JPH05125495A - Nonoriented silicon steel sheet excellent in magnetic property - Google Patents

Nonoriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH05125495A
JPH05125495A JP3311546A JP31154691A JPH05125495A JP H05125495 A JPH05125495 A JP H05125495A JP 3311546 A JP3311546 A JP 3311546A JP 31154691 A JP31154691 A JP 31154691A JP H05125495 A JPH05125495 A JP H05125495A
Authority
JP
Japan
Prior art keywords
steel
addition
hot
annealing
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3311546A
Other languages
Japanese (ja)
Other versions
JP2636609B2 (en
Inventor
Kunikazu Tomita
邦和 冨田
Toshiharu Iizuka
俊治 飯塚
Yoshihiko Oda
善彦 尾田
Akihiko Nishimoto
昭彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3311546A priority Critical patent/JP2636609B2/en
Publication of JPH05125495A publication Critical patent/JPH05125495A/en
Application granted granted Critical
Publication of JP2636609B2 publication Critical patent/JP2636609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce iron loss and to improve magnetic flux density by specifying respective contents of C, Si, Mn, P, S, Al, and N and also specifying the (Ge)eq. specified by the contents of Sb and Sn. CONSTITUTION:The nonoriented silicon steel sheet has a composition consisting of, by weight, <=0.005% C, 0.1-3.5% Si, 0.1-0.9% Mn, <=0.2% P, <=0.015% S, <=1.5% Al, <=0.005% N, 0.003-0.01% Ge, 0.01-0.1% (Ge)eq., and the balance Fe. The (Ge)eq. is defined as being equal to %Ge+(%Sb+%Sn)/2 [where %Ge means Ge content, %Sb means Sb content, and %Sn means Sn content]. The above steel sheet is reduced in iron loss and has high magnetic flux density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄損が低く且つ磁束
密度の高い無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density.

【0002】[0002]

【従来の技術】モータ、変圧器等の鉄芯材料として使用
される無方向性電磁鋼板は、電気機器の省エネルギー化
を図るため、鉄損が低く磁束密度が高いことが重要であ
る。特に最近では、機器の小型・高効率化を達成するた
めに、鉄損を低く保ちつつ、従来にも増して高い磁束密
度を有する材料の開発要請が益々強まってきている。無
方向性電磁鋼板は、その鉄損と磁束密度の値により各グ
レードに分けられている。一般には、高グレード材はS
i含有量を高め鉄損の低下を図っているが、Si含有量
の増加に伴い磁束密度も低下してしまう。これに対し
て、低グレード材はSi含有量を低くしているため飽和
磁束密度の低下が抑えられ、比較的高い磁束密度が得ら
れるものの、鉄損が高いという問題がある。したがっ
て、単なるSi量の調整だけでは低鉄損−高磁束密度化
は図ることができず、応分の工夫が必要となる。
2. Description of the Related Art It is important for non-oriented electrical steel sheets used as iron core materials for motors, transformers, etc. to have low iron loss and high magnetic flux density in order to save energy in electrical equipment. In particular, in recent years, in order to achieve downsizing and high efficiency of equipment, there has been an increasing demand for development of a material having a higher magnetic flux density than ever while keeping iron loss low. Non-oriented electrical steel sheets are classified into grades according to their iron loss and magnetic flux density. Generally, high grade materials are S
Although the i content is increased to reduce the iron loss, the magnetic flux density also decreases as the Si content increases. On the other hand, since the low grade material has a low Si content, the saturation magnetic flux density is prevented from decreasing, and a relatively high magnetic flux density can be obtained, but there is a problem of high iron loss. Therefore, low iron loss and high magnetic flux density cannot be achieved merely by adjusting the amount of Si, and appropriate measures must be taken.

【0003】これまでにも化学成分上の改良、特にS
b、Sn等の特殊元素の添加により鉄損或いは磁束密度
を改善しようとする試みが幾つかなされている。例え
ば、Sb添加に関しては、特開昭54−68717号、
特開昭58−147563号、特開昭61−44124
号等が、また、Sn添加に関しては、特開昭55−15
8252号、特開昭56−98420号、特開昭56−
102520号等が提案されている。また、特開昭62
−180014号、特開昭64−39348号、特開平
2−263952号等ではSnとCuの複合添加に関す
る技術が、特開昭59−157259号、特開昭63−
33518号等ではSnとMnの複合添加に関する技術
が、さらに特開昭63−317627号等ではNiとM
nの複合添加に関する技術がそれぞれ開示されている。
Improvements in chemical composition, especially S
Several attempts have been made to improve iron loss or magnetic flux density by adding special elements such as b and Sn. For example, with respect to the addition of Sb, JP-A-54-68717,
JP-A-58-147563, JP-A-61-44124
JP-A-55-15 for the addition of Sn and the like.
8252, JP-A-56-98420, JP-A-56-
No. 102520 has been proposed. In addition, JP-A-62
-180014, JP-A-64-39348, JP-A-2-263952, and the like, a technique relating to the combined addition of Sn and Cu is disclosed in JP-A-59-157259 and JP-A-63-
No. 33518 discloses a technique related to the combined addition of Sn and Mn, and Japanese Patent Laid-Open No. 63-317627 discloses a technique involving Ni and M.
Techniques relating to the composite addition of n are disclosed respectively.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た各提案のうち、Sb添加に関するものは磁束密度の向
上が主眼であるため鉄損の低下が不十分であり、また逆
に、Sn添加に関するものは鉄損の低下が主眼であるた
め磁束密度の向上(特に高磁場域での磁束密度)が不十
分であるという問題がある。また、両技術ともにSb、
Snを粒界偏析させるため長時間の熱延板焼鈍や二冷圧
における中間焼鈍、さらには、一部の技術ではユーザー
での歪取り焼鈍を必要とし、工程の複雑化やコスト上昇
が避けられない。また、Sn+Cu、Sn+Mn、Mn
+Ni等の複合添加を行う技術では、その効果を十分に
発揮させるためにはこれら元素の複合添加量を1.0〜
1.5wt%以上とする必要があり、必然的に飽和磁束
密度が低下する結果、磁束密度自体の向上はそれほど大
きくない。
However, among the above-mentioned proposals, those relating to the addition of Sb are not sufficient to reduce the iron loss because the main purpose is to improve the magnetic flux density, and conversely, those relating to the addition of Sn. Has a problem that the improvement of the magnetic flux density (especially the magnetic flux density in a high magnetic field region) is insufficient because the main purpose is to reduce the iron loss. In addition, both technologies use Sb,
Because of the segregation of Sn at the grain boundaries, long-time hot-rolled sheet annealing, intermediate annealing at two cold pressures, and some technologies require strain relief annealing by the user, which avoids process complexity and cost increase. Absent. In addition, Sn + Cu, Sn + Mn, Mn
In the technique of performing composite addition of + Ni and the like, in order to fully exert the effect, the composite addition amount of these elements is 1.0 to
It is necessary to be 1.5 wt% or more, and as a result, the saturation magnetic flux density is inevitably lowered, and as a result, the improvement of the magnetic flux density itself is not so large.

【0005】このように、従来の技術では鉄損、磁束密
度の両者を同時に十分改善し得ない、或いは長時間の熱
延板焼鈍や二冷圧法、さらにはユーザーでの歪取り焼鈍
を必要とし、工程の複雑化やコスト上昇が避けられな
い、といった問題を有している。
As described above, the conventional techniques cannot sufficiently improve both the iron loss and the magnetic flux density at the same time, or require the hot-rolled sheet annealing for a long time, the two cold pressing method, and the strain relief annealing by the user. However, there is a problem that the process is complicated and the cost is inevitable.

【0006】このような問題に対し、本出願人は先に、
Ge添加により磁気特性向上効果が得られるという新た
な知見に基づき、上記した問題点を回避し得る技術を特
願平3−84691号として提案した。すなわち、Ge
量を適量添加することにより、長時間の熱延板焼鈍や二
冷圧法等の実施による工程の複雑化やコスト上昇を招く
ことなく、通常の製造方法を採るだけで鉄損、磁束密度
ともに十分に改善された鋼板が得られることを明らかに
した。
To address such a problem, the present applicant has previously
Based on the new finding that the effect of improving the magnetic characteristics can be obtained by adding Ge, a technique capable of avoiding the above-mentioned problems was proposed as Japanese Patent Application No. 3-84691. That is, Ge
By adding an appropriate amount, the iron loss and magnetic flux density are sufficient by adopting a normal manufacturing method without complicating the process and increasing the cost due to long-time hot-rolled sheet annealing or double cold pressing. It has been clarified that an improved steel sheet can be obtained.

【0007】本発明は、このようなGe添加により磁気
特性改善を図る技術を基本とし、これをさらに前進させ
て、Ge添加による磁気特性改善効果を維持しつつ、一
層のコスト低減を実現できる技術を提供しようとするも
のである。
The present invention is based on a technique for improving the magnetic characteristics by adding such Ge, and further advances this technology to realize a further cost reduction while maintaining the effect of improving the magnetic characteristics by adding Ge. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、Ge添加
により磁気特性改善を図ることを前提とし、鋼板に添加
される各元素の得失を再度検討、考察した。その結果、
SbとSnは、これらの単独添加或いは従来検討されて
きた他元素との複合添加では、上記のような磁気特性を
改善する上での問題を有するが、Sb、SnをGeと共
存させた場合にはそのような問題は生じず、Geと同様
の優れた磁気特性改善効果を発揮し得ること、したがっ
て、Geの一部を比較的安価なSb、Snで代替でき、
これによって、コスト低減を図りつつ、Ge単独添加の
場合と同等の十分な磁気特性改善が達成できることを知
見した。
DISCLOSURE OF THE INVENTION The present inventors have re-examined and considered the advantages and disadvantages of each element added to the steel sheet on the premise that the magnetic properties are improved by adding Ge. as a result,
Sb and Sn have a problem in improving the magnetic properties as described above when they are added individually or in combination with other elements which have been conventionally studied. However, when Sb and Sn coexist with Ge. Does not have such a problem, and can exhibit the same excellent magnetic property improving effect as Ge, and therefore, a part of Ge can be replaced with relatively inexpensive Sb and Sn,
It has been found that this makes it possible to achieve a sufficient improvement in magnetic characteristics equivalent to the case of adding Ge alone, while achieving cost reduction.

