KR101051747B1 - Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties - Google Patents

Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties Download PDF

Info

Publication number
KR101051747B1
KR101051747B1 KR1020080117793A KR20080117793A KR101051747B1 KR 101051747 B1 KR101051747 B1 KR 101051747B1 KR 1020080117793 A KR1020080117793 A KR 1020080117793A KR 20080117793 A KR20080117793 A KR 20080117793A KR 101051747 B1 KR101051747 B1 KR 101051747B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
electrical steel
oriented electrical
annealing
Prior art date
Application number
KR1020080117793A
Other languages
Korean (ko)
Other versions
KR20100059134A (en
Inventor
김재성
김재관
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080117793A priority Critical patent/KR101051747B1/en
Publication of KR20100059134A publication Critical patent/KR20100059134A/en
Application granted granted Critical
Publication of KR101051747B1 publication Critical patent/KR101051747B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 모터, 변압기와 같은 전기기기의 철심으로 사용되는 자성이 우수한 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to an electric steel sheet having excellent magnetic properties used as an iron core of an electric device such as a motor and a transformer, and a method of manufacturing the same.

본 발명은, 중량%로 C:0.005% 이하, Si:4.0% 이하, P:0.1% 이하, S:0.001% 이하, Mn:0.1~1.0%, Al:0.45 ~1.5%, Cu:0.01~0.3%, N:0.003% 이하, Ti:0.005% 이하이고, Al 함량에 따라 아래 [식 1]과 같이 Sn을 포함하는 것을 특징으로 한다. In the present invention, C: 0.005% or less, Si: 4.0% or less, P: 0.1% or less, S: 0.001% or less, Mn: 0.1 to 1.0%, Al: 0.45 to 1.5%, Cu: 0.01 to 0.3 by weight% %, N: 0.003% or less, Ti: 0.005% or less, and depending on the Al content is characterized in that it contains Sn as shown in the following [Formula 1].

[식 1] 800 > Sn(ppm) > 285 x Al(wt%) - 125 800> Sn (ppm)> 285 x Al (wt%)-125

본 발명은 고급 무방향성 전기강판에서 최종소둔시 노점과 Al함량에 따른 Sn의 투입량을 최적화함으로써 질화 및 산화물 양을 제어하여 철손을 줄임으로써, 모터 철심으로 사용시에 에너지 손실을 줄일 수 있다.The present invention can reduce the energy loss by using the iron core of the motor by reducing the iron loss by optimizing the amount of Sn and the amount of Sn according to the dew point and Al content during final annealing in high-quality non-oriented electrical steel sheet.

Description

자성이 우수한 무방향성 전기강판의 제조 방법{Method for manufacturing non-oriented electrical steel sheets having excellent magnetic property}Method for manufacturing non-oriented electrical steel sheets having excellent magnetic property

본 발명은 모터, 변압기와 같은 전기기기의 철심으로 사용되는 자성이 우수한 전기강판의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an electrical steel sheet having excellent magnetic properties used as an iron core of an electric device such as a motor and a transformer.

전 세계적으로 계속되고 있는 공업화에 따라 모터와 변압기의 수요가 증가하고 있으며, 특히, 환경오염 방지와 에너지 절감이 요구됨에 따라 고 효율, 고 부가가치 모터 및 변압기의 수요가 점차 증가하고 있는 추세이다. 이에 따라 모터와 변압기의 철심 재료로 사용 되는 전기강판의 효율 증가를 위한 노력이 진행되고 있다.As industrialization continues worldwide, demand for motors and transformers is increasing. In particular, demand for high efficiency, high value-added motors and transformers is gradually increasing as environmental pollution prevention and energy saving are required. Accordingly, efforts have been made to increase the efficiency of electrical steel sheets used as iron core materials for motors and transformers.

전기강판의 효율 증가를 위해, 기존에는 Si 합금원소를 증가시킴으로써 자화값의 증가 및 여기 전류에 의한 철손을 감소시켜 왔으며, 최근에는 압연성 열위에 따른 Si 투입량의 한계 때문에 Al 합금원소를 증가시킴으로써 철손을 감소시켜왔다.In order to increase the efficiency of electrical steel sheet, the increase of the magnetization value and the iron loss due to the excitation current has been reduced by increasing the Si alloy element, and recently, the iron loss by increasing the Al alloy element due to the limitation of Si input due to the inferior rolling property Has been reduced.

하지만, Al의 증가와 S와 같은 불순물 원소의 감소는 표면의 반응성을 높임으로써 최종소둔시 표층하에 Al계 질화물 및 산화물을 생성하여 오히려 철손을 악화시키는 현상이 발견되어 왔다. 따라서, 이에 의한 철손 열화를 방지하기 위해 미량원소를 투입하거나, 표면 Al혹은 Si농화층을 만들거나, S의 함량을 조절하는 등의 연구가 진행되어 왔다.However, an increase in Al and a decrease in impurity elements such as S have been found to increase the surface reactivity, thereby producing Al-based nitrides and oxides under the surface layer during final annealing, thereby worsening iron loss. Therefore, in order to prevent the deterioration of iron loss caused by this, a study has been conducted such as adding a trace element, making a surface Al or Si enriched layer, or controlling the content of S.

