WO2018117598A1 - Non-oriented electrical steel sheet and manufacturing method therefor - Google Patents

Non-oriented electrical steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2018117598A1
WO2018117598A1 PCT/KR2017/015023 KR2017015023W WO2018117598A1 WO 2018117598 A1 WO2018117598 A1 WO 2018117598A1 KR 2017015023 W KR2017015023 W KR 2017015023W WO 2018117598 A1 WO2018117598 A1 WO 2018117598A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
oriented electrical
electrical steel
weight
Prior art date
Application number
PCT/KR2017/015023
Other languages
French (fr)
Korean (ko)
Inventor
김재훈
이현주
김용수
신수용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP17884042.7A priority Critical patent/EP3556878A4/en
Priority to US16/469,878 priority patent/US11060170B2/en
Priority to CN201780078601.6A priority patent/CN110088319B/en
Priority to JP2019554463A priority patent/JP6821055B2/en
Publication of WO2018117598A1 publication Critical patent/WO2018117598A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • It relates to a non-oriented electrical steel sheet and a method of manufacturing the same.
  • eco-friendly vehicles hybrids, full lugs-in-hybrids, electric cars, fuel cell vehicles
  • motors various motors other than allergic drive motors are needed.
  • driving motors should show excellent characteristics in all areas from low speed to high speed, unlike general motors. Therefore, large torque should be produced at low speed or acceleration, and the loss should be small at constant speed and high speed driving. Suitable properties are required.
  • the non-oriented electrical steel sheet which is a motor core material, it has to have a large magnetic flux density characteristic at low speed rotation, low frequency high frequency loss at high speed rotation, and withstand centrifugal force generated at high speed rotation. High mechanical strength is required.
  • non-oriented electrical steel sheet for environmentally friendly automobiles non-oriented electrical steel sheet including segregation elements such as Sn, Sb and P has been proposed.
  • this has a problem that the cold rolling is difficult because of brittleness. Therefore, the technology of lowering the content of Sn, Sb, and P used as segregation elements to reduce the content of Si and increase the amount of ⁇ ,- ⁇ to improve the cold rolling property or to further improve the cold rolling property is proposed. It became. But, like cold rolling Focusing on productivity deteriorates magnetism and degrades motor characteristics.
  • One embodiment of the present invention to provide a non-oriented electrical steel sheet containing a new additive element that can replace Sn, Sb, P.
  • Another embodiment of the present invention is to provide a method for producing a non-oriented electrical steel sheet.
  • Non-oriented electrical steel sheet by weight% of Si: 2.0 to 3.5%, A1: 0.3 to 2.5%, Mn: 0.3 to 2.5% and one or more of Ga and Ge, respectively, or a total thereof
  • 0.0005 to 0.03% and the balance include Fe and inevitable impurities, and satisfy the following Equation 1.
  • Non-oriented electrical steel sheet according to one embodiment N: 0.0040% or less (excluding OT), C: 0.0040% or less (excluding 0%), S: 0.0040% or less (excluding 0%), Ti : 0.0030% or less (excluding 0%), Nb: 0.0030% or less (excluding 0%) and V: 0.0040% or less (excluding 0%).
  • the non-oriented electrical steel sheet according to one embodiment of the present invention may include Ga: 0.0005 to 0.02 weight% and Ge: 0.0005 to 0.02 weight%.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention may satisfy the following equation 2.
  • Electrical non-oriented is the strength of the steel sheet eu "texture when tested in a l / l to about 2t / 4t zone of the steel pipe thickness ratio XRD I P200 (P211 + P310)> 0.5 may be satisfied.
  • l / 2t means 1/2 thickness of the overall steel sheet thickness
  • l / 4t means 1/4 thickness of the overall steel sheet thickness
  • P200 means that in the XD test, the ⁇ 200> plane is 15 in the vertical direction of the steel sheet.
  • P211 means the surface strength of the texture structure in which the ⁇ 211> plane lies in parallel within 15 degrees in the vertical direction of the steel sheet
  • P310 is the ⁇ 310> plane It means the surface strength of the aggregate which lies in parallel within 15 degrees of this steel plate vertical direction.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention may have an average grain size of 50 to 95 ni.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention may have a specific resistance of 55 to 75 ⁇ ⁇ ⁇ .
  • Nb 0.0030% or less (excluding 0%) and V: 0.0040% or less (excluding ⁇ %) may be further included.
  • the slab may comprise Ga: 0.0005 to 0.02 weight% and Ge: 0.0005 to 0.02 weight%.
  • the slab may satisfy the following formula 2.
  • the method may further include hot-rolled sheet annealing.
  • Non-oriented electrical steel sheet and manufacturing method according to an embodiment of the present invention is excellent in magnetic as well as productivity.
  • first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited to these. These terms are only used to distinguish which part, component, region, layer or section, and the other part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • the meaning of further including an additional element means to include a residual amount of iron (Fe) by an additional amount of the additional element.
  • the composition of the non-oriented electrical steel sheet in particular, the range of the main additives S i, Al, and Mn, but also the amount of trace elements Ga and Ge are limited, thereby remarkably increasing the texture and magnetic properties. To improve.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention is increased in% by Si: 2.0 to 3.5%, Al: 0.3 to 2.5%, Mn: 0.3 to 2.5% and at least one of Ga and Ge. 0.0005 to 0.03%, and the balance alone or in total, include Fe and unavoidable impurities, respectively.
  • Silicon (S i) serves to lower the iron loss by increasing the specific resistance of the material, if too little added, may not be effective in improving the high frequency iron loss. On the contrary too. If a large amount is added, the hardness of the material may increase, resulting in an extreme deterioration of the cold rolling property, resulting in inferior productivity and punchability. Therefore, S i can be added in the above-mentioned range. Al: 0.3-2. 5 wt%
  • Aluminum (Al) serves to lower the iron loss by increasing the specific resistance of the material, if too little is added to reduce the high-frequency iron loss, and the nitride is finely formed may degrade the magnetism. Conversely, too much addition can cause problems in all processes such as steelmaking and continuous casting, which can greatly reduce productivity. Therefore, A1 can be added in the above-mentioned range.
  • Manganese (Mn) increases the specific resistance of the material to improve iron loss and form sulfides. If too little is added, MnS may be finely precipitated and degrade the magnetism. On the contrary, if too much is added
  • the magnetic flux density can be reduced by promoting the formation of aggregates. Therefore, Mn can be added in the above-mentioned range.
  • Ga and Ge segregate on the surface and grain boundaries of the steel sheet to inhibit surface oxidation during annealing and improve the texture of the aggregates.
  • one or more of Ga and Ge may be included. That is, only Ga may be included alone, only Ge may be included alone, or Ga and Ge may be included simultaneously. When only Ge is included alone, Ge may be included in 0.0005 to 0.03% by weight. When only Ga is included alone, Ga may be included in an amount of 0.0005 to 0.03% by weight. When including Ga and Ge at the same time, the total amount of Ga and Ge may be included so as to be 0.0005 to 0.03% by weight.
  • Ga and Ge may be simultaneously included, and 0.0005 to 0.02 wt% of Ga and 0.0005 to 0.02 wt% of Ge may be included. More specifically, it may include 0.0005 to 0.01% by weight of Ga and 0.0005 to 0.01% by weight of Ge.
  • Nitrogen (N) not only forms fine and long A 1 N precipitates inside the base material, but also combines with other impurities to form fine nitrides to inhibit grain growth.
  • the iron loss is worsened, so it is preferable to limit the amount to 0.0040% by weight or less, and more specifically, 0.0030% by weight or less.
  • carbon (C) causes magnetic aging and combines with other impurity elements to form carbides, thereby lowering the magnetic properties, it is preferable to limit the carbon content to 0.040% by weight or less, and more specifically, 0.0030% by weight or less.
  • S Sulfur
  • MnS sulfides
  • the sulfur (S) is preferably controlled at 0.0040% by weight or less. More preferably, it should be limited to ⁇ .0030% by weight or less.
  • Titanium (Ti) forms carbides or nitrides to inhibit grain growth and magnetic migration, so it is 0.0030% by weight or less, more specifically 0.0020% by weight? It is good to restrict to the following.
  • niobium (Nb) forms carbides or nitrides and serves to inhibit grain growth and magnetic migration
  • the niobium (Nb) is preferably limited to 0.0030% by weight or less, more specifically 0.0020% by weight or less.
  • V 0.0030 wt% or less
  • the bar (V) forms carbides or nitrides and serves to inhibit grain growth and migration, it is preferable to limit the content to 0.0030% by weight or less, more specifically, 0.0020% by weight or less.
  • the steel may contain inevitable impurities such as Mo, Mg and Cu. Although these elements are trace amounts, they may cause magnetic deterioration through the formation of inclusions in the steel, etc., and therefore they should be controlled at 0.005 wt% or less and Cu: 0.025 wt% or less.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention satisfies the following equation 1. [Equation 1]
  • Equation 1 When the value of Equation 1 is less than 0.2, the effect of adding Ga and Ge is insignificant, and the magnetism may be deteriorated. When the value of Equation 1 exceeds 5.27, the large amount of Ga and Ge is inferior to the texture, the saturation magnetic flux density is reduced, the high frequency magnetic improvement effect can be lost.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention may satisfy the following equation 2.