【0009】なお、後に詳述するが、本発明の骨子はG
eとの共存下でSbまたはSn若しくはSbおよびSn
を添加することにあるが、同じ複合添加でもSbとSn
だけの組合せや、従来技術にあるCu、Mn等の他の元
素とSbまたはSnの組合せでは、同等の効果は決して
得られないことも併せて確認した。すなわち、Geとの
共存下でSb、Snを添加することにより得られる磁気
特性改善効果は、従来技術とは明らかに異なる作用効果
に立脚するものであり、本発明者らの検討、考察により
初めて明らかになったものである。
As will be described in detail later, the essence of the present invention is G
Sb or Sn or Sn and Sn in the coexistence with e
Is to add Sb and Sn
It was also confirmed that the same effect can never be obtained by the combination of the above, or the combination of Sb or Sn with other elements such as Cu and Mn in the prior art. That is, the magnetic property improving effect obtained by adding Sb and Sn in the coexistence with Ge is based on the effect which is clearly different from the conventional technique, and is the first to be examined and considered by the present inventors. It has been revealed.

【0010】本発明は以上のような知見に基づきなされ
たもので、その構成は、C:0.0050wt%以下、
Si:0.1wt%以上3.5wt%以下、Mn:0.
1wt%以上0.9wt%以下、P:0.2wt%以
下、S:0.015wt%以下、Al:1.5wt%以
下、N:0.0050wt%以下、Ge:0.0030
wt%以上0.0100wt%未満を含有し、これにS
bおよびSnのうち1種または2種を、 [Ge]eq.=0.0100〜0.1000 但し、[Ge]eq.=%Ge+(%Sb+%Sn)/
2 %Ge:Ge含有量(wt%) %Sb:Sb含有量(wt%) %Sn:Sn含有量(wt%) を満足するように含有し、残部Feおよび不可避的不純
物からなる磁気特性に優れた無方向性電磁鋼板である。
The present invention has been made on the basis of the above findings, and its constitution is as follows: C: 0.0050 wt% or less,
Si: 0.1 wt% or more and 3.5 wt% or less, Mn: 0.
1 wt% or more and 0.9 wt% or less, P: 0.2 wt% or less, S: 0.015 wt% or less, Al: 1.5 wt% or less, N: 0.0050 wt% or less, Ge: 0.0030
Contains more than wt% and less than 0.0100 wt%, and S
b or Sn, one or two of them may be combined with [Ge] eq. = 0.0100 to 0.1000, where [Ge] eq. =% Ge + (% Sb +% Sn) /
2% Ge: Ge content (wt%)% Sb: Sb content (wt%)% Sn: Sn content (wt%) contained so as to satisfy the magnetic characteristics of the balance Fe and unavoidable impurities. It is an excellent non-oriented electrical steel sheet.

【0011】[0011]

【作用】次に、本発明の作用効果をその限定理由ととも
に説明する。まず、本発明の鋼板の成分組成について説
明する。
Next, the function and effect of the present invention will be described together with the reason for the limitation. First, the component composition of the steel sheet of the present invention will be described.

【0012】(1)Ge量 第1表に記載の鋼A群〜鋼D群を溶製し、スラブとし
た。これら鋼A群〜鋼D群のうち、鋼A群は、Si:
0.14wt%、Al:tr.、Si+Al≒0.14
wt%を含有する下記〜の鋼に、Ge量をtr.
(無添加)〜0.0130wt%の範囲で種々変化させ
て添加したものである。 Sb、Sn無添加(鋼A−1) Sb:0.083wt%添加(鋼A−2) Sn:0.123wt%添加(鋼A−3) Sb:0.056wt%、Sn:0.025wt%添
加(鋼A−4)
(1) Ge amount Steels A to D listed in Table 1 were melted to form slabs. Among these steel group A to steel group D, steel group A is Si:
0.14 wt%, Al: tr. , Si + Al≈0.14
For the following steels containing 1 wt%, the Ge amount was set to tr.
Various additions were made within the range of (no addition) to 0.0130 wt%. No Sb, Sn additive (Steel A-1) Sb: 0.083 wt% addition (Steel A-2) Sn: 0.123 wt% addition (Steel A-3) Sb: 0.056 wt%, Sn: 0.025 wt% Addition (Steel A-4)

【0013】鋼B群は、Si:1.42wt%、Al:
0.098wt%、Si+Al≒1.52wt%を含有
する下記〜の鋼に、Ge量をtr.(無添加)〜
0.0130wt%の範囲で種々変化させて添加したも
のである。 Sb、Sn無添加(鋼B−1) Sb:0.026wt%添加(鋼B−2) Sn:0.041wt%添加(鋼B−3) Sb:0.013wt%、Sn:0.030wt%添
加(鋼B−4)
Steel group B has Si: 1.42 wt% and Al:
For the following steels containing 0.098 wt% and Si + Al≈1.52 wt%, the Ge amount was set to tr. (Additive-free)~
Various additions were made within the range of 0.0130 wt%. No Sb, Sn additive (Steel B-1) Sb: 0.026 wt% addition (Steel B-2) Sn: 0.041 wt% addition (Steel B-3) Sb: 0.013 wt%, Sn: 0.030 wt% Addition (Steel B-4)

【0014】鋼C群は、Si:1.63wt%、Al:
0.272wt%、Si+Al≒1.90wt%を含有
する下記〜の鋼に、Ge量をtr.(無添加)〜
0.0130wt%の範囲で種々変化させて添加したも
のである。 Sb、Sn無添加(鋼C−1) Sb:0.166wt%添加(鋼C−2) Sn:0.098wt%添加(鋼C−3) Sb:0.099wt%、Sn:0.063wt%添
加(鋼C−4)
Steel group C has Si: 1.63 wt% and Al:
For the following steels containing 0.272 wt% and Si + Al≈1.90 wt%, the Ge amount was set to tr. (Additive-free)~
Various additions were made within the range of 0.0130 wt%. No Sb, Sn additive (Steel C-1) Sb: 0.166 wt% addition (Steel C-2) Sn: 0.098 wt% addition (Steel C-3) Sb: 0.099 wt%, Sn: 0.063 wt% Addition (Steel C-4)

【0015】鋼D群は、Si:3.05wt%、Al:
0.511wt%、Si+Al≒3.56wt%を含有
する下記〜の鋼に、Ge量をtr.(無添加)〜
0.0130wt%の範囲で種々変化させて添加したも
のである。 Sb、Sn無添加(鋼D−1) Sb:0.019wt%添加(鋼D−2) Sn:0.032wt%添加(鋼D−3) Sb:0.012wt%、Sn:0.024wt%添
加(鋼D−4)
The steel group D has Si: 3.05 wt% and Al:
For the following steels containing 0.511 wt% and Si + Al≈3.56 wt%, the Ge amount was set to tr. (Additive-free)~
Various additions were made within the range of 0.0130 wt%. Sb, Sn no addition (Steel D-1) Sb: 0.019 wt% addition (Steel D-2) Sn: 0.032 wt% addition (Steel D-3) Sb: 0.012 wt%, Sn: 0.024 wt% Addition (Steel D-4)

【0016】これらのスラブを、表2に記載の条件で熱
間圧延−冷間圧延−仕上焼鈍、または熱間圧延−熱延板
焼鈍−冷間圧延−仕上焼鈍に供し、板厚0.5mmの鋼
板を得た。しかる後、これら鋼板からリング状試験片を
打ち抜き、これらの磁気特性を測定することで、鋼板の
全方向平均値としての磁気特性を評価した。
These slabs were subjected to hot rolling-cold rolling-finish annealing, or hot rolling-hot rolled sheet annealing-cold rolling-finish annealing under the conditions shown in Table 2 to obtain a sheet thickness of 0.5 mm. The steel plate of After that, ring-shaped test pieces were punched out from these steel sheets, and their magnetic characteristics were measured to evaluate the magnetic characteristics as the omnidirectional average value of the steel sheets.

【0017】図1〜図4は、その結果を鋼A群〜鋼D群
の各々についてGe量で整理して示したものである。こ
れら図面によれば、Si量、Al量はもとより、C、M
n、P、S、Nの各含有量が異なる鋼A群〜鋼D群のい
ずれにおいても、すなわちベース成分に拘らず、さらに
は熱延板焼鈍の有無、熱延板焼鈍を行う場合の焼鈍時間
の長短、或いは仕上焼鈍温度等のプロセス条件に拘ら
ず、等しく、Geの磁気特性向上効果を一部Sbまたは
Snで代替し得ることが判る。すなわち、ベース成分も
プロセス条件も異なる図1〜図4に関して、以下のよう
な共通した結果が認められる。
FIGS. 1 to 4 show the results arranged for each of the steel group A to the steel group D by the amount of Ge. According to these drawings, not only the amount of Si and the amount of Al but also C, M
In any of the steel groups A to D having different contents of n, P, S, and N, that is, regardless of the base component, the presence or absence of hot-rolled sheet annealing, and the annealing when performing hot-rolled sheet annealing. It is understood that the effect of improving the magnetic properties of Ge can be partially replaced by Sb or Sn regardless of the process conditions such as the length of time or the finish annealing temperature. That is, the following common results are recognized with respect to FIGS. 1 to 4 having different base components and process conditions.

【0018】(a)Sb、Snは無添加でGeのみ添加
した場合(各鋼群のNo.1鋼)では、特願平3−84
691号で開示したように、Ge:0.0100wt%
以上で磁気特性が著しく向上する(磁束密度B50が上昇
し、鉄損W1550が低下する)。
(A) When Sb and Sn are not added and only Ge is added (No. 1 steel of each steel group), Japanese Patent Application No. 3-84
As disclosed in No. 691, Ge: 0.0100 wt%
Above magnetic properties are significantly improved with (magnetic flux density B 50 is increased, the iron loss W 15/50 drops).