예를 들면, 일본 공개특허 1998-183310호와 2001-140018에는 산세를 충분히 하여 표면 조도를 향상시킴으로써, 치밀한 1㎛ 내외의 Al이나 Si농화층을 만들어서 표층하 질화물을 억제하는 기술이 개시되어 있다. 또한, 일본특허 2006-241563에는 650도까지 노내 수증기 분압비를 0.3이상 0.5 이하로 하되, 650도 이상의 소정의 소둔 균열 온도에서는 수증기 수소 분압비를 0.1~0.3 사이로 조절하여 2~20nm의 SiO2 및 MnO층을 만들어서 표층하 석출물을 막아 철손을 향상시키는 기술이 개시되어 있다. 또한 일본특허 1998-317111과 2000-328207에는 S의 함량에 따라 미량원소를 투입하여 표층하 질화를 막는 기술이 개시되어 있는데, S가 10ppm 이하일때 Sb나 Sn을 투입하여 Al계 산화물을 형성하여 질화물을 막아 철손을 향상시키고자 했다.For example, Japanese Patent Application Laid-Open Nos. 1998-183310 and 2001-140018 disclose techniques for suppressing subsurface nitride by forming a dense Al or Si thick layer of about 1 µm by improving the surface roughness by sufficiently pickling. In addition, Japanese Patent 2006-241563 has an internal steam partial pressure ratio of 0.3 to 0.5 up to 650 degrees, but at a predetermined annealing crack temperature of 650 degrees, the steam hydrogen partial pressure ratio is adjusted to between 0.1 and 0.3 to provide SiO 2 and 2-20 nm. A technique for improving iron loss by forming an MnO layer to prevent subsurface precipitates is disclosed. In addition, Japanese Patents 1998-317111 and 2000-328207 disclose a technique for preventing subsurface nitriding by adding a trace element according to the content of S. When S is 10 ppm or less, Sb or Sn is added to form Al-based oxides to form nitrides. I tried to improve the iron loss by preventing.

하지만, 표층에 Al 농화층을 사용할 경우 Al 농화층에 의한 질소흡수가 진행되 어, 코팅 밀착성을 열위시킬 가능성이 크고, 농화층을 만들기 위해서는 Al을 증가시켜야 하는데, 이 때 발생하는 인성저하에 의한 작업성 문제가 발생하기 쉽다. 초반에 수증기 수소 분압비를 올리는 경우 SiO2층을 만들어 철손을 향상시키는 기술의 경우, 수소가 투입되는 연속 가열대에서 분압이 다른 영역을 설정함으로써 설비 운영에 있어 어려움이 있다. 또한, Sb, Sn과 같은 미량원소를 사용한 특허의 경우 표층하 질화를 발생시키는 주된 원인인 강 내부의 Al함량과 분위기 조건 등을 명시하지 않아 현장 적용에 문제점이 있었다.However, when the Al thickening layer is used for the surface layer, nitrogen absorption by the Al thickening layer proceeds, which is likely to infer the adhesion of the coating, and in order to make the thickening layer, Al must be increased. Workability problems are likely to occur. In the early stage of increasing the hydrogen partial pressure ratio of steam, a technique of improving the iron loss by forming a SiO 2 layer has difficulty in operating a facility by setting a region where the partial pressure is different in a continuous heating zone where hydrogen is introduced. In addition, in the case of the patent using a trace element such as Sb, Sn, there is a problem in the field application because it does not specify the Al content and atmosphere conditions inside the steel, which is the main cause of subsurface nitriding.

본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로, 최종 소둔과정에서 발생하는 표층하 질화 및 산화물에 의한 자성 열화를 막기 위해, 노점을 낮게 제어하고, Al에 따라 적절한 Sn양을 투입함으로써 자성이 우수한 무방향성 전기강판을 얻는 것을 목적으로 한다. The present invention was devised to solve the above problems. In order to prevent magnetic deterioration due to subsurface nitriding and oxides occurring during the final annealing process, the dew point is controlled to be low, and the amount of Sn added is appropriate for the magnetic properties. It is an object to obtain this excellent non-oriented electrical steel sheet.

본 발명은 상기한 목적을 달성하기 위하여, Al이 포함된 무방향성 전기강판의 Sn 양과 최종소둔로의 노점을 제어함으로써, 최종 제품판의 표층하 질화 및 산화물을 억제함으로써 자성이 우수한 무방향성 전기강판을 얻도록 한다.     The present invention, in order to achieve the above object, by controlling the Sn amount of the non-oriented electrical steel sheet containing Al and the dew point of the final annealing furnace, the non-oriented electrical steel sheet excellent magnetic properties by suppressing the subsurface nitriding and oxide of the final product sheet To get.