  • the texture is improved by adding a specific amount of Ga and Ge. More specifically, when the XRD test of the l / 2t to l / 4t region of the steel sheet thickness, the strength ratio of the texture may satisfy P200 I (P211 + P310)> 0.5. In this case, l / 2t is the whole .
  • 1 / 2t means the thickness of the steel sheet
  • l / 4t means 1/4 thickness of the total steel sheet thickness
  • P200 in the XRD test the ⁇ 200> plane is placed parallel to within 15 degrees in the vertical direction of the steel sheet It means the surface strength of the texture
  • P211 means the surface strength of the texture in which the ⁇ 211> plane lies parallel to within 15 degrees in the vertical direction of the steel sheet
  • P310 is 15 degrees in the vertical direction of the steel sheet ⁇ 310> It refers to the surface strength of the aggregates that lie parallel within.
  • the aggregated structure (ie, 1) // ⁇ 200>) in which the ⁇ 200> plane lies parallel to the steel plate in the vertical direction within 15 degrees includes the biaxial axis for magnetization, and the larger the ratio, the better the magnetism.
  • the aggregated structure in which the ⁇ 211> plane lies parallel to the steel plate vertical direction within 15 degrees ie, ND / ⁇ 211>
  • the aggregated structure where the ⁇ 310> plane lies parallel to the steel plate vertical direction within 15 degrees. is close to the hard magnetization axis, and the smaller the ratio, the better the magnetism.
  • the improvement of the magnetic structure in the low magnetic field region through the improved aggregate organization which is analyzed to play a key role in improving the high frequency iron loss.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention may have an average grain size of 50 to 95.
  • the high frequency iron loss is excellent in the above-mentioned range.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention is improved in permeability and coercivity is suitable for high speed rotation. As a result, it can contribute to the improvement of mileage when applied to motors of eco-friendly cars.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention may have a specific resistance of 55 to 75 ⁇ ⁇ ⁇ . If the resistivity is too high, the magnetic flux density will be inferior, making the motor unsuitable.
  • the reason for limiting the addition ratio of each composition in the slab is the same as the reason for limiting the composition of the non-oriented electrical steel sheet described above, and thus repeated description is omitted. Since the composition of the slab is not substantially changed in the manufacturing process of hot rolling, hot rolling annealing, cold rolling, final annealing, and the like, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
  • the slab is produced by the molten steel; Adding Si alloy iron, A1 alloy iron, and Mn alloy iron to molten steel; And at least one Ga and Ge increase in molten steel, and can be produced by continuous casting.
  • Si alloy iron, A1 alloy iron, Mn alloy iron, Ga, Ge and the like can be added to adjust to correspond to the composition range of the above-described slab.
  • the heated slabs are hot rolled to 2 to 3.2 kPa to produce hot rolled plates.
  • Finishing temperature in the step of manufacturing a hot rolled sheet may be 800 to 1000 ° C.
  • the method may further include hot-rolled sheet annealing.
  • the hot rolled sheet annealing temperature may be 850 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 850 ° C, the structure does not grow or finely grow, so there is little synergistic effect of the magnetic flux density. If the annealing temperature exceeds 1150 ° C, the magnetic properties deteriorate, and the rolling due to the deformation of the plate shape Workability can worsen. More specifically, the temperature range may be 950 to 1125 ° C. More specifically, the annealing temperature of the hot rolled sheet is 900 to 1100 ° C. Hot-rolled sheet annealing is performed to increase the orientation favorable to the magnetic, if necessary, may be omitted.
  • the hot rolled sheet is pickled and cold rolled to a predetermined sheet thickness.
  • it may be applied differently according to the thickness of the hot rolled sheet, it may be cold rolled so that the final thickness may be 0.2 to 0.65 kPa by applying a reduction ratio of 70 to 95%.
  • the final cold rolled cold rolled sheet is subjected to maximum annealing so that the average grain size is 50 to 95.
  • the final annealing temperature can be from 750 to 1050 ° C. 'If the final annealing silver is too low, recrystallization does not occur too much. If the final annealing temperature is too high, rapid growth of crystal grains may occur, causing magnetic flux density and high frequency iron loss to become thermal. More specifically, the temperature of 900 to loocrc Final annealing at In the final annealing process, all the processed tissue formed in the pre-rolling step can be recrystallized (ie, 99% or more).
  • Permeability is the magnetic permeability at 100A / m
  • the aggregates were cut into steel plates up to 1/2 t and each surface strength was determined using the XRDO (Line Diffraction Analysis) test method.
  • the aggregate structure is improved, so that the permeability is large and the coercive force is small.
  • the aggregate structure was not improved, so the permeability and coercivity were inferior, and grain growth was also inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

According to one embodiment of the present invention, a non-oriented electrical steel sheet comprises, by wt%, 2.0-3.5% of Si, 0.3-2.5% of A1, 0.3-2.5% of Mn, 0.0005-0.03% of Ga and/or Ge individually or as the sum thereof, and the balance of Fe and inevitable impurities, and satisfies the following formula 1. [Formula 1] 0.2 < ([Si] + [Al]+0.5 × [Mn])/(([Ga] + [Ge]) × 1000) < 5.27 (In which [Si], [Al], [Mn], [Ga] and [Ge] respectively indicate the amounts (wt%) of Si, Al, Mn, Ga and Ge.)

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
무방향성 전기강판 및 그 제조방법  Non-oriented electrical steel sheet and manufacturing method
【기술분야】  Technical Field
무방향성 전기강판 및 그 제조방법에 관한 것이다.  It relates to a non-oriented electrical steel sheet and a method of manufacturing the same.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
최근, 미세먼지 발생저감 및 온실가스 저감을 위해 친환경 자동차에 대한 인식이 늘어나면서 자동차 구동모터용으로 사용되는 무방향성 전기강판에 대한 수요가 급격히 증가하고 있다. 엔진을 사용하는 기존 내연기관 자동차와 달리 친환경 자동차 (하이브리드, 풀러그인하이브리드, 전기차, 연료전지차)들은 구동모터가 엔진을 대신하게 되며, 아을러 구동모터 이외의 다양한 모터들이 추가로 필요하게 된다.  Recently, the demand for non-oriented electrical steel sheets used for automobile driving motors is rapidly increasing as awareness of eco-friendly vehicles is increased to reduce fine dust and reduce greenhouse gases. Unlike conventional internal combustion engine cars that use engines, eco-friendly vehicles (hybrids, full lugs-in-hybrids, electric cars, fuel cell vehicles) are driven by motors, and various motors other than allergic drive motors are needed.
친환경자동차의 주행거리는 구동모터를 비롯한 다양한 모터의 효율과 밀접하게 연관되어 있으며 , 이들 모터의 효율은 전기강판의 자성과 직접 연관 :된다. 따라서, 주행거리를 늘리기 위해서는 자성이 우수한 무방향성 전기강판을 사용하는 것이 필수적이다. Is closely associated with a variety of motor efficiency, including the traveling distance of the green vehicle drive motor, and efficiency of these motors is associated directly with the magnetization of the electrical steel sheet: is. Therefore, in order to increase the mileage, it is essential to use non-oriented electrical steel sheet having excellent magnetic properties.
자동차용 모터중 구동모터는 일반 모터와는 다르게 저속에서부터 고속에 이르는 모든 영역에서 우수한 특성을 나타내어야 하므로, 저속이나 가속시에서는 큰 토크를 내어야 하고, 정속 및 고속주행시에는 손실이 적어야 하는 등 각 영역에서 적합한 특성이 필요하다.  Unlike general motors, driving motors should show excellent characteristics in all areas from low speed to high speed, unlike general motors. Therefore, large torque should be produced at low speed or acceleration, and the loss should be small at constant speed and high speed driving. Suitable properties are required.
이러한 특성을 내기 위해서 모터 철심재료인 무방향성 전기강판에서는, 저속회전시에는 큰 자속밀도 특성을 가져야 하며, 고속회전시에는 고주파 철손이 적어야 하며, 아을러 고속회전시에 발생하는 원심력을 견뎌야 하기 때문에 높은 기계적 강도가 필요하다.  In order to achieve these characteristics, in the non-oriented electrical steel sheet, which is a motor core material, it has to have a large magnetic flux density characteristic at low speed rotation, low frequency high frequency loss at high speed rotation, and withstand centrifugal force generated at high speed rotation. High mechanical strength is required.
친환경자동차용 무방향성 전기강판으로서, Sn , Sb , P와 같은 편석원소를 포함하는 무방향성 전기강판이 제시되었다. 그러나, 이는 취성이 강하여 냉간압연이 어려운 문제점이 있다. 따라서 , Si의 함량을 낮추고, 그 대신 ΑΙ ,- Μη의 첨가량을 늘려 냉간압연성을 개선하거나, 냉간압연성을 더욱 개선하기 위해서 편석원소로 사용되는 Sn , Sb , P의 함량을 낮추는 기술이 제시되었다. 하지만, 이렇게 냉간압연성과 같은 생산성에 집중하다 보면 자성이 열위되어 모터의 특성이 열화된다. As non-oriented electrical steel sheet for environmentally friendly automobiles, non-oriented electrical steel sheet including segregation elements such as Sn, Sb and P has been proposed. However, this has a problem that the cold rolling is difficult because of brittleness. Therefore, the technology of lowering the content of Sn, Sb, and P used as segregation elements to reduce the content of Si and increase the amount of ΑΙ,-Μη to improve the cold rolling property or to further improve the cold rolling property is proposed. It became. But, like cold rolling Focusing on productivity deteriorates magnetism and degrades motor characteristics.