【0019】(b)SbまたはSnを添加した場合(各
鋼群のNo.2、No.3鋼)或いはSbとSnを同時
に添加した場合(各鋼群のNo.4鋼)では、Ge:
0.0100wt%未満においても上記(a)と同等の
磁気特性向上が達成されている。但し、この場合もGe
量には下限、すなわち必要最低量が存在するが、この下
限値は、SbおよびSnの添加量がSb:0.012〜
0.166wt%、Sn:0.024〜0.123wt
%と広範囲に変化しても、すなわちSb、Sn添加量に
拘らず0.0030wt%と一定である。
(B) In the case of adding Sb or Sn (No. 2 and No. 3 steel of each steel group) or simultaneously adding Sb and Sn (No. 4 steel of each steel group), Ge:
Even if it is less than 0.0100 wt%, the improvement in magnetic characteristics equivalent to that of the above (a) is achieved. However, in this case also Ge
There is a lower limit to the amount, that is, the necessary minimum amount. However, the lower limit is that the addition amount of Sb and Sn is Sb: 0.012
0.166 wt%, Sn: 0.024 to 0.123 wt
%, It is constant at 0.0030 wt% regardless of the added amounts of Sb and Sn.

【0020】(c)Ge:0.0030wt%未満で
は、最大でSbを0.166wt%、Snを0.123
wt%添加しても(鋼C−2および鋼A−3)、或いは
SbとSnを両者の和で0.162wt%添加しても
(鋼C−4)、磁気特性の改善代は上記(a)に比べは
るかに小さい。
(C) Ge: If less than 0.0030 wt%, Sb is 0.166 wt% and Sn is 0.123 at the maximum.
Even if added by wt% (Steel C-2 and Steel A-3) or added by 0.162 wt% as the sum of Sb and Sn (Steel C-4), the improvement margin of the magnetic properties is as described above ( Much smaller than a).

【0021】このように、Geを0.0100wt%以
上添加しなくても、Ge添加量を0.0030wt%以
上確保すれば、残りをSbまたはSnの添加或いはSb
とSnの複合添加によって代替することができ、これに
よりGeを0.0100wt%以上単独添加した場合と
同じく、磁気特性を著しく向上させ得ることが判る。前
述したように本発明の骨子は、Geによる著しい磁気特
性向上効果を維持しつつ、Geの一部を比較的安価なS
b、Snで代替しコスト低減を図ることにあり、このた
めには、上記のようにGe量は最低0.0030wt%
は必要であり、したがってこれを本発明のGe量の下限
とした。一方、Ge:0.0100wt%以上では、S
b、Snを特段添加しなくてもGe単独添加のみで著し
く特性が向上し、加えてSb、Sn添加による特性の向
上代も小さい。このため本発明では、Ge量を0.01
00wt%未満と規定した。
Thus, even if Ge is not added in an amount of 0.0100 wt% or more, if the amount of Ge added is 0.0030 wt% or more, the rest is added with Sb or Sn or Sb.
It can be replaced by the combined addition of Sn and Sn, and it can be seen that the magnetic characteristics can be remarkably improved as in the case where 0.0100 wt% or more of Ge is added alone. As described above, the essence of the present invention is that, while maintaining the remarkable effect of improving the magnetic properties of Ge, a part of Ge is relatively inexpensive.
b and Sn are used to substitute for cost reduction. For this purpose, the amount of Ge is at least 0.0030 wt% as described above.
Was necessary, and therefore, this was made the lower limit of the Ge amount of the present invention. On the other hand, when Ge: 0.0100 wt% or more, S
The characteristics are remarkably improved only by adding Ge alone without special addition of b and Sn, and the margin for improving the characteristics by addition of Sb and Sn is small. Therefore, in the present invention, the Ge amount is 0.01
It was defined as less than 00 wt%.

【0022】本発明の要件の1つは、上述したようにS
b、Snを添加することにあるが、最も重要な要件はG
eの添加を必須とすることにある。Ge、Sb、Snの
3者を考えた場合、複合添加の組合せとしては、本発明
で規定するGeを含んだ組合せ、すなわちGe+Sb、
Ge+Sn、Ge+Sb+Sn以外に、Sb+Snの組
合せも考えられる。これは、表1に記載の各鋼群のうち
No.4のGe量:tr.の鋼に相当するが、図1〜図
4で明らかなように、この鋼の磁気特性はSbまたはS
nの単独添加鋼(SbまたはSnをSb+Sn量に相当
する程度添加した鋼)と大差がなく、その値はGe+S
nまたはGe+Sbという組合せの鋼と比較して、はる
かに劣ったものとなっている。
One of the requirements of the present invention is that the S
b, Sn is added, but the most important requirement is G
It is essential to add e. Considering Ge, Sb, and Sn, as a combination of composite addition, a combination including Ge defined in the present invention, that is, Ge + Sb,
Besides Ge + Sn and Ge + Sb + Sn, a combination of Sb + Sn is also conceivable. This is No. 1 among the steel groups listed in Table 1. Ge amount of 4: tr. 1 to 4, the magnetic properties of this steel are Sb or S.
There is no great difference from the n-added steel (steel containing Sb or Sn added to the extent corresponding to the amount of Sb + Sn), and the value is Ge + S.
It is far inferior to the steel of the combination of n or Ge + Sb.

【0023】具体的には、例えば、図1はSi+Al≒
0.14wt%鋼に関する結果を示しているが、Sb:
0.056wt%、Sn:0.025wt%、Sb+S
n:0.081wt%、Ge:0wt%を含有するS
b、Sn複合添加鋼は、Ge:0wt%、Sb:0.0
83wt%(上記Sb、Sn複合添加鋼のSb+Sn量
である0.081wt%とほぼ同じ量)を含有するSb
単独添加鋼と同程度の磁気特性しか示しておらず、その
磁気特性の値はGe:0.0030wt%以上で、且つ
SbまたはSnを含有する鋼と比較して、著しく劣って
いる。また、Si+Al量が異なる図2、図3、図4の
鋼に関しても、全く同様の結果が得られている。このこ
とは、Geを含まないSbとSnの複合添加は、Sbま
たはSnをその複合添加量とほぼ等しい量単独添加した
場合と本質的に何ら変わりはなく、両元素を複合添加す
ることに格別の意義、効果が見られないことを意味して
いる。さらに本発明者らは、同様の検討を従来技術に示
されたCu、Mn等の元素とSbまたはSnとを複合添
加した鋼についても行い、これらの組合せにおいても、
その複合添加に格別の意義、効果のないことを確認し
た。これに対し、本発明で規定するGeとSb、Snと
の組合せでは、前述したように磁気特性が飛躍的に向上
しており、Geの存在を必須とし、このGeとの共存下
においてSb、Snを添加することで初めて著しい磁気
特性の向上が達成されている。このことはGeとの共存
下でSb、Snを添加することが、Geを含まない場合
の複合添加とは明らかに異なる作用効果を持つことを意
味している。
Specifically, for example, in FIG. 1, Si + Al≈
Results for 0.14 wt% steel are shown, Sb:
0.056 wt%, Sn: 0.025 wt%, Sb + S
S containing n: 0.081 wt% and Ge: 0 wt%
b, Sn compound addition steel, Ge: 0wt%, Sb: 0.0
Sb containing 83 wt% (substantially the same as 0.081 wt% which is the Sb + Sn amount of the above Sb and Sn composite added steel)
It shows only the same magnetic characteristics as the single-added steel, and the value of the magnetic characteristics is Ge: 0.0030 wt% or more, and is significantly inferior to the steel containing Sb or Sn. Further, the same results are obtained for the steels of FIGS. 2, 3, and 4 having different amounts of Si + Al. This means that the combined addition of Sb and Sn containing no Ge is essentially the same as when Sb or Sn alone is added in an amount substantially equal to the combined addition amount, and it is exceptionally different from the combined addition of both elements. Meaning that the meaning and effect of is not seen. Further, the inventors of the present invention also conducted the same study on steel containing a combination of elements such as Cu and Mn and Sb or Sn shown in the prior art.
It was confirmed that the combined addition had no special significance or effect. On the other hand, in the combination of Ge, Sb, and Sn defined in the present invention, the magnetic properties are dramatically improved as described above, the presence of Ge is essential, and in the coexistence with Ge, Sb, Only by adding Sn, a remarkable improvement in magnetic properties was achieved. This means that the addition of Sb and Sn in the coexistence with Ge has a clearly different effect from the combined addition in the case where Ge is not included.

【0024】(2)Sb、Sn量 本発明の骨子は、Ge添加による優れた磁気特性改善効
果を維持しつつ、Geの一部を比較的安価なSb、Sn
で代替することにある。この場合、Sb、Sn量に関し
ても、当然それらの適正範囲が存在する。
(2) Amount of Sb and Sn In the skeleton of the present invention, a part of Ge is relatively inexpensive Sb and Sn while maintaining an excellent effect of improving the magnetic characteristics by adding Ge.
There is to substitute. In this case, as for the amounts of Sb and Sn, naturally, there is an appropriate range for them.