삭제delete

삭제delete

삭제delete

삭제delete

본 발명의 제조방법은, 슬라브를 재가열하고 열간압연한 후, 열연판소둔, 냉간압연, 최종 소둔하는 공정에 의해 완성되는 무방향성 전기강판의 제조방법에 있어서,
상기 슬라브는 중량%로 C:0% 초과 0.005% 이하, Si:0% 초과 4.0% 이하, P:0% 초과 0.1% 이하, S:0% 초과 0.001% 이하, Mn:0.1~1.0%, Al:0.45~1.5%, Cu:0.01~0.3%, N:0% 초과 0.003% 이하, Ti:0% 초과 0.005% 이하이고, Al 함량에 따라 아래 식 1과 같이 Sn을 포함하는 성분조성으로 이루어지고, 상기 최종소둔은 수소와 질소로 구성된 분위기로 내에서 실시하되, 노점이 -10도 이하가 되도록 관리하는 것을 특징으로 하며, 상기 열연판 소둔은 소둔직후 산세조에서 표층의 스케일을 벗겨내는 것을 특징으로 한다.
[식 1] 800 > Sn(ppm) > 285 x Al(wt%) - 125
또한, GDS(Glow discharge Spectroscopy)로 관찰했을 때 강판의 표층하 질소의 최대값을 5% 이하로 제어하고, GDS로 관찰했을 때 강판의 표층하 산소가 50%로 줄어드는 깊이를 0.075㎛이하로 제어하는 것을 특징으로 한다.
The manufacturing method of the present invention, In the method of manufacturing a non-oriented electrical steel sheet which is completed by the reheating and hot rolling of the slab, followed by hot rolling annealing, cold rolling, final annealing,
The slab is more than C: 0% and 0.005% or less, Si: more than 0% and 4.0% or less, P: more than 0% and 0.1% or less, S: more than 0% and less than 0.001%, Mn: 0.1 to 1.0%, Al : 0.45 ~ 1.5%, Cu: 0.01 ~ 0.3%, N: 0% or more and 0.003% or less, Ti: 0% or more and 0.005% or less, and according to Al content, it is composed of a composition containing Sn as shown in Equation 1 below. The final annealing is carried out in an atmosphere consisting of hydrogen and nitrogen, but characterized in that the dew point is managed to be -10 degrees or less. It is done.
800> Sn (ppm)> 285 x Al (wt%)-125
In addition, the maximum value of subsurface nitrogen of the steel sheet is controlled to 5% or less when observed by glow discharge spectroscopy (GDS), and the depth at which surface oxygen is reduced to 50% when observed by GDS is controlled to 0.075 μm or less. Characterized in that.

본 발명은 고급 무방향성 전기강판에서 최종소둔시 노점과 Al함량에 따른 Sn의 투입량을 최적화함으로써 질화 및 산화물 양을 제어하여 철손을 줄임으로써, 모터 철심으로 사용시에 에너지 손실을 줄일 수 있다.The present invention can reduce the energy loss by using the iron core of the motor by reducing the iron loss by optimizing the amount of Sn and the amount of Sn according to the dew point and Al content during final annealing in high-quality non-oriented electrical steel sheet.

이하 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

먼저 본 발명의 무방향성 전기강판의 성분제한 이유부터 살펴본다. 이하 함량은 중량%이다.First, look at the reasons for limiting the components of the non-oriented electrical steel sheet of the present invention. The content below is by weight.

[C: 0.005% 이하][C: 0.005% or less]

C는 최종제품에서 자기시효를 일으켜서 사용 중 자기적 특성을 저하시키므로 0.004중량% 이하로 함유하며, C의 함량이 낮을수록 자기적 특성에 바람직하므로 최종제품에서는 0.003중량% 이하로 제한하는 것이 바람직하다.C is contained at 0.004% by weight or less because it causes magnetic aging in the final product, and lowers the magnetic properties during use.The lower the content of C, the better the magnetic property. .

[Si: 4.0% 이하][Si: 4.0% or less]

Si는 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분으로서, 4.0% 를 초과하여 첨가하면 냉간압연성이 떨어져 판파단이 일어나기 때문에 4.0% 이하로 제한하는 것이 바람직하다.Si is a component that decreases the eddy current loss during iron loss by increasing the specific resistance, and if it is added in excess of 4.0%, it is preferable to limit it to 4.0% or less because cold rolling is poor.

[P: 0.1% 이하][P: 0.1% or less]

P는 비저항을 증가시키고, 집합조직을 개선하여 자성을 향상시키기 위하여 첨가한다. 과다하게 첨가된 경우 냉간압연성이 악화되기 때문에 0.1% 이하로 제한하는 것이 바람직하다.P is added to increase the resistivity, improve the texture, and improve the magnetism. If excessively added, cold rolling is deteriorated, so it is preferable to limit it to 0.1% or less.

[S: 0.001% 이하] [S: 0.001% or less]

S는 미세한 석출물인 MnS 및 CuS를 형성하고 결정립성장을 억제하여 자기특성을 악화시키기 때문에 낮게 관리하는 것이 바람직하므로 그 함량을 0.001% 이하로 제한한다.S is preferably managed low because it forms fine precipitates MnS and CuS and suppresses grain growth to deteriorate magnetic properties, so the content is limited to 0.001% or less.