【발명의 내용]  [Contents of the Invention]
【해결하고자 하는 과제】 [Problems to be solved]
본 발명의 일 실시예는 Sn, Sb, P를 대신할 수 있는 새로운 첨가 원소를 포함하는 무방향성 전기강판을 제공하는 것이다.  One embodiment of the present invention to provide a non-oriented electrical steel sheet containing a new additive element that can replace Sn, Sb, P.
본 발명의 또 다른 실시예는 무방향성 전기강판의 제조방법을 제공하는 것이다.  Another embodiment of the present invention is to provide a method for producing a non-oriented electrical steel sheet.
【과제의 해결 수단】  [Measures of problem]
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량 %로 Si: 2.0 내지 3.5%, A1: 0.3 내지 2.5%, Mn: 0.3 내지 2.5% 및 Ga 및 Ge중 1종 이상을 각각 단독 또는 그 합량으로 0.0005 내지 0.03% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1을 만족한다.  Non-oriented electrical steel sheet according to an embodiment of the present invention by weight% of Si: 2.0 to 3.5%, A1: 0.3 to 2.5%, Mn: 0.3 to 2.5% and one or more of Ga and Ge, respectively, or a total thereof As such, 0.0005 to 0.03% and the balance include Fe and inevitable impurities, and satisfy the following Equation 1.
[식 1]  [Equation 1]
0.2 < ( [Si ]+[Al ]+0.5x [Mn] )/(( [Ga]+[Ge] ) 1000) < 5.27  0.2 <([Si] + [Al] + 0.5x [Mn]) / (([Ga] + [Ge]) 1000) <5.27
(단, [Si], [Al], [Mn], [Ga] 및 [Ge]는 각각 Si, Al , Mn, Ga 및 ([Si], [Al], [Mn], [Ga] and [Ge] are Si, Al, Mn, Ga and
Ge의 함량 (중량 %)를 나타낸다.) Content of Ge (% by weight).)
본. 발명의. 일 실시예에 의한 무방향성 전기강판은 N: 0.0040% 이하 (OT를 제외ᅵ함), C: 0.0040%이하 (0%를 제외함), S: 0.0040%이하 (0%를 제외함), Ti: 0.0030%이하 (0%를 제외함), Nb: 0.0030%이하 (0%를 제외함) 및 V: 0.0040%이하 (0%를 제외함)를 더 포함할 수 있다.  example. Of the invention. Non-oriented electrical steel sheet according to one embodiment N: 0.0040% or less (excluding OT), C: 0.0040% or less (excluding 0%), S: 0.0040% or less (excluding 0%), Ti : 0.0030% or less (excluding 0%), Nb: 0.0030% or less (excluding 0%) and V: 0.0040% or less (excluding 0%).
본 발명의 일 실시예에 의한 무방향성 전기강판은 Ga: 0.0005 내지 0.02 중량 % 및 Ge: 0.0005 내지 0.02 중량 % 포함할 수 있다.  The non-oriented electrical steel sheet according to one embodiment of the present invention may include Ga: 0.0005 to 0.02 weight% and Ge: 0.0005 to 0.02 weight%.
본 발명의 일 실시예에 의한 무방향성 전기강판은 하기 식 2를 만족할 수 있다.  Non-oriented electrical steel sheet according to an embodiment of the present invention may satisfy the following equation 2.
[식 2]  [Equation 2]
3.3 < ([Si] + [Al]+0.5x[Mn]) < 5.5  3.3 <([Si] + [Al] + 0.5 x [Mn]) <5.5
(단, [Si], [Al] 및 [Mn]는 각각 Si, / 및 Mn 의 함량 (중량 %)를 나타낸다.)  (However, [Si], [Al] and [Mn] represent the content (% by weight) of Si, / and Mn, respectively.)
본 발명의 일 실시예에 의한 무방향성 전기.강판은 강관 두께의 l/2t 내지 l/4t영역을 XRD 시험할 때ᅳ ' 집합조직의 강도비가 P200 I (P211 + P310) > 0.5를 만족할 수 있다. 이때, l/2t란 전체 강판 두께에서 1/2 두께를 의미하고, l/4t란 전체 강판 두께에서 1/4 두께를 의미하고, P200은 X D 시험에서 , <200>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미하고, P211 은 <211>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미하고, P310 은 <310>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미한다. Electrical non-oriented according to an embodiment of the present invention is the strength of the steel sheet eu "texture when tested in a l / l to about 2t / 4t zone of the steel pipe thickness ratio XRD I P200 (P211 + P310)> 0.5 may be satisfied. In this case, l / 2t means 1/2 thickness of the overall steel sheet thickness, l / 4t means 1/4 thickness of the overall steel sheet thickness, and P200 means that in the XD test, the <200> plane is 15 in the vertical direction of the steel sheet. It means the surface strength of the aggregate structure lying in parallel within the degree, P211 means the surface strength of the texture structure in which the <211> plane lies in parallel within 15 degrees in the vertical direction of the steel sheet, P310 is the <310> plane It means the surface strength of the aggregate which lies in parallel within 15 degrees of this steel plate vertical direction.
본 발명의 일 실시예에 의한 무방향성 전기강판은 평균 결정립경이 50 내지 95 ni일 수 있다.  Non-oriented electrical steel sheet according to an embodiment of the present invention may have an average grain size of 50 to 95 ni.
본 발명의 일 실시예에 의한 무방향성 전기강판은 100A/m에서의 투자율이 8000이상이며, B=2.0T에서의 보자력이 40A/m이하일 수 있다.  The non-oriented electrical steel sheet according to the embodiment of the present invention may have a magnetic permeability of 8000 or more at 100 A / m and a coercive force at B = 2.0T of 40 A / m or less.
본 발명의 일 실시예에 의한 무방향성 전기강판은 비저항이 55 내지 75μΩ·αη일 수 있다.  Non-oriented electrical steel sheet according to an embodiment of the present invention may have a specific resistance of 55 to 75μΩ · αη.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 중량 %로 Si: 2.0 내지 3.5%, A1: 0.3 내지 2.5%, Mn: 0.3 내지 2.5% 및 Ga 및 Ge중 1종 이상을 각각 단독 또는 그 합량으로 0.0005 내지 0.03% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 냉간 압연하여 냉연판을 제조하는 단계 및 냉연판을 최종 소둔하는 단계를 포함한다.  Method for producing a non-oriented electrical steel sheet according to an embodiment of the present invention by weight% Si: 2.0 to 3.5%, A1: 0.3 to 2.5%, Mn: 0.3 to 2.5% and one or more of Ga and Ge, respectively Or 0.0005 to 0.03% of the total amount and the balance include Fe and an unavoidable impurity, and heating a slab satisfying Equation 1 below; Hot rolling the slab to produce a hot rolled sheet; Cold rolling the hot rolled sheet to produce a cold rolled sheet and final annealing the cold rolled sheet.
[식 1]  [Equation 1]
0.2 < (iSi] + [Al]+O.5x[Mn])/(([Ga] + [Ge])xi000) < 5.27  0.2 <(iSi) + [Al] + 0.5 x [Mn]) / (([Ga] + [Ge]) xi000) <5.27
(단, [Si], [Al], [Mn], [Ga] 및 [Ge]는 각각 Si, Al , Mn, Ga 및 ([Si], [Al], [Mn], [Ga] and [Ge] are Si, Al, Mn, Ga and
Ge의 함량 (중량 «를 나타낸다.) Content of Ge (shows the weight «)
슬라브는 N: 0.0040% 이하 (0%를 제외함), C: 0.0040%이하 (0%를 제외함), S: 0.0040%이하 (0%를 제외함), Ti: 0.0030%이하 (0%를 제외함), Slabs: N: 0.0040% or less (excluding 0%), C: 0.0040% or less (excluding 0%), S: 0.0040% or less (excluding 0%), Ti: 0.0030% or less (0% Excluded),
Nb: 0.0030%이하 (0%를 제외함) 및 V: 0.0040%이하 (◦%를 제외함)를 더 포함할 수 있다. Nb: 0.0030% or less (excluding 0%) and V: 0.0040% or less (excluding ◦%) may be further included.
슬라브는 Ga: 0.0005 내지 0.02 중량 % 및 Ge: 0.0005 내지 0.02 중량 %포함할 수.있다. 슬라브는 하기 식 2를 만족할 수 있다. The slab may comprise Ga: 0.0005 to 0.02 weight% and Ge: 0.0005 to 0.02 weight%. The slab may satisfy the following formula 2.
[식 2]  [Equation 2]
3.3 < ( [S i ] + [Al ] +0.5 x [Mn] ) < 5.5  3.3 <([S i] + [Al] +0.5 x [Mn]) <5.5
(단, [Si ] , [A1 ] 및 [Mn]는 각각 Si , A1 및 Mn 의 함량 (중량 %)를 나타낸다. )  (However, [Si], [A1] and [Mn] represent the content (% by weight) of Si, A1 and Mn, respectively.)