【0025】表3に記載の鋼A群〜鋼D群を溶製し、ス
ラブとした。これら鋼A群〜鋼D群のうち、鋼A群は、
Si:0.14wt%、Al:tr.、Si+Al≒
0.14wt%、Ge:0.0030〜0.0080w
t%を含有し、且つSb、Snを以下の〜の範囲で
添加した鋼である。 Sb:tr.〜0.2300wt%の範囲で添加(鋼
A−5) Sn:tr.〜0.2300wt%の範囲で添加(鋼
A−6) SbとSnを各々tr.〜0.1500wt%の範囲
で添加(鋼A−7)
Steels A to D shown in Table 3 were melted to form slabs. Among these steel group A to steel group D, steel group A is
Si: 0.14 wt%, Al: tr. , Si + Al≈
0.14 wt%, Ge: 0.0030 to 0.0080 w
It is a steel containing t% and adding Sb and Sn in the following ranges. Sb: tr. To 0.2300 wt% (steel A-5) Sn: tr. Added in the range of 0.2 to 300 wt% (Steel A-6). ~ 0.1500wt% addition (Steel A-7)

【0026】また、鋼B群は、Si:1.42wt%、
Al:0.098wt%、Si+Al≒1.52wt
%、Ge:0.0030wt%〜0.0080wt%を
含有し、且つSb、Snを下記の〜の範囲で添加し
た鋼である。 Sb:tr.〜0.2300wt%の範囲で添加(鋼
B−5) Sn:tr.〜0.2300wt%の範囲で添加(鋼
B−6) SbとSnを各々tr.〜0.1500wt%の範囲
で添加(鋼B−7)
The steel group B contains Si: 1.42 wt%,
Al: 0.098 wt%, Si + Al≈1.52 wt
%, Ge: 0.0030 wt% to 0.0080 wt%, and Sb and Sn are added in the range of to below. Sb: tr. To 0.2300 wt% (steel B-5) Sn: tr. Added in the range of 0.2 to 300 wt% (Steel B-6). Added in the range of 0.1500 wt% (Steel B-7)

【0027】鋼C群は、Si:1.63wt%、Al:
0.272wt%、Si+Al≒1.90wt%、G
e:0.0030〜0.0080wt%を含有し、且つ
Sb、Snを下記の〜の範囲で添加した鋼である。 Sb:tr.〜0.2300wt%の範囲で添加(鋼
C−5) Snをtr.〜0.2300wt%の範囲で添加(鋼
C−6) SbとSnを各々tr.〜0.1500wt%の範囲
で添加(鋼C−7)
Steel group C has Si: 1.63 wt% and Al:
0.272 wt%, Si + Al≈1.90 wt%, G
e: Steel containing 0.0030 to 0.0080 wt% and Sb and Sn added in the range of to below. Sb: tr. To 0.2300 wt% (Steel C-5) Sn was added in the range of tr. Added in the range of 0.2 to 300 wt% (Steel C-6). ~ 0.1500wt% addition (Steel C-7)

【0028】鋼D群は、Si:3.05wt%、Al:
0.511wt%、Si+Al≒3.56wt%、G
e:0.0030〜0.0080wt%を含有し、且つ
Sb、Snを下記の〜の範囲で添加した鋼である。 Sb:tr.〜0.2300wt%の範囲で添加(鋼
D−5) Snをtr.〜0.2300wt%の範囲で添加(鋼
D−6) SbとSnを各々tr.〜0.1500wt%の範囲
で添加(鋼D−7)
Steel group D has Si: 3.05 wt% and Al:
0.511 wt%, Si + Al≈3.56 wt%, G
e: Steel containing 0.0030 to 0.0080 wt% and Sb and Sn added in the range of to below. Sb: tr. Added in the range of 0.2300 wt% (Steel D-5). To 0.2300 wt% (steel D-6) Sb and Sn were added in the respective tr. Added in the range of ~ 0.1500 wt% (Steel D-7)

【0029】これらのスラブを表4に記載の条件で熱間
圧延−冷間圧延−仕上圧延、或いは熱間圧延−熱延板焼
鈍−冷間圧延−仕上焼鈍に供し、板厚0.5mmの鋼板
を得た。しかる後、これら鋼板からリング状試験片を打
ち抜き、これらの磁気特性を測定することで、鋼板の全
方向平均値としての磁気特性を評価した。この際、本発
明者らは、本発明が骨子するSb、SnによるGeの一
部代替を前提に、Ge当量(以下[Ge]eq.と記載
する。)について、その定式化を図るべく検討を行っ
た。その結果、 [Ge]eq.=%Ge+(%Sb+%Sn)/2 但し、%Ge:Ge含有量(wt%) %Sb:Sb含有量(wt%) %Sn:Sn含有量(wt%) という当量式が得られ、磁気特性は鋼A群〜鋼D群の全
てに亘ってこの[Ge]eq.にて整理可能であり、加
えて、この[Ge]eq.を適正範囲に制御すること
で、先に開示したGe単独添加鋼の場合と同等の磁気特
性が得られることが判明した。このことは適量のGeが
共存する場合、Sb、Snはこの[Ge]eq.が規定
する磁気特性改善効果を持つことを意味しており、故
に、Sb、Sn添加量はこの[Ge]eq.により規定
される必要がある。以下、これを具体的に説明する。
These slabs were subjected to hot rolling-cold rolling-finish rolling, or hot rolling-hot rolled sheet annealing-cold rolling-finish annealing under the conditions shown in Table 4, and having a sheet thickness of 0.5 mm. A steel plate was obtained. After that, ring-shaped test pieces were punched out from these steel sheets, and their magnetic characteristics were measured to evaluate the magnetic characteristics as the omnidirectional average value of the steel sheets. At this time, the inventors of the present invention have studied to formulate the Ge equivalent (hereinafter referred to as [Ge] eq.) On the premise that the Ge is partially replaced by Sb and Sn, which is the main feature of the present invention. I went. As a result, [Ge] eq. =% Ge + (% Sb +% Sn) / 2 However, the equivalent formula of% Ge: Ge content (wt%)% Sb: Sb content (wt%)% Sn: Sn content (wt%) is obtained, The magnetic properties of this [Ge] eq. It is possible to arrange in this [Ge] eq. It has been found that by controlling the P content within an appropriate range, it is possible to obtain magnetic properties equivalent to those in the case of the above-described Ge single addition steel. This means that when an appropriate amount of Ge coexists, Sb and Sn are added to this [Ge] eq. Has the effect of improving the magnetic properties defined by the above, and therefore the amount of Sb and Sn added is [Ge] eq. Must be specified by This will be specifically described below.

【0030】図5〜図8は上述した鋼A群〜鋼D群の磁
気特性を[Ge]eq.で整理したものであるが、これ
ら図面によれば、Ge:0.0030〜0.0080w
t%の本発明範囲内にあれば、Si、Al量はもとよ
り、C、Mn、P、S、Nの各含有量も異なる鋼A群〜
鋼D群のいずれにおいても、すなわちベース成分に拘ら
ず、さらには熱延板焼鈍の有無、熱延板焼鈍を付加する
場合にはその長短、或いは仕上焼鈍温度等のプロセス条
件に拘らず、SbまたはSn若しくはその両方を添加
し、且つ[Ge]eq.を0.0100wt%以上とす
ることで、先に開示したGe単独添加鋼と同様に磁束密
度B50が著しく上昇し、且つ鉄損W1550が飛躍的に低
下することが判る。
FIGS. 5 to 8 show the magnetic properties of the above-mentioned steel group A to steel group D by [Ge] eq. According to these drawings, Ge: 0.0030 to 0.0080w
Within the range of the present invention of t%, the steel group A having different contents of C, Mn, P, S and N as well as Si and Al contents
In any of the steel D groups, that is, regardless of the base component, the presence or absence of hot-rolled sheet annealing, when hot-rolled sheet annealing is added, regardless of process conditions such as its length or finish annealing temperature, Sb Or Sn or both, and [Ge] eq. The With 0.0100 wt% or more, increases significantly Ge added alone like the steel flux density B 50 disclosed above, and the iron loss W 15/50 is seen to be reduced dramatically.

【0031】ところで、磁気特性を改善する有力な手段
の一つとして、熱延板焼鈍が挙げられるが、[Ge]e
q.≒0%の場合と[Ge]eq.≧0.0100wt
%の場合の磁気特性の差は、[Ge]eq.≒0%にお
ける熱延板焼鈍付加による磁気特性の向上代と同等かそ
れ以上であり、このことから[Ge]eq.を0.01
00wt%以上とすることによる磁気特性向上効果がい
かに多大であるかが定量的にも把握できる。
By the way, as one of the effective means for improving the magnetic properties, hot-rolled sheet annealing can be mentioned. [Ge] e
q. ≈0% and [Ge] eq. ≧ 0.0100wt
%, The magnetic property difference is [Ge] eq. It is equal to or more than the margin for improving the magnetic properties by the addition of the hot-rolled sheet annealing at ≈0%. 0.01
It is possible to quantitatively grasp how great the effect of improving the magnetic characteristics by setting the content to be at least 100 wt%.

【0032】さて、磁束密度に関しては、[Ge]e
q.≧0.0100wt%の領域では、その[Ge]e
q.依存性は比較的小さく、0.0400〜0.060
0wt%以上で漸減する程度である。一方、鉄損に関し
ては、0.0100〜0.1000wt%の範囲では
[Ge]eq.にほとんど依存せず極めて低い値を示す
が、[Ge]eq.が0.1000wt%を超えると粒
成長性が阻害され、鉄損が著しく上昇する傾向にある。
したがって、[Ge]eq.の適正制御により磁気特性
を向上させるためには、磁束密度、鉄損に関する上記の
検討を踏まえ、特に鉄損の上昇を考慮して、[Ge]e
q.を0.0100〜0.1000wt%とする必要が
あり、これを本発明の範囲として規定した。
Regarding the magnetic flux density, [Ge] e
q. In the region of ≧ 0.0100 wt%, the [Ge] e
q. Dependency is relatively small, 0.0400-0.060
The amount is gradually reduced at 0 wt% or more. On the other hand, regarding the iron loss, in the range of 0.0100 to 0.1000 wt%, [Ge] eq. Shows a very low value with little dependence on [Ge] eq. If it exceeds 0.1000 wt%, grain growth is inhibited and iron loss tends to remarkably increase.
Therefore, [Ge] eq. In order to improve the magnetic characteristics by the appropriate control of [Ge] e,
q. Is required to be 0.0100 to 0.1000 wt%, which is defined as the range of the present invention.