[Mn: 0.1~1.0%] [Mn: 0.1-1.0%]

Mn이 0.1% 미만으로 존재하면 미세한 MnS 석출물이 형성되어 결정립성장을 억제시킴으로서 자성을 악화시킨다. 따라서 0.1%이상 존재하게 되는 경우, 조대한 MnS가 형성되고, 또한 S성분이 보다 미세한 석출물인 CuS로 석출되는 것을 막을 수있다. 그러나 Mn이 증가하는 경우 자성을 떨어뜨리기 때문에 1.0% 이하로첨가한다.If Mn is present at less than 0.1%, fine MnS precipitates are formed to inhibit grain growth, thereby deteriorating magnetism. Therefore, when 0.1% or more exists, coarse MnS is formed and S component can be prevented from being precipitated by CuS which is a finer precipitate. However, when Mn increases, the magnetic content is decreased, so it is added below 1.0%.

[Al:0.45~1.5%] [Al: 0.45-1.5%]

Al은 비저항을 증가시켜 와류손실을 낮추는데 유효한 성분이다. 0.45% 미만의 경우 AlN이 미세석출하여 자성이 악화되고, 또한 1.5%를 초과한 경우 가공성이 열화되므로, 1.5% 이하로 제한하는 것이 바람직하다.Al is an effective component to lower the eddy current loss by increasing the specific resistance. In the case of less than 0.45%, AlN is finely precipitated to deteriorate the magnetism, and in the case of more than 1.5%, the workability is degraded.

[Cu:0.01~0.3%][Cu: 0.01-0.3%]

Cu는 내식성을 향상시키고 미세한 MnS 석출물 대신 조대한 Mn(Cu)S 석출물의 생성을 촉진시켜 결정립을 성장시키고 자성에 유리한 집합조직을 발달시키기 위하여 첨가되는 원소이다. 첨가량이 너무 적은 경우 효과가 미비하고, 첨가량이 너무 많은 경우 열연판 표면에 균열을 발생시킬 수 있기 때문에, 0.01~0.3%로 제한하는 것이 바람직하다.Cu is an element added to improve the corrosion resistance and to promote the formation of coarse Mn (Cu) S precipitates instead of the fine MnS precipitates to grow grains and to develop a texture favorable for magnetic. If the amount is too small, the effect is insignificant, and if the amount is too large, cracking may occur on the surface of the hot rolled sheet, so it is preferable to limit the amount to 0.01 to 0.3%.

[N:0.003% 이하][N: 0.003% or less]

N은 모재 내부에 미세하고 긴 AlN 석출물을 형성하여 결정립성장을 억제하므로 적게 함유시키며, 본 발명에서는 0.003% 이하로 제한하는 것이 바람직하다.N is formed to contain fine and long AlN precipitate inside the base material to suppress grain growth, so it is contained less, it is preferable to limit to 0.003% or less in the present invention.

[Ti:0.005% 이하][Ti: 0.005% or less]

Ti는 미세한 TiN, TiC의 석출물을 형성키겨 결정립 성장을 억제하며, 0.005% 초과하여 첨가되는 경우 많은 미세한 석출물이 발생하여 집합조직을 나쁘게 하여 자성을 악화시킨다.Ti inhibits grain growth by forming fine TiN and TiC precipitates, and when added in excess of 0.005%, many fine precipitates occur and worsen the magnetic structure.

상기 조성 이외에 나머지는 Fe 및 기타 피할 수 없는 불순물로 이루어진다.In addition to the above composition, the remainder consists of Fe and other inevitable impurities.

위와 같은 조성으로 된 슬라브를 열간 압연, 권취, 열연판 소둔을 한후 산세, 냉간 압연한 후, 최종소둔을 하여 완성하게 된다. 이 때, 열연판 소둔은 상변태가 없는 고급 전기강판을 대상으로 최종 소둔판의 집합조직을 향상시키기 위해 실시하며, 소둔 직후 산세조에서 표층의 스케일을 벗겨내어 표면 품질을 확보하게 된다. The slabs having the composition as described above are subjected to hot rolling, winding and hot rolled sheet annealing, followed by pickling and cold rolling, followed by final annealing. At this time, the hot-rolled sheet annealing is performed to improve the texture of the final annealing plate for the high-grade electrical steel sheet without phase transformation, and immediately after the annealing to remove the scale of the surface layer to ensure the surface quality.

