转中心和/或吊臂的臂头。
  17. 根据权利要求14所述的系统,其特征在于,所述距离确定单元包括:
    坐标确定模块,用于以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述障碍物和所述预设位置的三维空间相对坐标;
    距离确定模块,用于根据所述障碍物和所述预设位置的三维空间相对坐标确定所述障碍物到所述预设位置的距离。
  18. 根据权利要求14所述的系统,其特征在于,所述预设位置对应的预设距离包括报警距离和预警距离,所述预警距离大于所述报警距离;
    所述警示单元,用于若所述障碍物到所述预设位置的距离介于所述报警距离与所述预警距离之间,则进行预警;若所述障碍物到所述预设位置的距离小于所述报警距离,则进行报警。
  19. 根据权利要求14所述的系统,其特征在于,所述物体还包括待吊物体;
    所述距离确定单元,还用于在吊起所述待吊物体后,基于所述待吊物体和所述障碍物的三维空间坐标确定所述障碍物到所述待吊物体的距离;
    所述距离判断单元,还用于判断所述障碍物到所述待吊物体的距离是否小于所述待吊物体对应的预设距离;
    所述警示单元,还用于若所述障碍物到所述待吊物体的距离小于所述待吊物体对应的预设距离,则进行警示。
  20. 根据权利要求14所述的系统,其特征在于,所述物体还包括待吊物体;
    所述控制装置还包括:
    坐标确定单元,用于以所述起重机的回转中心作为三维空间相对坐标系的原点,确定所述起重机和所述待吊物体的三维空间相对坐标;
    状态获取单元,用于获取起重机在吊起所述待吊物体之前的工作状态信息,所述工作状态信息包括当前回转角度、吊臂的当前伸缩长度、吊臂的当前变幅角度和吊钩的当前起升高度;和
    控制单元,用于根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息控制起重机执行回转动作、吊臂的伸缩动作、吊臂的变幅动作和吊钩的起落动作,以吊起所述待吊物体。
  21. 根据权利要求20所述的系统,其特征在于,所述控制单元包括:
    计算模块,用于根据所述起重机和所述待吊物体的三维空间相对坐标以及所述工作状态信息确定目标回转角度;
    判断模块,用于判断单独执行变幅动作是否能使得吊钩的投影与所述待吊物体重合;和
    控制模块,用于控制起重机执行回转动作,以达到所述目标回转角度;若单独执行变幅动作能使得吊钩的投影与所述待吊物体重合,则控制起重机执行变幅动作以使得吊钩的投影与所述待吊物体重合;若单独执行变幅动作不能使得吊钩的投影与所述待吊物体重合,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合,或者控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;控 制起重机执行吊钩的起落动作,以吊起所述待吊物体。
  22. 根据权利要求21所述的系统,其特征在于,所述控制模块,还用于:
    确定单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T1以及执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合所需的时间T2
    比较T1与T2的大小;
    若T1小于T2,则控制起重机单独执行吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合;
    若T1大于T2,则控制起重机执行吊臂的变幅动作和吊臂的伸缩动作以使得吊钩的投影与所述待吊物体重合。
  23. 根据权利要求14所述的系统,其特征在于,所述障碍物位于所述起重机和所述待吊物体之间;所述控制装置还包括:
    障碍物信息确定单元,用于根据所述障碍物的三维空间坐标确定所述障碍物的长度、宽度和高度;其中,所述障碍物的长度、宽度和高度用以辅助起重机的吊臂跨过所述障碍物进行作业。
  24. 根据权利要求14所述的系统,其特征在于,所述三维空间信息还包括颜色信息和反色率信息;所述装置还包括:
    模型建立单元,用于基于所述障碍物的三维空间信息建立所述障碍物的三维空间模型;
    图像信息发送单元,用于将表示所述障碍物的三维空间模型的图像信息发送到车载显示器,以便辅助起重机作业。
  25. 根据权利要求14-24任意一项所述的系统,其特征在于,还包括:
    可移动平台,用于搭载所述3D成像装置在起重机上方旋转,以动态扫描起重机作业范围内的物体。
  26. 根据权利要求25所述的系统,其特征在于,所述可移动平台包括无人机。
  27. 一种起重机,其特征在于,包括:权利要求14-26任意一项所述的起重机的作业控制系统。
PCT/CN2016/112277 2016-12-27 2016-12-27 起重机的作业控制方法、系统及起重机 WO2018119621A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16925194.9A EP3560881B1 (en) 2016-12-27 2016-12-27 Method and system for controlling operation of crane, and crane
PCT/CN2016/112277 WO2018119621A1 (zh) 2016-12-27 2016-12-27 起重机的作业控制方法、系统及起重机
US16/474,476 US11603294B2 (en) 2016-12-27 2016-12-27 Method and system for controlling operation of crane, and crane
CA3048545A CA3048545C (en) 2016-12-27 2016-12-27 Operation control method and system for crane, and crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112277 WO2018119621A1 (zh) 2016-12-27 2016-12-27 起重机的作业控制方法、系统及起重机