【0033】[Ge]eq.を適正化した場合には、G
e単独添加鋼と同様、Si+Al<1.7wt%の成分
系において、熱延板焼鈍は省略可能である。一般に知ら
れるように、磁気特性を考える場合にはγ/α変態の有
無が一つの分岐点となるが、本発明の場合もγ/α変態
の有無で[Ge]eq.適正化の効果が分かれ、γ/α
変態のある成分系の場合、すなわち上記の例で言うとS
i+Al量が1.7wt%未満の鋼A群(Si+Al≒
0.14wt%)および鋼B群(Si+Al≒1.52
wt%)の場合は、[Ge]eq.が本発明範囲にあれ
ば、熱延板焼鈍を付加せず巻取ままであっても、熱延板
焼鈍を付加した場合とほぼ同程度の磁束密度、鉄損が得
られることが判る。他方、γ/α変態の無い成分系の場
合、すなわち上記の例で言うとSi+Al量が1.7w
t%以上の鋼C群(Si+Al≒1.90wt%)およ
び鋼D群(Si+Al≒3.56wt%)においては、
[Ge]eq.を本発明範囲内に適正化したものでも熱
延板焼鈍の効果は認められ、熱延板焼鈍付加材の方が巻
取ままの熱延板焼鈍省略材に比べて、磁束密度が高く、
鉄損は低めの結果となっている。
[Ge] eq. If the
The hot rolled sheet annealing can be omitted in the composition system of Si + Al <1.7 wt% as in the case of the e-added steel. As is generally known, the presence or absence of the γ / α transformation is one branch point when considering the magnetic properties, but in the case of the present invention as well, the presence or absence of the γ / α transformation [Ge] eq. The effect of optimization is divided into γ / α
In the case of a component system with transformation, that is, S in the above example
Steel group A with i + Al content of less than 1.7 wt% (Si + Al≈
0.14 wt%) and steel group B (Si + Al≈1.52)
wt%), [Ge] eq. It can be seen that, within the range of the present invention, even if the hot rolled sheet is not annealed, the magnetic flux density and the iron loss are almost the same as those when the hot rolled sheet is annealed. On the other hand, in the case of a component system without γ / α transformation, that is, in the above example, the Si + Al amount is 1.7 w
In steel group C (Si + Al≈1.90 wt%) and steel group D (Si + Al≈3.56 wt%) of t% or more,
[Ge] eq. The effect of hot-rolled sheet annealing is recognized even in those optimized within the scope of the present invention, and the hot-rolled sheet annealing additional material is higher in magnetic flux density than the as-wound hot-rolled sheet annealing omitted material,
The iron loss is low.

【0034】ところで、先に提案したGe単独添加鋼に
対して、本発明ではGeを極く微量(0.0030wt
%以上)含有させれば、Ge添加量の残部をSb、Sn
の添加で代替しても、Ge単独添加鋼と同等の磁気特性
改善効果が得られることを明らかにしたが、これは次の
ような理由によるものと考えられる。
By the way, in the present invention, a very small amount of Ge (0.0030 wt.
% Or more), the balance of the Ge addition amount is Sb, Sn
It has been clarified that the effect of improving the magnetic properties equivalent to that of the steel containing Ge alone can be obtained even if it is replaced by the addition of Fe.

【0035】Geによる磁気特性改善効果はSb、Sn
と同様、これが結晶粒界に偏析し、磁気特性上好ましく
ない{111}集合組織の発達を抑えることによるもの
である。しかし、Geの場合には、Sb、Sn等に比べ
て原子半径が小さく拡散し易いため、同じ添加量でもS
b、Snと比較して、より速やかに、且つより多く粒界
偏析し、{111}集合組織の発達を顕著に抑制する。
そして、このようにGeの拡散速度が速いことにより、
Sb、Sn等では不可欠であった長時間の熱延板焼鈍や
二冷圧における中間焼鈍等も特段必要ではなく、短時間
の熱延板焼鈍を付加するだけで、或いは熱延板焼鈍を付
加せず巻取ままであっても、十分な磁気特性改善効果が
得られる。
The effect of improving the magnetic characteristics by Ge is Sb, Sn.
This is due to segregation at grain boundaries, which suppresses the development of {111} texture, which is unfavorable in terms of magnetic properties. However, in the case of Ge, the atomic radius is smaller than that of Sb, Sn, etc., and it is easy to diffuse.
Compared with b and Sn, it segregates more rapidly and more rapidly, and significantly suppresses the development of {111} texture.
And, since the diffusion speed of Ge is high in this way,
Long-time hot-rolled sheet annealing and intermediate annealing at two cold pressures, which were indispensable for Sb and Sn, etc., are not particularly necessary, and only short-time hot-rolled sheet annealing is added or hot-rolled sheet annealing is added. Even if it is not wound, the magnetic properties can be sufficiently improved.

【0036】また、Geによる磁気特性改善効果は、上
記の拡散速度の点に加えて、Geが粒界に偏析すること
により、粒界界面エネルギーが低下することにも起因し
ているものと考えられる。界面エネルギーがある程度低
下するためには当然所定量のGeの粒界偏析が生じなけ
ればならないが、そのための必要最低限のGeの添加量
が、本発明が規定するGe量の下限である0.0030
wt%であると考えられる。
The magnetic property improving effect of Ge is considered to be due to the fact that the grain boundary interface energy is lowered due to the segregation of Ge at the grain boundaries, in addition to the above diffusion rate. Be done. Grain boundary segregation of a predetermined amount of Ge must naturally occur in order to reduce the interface energy to some extent, but the minimum necessary addition amount of Ge for that purpose is the lower limit of the Ge amount specified by the present invention. 0030
It is considered to be wt%.

【0037】以上の点から、先に開示したGe単独添加
鋼の場合は、Geの拡散が速いことに加えて、まず微量
のGeが粒界に偏析し、これにより偏析に際しての界面
エネルギーが低下して、続くGeの偏析を一層加速する
ことになり、このためSb、Sn等に比べて少量の添加
量で、より速やかに且つより多く粒界偏析を生じ、{1
11}集合組織の発達を顕著に抑制するものと考えられ
る。そして、Geの共存下でSb、Snを添加する本発
明においても、Geを0.0030wt%以上添加する
ことにより、Sb、Snの粒界偏析に先立って、まず、
拡散速度の速いGeが粒界に偏析し、これが偏析に対す
る界面エネルギーを低下させ、その後のSb、Snの偏
析をGe無添加鋼に比べ格段に加速する結果、Ge単独
添加鋼と同様、顕著に{111}集合組織の発達を抑制
するものと考えられる。但し、Sb、SnはGeに比べ
て拡散速度自体が遅いため、粒界偏析の程度はGeと同
等ではなく、[Ge]eq.に見られるようにGeの1
/2程度となる。
From the above points, in the case of the steel containing Ge alone disclosed above, in addition to the rapid diffusion of Ge, a small amount of Ge is segregated at the grain boundaries, which lowers the interfacial energy during segregation. Then, the subsequent segregation of Ge is further accelerated. Therefore, with a smaller addition amount than Sb, Sn, etc., grain boundary segregation occurs more rapidly and more than {1
11} It is considered that the development of the texture is significantly suppressed. Also in the present invention in which Sb and Sn are added in the coexistence of Ge, by adding Ge in an amount of 0.0030 wt% or more, first, before the grain boundary segregation of Sb and Sn,
Ge, which has a high diffusion rate, segregates at the grain boundaries, which lowers the interfacial energy for segregation and accelerates the subsequent segregation of Sb and Sn significantly compared to the Ge-free steel. It is considered to suppress the development of {111} texture. However, since the diffusion rate of Sb and Sn is slower than that of Ge, the degree of grain boundary segregation is not equal to that of Ge, and [Ge] eq. Ge as seen in 1
It becomes about / 2.

【0038】このようにGeを0.0030wt%以上
含む場合には、Sb、Snもまた{111}集合組織の
抑制に対してGeの1/2の効果を持つことになる。そ
して、本発明は[Ge]eq.を通じてSb、Snの添
加量を規定することによりSb、Snの添加をGe添加
と等価とし、これによりGe単独添加鋼と同等の磁気特
性改善効果を得ることができる。
As described above, when Ge is contained in an amount of 0.0030 wt% or more, Sb and Sn also have a 1/2 effect of Ge on the suppression of {111} texture. Then, the present invention relates to [Ge] eq. By defining the addition amounts of Sb and Sn through, the addition of Sb and Sn can be made equivalent to the addition of Ge, and by this, the effect of improving the magnetic properties equivalent to that of the steel containing Ge alone can be obtained.

【0039】一方、Sb、Sn等の単独添加や、Sbと
Snの複合添加等の従来技術にあっては、これらの元素
の拡散速度が遅いことに加えて、これら元素が粒界偏析
する際、Geのような実効ある粒界界面エネルギーの低
下とそれによる偏析の加速が生じないため、先に述べた
ように、これら元素を多量に添加するか、或いは長時間
の偏析処理を付加しない限り、{111}集合組織の発
達を効果的に抑制し得ないものと考えられる。
On the other hand, in the conventional techniques such as Sb, Sn, etc. alone added, and Sb, Sn combined addition, etc., in addition to the slow diffusion rate of these elements, when these elements segregate at the grain boundaries. , Ge does not cause the effective reduction of grain boundary interface energy and the resulting acceleration of segregation. Therefore, as described above, unless a large amount of these elements is added or a long-term segregation treatment is added, It is considered that the development of the {111} texture cannot be effectively suppressed.

【0040】(3)その他の成分 C:磁気特性を劣化させる元素であり、また、磁気時効
上も有害であるため、これらを避けるためにC≦0.0
050wt%の極低C化が必須となる。 Si:固有抵抗を増し、鉄損を下げる元素であるが、こ
の効果を得るためには0.1wt%以上の添加が必要で
ある。一方、3.5wt%を超えると鋼が著しく脆化
し、冷間圧延時に割れを生じる。このためSiは0.1
〜3.5wt%の範囲とする。
(3) Other components C: This is an element that deteriorates the magnetic properties and is also harmful in terms of magnetic aging.
An extremely low carbon content of 050 wt% is essential. Si: An element that increases specific resistance and decreases iron loss, but in order to obtain this effect, addition of 0.1 wt% or more is necessary. On the other hand, if it exceeds 3.5 wt%, the steel becomes extremely brittle and cracks occur during cold rolling. Therefore, Si is 0.1
˜3.5 wt%.