냉간압연 후 표면에 존재하는 압연유를 탈지하고 최종 소둔을 하게되는데, 이 과정은 최종제품을 만들어내는 것으로 표면 품질이 중요하기 때문에 수소와 질소로 구성된 분위기로 내에서 소둔하게 된다. 최종소둔시 수소가 포함되기 때문에 Fe나 Si계 산화물들은 대부분 환원하게 되며, 일부 Al이 산화 혹은 질화된다. 일반적으로 Al산화물은 표층에 분포되어 있고, Al 질화물은 각진 덩어리를 이루어 표층 및 표층하에 분포하게 되는데, 두 경우 모두 자기 도메인의 이동을 방해하여 철손에 안좋은 영향을 주며, 추후 코팅 밀착성도 열위하게 만든다. Al 산화물의 경우에는 노점이 낮게 관리되면 억제되는데, 특히 노점이 -10도 이하인 경우 산소 분압이 낮아져 산화물이 거의 발생하지 않는다. 하지만, 노점이 일정 온도 이하로 떨어질 경우, 상대적인 흡질에 의한 질화물 형성 가능성은 증가하게 된다. After cold rolling, the rolling oil present on the surface is degreased and finally annealed. This process produces the final product, which is annealed in an atmosphere composed of hydrogen and nitrogen because surface quality is important. Since hydrogen is included in the final annealing, Fe or Si-based oxides are mostly reduced, and some Al is oxidized or nitrided. In general, Al oxides are distributed in the surface layer, and Al nitrides are formed in angular agglomerates and in the surface layer and under the surface layer, both of which impede the movement of the magnetic domain, adversely affecting iron loss, and inferior coating adhesion. . In the case of Al oxide, if the dew point is managed low, it is suppressed. Particularly, if the dew point is -10 degrees or less, the oxygen partial pressure is lowered, so that little oxide is generated. However, if the dew point falls below a certain temperature, the possibility of nitride formation due to relative absorption is increased.

특히, 노점이 낮고, Al함량이 비교적 높으며, S가 적어 표면 반응성이 좋은 경우 표층하에 질소가 침투하여 자성을 열위시킨다. 따라서, Sn과 같이 표면 석출 원소를 첨가할 경우 표면 반응성을 떨어뜨려, 추가적인 질화를 방지함으로써 자성을 향상시킬 수 있다. 강내부에 Al이 0.45%이하일 경우 흡질 현상이 거의 발생하지 않으며, Al이 이보다 높으면 높을수록, 표면 반응성을 떨어뜨리는 것이 유효하기 때문에, 다음과 같은 (식 1) 과 같이 Al에 따른 Sn양을 늘려야 자성확보에 유효하며, Sn의 양이 800ppm이상으로 지나치게 많을 경우 결정립 성장 지연 등으로 인해 오히려 자성이 악화된다. In particular, when the dew point is low, the Al content is relatively high, and the S content is low, and the surface reactivity is good, nitrogen penetrates under the surface layer to deteriorate the magnetic properties. Therefore, when the surface precipitation element is added, such as Sn, the surface reactivity may be lowered, and thus, the magnetic property may be improved by preventing further nitriding. When Al is 0.45% or less in the steel, almost no adsorption occurs, and the higher Al is, the lower the surface reactivity is. Therefore, the amount of Sn according to Al should be increased as shown in Equation 1 below. It is effective to secure the magnetism. If the amount of Sn is over 800ppm, the magnetism deteriorates due to delay of grain growth.

[식 1] 800 > Sn(ppm) > 285 x Al(wt%)-125  800> Sn (ppm)> 285 x Al (wt%)-125

표층을 단시간에 분석하기 위한 방법으로 GDS(Glow Discharge Spectroscopy)와 같은 표면 증발을 통해 깊이에 따른 원소의 함량을 분석하는 방법이 있다. 무방향성 전기강판의 표층을 GDS로 관찰할 경우, 위 조건에 따라 제작된 경우 표층의 질소함량 최대치가 5% 이하였다. 산소의 경우는 최대값이 대부분 표면에서 100%로 관찰되며 이후 깊이에 따라 급속히 감소하는 경향이 있는데, 따라서 산소함량의 최대 값보다는 깊이에 따라 얼마나 빠르게 감소하는가가 의미가 있다. Sn을 Al함량에 따라 [식 1]에 따라 적절하게 첨가하여 자성이 우수한 경우 산소함량이 50%가 되는 시점이 0.075㎛ 이하였다. As a method for analyzing the surface layer in a short time, there is a method of analyzing the content of elements by depth through surface evaporation such as glow discharge spectroscopy (GDS). When the surface layer of the non-oriented electrical steel sheet was observed by the GDS, the maximum nitrogen content of the surface layer was 5% or less when manufactured according to the above conditions. In the case of oxygen, the maximum value is mostly observed at 100% on the surface, and then tends to decrease rapidly with depth. Therefore, it is meaningful how rapidly it decreases with depth rather than the maximum value of oxygen content. When Sn is appropriately added according to Al content according to [Formula 1] and excellent in magnetism, the time when the oxygen content is 50% is 0.075 μm or less.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail by way of examples.