슬라브를 가열하는 단계 이전에, 용강을 제조하는 단계; 용강에 Si 합금철, A 1 합금철 및 Mn 합금철을 첨가하는 단계; 및 용강에 Ga 및 Ge중 1종 이상을 첨가하고, 연속주조하여 슬라브를 제조하는 단계를 더 포함할 수 있다.  Prior to heating the slab, manufacturing molten steel; Adding Si alloy iron, A 1 iron alloy, and Mn alloy iron to molten steel; And adding at least one of Ga and Ge to the molten steel and continuously casting the slab.
열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다.  After preparing the hot rolled sheet, the method may further include hot-rolled sheet annealing.
【발명의 효과】  【Effects of the Invention】
본 발명의 일 실시예에 의한 무방향성 전기강판 및 제조 방법은 생산성뿐만 아니라 자성이 우수하다.  Non-oriented electrical steel sheet and manufacturing method according to an embodiment of the present invention is excellent in magnetic as well as productivity.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
제 1 , 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기' 위해서만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다. Terms such as first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited to these. These terms are only used to distinguish which part, component, region, layer or section, and the other part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.  The terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" embodies a particular characteristic, region, integer, step, operation, element and / or component, and the presence of another characteristic, region, integer, step, operation, element and / or component or It does not exclude the addition.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에' 1 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다. When a part is referred to as "on" or "on" another part, it may be on or above another part or between May be involved. In contrast, if a part is mentioned as "just above" 1 of another part, no other part is intervened in between.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  Although not defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
또한, 특별히 언급하지 않는 한 %는 중량 %를 의미하며 , lppm 은  Also, unless stated otherwise% means weight% and lppm is
0.0001중량 %이다. 0.0001% by weight.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철 (Fe)을 대체하여 포함하는 것을 의미한다. 이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. .  In an embodiment of the present invention, the meaning of further including an additional element means to include a residual amount of iron (Fe) by an additional amount of the additional element. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. .
본 발명의 일 실시예에서는 무방향성 전기강판 내의 조성, 특히 주요 첨가성분인 S i , Al , Mn의 범위를 최적화할 뿐 아니라 미량원소인 Ga , Ge의 첨가량을 한정하여, 집합조직 및 자성을 현저.하게 개선한다.  In one embodiment of the present invention, not only the composition of the non-oriented electrical steel sheet, in particular, the range of the main additives S i, Al, and Mn, but also the amount of trace elements Ga and Ge are limited, thereby remarkably increasing the texture and magnetic properties. To improve.
본 발명의 일 실시예에 의한 무방향성 전기강판은 증량 %로 S i : 2.0 내지 3. 5% , Al : 0.3 내지 2.5% , Mn : 0.3 내지 2. 5% 및 Ga 및 Ge중 1종 이상을 각각 단독 또는 그 합량으로 0.0005 내지 0.03% 및 잔부는 Fe 및 불가피한 불순물을 포함한다.  The non-oriented electrical steel sheet according to an embodiment of the present invention is increased in% by Si: 2.0 to 3.5%, Al: 0.3 to 2.5%, Mn: 0.3 to 2.5% and at least one of Ga and Ge. 0.0005 to 0.03%, and the balance alone or in total, include Fe and unavoidable impurities, respectively.
먼저 무방향성 전기강판의 성분 한정의 이유부터 설명한다.  First, the reason for component limitation of a non-oriented electrical steel sheet is demonstrated.
Si : 2.0 내지 3.5 중량 %  Si: 2.0 to 3.5% by weight
규소 (S i )는 재료의 비저항을 높여 철손을 낮추어주는 역할을 하며, 너무 적게 첨가될 경우, 고주파 철손 개선 효과가 부족할 수 있다. 반대로 너무. 많이 첨가될 경우 재료의 경도가 상승하여 냉간압연성이 극도로 악화되어 생산성 및 타발성이 열위해질 수 있다. 따라서 전술한 범위에서 S i을 첨가할 수 있다. Al : 0.3 내지 2. 5 중량 % Silicon (S i) serves to lower the iron loss by increasing the specific resistance of the material, if too little added, may not be effective in improving the high frequency iron loss. On the contrary too. If a large amount is added, the hardness of the material may increase, resulting in an extreme deterioration of the cold rolling property, resulting in inferior productivity and punchability. Therefore, S i can be added in the above-mentioned range. Al: 0.3-2. 5 wt%
알루미늄 (Al )는 재료의 비저항을 높여 철손을 낮추는 역할을 하며, 너무 적게 첨가되면 고주파 철손 저감에 효과가 없고 질화물이 미세하게 형성되어 자성을 열화시킬 수 있다. 반대로 너무 많이 첨가되면 제강과 연속주조 등의 모든 공정상에 문제를 발생시켜 생산성을 크게 저하시킬 수 있다. 따라서 전술한 범위에서 A1을 첨가할 수 있다.  Aluminum (Al) serves to lower the iron loss by increasing the specific resistance of the material, if too little is added to reduce the high-frequency iron loss, and the nitride is finely formed may degrade the magnetism. Conversely, too much addition can cause problems in all processes such as steelmaking and continuous casting, which can greatly reduce productivity. Therefore, A1 can be added in the above-mentioned range.
Mn : 0.3 내지 2. 5 중량 %  Mn: 0.3-2. 5 wt%
망간 (Mn)은 재료의 비저항을 높여 철손을 개선하고 황화물을 형성시키는 역할을 하며, 너무 적게 첨가되면 MnS가 미세하게 석출되어 자성을 열화시킬 수 있다. 반대로 너무 많이 첨가되면 자성에 불리한  Manganese (Mn) increases the specific resistance of the material to improve iron loss and form sulfides. If too little is added, MnS may be finely precipitated and degrade the magnetism. On the contrary, if too much is added
[ 111]집합조직의 형성을 조장하여 자속밀도가 감소할 수 있다. 따라서 전술한 범위에서 Mn을 첨가할 수 있다. [111] The magnetic flux density can be reduced by promoting the formation of aggregates. Therefore, Mn can be added in the above-mentioned range.
Ga 및 Ge : 0. 0005 내지 0.03 증량 %  Ga and Ge: 0.000 to 0.03 increment%
갈륨 (Ga) , 게르마늄 (Ge)은 강판의 표면 및 결정립계에 편석하여 소둔시 표면산화를 억제하며 집합조직을 개선하는 역할을 한다. 본 발명의 일 실시예에서 Ga 및 Ge 중 1종 이상이 포함될 수 있다. 즉, Ga만을 단독으로 포함하거나, Ge만을 단독으로 포함하거나, Ga 및 Ge를 동시에 포함할 수 있다. Ge만을 단독으로 포함하는 경우, Ge가 0.0005 내지 0.03 중량% 포함될 수 있다. Ga만을 단독으로 포함하는 경우, Ga가 0.0005 내지 0.03 중량 % 포함될 수 있다. Ga 및 Ge를 동시에 포함하는 경우, Ga 및 Ge의 합량이 0.0005 내지 0.03 중량 %가 되도록 포함될 수 있다. Ga 및 Ge 중 1종 이상이 너무 적게 첨가되면 그 효과가 없으며, 너무 많이 첨가되면 결정립계에 편석되어 재료의 인성을 저하시켜 자성개선 대비 생산성이 저하되므로 바람직하지 않다. 구체적으로 Ga 및 Ge를 동시에 포함하고, Ga를 0.0005 내자 0.02 중량 % 및 Ge를 0.0005 내지 0.02 중량 % 포함할 수 있다. 더욱 구체적으로 Ga를 0.0005 내지 0.01 중량 % 및 Ge를 0.0005 내지 0.01 중량 % 포함할 수 있다.  Gallium (Ga) and germanium (Ge) segregate on the surface and grain boundaries of the steel sheet to inhibit surface oxidation during annealing and improve the texture of the aggregates. In one embodiment of the present invention, one or more of Ga and Ge may be included. That is, only Ga may be included alone, only Ge may be included alone, or Ga and Ge may be included simultaneously. When only Ge is included alone, Ge may be included in 0.0005 to 0.03% by weight. When only Ga is included alone, Ga may be included in an amount of 0.0005 to 0.03% by weight. When including Ga and Ge at the same time, the total amount of Ga and Ge may be included so as to be 0.0005 to 0.03% by weight. If one or more of Ga and Ge is added too little, there is no effect, and if it is added too much, it will be segregated at the grain boundary, which will lower the toughness of the material and lower the productivity compared to the magnetic improvement. Specifically, Ga and Ge may be simultaneously included, and 0.0005 to 0.02 wt% of Ga and 0.0005 to 0.02 wt% of Ge may be included. More specifically, it may include 0.0005 to 0.01% by weight of Ga and 0.0005 to 0.01% by weight of Ge.
N : 0.0040 중량 % 이하  N: 0.0040 wt% or less
질소 (N )은 모재 내부에 미세하고 긴 A 1 N 석출물을 형성할 뿐 아니라, 기타 불순물과 결합하여 미세한 질화물을 형성하여 결정립 성장을 억제하여 철손을 악화시키므로 0.0040 증량 % 이하, 보다 구체적으로는 0.0030 증량 % 이하로 제한하는 것이 좋다. Nitrogen (N) not only forms fine and long A 1 N precipitates inside the base material, but also combines with other impurities to form fine nitrides to inhibit grain growth. The iron loss is worsened, so it is preferable to limit the amount to 0.0040% by weight or less, and more specifically, 0.0030% by weight or less.