【0041】Mn:熱間脆性防止のため0.1wt%以
上の添加が必要である。一方、0.9wt%を超えると
磁束密度の劣化が著しくなる。このためMnは0.1〜
0.9wt%の範囲とする。 P:硬度を上昇させ且つ打ち抜き性を向上させるため、
適量の添加は可能である。但し、0.2wt%を超える
と、これらの効果が飽和するだけでなく、磁気特性の急
激な劣化を招くため、0.2wt%をその上限とする。
Mn: Addition of 0.1 wt% or more is required to prevent hot brittleness. On the other hand, if it exceeds 0.9 wt%, the magnetic flux density is significantly deteriorated. Therefore, Mn is 0.1 to
The range is 0.9 wt%. P: To increase hardness and improve punchability,
An appropriate amount can be added. However, if it exceeds 0.2 wt%, not only these effects are saturated, but also the magnetic characteristics are rapidly deteriorated. Therefore, the upper limit is 0.2 wt%.

【0042】S:0.015wt%を超えると粒成長性
が劣化し、鉄損が上昇するため、0.015wt%以下
とする。 Al:Siと同様、固有抵抗を増大し、鉄損を下げる元
素であるため1.5wt%までは必要に応じて添加でき
るが、これを超えると著しく脆化し、冷間圧延性を損な
うので、その上限を1.5wt%とする。 N:磁気特性を劣化させる元素であり、これを避けるた
めには、0.0050wt%以下とする必要がある。
S: If it exceeds 0.015 wt%, the grain growth property deteriorates and the iron loss increases, so the content is made 0.015 wt% or less. Similar to Al: Si, it is an element that increases the specific resistance and reduces the iron loss, so it can be added as needed up to 1.5 wt%, but if it exceeds this, it becomes extremely brittle and impairs the cold rollability. The upper limit is set to 1.5 wt%. N: An element that deteriorates the magnetic characteristics, and in order to avoid this, it is necessary to set it to 0.0050 wt% or less.

【0043】次に、本発明の鋼板を得るための好ましい
プロセス条件について説明する。本発明では、上述した
ような成分組成を適正化することにより、プロセス条件
に拘らず優れた磁気特性が得られる。したがって、プロ
セス条件については特段配慮の必要はなく、公知の条件
でよい。但し、Si、Al量を勘案することなく、公知
のプロセス条件を無作為に適用した場合、例えば、十分
な粒成長が起こらず、この結果鉄損が劣化する等の問題
が生じる。したがって、公知の条件を適用するに際して
も、以下に述べるような好ましい範囲が存在する。
Next, preferable process conditions for obtaining the steel sheet of the present invention will be described. In the present invention, by optimizing the component composition as described above, excellent magnetic characteristics can be obtained regardless of process conditions. Therefore, it is not necessary to pay particular attention to the process conditions, and known conditions may be used. However, when the known process conditions are randomly applied without considering the amounts of Si and Al, for example, sufficient grain growth does not occur, and as a result, iron loss is deteriorated. Therefore, even when applying known conditions, there are preferable ranges as described below.

【0044】熱間圧延条件:熱間圧延の加熱温度が徒ら
に高いと、スケール発生による表面性状の劣化やスケー
ルロス等の歩留の低下を来たすため、加熱温度の上限は
1250℃程度とすることが望ましい。また下限につい
ては、加熱温度が極端に低いと必然的に圧延時の圧延温
度が低くなり、圧延負荷の増大を招くため、1050℃
程度を下限とすることが望ましい。仕上温度について
は、加熱温度と仕上圧延に至るまでの降温量および圧延
負荷を考慮した場合、900〜700℃程度が望ましい
範囲となる。
Hot rolling conditions: If the heating temperature of hot rolling is excessively high, the surface quality will be deteriorated due to scale generation and the yield such as scale loss will be reduced. Therefore, the upper limit of the heating temperature is about 1250 ° C. It is desirable to do. Regarding the lower limit, if the heating temperature is extremely low, the rolling temperature during rolling will inevitably become low, leading to an increase in rolling load.
It is desirable to set the degree to the lower limit. Regarding the finishing temperature, when considering the heating temperature, the amount of temperature decrease until the finishing rolling, and the rolling load, a desirable range is about 900 to 700 ° C.

【0045】巻取温度については、次工程として熱延板
焼鈍を行わない場合は、磁気特性上、この段階で熱延板
の再結晶の進展若しくは結晶粒の粗大化を図る必要があ
り、そのためには巻取温度をSi+Al量に応じて以下
のような範囲とすることが望ましい。 0.1wt%≦Si+Al<1.0wt%の場合……630℃以上 1.0wt%≦Si+Al<1.7wt%の場合……670℃以上 1.7wt%≦Si+Al<3.0wt%の場合……700℃以上 3.0wt%≦Si+Alの場合 ……720℃以上
Regarding the winding temperature, if the hot-rolled sheet is not annealed in the next step, it is necessary to promote the recrystallization of the hot-rolled sheet or coarsen the crystal grains at this stage because of the magnetic characteristics. For this reason, it is desirable to set the winding temperature in the following range according to the amount of Si + Al. When 0.1 wt% ≦ Si + Al <1.0 wt% 630 ° C. or higher 1.0 wt% ≦ Si + Al <1.7 wt% 670 ° C. or higher 1.7 wt% ≦ Si + Al <3.0 wt% … 700 ℃ or more 3.0wt% ≦ Si + Al …… 720 ℃ or more

【0046】一方、熱延板焼鈍を行う場合は、熱延板焼
鈍時に再結晶の進展、結晶粒の粗大化が起こればよく、
このため、巻取温度はスケールの増加や表面性状の劣化
を防ぐ意味合いから、むしろ550℃以下の低温とする
ことが望ましい。
On the other hand, when the hot-rolled sheet is annealed, it is sufficient that recrystallization progresses and crystal grains become coarse during the hot-rolled sheet annealing.
Therefore, the winding temperature is preferably set to a low temperature of 550 ° C. or lower from the viewpoint of preventing an increase in scale and deterioration of surface properties.

【0047】熱延板焼鈍条件:Si+Al<1.7wt
%の場合は、熱延板焼鈍を付加しなくても巻取ままで熱
延板焼鈍を付加した場合とほぼ同等の磁気特性が得られ
るため、特に熱延板焼鈍の必要はないが、巻取ままでの
コイルエンド性を改善するため、或いは若干なりとも磁
気特性を向上させるために、熱延板焼鈍を施すことは何
ら支障はない。
Annealing conditions for hot-rolled sheet: Si + Al <1.7 wt
%, Magnetic properties almost the same as when hot-rolled sheet annealing is added without winding even without hot-rolled sheet annealing are added, so there is no need for hot-rolled sheet annealing. There is no problem in performing hot-rolled sheet annealing in order to improve the coil end property as it is, or to improve the magnetic properties to some extent.

【0048】一方、Si+Al≧1.7wt%の場合
は、熱延板焼鈍の付加により磁気特性が向上するため、
必要に応じて熱延板焼鈍を行うことが望ましい。熱延板
焼鈍を行う場合の焼鈍温度には、熱延板の再結晶を進展
させ、或いは結晶粒の粗大化を図り、所要の磁気特性を
得るために下限として望ましい温度があり、また、結晶
粒が粗大化し過ぎ、表面性状の劣化を招かないために上
限として望ましい温度がある。すなわち、この焼鈍温度
はSi+Al量に応じて以下のような範囲とすることが
望ましい。 0.1wt%≦Si+Al<1.0wt%……700〜950℃ 1.0wt%≦Si+Al<1.7wt%……725〜1000℃ 1.7wt%≦Si+Al<3.0wt%……750〜1050℃ 3.0wt%≦Si+Al……800〜1100℃ なお、焼鈍時間については、焼鈍効果を十分得るために
30秒以上とすることが望ましい。
On the other hand, in the case of Si + Al ≧ 1.7 wt%, the magnetic characteristics are improved by the addition of hot rolled sheet annealing.
It is desirable to perform hot-rolled sheet annealing if necessary. The annealing temperature in the case of performing hot-rolled sheet annealing has a desirable temperature as a lower limit in order to develop recrystallization of the hot-rolled sheet or to coarsen the crystal grains and obtain the required magnetic properties. There is a desirable temperature as an upper limit because the grains do not become too coarse and the surface quality is not deteriorated. That is, it is desirable that the annealing temperature be in the following range depending on the amount of Si + Al. 0.1 wt% ≦ Si + Al <1.0 wt% 700 to 950 ° C. 1.0 wt% ≦ Si + Al <1.7 wt% 725 to 1000 ° C. 1.7 wt% ≦ Si + Al <3.0 wt% 750 to 1050 C 3.0 wt% ≤ Si + Al ... 800 to 1100 C Note that the annealing time is preferably 30 seconds or more in order to obtain a sufficient annealing effect.

【0049】冷間圧延条件:特に限定の必要はなく、通
常の1回若しくは中間焼鈍をはさむ2回以上の冷間圧延
のいずれでもよい。
Cold-rolling conditions: There is no particular limitation, and ordinary cold-rolling may be performed once or twice or more with intermediate annealing.