중량%로, C:0.0030%, P:0.012%, S:0.0006%, N:0.0013%, Mn:0.17%, Ti:0.0015% 및 나머지 Fe 및 기타 불가피한 불순물과 표1과 같이 Al, Si, Sn으로 조성되는 슬라브를 1130℃로 재가열한 다음 2.3mm로 열간압연하여 열간압연강판을 제조하였다. 이 때, 비저항 차이에 의해 발생하는 철손 차이를 없애기 위해 Al+Si 값을 동일하게 유지하였다. 상기 열간압연된 강판을 650℃에서 권취 후 공기중에서 냉각하고 1040℃에서 2분 동안 열연판 소둔을 실시한 후 산세후에 0.35mm로 냉간압연을 실시하였으며, 노점을 -40~-5도까지 변화해가며, 1040℃에서 50초 동안 수소 20%, 질소 80% 에서 최종 소둔을 실시한 후 자성 및 표면 분석을 실시하였다. 자성측정은 60 X 60mm2 크기 단판 측정기를 이용하여 압연 방향과 압연 직각 방향으로 측정하여 평균내었으며, 표면은 GDS를 이용하여 깊이에 따른 질소와 산소의 분율을 분석하였다.By weight, C: 0.0030%, P: 0.012%, S: 0.0006%, N: 0.0013%, Mn: 0.17%, Ti: 0.0015% and the remaining Fe and other unavoidable impurities and Al, Si, Sn as shown in Table 1 The slab was prepared by reheating to 1130 ℃ and hot rolled to 2.3mm to prepare a hot rolled steel sheet. At this time, Al + Si values were kept the same in order to eliminate the iron loss caused by the difference in resistivity. The hot rolled steel sheet was wound at 650 ° C., cooled in air, hot rolled sheet annealed at 1040 ° C. for 2 minutes, and cold rolled to 0.35 mm after pickling, changing the dew point to -40 to -5 degrees. After the final annealing in 20% hydrogen and 80% nitrogen for 10 seconds at 1040 ℃, magnetic and surface analysis was performed. Magnetic measurements were averaged by measuring in the rolling direction and the right angle direction using a 60 × 60 mm 2 size plate measuring instrument, and the surface was analyzed the fraction of nitrogen and oxygen according to the depth using GDS.

표 1은 노점과 합금성분에 따른 철손 및 표면 분석결과이다. Table 1 shows the iron loss and surface analysis results according to the dew point and alloy components.

[표 1]TABLE 1

시료sample
번호number
노점dew point 제강성분Steelmaking component 표층하 질소 최대값(%)Subsurface Nitrogen Maximum (%) 산소 50% 침투깊이(μm)Oxygen 50% penetration depth (μm) 철손Iron loss 구분division
AlAl SiSi SnSn 22 -40-40 0.46 0.46 3.65 3.65 120120 44 0.047 0.047 2.162.16 발명재2Invention 2 33 -40-40 0.81 0.81 3.41 3.41 00 10.510.5 0.051 0.051 2.352.35 비교재1Comparative Material 1 44 -40-40 0.82 0.82 3.42 3.42 5555 99 0.062 0.062 2.322.32 비교재2Comparative Material 2 55 -41-41 0.80 0.80 3.38 3.38 9090 7.57.5 0.058 0.058 2.32.3 비교재3Comparative Material 3 66 -42-42 0.83 0.83 3.40 3.40 120120 44 0.053 0.053 2.192.19 발명재3Invention 3 77 -40-40 0.82 0.82 3.40 3.40 200200 2.52.5 0.049 0.049 2.122.12 발명재4Invention 4 88 -40-40 1.21 1.21 3.03 3.03 150150 77 0.051 0.051 2.352.35 비교재4Comparative Material 4 99 -40-40 1.09 1.09 3.08 3.08 210210 3.53.5 0.047 0.047 2.132.13 발명재5Invention 5 1010 -40-40 1.23 1.23 3.01 3.01 304304 33 0.049 0.049 2.12.1 발명재6Invention 6 1111 -40-40 1.45 1.45 2.66 2.66 150150 6.56.5 0.051 0.051 2.312.31 비교재5Comparative Material 5 1414 -40-40 1.54 1.54 2.70 2.70 800800 33 0.051 0.051 2.312.31 비교재6Comparative Material 6 1515 -40-40 1.50 1.50 2.65 2.65 10001000 3.53.5 0.050 0.050 2.322.32 비교재7Comparative Material7 1717 -26-26 0.80 0.80 3.38 3.38 9090 77 0.070 0.070 2.312.31 비교재9Comparative Material 9 1818 -22-22 0.82 0.82 3.40 3.40 200200 22 0.073 0.073 2.132.13 발명재9Invention Material 9 1919 -23-23 1.21 1.21 3.03 3.03 150150 6.56.5 0.069 0.069 2.342.34 비교재10Comparative Material 10 2020 -18-18 1.09 1.09 3.08 3.08 210210 44 0.071 0.071 2.222.22 발명재10Invention 10 2121 -23-23 1.45 1.45 2.66 2.66 150150 66 0.072 0.072 2.332.33 비교재11Comparative Material 11 2323 -10-10 0.45 0.45 3.70 3.70 00 44 0.180 0.180 2.312.31 비교재12Comparative Material 12 2424 -8-8 0.46 0.46 3.65 3.65 120120 2.52.5 0.170 0.170 2.352.35 비교재13Comparative Material 13 2525 -4-4 0.81 0.81 3.41 3.41 00 4.54.5 0.160 0.160 2.332.33 비교재14Comparative Material14 2626 -5-5 0.80 0.80 3.38 3.38 9090 44 0.180 0.180 2.312.31 비교재15Comparative Material 15 2727 -5-5 0.83 0.83 3.40 3.40 120120 3.53.5 0.170 0.170 2.312.31 비교재16Comparative Material 16 2828 -5-5 0.82 0.82 3.40 3.40 200200 2.52.5 0.180 0.180 2.322.32 비교재17Comparative Material17 2929 -6-6 1.21 1.21 3.03 3.03 150150 4.54.5 0.210 0.210 2.352.35 비교재18Comparative Material 18 3030 -5-5 1.09 1.09 3.08 3.08 210210 33 0.180 0.180 2.322.32 비교재19Comparative Material 19 3131 -2-2 1.23 1.23 3.01 3.01 304304 2.52.5 0.170 0.170 2.312.31 비교재20Comparative Material 20 3232 -8-8 1.45 1.45 2.66 2.66 150150 44 0.170 0.170 2.332.33 비교재21Comparative Material21 3333 -6-6 1.60 1.60 2.70 2.70 250250 4.54.5 0.200 0.200 2.412.41 비교재22Comparative Material 22 3434 -5-5 1.55 1.55 2.71 2.71 320320 33 0.170 0.170 2.42.4 비교재23Comparative Material 23 3535 -5-5 1.50 1.50 2.65 2.65 400400 3.53.5 0.170 0.170 2.412.41 비교재24Comparative Material 24