C : 0.0040 중량 % 이하  C: 0.0040 wt% or less
탄소 (C)는 자기시효를 일으키고 기타 불순물 원소와 결합하여 탄화물을 생성하여 자기적 특성을 저하시키므로 0. 0040 중량 %이하, 보다 구체적으로는 0.0030 중량 % 이하로 제한하는 것이 좋다.  Since carbon (C) causes magnetic aging and combines with other impurity elements to form carbides, thereby lowering the magnetic properties, it is preferable to limit the carbon content to 0.040% by weight or less, and more specifically, 0.0030% by weight or less.
S : 0.0040 중량 % 이하  S: 0.0040 wt% or less
황 (S)는 Mn과 반웅하여 MnS 등의 황화물을 형성하여 결정립 성장성을 저하시키고 자구이동을 억제하는 역할을 하므로 0.0040 중량 % 이하로 제어하는 것이 바람직하다. 보다 수체적으로는 α.0030 중량 % 이하로 제한하는 것이 좋다.  Sulfur (S) reacts with Mn to form sulfides, such as MnS, thereby reducing grain growth and inhibiting magnetic migration, and therefore, the sulfur (S) is preferably controlled at 0.0040% by weight or less. More preferably, it should be limited to α.0030% by weight or less.
Ti : 0.0030 중량 % 이하  Ti: 0.0030 wt% or less
티타늄 (Ti )은 탄화물 또는 질화물을 형성하여 결정립 성장성 및 자구이동을 억제하는 역할을 하므로 0.0030 증량 % 이하, 보다 구체적으로는 0.0020 중량? 이하로 제한하는 것이 좋다.  Titanium (Ti) forms carbides or nitrides to inhibit grain growth and magnetic migration, so it is 0.0030% by weight or less, more specifically 0.0020% by weight? It is good to restrict to the following.
Nb : 0.0030 중량 % 이하  Nb: 0.0030 wt% or less
니오븀 (Nb)은 탄화물 또는 질화물을 형성하여 결정립 성장성 및 자구이동을 억제하는 역할을 하므로 0.0030 중량 % 이하, 보다 구체적으로는 0.0020 중량 % 이하로 제한하는 것이 좋다ᅳ  Since niobium (Nb) forms carbides or nitrides and serves to inhibit grain growth and magnetic migration, the niobium (Nb) is preferably limited to 0.0030% by weight or less, more specifically 0.0020% by weight or less.
V : 0.0030 중량 % 이하  V: 0.0030 wt% or less
바나듬 (V)은 탄화물 또는 질화물을 형성하여 결정립 성장성 및 자구이동을 억제하는 역할을 하므로 0.0030 중량 % 이하, 보다 구체적으로는 0.0020 중량 % 이하로 제한하는 것이 좋다.  Since the bar (V) forms carbides or nitrides and serves to inhibit grain growth and migration, it is preferable to limit the content to 0.0030% by weight or less, more specifically, 0.0020% by weight or less.
기타 불순물  Other impurities
전술한 원소 외에도 Mo , Mg , Cu 등의 불가피하게 흔입되는 불순물이 포함될 수 있디- . 이들 원소는 미량이지만 강내 개재물 형성 등을 통한 자성 악화를 야기할 수 있으므로 Mo , Mg : 각각 0.005 중량 % 이하, Cu : 0.025 중량 % 이하로 관리되어야 한다.  In addition to the elements described above, it may contain inevitable impurities such as Mo, Mg and Cu. Although these elements are trace amounts, they may cause magnetic deterioration through the formation of inclusions in the steel, etc., and therefore they should be controlled at 0.005 wt% or less and Cu: 0.025 wt% or less.
본 발명의 일 실시예에 의한 무방향성 전기강판은 하기 식 1을 만족한다. [식 1] Non-oriented electrical steel sheet according to an embodiment of the present invention satisfies the following equation 1. [Equation 1]
0.2 < ([Si] + [Al]+0.5x[Mn])/(([Ga] + [Ge])xi000) < 5.27  0.2 <([Si] + [Al] + 0.5x [Mn]) / (([Ga] + [Ge]) xi000) <5.27
(단, [Si], [Al], [Mn], [Ga] 및 [Ge]는 각각 Si, Al , Mn, Ga 및 Ge의 함량 (증량 %)를 나타낸다.)  (However, [Si], [Al], [Mn], [Ga], and [Ge] represent the contents (increase%) of Si, Al, Mn, Ga, and Ge, respectively.)
식 1의 값이 0.2 미만인 경우 Ga 및 Ge의 첨가 효과가 미미하여, 자성이 열위해 질 수 있다. 식 1의 값이 5.27을 초과하게 되면, Ga 및 Ge의 다량 첨가로 인하여 집합조직이 열위해지고, 포화자속밀도가 감소하여 고주파 자성개선 효과가 없어질 수 있다.  When the value of Equation 1 is less than 0.2, the effect of adding Ga and Ge is insignificant, and the magnetism may be deteriorated. When the value of Equation 1 exceeds 5.27, the large amount of Ga and Ge is inferior to the texture, the saturation magnetic flux density is reduced, the high frequency magnetic improvement effect can be lost.
본 발명의 일 실시예에 의한 무방향성 전기강판은 하기 식 2를 만족할 수 있다.  Non-oriented electrical steel sheet according to an embodiment of the present invention may satisfy the following equation 2.
[식 2]  [Equation 2]
3.3 < ([Si] + [Al]+0.5x[Mn]) < 5.5  3.3 <([Si] + [Al] + 0.5 x [Mn]) <5.5
(단, [Si], [Al] 및 [Mn]는 각각 Si, Al 및 Mn 의 함량 (중량 %)를 나타낸다.)  (However, [Si], [Al] and [Mn] represent the content (% by weight) of Si, Al and Mn, respectively.)
전술한 식 2의 값을 만족할 시, 냉간 압연성을 확보할 수 있다.  When satisfy | filling the value of Formula 2 mentioned above, cold rolling property can be ensured.
본 발명의 . 일 실사예에서는 Ga 및 Ge를 특정량 첨가함으로써 집합조직이 개선된다. 보다 구체적으로 강판 두께의 l/2t 내지 l/4t영역을 XRD 시험할 때, 집합조직의 강도비가 P200 I (P211 + P310) > 0.5를 만족할 수 있다. 이때, l/2t란 전체 .강판 두께에서 1/2 두께를 의미하고, l/4t란 전체 강판 두께에서 1/4 두께를 의미하고, P200은 XRD 시험에서, <200>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미하고, P211 은 <211>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미하고 , P310 은 <310>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미한다. <200>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직 (즉, 1)//<200>)은 자화용이축이 포함되어 있어, 그 비율이 많을수록 자성에 도움이 된다. 또한, <211>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 칩합 조직 (즉, ND/<211>) 및 <310>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직 (즉, ND//<310>)은 자화 곤란 축에 가까워 그 비율이 적을수록 자성에 도움이 된다. 본 발명의 일 실시예에서는 개선된 집합 조직을 통하여 저자장영역에서 자성 개선 효과를 얻었으며, 이는 고주파 철손 개선에 핵심적인 역할을 하는 것으로 분석된다. Of the present invention. In one practical example, the texture is improved by adding a specific amount of Ga and Ge. More specifically, when the XRD test of the l / 2t to l / 4t region of the steel sheet thickness, the strength ratio of the texture may satisfy P200 I (P211 + P310)> 0.5. In this case, l / 2t is the whole . 1 / 2t means the thickness of the steel sheet, l / 4t means 1/4 thickness of the total steel sheet thickness, P200 in the XRD test, the <200> plane is placed parallel to within 15 degrees in the vertical direction of the steel sheet It means the surface strength of the texture, P211 means the surface strength of the texture in which the <211> plane lies parallel to within 15 degrees in the vertical direction of the steel sheet, P310 is 15 degrees in the vertical direction of the steel sheet <310> It refers to the surface strength of the aggregates that lie parallel within. The aggregated structure (ie, 1) // <200>) in which the <200> plane lies parallel to the steel plate in the vertical direction within 15 degrees includes the biaxial axis for magnetization, and the larger the ratio, the better the magnetism. In addition, the aggregated structure in which the <211> plane lies parallel to the steel plate vertical direction within 15 degrees (ie, ND / <211>) and the aggregated structure where the <310> plane lies parallel to the steel plate vertical direction within 15 degrees. (Ie, ND // <310>) is close to the hard magnetization axis, and the smaller the ratio, the better the magnetism. Of the present invention In one embodiment, the improvement of the magnetic structure in the low magnetic field region through the improved aggregate organization, which is analyzed to play a key role in improving the high frequency iron loss.
본 발명의 일 실시예에 의한 무방향성 전기강판은 평균 결정립경이 50 내지 95 일 수 있다. 전술한 범위에서 고주파 철손이 우수하다.  Non-oriented electrical steel sheet according to an embodiment of the present invention may have an average grain size of 50 to 95. The high frequency iron loss is excellent in the above-mentioned range.
본 발명의 일 실시예에 의한 무방향성 전기강판은 투자율 및 보자력이 향상되어 고속회전에 적합하다. 결과적으로 친환경 자동차의 모터에 적용할 시, 주행거리 향상에 기여할 수 있다. 구체적으로 본 발명의 일 실시예에 의한 무방향성 전기강판은 lOOA/m에서의 투자율이 8000이상이며, B=2.0T에서의 보자력이 40A/m이하일 수 있다.  Non-oriented electrical steel sheet according to an embodiment of the present invention is improved in permeability and coercivity is suitable for high speed rotation. As a result, it can contribute to the improvement of mileage when applied to motors of eco-friendly cars. Specifically, the non-oriented electrical steel sheet according to one embodiment of the present invention may have a magnetic permeability of 8000 or more and a coercive force of 40 A / m or less at B = 2.0T.