Publications (1)

Publication Number Publication Date
WO2018119621A1 true WO2018119621A1 (zh) 2018-07-05

Family

ID=62707183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112277 WO2018119621A1 (zh) 2016-12-27 2016-12-27 起重机的作业控制方法、系统及起重机

Country Status (4)

Country Link
US (1) US11603294B2 (zh)
EP (1) EP3560881B1 (zh)
CA (1) CA3048545C (zh)
WO (1) WO2018119621A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095356A (zh) * 2018-11-07 2018-12-28 徐工集团工程机械有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统
EP4049962A4 (en) * 2019-10-25 2023-01-04 Kabushiki Kaisha Toyota Jidoshokki OPERATION SUPPORT DEVICE FOR A CARGO HANDLING VEHICLE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822208B2 (en) * 2014-12-23 2020-11-03 Manitowoc Crane Companies, Llc Crane 3D workspace spatial techniques for crane operation in proximity of obstacles
CN111137791B (zh) * 2019-12-20 2021-01-26 福建睿思特科技股份有限公司 一种基于无线通信的变电站起吊系统
US20220324679A1 (en) * 2021-04-12 2022-10-13 Structural Services, Inc. Systems and methods for assisting a crane operator
CN113911922B (zh) * 2021-09-13 2023-06-02 杭州大杰智能传动科技有限公司 智能塔吊回转全过程状况监测传感方法和系统
CN114604773B (zh) * 2022-01-24 2023-06-02 杭州大杰智能传动科技有限公司 用于智能塔吊的安全性警示辅助系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985085B1 (en) * 2003-04-24 2006-01-10 Eric Brown Safety view blind finder for a crane
US20080309784A1 (en) * 2007-06-15 2008-12-18 Sanyo Electric Co., Ltd. Camera System And Mechanical Apparatus
CN202337649U (zh) * 2011-11-07 2012-07-18 黄晓明 起重机安全防护监控系统
CN103407883A (zh) * 2013-08-22 2013-11-27 泰富重工制造有限公司 卸船机操控系统及操控方法
CN105293283A (zh) * 2015-11-17 2016-02-03 宜昌市创星电子技术发展有限公司 一种塔机专用智能视频监控系统
CN105347211A (zh) * 2015-11-17 2016-02-24 山东聊建集团有限公司 塔式起重机全景可视、可控、智能监测与防护集成系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015814A (ja) * 2005-07-07 2007-01-25 Mitsubishi Electric Corp 機器搬入出システム
US9269255B2 (en) 2010-02-01 2016-02-23 Trimble Navigation Limited Worksite proximity warning
DE202011001846U1 (de) * 2011-01-24 2012-04-30 Liebherr-Components Biberach Gmbh Vorrichtung zur Erkennung der Ablegereife eines hochfesten Faserseils beim Einsatz an Hebezeugen
US9415976B2 (en) 2012-05-10 2016-08-16 Trimble Navigation Limited Crane collision avoidance
GB201209131D0 (en) * 2012-05-24 2012-07-04 Subsea 7 Contracting Norway As Handling loads in offshore environments
EP3235773B8 (en) 2012-09-21 2023-09-20 Tadano Ltd. Surrounding information-obtaining device for working vehicle
CN103613014B (zh) 2013-11-21 2016-01-27 中联重科股份有限公司 塔式起重机防碰撞系统、方法、装置及塔式起重机
US20160031680A1 (en) * 2014-07-31 2016-02-04 Trimble Navigation Limited Crane productivity coordination
US9850109B2 (en) * 2014-12-23 2017-12-26 Manitowoc Crane Companies, Llc Crane 3D workspace spatial techniques for crane operation in proximity of obstacles
US20170345320A1 (en) * 2016-05-31 2017-11-30 Dronomy Ltd. Monitoring a Construction Site Using an Unmanned Aerial Vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985085B1 (en) * 2003-04-24 2006-01-10 Eric Brown Safety view blind finder for a crane
US20080309784A1 (en) * 2007-06-15 2008-12-18 Sanyo Electric Co., Ltd. Camera System And Mechanical Apparatus
CN202337649U (zh) * 2011-11-07 2012-07-18 黄晓明 起重机安全防护监控系统
CN103407883A (zh) * 2013-08-22 2013-11-27 泰富重工制造有限公司 卸船机操控系统及操控方法
CN105293283A (zh) * 2015-11-17 2016-02-03 宜昌市创星电子技术发展有限公司 一种塔机专用智能视频监控系统
CN105347211A (zh) * 2015-11-17 2016-02-24 山东聊建集团有限公司 塔式起重机全景可视、可控、智能监测与防护集成系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3560881A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095356A (zh) * 2018-11-07 2018-12-28 徐工集团工程机械有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统
CN109095356B (zh) * 2018-11-07 2024-03-01 江苏徐工国重实验室科技有限公司 工程机械及其作业空间动态防碰撞方法、装置和系统
US11975951B2 (en) 2018-11-07 2024-05-07 XCMG Construction Machinery Co., Ltd. Engineering machinery and dynamic anti-collision method, device, and system for operation space of the engineering machinery
EP4049962A4 (en) * 2019-10-25 2023-01-04 Kabushiki Kaisha Toyota Jidoshokki OPERATION SUPPORT DEVICE FOR A CARGO HANDLING VEHICLE