1) Chilled mirror type의 노점계로 측정한 최종소둔로 노점1) Final annealing furnace dew point measured by chilled mirror type dew point meter

2) GDS로 측정했을 때, 질소의 깊이 분포 그래프에서 최대 질소량2) Maximum nitrogen in the depth distribution graph of nitrogen as measured by GDS

3) GDS로 측정했을 때, 산소의 분율이 50%가 되는 깊이3) Depth at which the fraction of oxygen reaches 50% as measured by GDS

일반적으로 노점이 -10도보다 높을 경우 비교재 12~23처럼 질화물의 양은 적어지지만, 산화물이 깊이 침투하여 철손이 악화된다. 노점이 -10도 보다 낮은 경우에는 합금성분에 따라 철손이 변하게 된다. 발명재 2와 같이 Al이 0.46%로 상대적인 Al양이 작은 경우에는 표층하 질소 값이 낮고 철손이 향상된다. In general, if the dew point is higher than -10 degrees, the amount of nitride decreases as in Comparative Materials 12 to 23, but the oxide loss penetrates deeply and the iron loss worsens. If the dew point is lower than -10 degrees, the iron loss is changed according to the alloy composition. As in Inventive Material 2, when Al is 0.46% and the relative amount of Al is small, the nitrogen value under the surface is low and the iron loss is improved.

이는 질화물의 대부분이 AlN이므로 Al양이 적게되면 강내에서 질화물이 형성될 확률이 줄어들기 때문이다. Al이 그 이상인 경우에는 Al과 Sn의 양에 따라 표층하 질소 최대값이 변하게 되는데, Al이 증가하고, Sn이 감소할수록 표층하 질소 값이 증가하게 되는 경향을 나타낸다. Al이 0.8%인 경우 Sn값이 120ppm이상, Al이 1.2%인 경우 200ppm이상, Al이 1.5%인 경우 250ppm이상인 경우 자성이 양호하게 나왔다. Al양이 증가함에 따라 적정 Sn양이 증가하는 것은 Al이 많아짐에 따라 흡질이 더 잘 발생하기 때문이다. This is because most of the nitride is AlN, so if the amount of Al decreases, the probability of forming nitride in the river decreases. In the case where Al is higher than that, the maximum nitrogen value in the surface layer changes according to the amounts of Al and Sn. As the amount of Al increases and the Sn decreases, the nitrogen value in the surface layer increases. When the Al value is 0.8% and the Sn value is 120ppm or more, Al is 1.2% or more, 200ppm or more, Al 1.5% is more than 250ppm magnetism was good. As the amount of Al increases, the amount of the appropriate Sn increases because the absorption is better as the amount of Al increases.

따라서 Sn은 실험결과를 맞춤계산하여 285 x Al(wt%) - 125 보다 큰 값일 때 우수한 자성을 가지게 되었다. 자성이 우수한 발명재의 경우 대체로 표층하 질소 최대값이 5이하이며, 산소 침투 깊이는 0.075㎛이하로 나타났다. 비교재 6, 7과 같이 Sn이 800ppm이상인 경우에는 오히려 자성이 악화되는 경향이 나타나게 되는데 이는 Sn이 결정립 성장성을 해치기 때문인 것으로 생각된다. Therefore, Sn has an excellent magnetic property when the value of the larger than 285 x Al (wt%)-125 by custom calculation of the experimental results. In the case of the excellent magnetic material, the maximum subsurface nitrogen was 5 or less, and the oxygen penetration depth was 0.075 μm or less. As in Comparative Materials 6 and 7, Sn tends to deteriorate in the case of more than 800 ppm, which is thought to be because Sn impairs grain growth.