【0050】仕上焼鈍条件:仕上焼鈍温度には、結晶粒
を十分成長させ所要の磁気特性を得るために下限として
望ましい温度があり、一方、結晶粒が粗大化し過ぎ、ま
た、酸化によって表面性状が劣化するのを防ぐために上
限として望ましい温度がある。すなわち、この焼鈍温度
はSi+Al量に応じて以下のような範囲とすることが
望ましい。 0.1wt%≦Si+Al<1.0wt%……650〜900℃ 1.0wt%≦Si+Al<1.7wt%……700〜950℃ 1.7wt%≦Si+Al<3.0wt%……750〜1000℃ 3.0wt%≦Si+Al……850〜1050℃ なお、焼鈍時間については、焼鈍効果を十分得るために
30秒以上とすることが望ましい。
Finishing annealing conditions: The finishing annealing temperature has a desirable lower limit as a lower limit in order to sufficiently grow crystal grains and obtain required magnetic properties, while the crystal grains become excessively coarse, and the surface texture is changed by oxidation. There is a desirable temperature as an upper limit to prevent deterioration. That is, it is desirable that the annealing temperature be in the following range depending on the amount of Si + Al. 0.1 wt% ≦ Si + Al <1.0 wt% 650-900 ° C. 1.0 wt% ≦ Si + Al <1.7 wt% ・ ・ ・ 700-950 ° C. 1.7 wt% ≦ Si + Al <3.0 wt% 750-1000 C 3.0 wt% ≤ Si + Al ... 850 to 1050 C Note that the annealing time is preferably 30 seconds or more in order to obtain a sufficient annealing effect.

【0051】スキンパス圧延条件:仕上焼鈍後スキンパ
ス圧延を行うことにより、所定形状に打ち抜き後、歪取
焼鈍に供されるセミプロセス材としてもよい。その場
合、歪取焼鈍時に十分粒成長を生じさせるため、スキン
パスでの圧下率は2%以上とすることが望ましい。一
方、圧下率が過大であると却って結晶粒が細粒化し、磁
気特性が劣化するため、上限は12%程度とすることが
望ましい。
Skin pass rolling condition: A semi-processed material which is subjected to strain relief annealing after punching into a predetermined shape by performing skin pass rolling after finish annealing. In that case, since the grain growth is sufficiently generated during the stress relief annealing, it is desirable that the reduction rate in the skin pass is 2% or more. On the other hand, if the rolling reduction is excessively large, the crystal grains become finer and the magnetic properties are deteriorated. Therefore, the upper limit is preferably about 12%.

【0052】なお、スキンパス圧延を行うと結晶粒が粗
大化し、鉄損の低下は図れるものの、同時に磁束密度も
低下するため、近年では、仕上焼鈍後スキンパス圧延を
行わずに、これをそのまま打ち抜き、歪取焼鈍に供する
ことで、磁束密度をあまり低下させずに、鉄損をある程
度低下させるタイプのセミプロセス材も多く用いられて
いる。本発明の鋼板は、仕上焼鈍の段階で高い磁束密度
と低い鉄損を兼ね備えているため、これをそのまま打ち
抜き後歪取焼鈍に供し、上記タイプのセミプロセス材と
した場合には、磁束密度を高位に維持したまま鉄損をよ
り低下できることになり、従来にも増して優れた磁気特
性を有するセミプロセス材の提供が可能となる。
When skin pass rolling is performed, the crystal grains are coarsened and iron loss can be reduced, but at the same time, the magnetic flux density is also reduced. A semi-processed material of a type that reduces iron loss to some extent without being significantly reduced in magnetic flux density by being subjected to stress relief annealing is also often used. The steel sheet of the present invention has a high magnetic flux density and a low iron loss at the stage of finish annealing. Therefore, the steel sheet is subjected to stress relief annealing after punching as it is, and when the semi-processed material of the above type is used, the magnetic flux density is reduced. It is possible to further reduce the iron loss while maintaining the high level, and it is possible to provide a semi-processed material having excellent magnetic properties more than ever before.

【0053】[0053]

【実施例】【Example】

〔実施例1〕表5〜表7に記載の鋼E群〜鋼J群を溶製
し、スラブとした後、表8〜表10に記載の条件で熱間
圧延、冷間圧延、仕上焼鈍(熱延板焼鈍は無し)に供
し、板厚0.5mmの鋼板を得た。これらの鋼板からリ
ング状試験片を打ち抜き、磁気特性を測定した結果を表
8〜表10に併せて示す。
[Example 1] Steels E to J shown in Tables 5 to 7 were melted to form slabs, and then hot rolled, cold rolled, and finish annealed under the conditions shown in Tables 8 to 10. It was subjected to (no hot-rolled plate annealing) to obtain a steel plate having a plate thickness of 0.5 mm. The ring-shaped test pieces were punched out from these steel plates and the magnetic properties were measured, and the results are also shown in Tables 8 to 10.

【0054】同表から明らかなように、Si、Al量は
もとより、C、Mn、P、S、Nの各含有量が異なる、
すなわちベース成分の異なる鋼E群〜鋼J群のいずれに
おいても、熱延条件や仕上焼鈍条件等のプロセス条件の
違いに拘らず、Ge量を本発明範囲とした上で、Sb、
Snのいずれか一方、若しくはその両方を添加し、且つ
[Ge]eq.を本発明範囲に調整した鋼(各鋼群のN
o.2鋼〜No.4鋼:本発明鋼)は、いずれもGe、
SbおよびSn無添加のBase鋼(各鋼群のNo.1
鋼)に比べて著しく高磁束密度−低鉄損化している。
As is clear from the table, the contents of C, Mn, P, S and N as well as the contents of Si and Al are different.
That is, in any of Steel E group to Steel J group having different base components, Sb, Sb,
Either one or both of Sn is added, and [Ge] eq. Steels adjusted to the scope of the present invention (N of each steel group
o. 2 steel-No. 4 steel: the steel of the present invention) is Ge,
Base steel without addition of Sb and Sn (No. 1 of each steel group)
Compared with steel), it has a significantly higher magnetic flux density and lower iron loss.

【0055】一方、Ge量が本発明範囲を下回る鋼(各
鋼群のNo.5鋼:比較鋼)および[Ge]eq.が本
発明範囲を下回る鋼(各鋼群のNo.6鋼:比較鋼)の
磁気特性はBase鋼のそれとあまり差がなく、磁束密
度、鉄損とも本発明鋼と比べて大きく劣っている。ま
た、[Ge]eq.が本発明範囲を超える鋼(各鋼群の
No.7鋼:比較鋼)の場合は、磁束密度が改善されて
いるものもあるが、鉄損はBase鋼とほとんど同じか
むしろ増加しており、優れた磁気特性は達成されていな
い。
On the other hand, steel having a Ge content below the range of the present invention (No. 5 steel of each steel group: comparative steel) and [Ge] eq. However, the magnetic properties of the steel below the range of the present invention (No. 6 steel of each steel group: comparative steel) are not so different from those of Base steel, and both the magnetic flux density and the iron loss are significantly inferior to the steel of the present invention. In addition, [Ge] eq. In the case of steels exceeding the range of the present invention (No. 7 steels of each steel group: comparative steels), the magnetic flux density is improved in some cases, but the iron loss is almost the same as or rather increases with Base steel. , Excellent magnetic properties have not been achieved.

【0056】〔実施例2〕表5〜表7に記載の鋼E群〜
鋼J群を表11〜表13に記載の条件で熱間圧延、短時
間熱延板焼鈍、冷間圧延、仕上焼鈍に供し、板厚0.5
mmの鋼板を得た。これらの鋼板からリング状試験片を
打ち抜き、磁気特性を測定した結果を表11〜表13に
併せて示す。同表によれば、巻取ままの場合の実施例1
と同様に、短時間の熱延板焼鈍を付加した場合でも、成
分、プロセス条件に拘らず、本発明鋼はBase鋼に比
べて著しく高磁束密度−低鉄損化していること、一方、
比較鋼の磁気特性はあまり改善されておらず、本発明鋼
のそれと比べると大きく劣っていることが判る。
[Example 2] Steel E group shown in Table 5 to Table 7
Steel group J was subjected to hot rolling, short-time hot-rolled sheet annealing, cold rolling, and finish annealing under the conditions shown in Tables 11 to 13 to obtain a sheet thickness of 0.5.
mm steel plate was obtained. The ring-shaped test pieces were punched out from these steel plates, and the results of measuring the magnetic properties are also shown in Tables 11 to 13. According to the table, Example 1 in the case of as-rolled
Similarly to the above, even when hot-rolled sheet annealing is added for a short period of time, the steel of the present invention has significantly higher magnetic flux density-lower iron loss than Base steel, regardless of the composition and process conditions.
It can be seen that the magnetic properties of the comparative steels have not been improved so much and are significantly inferior to those of the steels of the present invention.

【0057】〔実施例3〕表6および表7に記載の鋼H
群〜鋼J群を、表14および表15に記載の条件で熱間
圧延、長時間熱延板焼鈍、冷間圧延、仕上焼鈍に供し、
板厚0.5mmの鋼板を得た。これらの鋼板からリング
状試験片を打ち抜き、磁気特性を測定した結果を表14
および表15に併せて示す。同表によれば、長時間の熱
延板焼鈍を付加した場合でも、成分、プロセス条件に拘
らず、本発明鋼はBase鋼に比べて著しく高磁束密度
−低鉄損化していること、また、比較鋼の磁気特性は本
発明鋼のそれと比べて大きく劣っていることが判る。
Example 3 Steel H described in Table 6 and Table 7
Group-Steel J group was subjected to hot rolling, long-time hot-rolled sheet annealing, cold rolling, and finish annealing under the conditions shown in Table 14 and Table 15,
A steel plate having a plate thickness of 0.5 mm was obtained. The results of measuring the magnetic properties by punching out ring-shaped test pieces from these steel plates are shown in Table 14.
Also shown in Table 15. According to the table, the steel of the present invention has a significantly higher magnetic flux density-lower iron loss than the Base steel, regardless of the components and the process conditions, even when the hot-rolled sheet is annealed for a long time. It can be seen that the magnetic properties of the comparative steel are significantly inferior to those of the steel of the present invention.