Also Published As

Publication number Publication date
US20190345010A1 (en) 2019-11-14
EP3560881B1 (en) 2023-06-14
CA3048545A1 (en) 2018-07-05
EP3560881A4 (en) 2020-08-26
CA3048545C (en) 2022-04-05
US11603294B2 (en) 2023-03-14
EP3560881A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018119621A1 (zh) 起重机的作业控制方法、系统及起重机
CN106586838B (zh) 起重机的作业控制方法、系统及起重机
AU2013237834B2 (en) Overhead view system for a shovel
EP3279133B1 (en) Display apparatus for traveling cranes and synchronizing aparatus for traveling cranes
WO2011060640A1 (zh) 吊钩姿态检测装置和起重机
JP6342705B2 (ja) 作業機用ブーム衝突回避装置
KR20190078984A (ko) 인양물의 크레인 충돌방지를 위한 감시 시스템
JP2016056006A (ja) 作業機用ブーム衝突回避装置
CN105253775A (zh) 一种塔机顶升配平控制系统、方法、装置及塔式起重机
JP2022078986A (ja) クレーン、特に移動式クレーン
CN108100880B (zh) 一种轮式起重机操纵室自动变幅系统及方法
US20220356048A1 (en) Crane information display system
CN111099504A (zh) 起重机控制方法,装置及车辆
US20220340398A1 (en) Crane information display system
JPS6087198A (ja) クレ−ンの監視方法および装置
JP7351231B2 (ja) 吊荷監視装置、クレーン、吊荷監視方法及びプログラム
JP7345335B2 (ja) クレーンの運転支援システム及びクレーンの運転支援方法
JP2022043706A (ja) クレーン作業支援装置およびクレーン作業支援方法
CN115893209A (zh) 起重机及其主动安全方法、装置和系统、存储介质
JP2018095362A (ja) クレーン
US20220315396A1 (en) Periphery monitoring device for work machine
JP2022185293A (ja) 監視システムおよびこれを備えた作業機械、監視方法
CN116750657A (zh) 塔式起重机控制方法及系统
JP7284450B2 (ja) 安全装置
JP2022190556A (ja) クレーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3048545

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925194

Country of ref document: EP

Effective date: 20190729