본 발명의 일 실시예에 의한 무방향성 전기강판은 비저항이 55 내지 75μΩ·α일 수 있다. 비저항이 너무 높으면 자속밀도가 열위해져 모터로 적합하지 않게 된다.  Non-oriented electrical steel sheet according to an embodiment of the present invention may have a specific resistance of 55 to 75μΩ · α. If the resistivity is too high, the magnetic flux density will be inferior, making the motor unsuitable.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 중량 %로 Si : 2.0 내지 3.5%, A1 : 0.3 내지 2.5%, Mn: 0.3 내지 2.5% 및 Ga 및 Ge중 1종 이상을 각각 단독 또는 그 합량으로 0.0005 내지 0.03% 및 잔부는 Fe 및 볼가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열하는 단계 ; 슬라브를 열간 압연하여 열연판을 제조하는 단계 ; 열연판올 냉간 압연하여 냉연판을 제조하는 단계 및 넁연판을 최종 소둔하는 단계를 포함한다.  Method for producing a non-oriented electrical steel sheet according to an embodiment of the present invention by weight% Si: 2.0 to 3.5%, A1: 0.3 to 2.5%, Mn: 0.3 to 2.5% and one or more of Ga and Ge, respectively Or 0.0005 to 0.03% of the total amount and the balance include Fe and unavoidable impurities, and heating the slab satisfying the following formula 1; Hot rolling a slab to produce a hot rolled sheet; Cold rolling of the hot rolled sheet to prepare a cold rolled sheet and the final annealing of the molten sheet.
먼저 슬라브를 가열한다. 슬라브 내의 각 조성의 첨가 비율을 한정한 이유는 전술한 무방향성 전기강판의 조성 한정 이유와 동일하므로, 반복되는 설명을 생략한다. 후술할 열간압연, 열연판 소둔, 냉간압연, 최종소둔 등의 제조 과정에서 슬라브의 조성은 실질적으로 변동되지 아니하므로, 슬라브의 조성과 무방향성 전기강판의 조성이 실질적으로 동일하다.  First heat the slab. The reason for limiting the addition ratio of each composition in the slab is the same as the reason for limiting the composition of the non-oriented electrical steel sheet described above, and thus repeated description is omitted. Since the composition of the slab is not substantially changed in the manufacturing process of hot rolling, hot rolling annealing, cold rolling, final annealing, and the like, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
슬라브는 용강을 제조하는 단계; 용강에 Si 합금철, A1 합금철 및 Mn 합금철을 첨가하는 단계; 및 용강에 Ga 및 Ge증 1종 이상을 첨가하고, 연속주조하여 제조할 수 있다. Si 합금철, A1 합금철, Mn 합금철, Ga, Ge 등은 전술한 슬라브의 조성 범위에 해당하도록 조절하여 투입할 수 있다. 슬라브를 가열로에 장입하여 1100 내지 1250 °C로 가열 한다. 1250°C를 초과하는 온도에서 가열시 석출물이 재용해되어 열간압연 이후 미세하게 석출될 수 있다. The slab is produced by the molten steel; Adding Si alloy iron, A1 alloy iron, and Mn alloy iron to molten steel; And at least one Ga and Ge increase in molten steel, and can be produced by continuous casting. Si alloy iron, A1 alloy iron, Mn alloy iron, Ga, Ge and the like can be added to adjust to correspond to the composition range of the above-described slab. Charge the slabs into a furnace and heat them to 1100 to 1250 ° C. When heated at a temperature above 1250 ° C, the precipitate may be re-dissolved to be finely precipitated after hot rolling.
가열된 슬라브는 2 내지 2 .3瞧로 열간 압연하여 열연판으로 제조된다. 열연판을 제조하는 단계에서 마무리온도는 800 내지 1000°C 일 수 있다. The heated slabs are hot rolled to 2 to 3.2 kPa to produce hot rolled plates. Finishing temperature in the step of manufacturing a hot rolled sheet may be 800 to 1000 ° C.
열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다. 이 때 열연판 소둔 온도는 850 내지 1150 °C일 수 있다. 열연판소둔 온도가 850 °C 미만이면 조직이 성장하지 않거나 미세하게 성장하여 자속밀도의 상승 효과가 적으며, 소둔온도가 1150 °C를 초과하면 자기특성이 오히려 열화되고, 판형상의 변형으로 인해 압연작업성이 나빠질 수 있다. 더욱 구체적으로 온도범위는 950 내지 1125 °C일 수 있다. 더욱 구체적으로 열연판의 소둔온도는 900 내지 1100 °C이다. 열연판 소둔은 필요에 따라 자성에 유리한 방위를 증가시키기 위하여 수행되는 것이며, 생략도 가능하다. After preparing the hot rolled sheet, the method may further include hot-rolled sheet annealing. At this time, the hot rolled sheet annealing temperature may be 850 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 850 ° C, the structure does not grow or finely grow, so there is little synergistic effect of the magnetic flux density. If the annealing temperature exceeds 1150 ° C, the magnetic properties deteriorate, and the rolling due to the deformation of the plate shape Workability can worsen. More specifically, the temperature range may be 950 to 1125 ° C. More specifically, the annealing temperature of the hot rolled sheet is 900 to 1100 ° C. Hot-rolled sheet annealing is performed to increase the orientation favorable to the magnetic, if necessary, may be omitted.
다음으로, 열연판을 산세하고 소정의 판두께가 되도록 냉간 압연한다. 열연판 두께에 따라 다르게 적용될 수 있으나, 70 내지 95%의 압하율을 적용하여 최종두께가 0.2 내지 0.65画가 되도록 냉간 압연 할 수 있다.  Next, the hot rolled sheet is pickled and cold rolled to a predetermined sheet thickness. Although it may be applied differently according to the thickness of the hot rolled sheet, it may be cold rolled so that the final thickness may be 0.2 to 0.65 kPa by applying a reduction ratio of 70 to 95%.
최종 냉간압연된 냉연판은 평균 결정립경이 50 내지 95 이 되도록 최총 소둔을 실시한다. 최종 소둔 온도는 750 내지 1050°C가 될 수 있다. ' 최종 소둔 은도가 너무 낮으면 재결정이 층분히 발생하지 못하고, 최종 소둔 온도가 너무 높으면 결정립의 급격한 성장이 발생하여 자속밀도와 고주파 철손이 열위해 질 수 있다.. 더욱 구체적으로 900 내지 loocrc의 온도에서 최종 소둔할 수 있다. 최종 소둔 과정에서 전 단계인 넁간압연 단계에서 형성된 가공 조직이 모두 (즉, 99% 이상) 재결정될 수 있다. The final cold rolled cold rolled sheet is subjected to maximum annealing so that the average grain size is 50 to 95. The final annealing temperature can be from 750 to 1050 ° C. 'If the final annealing silver is too low, recrystallization does not occur too much. If the final annealing temperature is too high, rapid growth of crystal grains may occur, causing magnetic flux density and high frequency iron loss to become thermal. More specifically, the temperature of 900 to loocrc Final annealing at In the final annealing process, all the processed tissue formed in the pre-rolling step can be recrystallized (ie, 99% or more).
이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.  Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for illustrating the present invention, and the present invention is not limited thereto.
실시예 1  Example 1
하기 표 1과 같이 조성되는 슬라브를 제조하였다. 표 1에 기재된 성분 외의 C , S , N , Ti , Nb , V 등은 모두 0. 003% 이하로 제어하였다. 슬라브를 1150°C로 가열하고, 850°C에서 열간마무리 압연하여 판두께 2.0譲의 열연판을 제작하였다. 열간압연된 열연판은 1100°C에서 4분간 소둔한 다음 산세하였다. 그 뒤 냉간압연하여 판두께를 0.25隱로 한 후 1000 °C 온도에서 38초간 최종소둔을 행하였다. 자성은 Singl e Sheet tester를 이용하여 압연방향 및 수직방향의 평균값으로 결정하여 하기 표 2에 나타내었다. 투자율은 100A/m에서의 투자율이며, 보자력은 B=2.0T에서의 보자력이다. 집합조직은 l/2t까지 강판을 절삭하고 XRDO (선 회절 분석) 시험방법을 이용하여 각각의 면강도를 구였다. To prepare a slab composition as shown in Table 1. C, S, N, Ti, Nb, V and the like except for the components shown in Table 1 were all controlled at 0.003% or less. The slab was heated to 1150 ° C., and hot-rolled at 850 ° C. to produce a hot rolled sheet having a plate thickness of 2.0 kPa. The hot rolled hot rolled sheet was annealed at 1100 ° C. for 4 minutes and then pickled. After the cold rolling, the plate thickness was 0.25 kPa, and the final annealing was performed at 1000 ° C. for 38 seconds. Magnetism was determined by the average value of the rolling direction and the vertical direction using a single sheet tester is shown in Table 2 below. Permeability is the magnetic permeability at 100A / m, and coercive force is the coercive force at B = 2.0T. The aggregates were cut into steel plates up to 1/2 t and each surface strength was determined using the XRDO (Line Diffraction Analysis) test method.