Claims (7)

삭제delete 삭제delete 삭제delete 슬라브를 재가열하고 열간압연한 후, 열연판소둔, 냉간압연, 최종 소둔하는 공정에 의해 완성되는 무방향성 전기강판의 제조방법에 있어서,In the method of manufacturing a non-oriented electrical steel sheet which is completed by the reheating and hot rolling of the slab, followed by hot rolling annealing, cold rolling, final annealing, 상기 슬라브는 중량%로 C:0% 초과 0.005% 이하, Si:0% 초과 4.0% 이하, P:0% 초과 0.1% 이하, S:0% 초과 0.001% 이하, Mn:0.1~1.0%, Al:0.45~1.5%, Cu:0.01~0.3%, N:0% 초과 0.003% 이하, Ti:0% 초과 0.005% 이하이고, Al 함량에 따라 아래 식 1과 같이 Sn을 포함하는 성분조성으로 이루어지고, 상기 최종소둔은 수소와 질소로 구성된 분위기로 내에서 실시하되, 노점이 -10도 이하가 되도록 관리하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.The slab is more than C: 0% and 0.005% or less, Si: more than 0% and 4.0% or less, P: more than 0% and 0.1% or less, S: more than 0% and less than 0.001%, Mn: 0.1 to 1.0%, Al : 0.45 ~ 1.5%, Cu: 0.01 ~ 0.3%, N: 0% or more and 0.003% or less, Ti: 0% or more and 0.005% or less, and according to Al content, it is composed of a composition containing Sn as shown in Equation 1 below. , The final annealing is carried out in an atmosphere consisting of hydrogen and nitrogen, the manufacturing method of the non-oriented electrical steel sheet having excellent magnetic properties, characterized in that the dew point is managed to be less than -10 degrees. [식 1] 800 > Sn(ppm) > 285 x Al(wt%) - 125800> Sn (ppm)> 285 x Al (wt%)-125 제4항에 있어서, 5. The method of claim 4, 상기 열연판 소둔은 소둔직후 산세조에서 표층의 스케일을 벗겨내는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.The hot rolled sheet annealing is a method of producing an excellent non-oriented electrical steel sheet, characterized in that the surface of the scale in the pickling bath immediately after annealing. 제4항에 있어서, 5. The method of claim 4, GDS로 관찰했을 때 강판의 표층하 질소의 최대값을 5% 이하로 제어하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.A method for producing non-oriented electrical steel sheet having excellent magnetism, characterized in that the maximum value of nitrogen under the surface of the steel sheet is controlled to 5% or less when observed by GDS. 제4항에 있어서, 5. The method of claim 4, GDS로 관찰했을 때 강판의 표층하 산소가 50%로 줄어드는 깊이를 0.075㎛이하로 제어하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.A method for producing non-oriented electrical steel sheet having excellent magnetism, characterized by controlling the depth at which the oxygen under the surface of the steel sheet is reduced to 50% when observed with GDS.
KR1020080117793A 2008-11-26 2008-11-26 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties KR101051747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080117793A KR101051747B1 (en) 2008-11-26 2008-11-26 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080117793A KR101051747B1 (en) 2008-11-26 2008-11-26 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties

Publications (2)

Publication Number Publication Date
KR20100059134A KR20100059134A (en) 2010-06-04
KR101051747B1 true KR101051747B1 (en) 2011-07-25

Family

ID=42360481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080117793A KR101051747B1 (en) 2008-11-26 2008-11-26 Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties

Country Status (1)

Country Link
KR (1) KR101051747B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060170B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2023121267A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208146B4 (en) * 2017-05-15 2019-06-19 Thyssenkrupp Ag NO electrical steel for electric motors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161260A (en) 1997-08-18 1999-03-05 Nkk Corp Manufacture of nonoriented silicon steel sheet with low iron loss
JP2000256751A (en) * 1999-03-03 2000-09-19 Nkk Corp Production of non-oriented silicon steel sheet low in core loss
JP2008127612A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161260A (en) 1997-08-18 1999-03-05 Nkk Corp Manufacture of nonoriented silicon steel sheet with low iron loss
JP2000256751A (en) * 1999-03-03 2000-09-19 Nkk Corp Production of non-oriented silicon steel sheet low in core loss
JP2008127612A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060170B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2023121267A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
KR20100059134A (en) 2010-06-04

Similar Documents

Publication Publication Date Title
KR101899453B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR101903008B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
KR102080166B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR101051747B1 (en) Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties
KR20140084895A (en) Non-oriented electrical steel steet and method for the same
KR101919521B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR20160044452A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101353462B1 (en) Non-oriented electrical steel shteets and method for manufactureing the same
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101410476B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101037159B1 (en) Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
KR101649324B1 (en) Non-oriented electrical steel sheets having excellent magnetic property and Method for manufacturing the same
KR101697988B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR101669003B1 (en) Porcelain anamel steel sheet and manufacturing method thereof
KR20150073798A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101919528B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JP2022074677A (en) Non-oriented electromagnetic steel plate excellent in magnetic characteristics and its manufacturing method
WO2020090156A1 (en) Method for manufacturing non-oriented electromagnetic steel sheet
KR100832342B1 (en) Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
KR101632890B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102176355B1 (en) Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
KR102513317B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102106998B1 (en) Oriented electrical steel sheet and manufacturing method of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140715

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160719

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170719

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180529

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 9