【표 11 Table 11
Figure imgf000012_0001
【표 2】
Figure imgf000012_0001
Table 2
Figure imgf000013_0001
Figure imgf000013_0001
표 1 및 표 2에서 나타나듯이, 실시예 강종의 경우, 집합조직이 개선되어 투자율이 크며 및 보자력이 작다. 반면, Ga , Ge의 첨가량이 본 발명의 범위를 벗어나는 비교예 강종의 경우, 집합조직이 개선되지 않아 투자율 및 보자력이 열위하고 결정립 성장성도 열위하였다.  As shown in Table 1 and Table 2, in the case of the example steel grades, the aggregate structure is improved, so that the permeability is large and the coercive force is small. On the other hand, in the case of comparative steel grades in which the addition amount of Ga and Ge is out of the scope of the present invention, the aggregate structure was not improved, so the permeability and coercivity were inferior, and grain growth was also inferior.
본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것올 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.  The present invention is not limited to the embodiments and can be manufactured in various different forms, and those skilled in the art to which the present invention pertains may change to other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that it may be practiced. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【청구범위】 【청구항 1】 중량 %로 Si: 2.0 내지 3.5%, A1: 0.3 내지 2.5%, Mn: 0.3 내지 2.5% 및 _Ga 및 Ge중 1종 이상을 각각 단독 또는 그 합량으로 으 0005 내지 0.03¾> 및 잔부는 Fe 및 불가피한 블순물을 포함하고, 하기 식 1을 만족하는 무방향성 전기강판. [Claim 1] Claim 1 in weight% of Si: 2.0 to 3.5%, A1: 0.3 to 2.5%, Mn: 0.3 to 2.5%, and one or more of _Ga and Ge, each alone or in a sum, 0005 to 0.03 ¾> and the balance include Fe and unavoidable impurities, the non-oriented electrical steel sheet that satisfies the following formula (1).
[식 1]  [Equation 1]
0.2 < ( [Si ]+[Al ]+0.5 [Mn] )/( ( [Ga]+[Ge] ) 1000) < 5.27  0.2 <([Si] + [Al] +0.5 [Mn]) / (([Ga] + [Ge]) 1000) <5.27
(단, [Si], [Al], [Mn], [Ga] 및 [Ge]는 각각 Si, Al , Mn, Ga 및 Ge의 함량 (중량 %)를 나타낸다.)  (However, [Si], [Al], [Mn], [Ga], and [Ge] represent the contents (% by weight) of Si, Al, Mn, Ga, and Ge, respectively.)
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
N: 0.0040% 이하 (0%를 제외함), C: 0.0040%이하 (0%를 제외함), S: 0.0040%이하 (0%를 제외함), Ti: 0.0030%이하 (0%를 제외함), Nb: 0.0030%이하 (◦%를 제외함) 및 V: 0.0040%이하 (0%를 제외함)를 더 포함하는 무방향성 전기강판.  N: 0.0040% or less (excluding 0%), C: 0.0040% or less (excluding 0%), S: 0.0040% or less (excluding 0%), Ti: 0.0030% or less (excluding 0%) ), Nb: 0.0030% or less (excluding%) and V: 0.0040% or less (excluding 0%).
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
Ga: 0.0005 내지 0.02 증량 % 및 Ge: 0.0005 내지 0.02 중량 % 포함하는 무방향성 전기강판 .  Non-oriented electrical steel sheet comprising Ga: 0.0005 to 0.02% by weight and Ge: 0.0005 to 0.02% by weight.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
하기 식 2를 만족하는 무방향성 전기강판.  Non-oriented electrical steel sheet satisfying the following formula 2.
[삭 2]  [2]
3.3 < ([Si] + [Al]+0.5X[Mn]) < 5.5  3.3 <([Si] + [Al] + 0.5X [Mn]) <5.5
(단, [Si], [Al] 및 [Mn]는 각각 Si, ΑΓ및 Mn 의 함량 (증량 %)를 나타낸다.)  (However, [Si], [Al] and [Mn] represent the contents (increase%) of Si, AΓ and Mn, respectively.)
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method of claim 1,
강판 두께의 l/2t 내지 l/4t영역을 XRD 시험할 때, 집합조직의 강도비가 P200 I (P211 + P310) > 0.5를 만족하는 무방향성 전기강판.When XRD test of l / 2t to l / 4t area of steel plate thickness, Non-oriented electrical steel sheet whose strength ratio satisfies P200 I (P211 + P310)> 0.5.
(단, l/2t란 전체 강판 두께에서 1/2 두께를 의미하고, l/4t란 전체 강판 두께에서 1/4 두께를 의미하고, P200은 XRD 시험에서, <200>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미하고, P211 은 <211>면이 강판 수직방향에 15도 이내에서 평행하게 놓여 있는 집합 조직의 면강도를 의미하고, P310 은 <310>면이 강판 수직방향에' 15도 이내에서 평행하게' 놓여 있는 집합 조직의 면강도를 의미한다.) (However, l / 2t means 1/2 thickness of the total steel sheet thickness, l / 4t means 1/4 thickness of the entire steel sheet thickness, and P200 is the X200 test, the <200> plane is in the vertical direction of the steel sheet. It means the surface strength of the aggregate structure lying parallel within 15 degrees, P211 means the surface strength of the texture structure is placed parallel to within 15 degrees in the vertical direction of the steel sheet, P310 is <310> It means the surface strength of the aggregate where the surface lies ' parallel within 15 degrees ' in the vertical direction of the steel sheet.)
【청구항 6】  [Claim 6]
제 1항에 있어서,  The method of claim 1,
평균 결정립경이 50 내지 9 zm인 무방향성 전기강판. Non-oriented electrical steel sheet having an average grain size of 50 to 9 zm.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
100A/m에서의 투자율이 8000이상이며, B=2.0T에서의 보자력이 40A/m이하인 무방향성 전기강판.  Non-oriented electrical steel sheet with a permeability of 100 A / m or more and 8000 and a coercive force of 40 A / m or less at B = 2.0T.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
비저항이 55 내지 75μΩ·αη인 무방향성 전기강판 .  Non-oriented electrical steel sheet having a specific resistance of 55 to 75 μΩ · αη.
【청구항 9】  [Claim 9]
증량 %로 Si: 2.0 내지 3.5%, A1: 0.3 내지 2.5%, Mn: 0.3 내지 2.5% 및 Ga 및 Ge중 1종 이상을 각각 단독 또는 그 합량으로' 0.0005 내지 0.03% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 I을 만족하는 슬라브를 가열하는 단계 ; % By weight of Si: 2.0 to 3.5%, A1: 0.3 to 2.5%, Mn: 0.3 to 2.5% and one or more of Ga and Ge, alone or in combination, ' 0.0005 to 0.03% and the balance are Fe and unavoidable impurities Comprising, heating a slab that satisfies Formula I;
슬라브를 열간 압연하여 열연판을 제조하는 단계;  Hot rolling the slab to produce a hot rolled sheet;
상기 열연판을 냉간 압연하여 냉연판을 제조하는 단계 및  Cold rolling the hot rolled sheet to produce a cold rolled sheet; and
상기 냉연판을 최종 소둔하는 단계를 포함하는 무방향성 전기강판의 제조방법.  Method for producing a non-oriented electrical steel sheet comprising the final annealing the cold rolled sheet.
[식 1]  [Equation 1]
0.2 < ([Si] + [Al]+0.5x[Mn])/(([Ga] + [Ge])X1000) < 5.27  0.2 <([Si] + [Al] + 0.5x [Mn]) / (([Ga] + [Ge]) X1000) <5.27
(단, [Si], [Al], [Mn], [Ga] 및 [Ge]는 각각 Si, Al, Mn, Ga 및 Ge의 함량 (증량 %)를 나타낸다.) ([Si], [Al], [Mn], [Ga] and [Ge] are Si, Al, Mn, Ga and Content of Ge (increase%).)
【청구항 10]  [Claim 10]
저 19항에 있어서,  According to claim 19,
상기 슬라브는 N: 0.0040% 이하 (0%를 제외함), C: 0.0040%이하 (0%를 제외함), S: 0.0040%이하 (0%를 제외함), Ti: 0.0030%이하 (0%를 제외함), Nb: 0.0030%이하 (0%를 제외함) 및 V: 0.0040%이하 (0%를 제외함)를 더 포함하는 무방향성 전기강판의 제조방법 .  The slab is N: 0.0040% or less (except 0%), C: 0.0040% or less (except 0%), S: 0.0040% or less (except 0%), Ti: 0.0030% or less (0% And Nb: 0.0030% or less (except 0%) and V: 0.0040% or less (except 0%).
【청구항 11】  [Claim 11]
제 9항에 있어서,  The method of claim 9,
상기 슬라브는 Ga: 0.0005 내지 0.02 중량 % 및 Ge: 0.0005 내지 0.02 중량 % 포함하는 무방향성 전기강판의 제조방법 .  The slab is Ga: 0.0005 to 0.02% by weight and Ge: 0.0005 to 0.02% by weight manufacturing method of a non-oriented electrical steel sheet.
【청구항 12】  [Claim 12]
제 9항에. 있어서, In paragraph 9 . In
상기 슬라브는 하기 식 2를 만족하는 무방향성 전기강판의 제조방법 . [식 2]  The slab is a method of manufacturing a non-oriented electrical steel sheet satisfying the following formula 2. [Equation 2]
3.3 < ([Si] + [Al]+0 5x[Mn]) < 5.5  3.3 <([Si] + [Al] + 0 5x [Mn]) <5.5
(단, [Si], [A1] 및 [Mn]는 각각 Si, A1 및 Mn 의 함량 (중량 %)를 나타낸다.)  (However, [Si], [A1] and [Mn] represent the contents (% by weight) of Si, A1 and Mn, respectively.)
【청구항 13】  [Claim 13]
제 9항에 있어서,  The method of claim 9,
상기 슬라브를 가열하는 단계 이전에,  Prior to heating the slab,
용강을 제조하는 단계 ;  Manufacturing molten steel;
상기 용강에 Si 합금철, A1 합금철 및 Mn 합금철을 첨가하는 단계; 및  Adding Si alloy iron, A1 alloy iron and Mn alloy iron to the molten steel; And
상기 용강에 Ga 및 Ge중 1종 이상을 첨가하고, 연속주조하여 슬라브를 제조하는 단계;를 더 포함하는 무방향성 전기강판의 제조방법 . 【청구항 14】  Adding at least one of Ga and Ge to the molten steel, and continuously casting the slab to produce a slab; Method for producing a non-oriented electrical steel sheet further comprising. [Claim 14]
제 9항에 있어서,  The method of claim 9,
상기 열연판을 제조하는 단계 이후,  After manufacturing the hot rolled sheet,
상기 열연판을 열연판 소둔하는 단계를 더 포함하는 무방향성 전기강판의 제조방법 . Non-oriented further comprising the step of annealing the hot rolled sheet Method for manufacturing electrical steel sheet.
PCT/KR2017/015023 2016-12-19 2017-12-19 Non-oriented electrical steel sheet and manufacturing method therefor WO2018117598A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17884042.7A EP3556878A4 (en) 2016-12-19 2017-12-19 Non-oriented electrical steel sheet and manufacturing method therefor
US16/469,878 US11060170B2 (en) 2016-12-19 2017-12-19 Non-oriented electrical steel sheet and manufacturing method therefor
CN201780078601.6A CN110088319B (en) 2016-12-19 2017-12-19 Non-oriented electrical steel sheet and method for manufacturing the same
JP2019554463A JP6821055B2 (en) 2016-12-19 2017-12-19 Non-oriented electrical steel sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160173566A KR101902438B1 (en) 2016-12-19 2016-12-19 Non-oriented electrical steel sheet and method for manufacturing the same
KR10-2016-0173566 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018117598A1 true WO2018117598A1 (en) 2018-06-28

Family

ID=62626627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015023 WO2018117598A1 (en) 2016-12-19 2017-12-19 Non-oriented electrical steel sheet and manufacturing method therefor

Country Status (6)

Country Link
US (1) US11060170B2 (en)
EP (1) EP3556878A4 (en)
JP (1) JP6821055B2 (en)
KR (1) KR101902438B1 (en)
CN (1) CN110088319B (en)
WO (1) WO2018117598A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210062287A1 (en) * 2017-12-26 2021-03-04 Posco Non-oriented electrical steel sheet and method for preparing same
EP3889289A4 (en) * 2018-11-30 2021-10-06 Posco Non-directional electrical steel sheet and method for producing same
EP3889290A4 (en) * 2018-11-30 2021-10-06 Posco Non-directional electrical steel sheet and method for producing same
EP4079889A4 (en) * 2019-12-20 2023-05-24 Posco Non-oriented electrical steel sheet and method for manufacturing same
JP7465354B2 (en) 2019-12-19 2024-04-10 ポスコホールディングス インコーポレーティッド Non-oriented electrical steel sheet and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009393B1 (en) 2017-12-26 2019-08-09 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102043289B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102361872B1 (en) * 2019-12-19 2022-02-10 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125495A (en) * 1991-10-31 1993-05-21 Nkk Corp Nonoriented silicon steel sheet excellent in magnetic property
JPH0754044A (en) * 1993-08-19 1995-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet extremely excellent in magnetic characteristics
JP2581335B2 (en) * 1991-03-25 1997-02-12 日本鋼管株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
WO2016027565A1 (en) * 2014-08-20 2016-02-25 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
KR20160078183A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124495A (en) 1991-11-06 1993-05-21 Toyota Motor Corp Vehicle deceleration control device
KR100544417B1 (en) 1998-12-16 2006-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
TW498107B (en) 2000-04-07 2002-08-11 Nippon Steel Corp Low iron loss non-oriented electrical steel sheet excellent in workability and method for producing the same
JP3280959B1 (en) 2000-04-07 2002-05-13 新日本製鐵株式会社 Low iron loss non-oriented electrical steel sheet with good workability and method for producing the same
KR100544612B1 (en) 2001-12-22 2006-01-24 주식회사 포스코 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100544584B1 (en) 2001-12-22 2006-01-24 주식회사 포스코 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
JP4380199B2 (en) 2003-03-31 2009-12-09 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP2005120431A (en) 2003-10-16 2005-05-12 Jfe Steel Kk Method for manufacturing high-strength nonoriented silicon steel sheet having excellent magnetic characteristic
KR101059215B1 (en) 2003-12-23 2011-08-24 주식회사 포스코 Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR101067478B1 (en) 2003-12-23 2011-09-27 주식회사 포스코 Non-oriented electrical sheets with improved magnetic properties and method for manufacturing the same
KR101141278B1 (en) 2004-12-28 2012-05-04 주식회사 포스코 method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties
WO2007007423A1 (en) * 2005-07-07 2007-01-18 Sumitomo Metal Industries, Ltd. Non-oriented electromagnetic steel sheet and process for producing the same
KR100832342B1 (en) 2006-12-14 2008-05-26 주식회사 포스코 Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
KR100733345B1 (en) 2005-12-27 2007-06-29 주식회사 포스코 Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
JP5076510B2 (en) * 2007-01-17 2012-11-21 住友金属工業株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5126788B2 (en) * 2008-07-30 2013-01-23 新日鐵住金株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
KR101037159B1 (en) 2008-10-02 2011-05-26 주식회사 포스코 Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP2010121150A (en) 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same
KR101051747B1 (en) 2008-11-26 2011-07-25 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties
KR101089305B1 (en) 2008-12-19 2011-12-02 주식회사 포스코 Non-directional Electrical Steel Sheets having Low Anisotropy and Manufacturing Method thereof
JP2011084761A (en) 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP5699642B2 (en) * 2010-04-30 2015-04-15 Jfeスチール株式会社 Motor core
JP2014044929A (en) 2012-08-02 2014-03-13 Nippon Soken Inc Secondary battery device, internal gas generation amount estimation method in secondary battery, control method of secondary battery, and manufacturing method for secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581335B2 (en) * 1991-03-25 1997-02-12 日本鋼管株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
JPH05125495A (en) * 1991-10-31 1993-05-21 Nkk Corp Nonoriented silicon steel sheet excellent in magnetic property
JPH0754044A (en) * 1993-08-19 1995-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet extremely excellent in magnetic characteristics
WO2016027565A1 (en) * 2014-08-20 2016-02-25 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
KR20160078183A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3556878A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210062287A1 (en) * 2017-12-26 2021-03-04 Posco Non-oriented electrical steel sheet and method for preparing same
US11634786B2 (en) * 2017-12-26 2023-04-25 Posco Co., Ltd Non-oriented electrical steel sheet and method for preparing same
EP3889289A4 (en) * 2018-11-30 2021-10-06 Posco Non-directional electrical steel sheet and method for producing same
EP3889290A4 (en) * 2018-11-30 2021-10-06 Posco Non-directional electrical steel sheet and method for producing same
JP7465354B2 (en) 2019-12-19 2024-04-10 ポスコホールディングス インコーポレーティッド Non-oriented electrical steel sheet and its manufacturing method
EP4079889A4 (en) * 2019-12-20 2023-05-24 Posco Non-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP6821055B2 (en) 2021-01-27
US11060170B2 (en) 2021-07-13
US20200080175A1 (en) 2020-03-12
CN110088319B (en) 2021-10-08
EP3556878A4 (en) 2019-11-20
KR20180070949A (en) 2018-06-27
KR101902438B1 (en) 2018-09-28
EP3556878A1 (en) 2019-10-23
JP2020504787A (en) 2020-02-13
CN110088319A (en) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2018117598A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
US11634786B2 (en) Non-oriented electrical steel sheet and method for preparing same
KR101901313B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
CN111527218B (en) Non-oriented electrical steel sheet and method for manufacturing the same
WO2015099315A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP7299893B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7445651B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2022509675A (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
US20240038422A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2024519776A (en) Non-oriented electrical steel sheet and its manufacturing method
KR20190078361A (en) Non-oriented electrical steel sheet method for manufacturing the same
KR20140060727A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR20140060725A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR20150048690A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR102438478B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150045993A (en) Non-oriented electrical steel steet and manufacturing method for the same
KR20230094459A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240075044A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240098421A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240098931A (en) Non-oriented electrical steel sheet and method of manufacturing the same
JP2024500442A (en) Non-oriented electrical steel sheet and its manufacturing method
WO2019132375A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
KR20140060726A (en) Non-oriented electrical steel steet and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017884042

Country of ref document: EP