【0058】〔実施例4〕表5に記載の鋼E群および鋼
F群を、表16および表17に記載の条件で熱間圧延、
冷間圧延、仕上焼鈍(熱延板焼鈍は無し)、または熱間
圧延、短時間熱延板焼鈍、冷間圧延、仕上焼鈍に供した
後、一部はスキンパス圧延を施し、また他の一部はスキ
ンパス圧延を行わず、板厚0.5mmの鋼板とした。こ
れらの鋼板からリング状試験片を打ち抜き、これを75
0℃×2時間の歪取焼鈍に供した後の磁気特性を測定す
ることで、セミプロセス材としての特性を評価した。そ
の結果を表16および表17に併せて示す。
Example 4 Steel E group and steel F group shown in Table 5 were hot-rolled under the conditions shown in Table 16 and Table 17,
After cold-rolling, finish annealing (no hot-rolled sheet annealing), or hot rolling, short-time hot-rolled sheet annealing, cold rolling, finish annealing, some of them are skin-pass rolled and another The portion was not subjected to skin pass rolling and was a steel plate having a plate thickness of 0.5 mm. A ring-shaped test piece was punched out from these steel plates and
The properties as a semi-processed material were evaluated by measuring the magnetic properties after subjected to stress relief annealing at 0 ° C. for 2 hours. The results are also shown in Tables 16 and 17.

【0059】同表から明らかなように、鋼E群、鋼F群
ともに、すなわち成分系に拘らず、また、熱延板焼鈍の
有無やスキンパス圧延の有無、さらにはその他プロセス
条件に拘らず、本発明鋼はBase鋼や比較鋼に比べて
著しく高磁束密度−低鉄損化しており、本発明鋼はスキ
ンパス圧延を施すタイプのセミプロセス材、スキンパス
圧延を施さないタイプのセミプロセス材のいずれにも適
用可能であることが判る。
As is clear from the table, both of the steel E group and the steel F group, that is, regardless of the component system, regardless of the presence or absence of hot-rolled sheet annealing, the presence or absence of skin pass rolling, and other process conditions, The steel of the present invention has remarkably high magnetic flux density and low iron loss as compared with Base steel and comparative steel. The steel of the present invention is a semi-processed material of a type that is skin-pass rolled or a semi-processed material of a type that is not skin-pass rolled. It turns out that it is also applicable to.

【0060】[0060]

【発明の効果】以上述べたように本発明によれば、成分
組成、特にGe量とGe、Sb、Sn量で規定される
[Ge]eq.を適正化することで、Geの持つ優れた
磁気特性改善効果の一部をSb、Snで代替し、Ge単
独添加鋼と同様、長時間の熱延板焼鈍や二冷圧における
中間焼鈍等を実施することなく、簡易な工程で製造可能
な高磁束密度−低鉄損の無方向性電磁鋼板を提供するこ
とができる。
As described above, according to the present invention, the component composition, in particular, [Ge] eq. Defined by Ge amount and Ge, Sb, Sn amount is specified. By substituting Sb and Sn for a part of the excellent magnetic property improving effect of Ge by optimizing, the long-time hot-rolled sheet annealing and the intermediate annealing at two cold pressures, etc. can be performed like Ge alone addition steel. It is possible to provide a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, which can be manufactured by a simple process without performing.

【0061】このような本発明の鋼板は、Geの一部を
安価なSb、Snで代替することでコスト低減を図るこ
とができるとともに、その製造に複雑な工程を必要とし
ないため、この点からも製造コストの低減化と製品の短
納期化が実現できる。さらに、本発明の鋼板はプロセス
条件に関する厳しい制約がなく、製造が容易であり、し
かも、フルプロセス材のみならずセミプロセス材にも適
用可能であり、その適用範囲が広いという大きな特徴が
ある。このように本発明によれば、磁気特性に優れた無
方向性電磁鋼板のフルプロセス材またはセミプロセス材
を、安価且つ容易にしかも短納期で製造できるという効
果がある。
In such a steel sheet of the present invention, it is possible to reduce the cost by substituting a part of Ge with inexpensive Sb and Sn, and the manufacturing process thereof does not require a complicated process. Also, the manufacturing cost can be reduced and the product delivery can be shortened. Further, the steel sheet of the present invention has no strict restrictions on process conditions, is easy to manufacture, and is applicable not only to full-process materials but also to semi-process materials, and has a wide range of application. As described above, according to the present invention, there is an effect that a full-process material or a semi-process material of a non-oriented electrical steel sheet having excellent magnetic properties can be manufactured inexpensively, easily, and with a short delivery time.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【表5】 [Table 5]

【0067】[0067]

【表6】 [Table 6]

【0068】[0068]

【表7】 [Table 7]

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【表9】 [Table 9]

【0071】[0071]

【表10】 [Table 10]

【0072】[0072]

【表11】 [Table 11]

【0073】[0073]

【表12】 [Table 12]

【0074】[0074]

【表13】 [Table 13]

【0075】[0075]

【表14】 [Table 14]

【0076】[0076]

【表15】 [Table 15]

【0077】[0077]

【表16】 [Table 16]

【0078】[0078]

【表17】 [Table 17]

【図面の簡単な説明】[Brief description of drawings]

【図1】Si+Al≒0.14wt%鋼(鋼A群)にお
ける磁気特性に及ぼすGe添加量の影響を示す図面
FIG. 1 is a drawing showing the influence of the amount of Ge added on the magnetic properties of Si + Al≈0.14 wt% steel (Steel Group A).

【図2】Si+Al≒1.52wt%鋼(鋼B群)にお
ける磁気特性に及ぼすGe添加量の影響を示す図面
FIG. 2 is a drawing showing the effect of the added amount of Ge on the magnetic properties of Si + Al≈1.52 wt% steel (Steel B group).

【図3】Si+Al≒1.90wt%鋼(鋼C群)にお
ける磁気特性に及ぼすGe添加量の影響を示す図面
FIG. 3 is a drawing showing the effect of the amount of Ge addition on the magnetic properties in Si + Al≈1.90 wt% steel (Steel C group).

【図4】Si+Al≒3.56wt%鋼(鋼D群)にお
ける磁気特性に及ぼすGe添加量の影響を示す図面
FIG. 4 is a drawing showing the influence of the amount of Ge addition on the magnetic properties in Si + Al≈3.56 wt% steel (Steel D group).

【図5】Si+Al≒0.14wt%鋼(鋼A群)にお
ける磁気特性に及ぼす[Ge]eq.の影響を示す図面
FIG. 5 shows the effect of [Ge] eq. On the magnetic properties of Si + Al≈0.14 wt% steel (Steel group A). Drawing showing the effect of

【図6】Si+Al≒1.52wt%鋼(鋼B群)にお
ける磁気特性に及ぼす[Ge]eq.の影響を示す図面
FIG. 6 shows the effect of [Ge] eq. On the magnetic properties of Si + Al≈1.52 wt% steel (Steel B group). Drawing showing the effect of

【図7】Si+Al≒1.90wt%鋼(鋼C群)にお
ける磁気特性に及ぼす[Ge]eq.の影響を示す図面
FIG. 7 shows the effect of [Ge] eq. On the magnetic properties of Si + Al≈1.90 wt% steel (Steel C group). Drawing showing the effect of

【図8】Si+Al≒3.56wt%鋼(鋼D群)にお
ける磁気特性に及ぼす[Ge]eq.の影響を示す図面
FIG. 8 shows the effect of [Ge] eq. On the magnetic properties of Si + Al≈3.56 wt% steel (Steel D group). Drawing showing the effect of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 昭彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Nishimoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.0050wt%以下、Si:
0.1wt%以上3.5wt%以下、Mn:0.1wt
%以上0.9wt%以下、P:0.2wt%以下、S:
0.015wt%以下、Al:1.5wt%以下、N:
0.0050wt%以下、Ge:0.0030wt%以
上0.0100wt%未満を含有し、これにSbおよび
Snのうち1種または2種を、 [Ge]eq.=0.0100〜0.1000〔wt
%〕 但し、[Ge]eq.=%Ge+(%Sb+%Sn)/
2 %Ge:Ge含有量(wt%) %Sb:Sb含有量(wt%) %Sn:Sn含有量(wt%) を満足するように含有し、残部Feおよび不可避的不純
物からなることを特徴とする磁気特性に優れた無方向性
電磁鋼板。
1. C: 0.0050 wt% or less, Si:
0.1 wt% or more and 3.5 wt% or less, Mn: 0.1 wt
% Or more and 0.9 wt% or less, P: 0.2 wt% or less, S:
0.015 wt% or less, Al: 1.5 wt% or less, N:
0.0050 wt% or less, Ge: 0.0030 wt% or more and less than 0.0100 wt%, and one or two of Sb and Sn is added to [Ge] eq. = 0.0100 to 0.1000 [wt
%] However, [Ge] eq. =% Ge + (% Sb +% Sn) /
2% Ge: Ge content (wt%)% Sb: Sb content (wt%)% Sn: Sn content (wt%) so that the content is satisfied, and the balance is Fe and inevitable impurities. Non-oriented electrical steel sheet with excellent magnetic properties.
JP3311546A 1991-10-31 1991-10-31 Non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2636609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3311546A JP2636609B2 (en) 1991-10-31 1991-10-31 Non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311546A JP2636609B2 (en) 1991-10-31 1991-10-31 Non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH05125495A true JPH05125495A (en) 1993-05-21
JP2636609B2 JP2636609B2 (en) 1997-07-30

Family

ID=18018541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311546A Expired - Lifetime JP2636609B2 (en) 1991-10-31 1991-10-31 Non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2636609B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066425A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
WO2018117598A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor
CN111527225A (en) * 2017-12-26 2020-08-11 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133446A (en) * 1980-03-25 1981-10-19 Noboru Tsuya Intrasurface nonoriented electrical steel strip and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133446A (en) * 1980-03-25 1981-10-19 Noboru Tsuya Intrasurface nonoriented electrical steel strip and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066425A (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
WO2018117598A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor
EP3556878A4 (en) * 2016-12-19 2019-11-20 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2020504787A (en) * 2016-12-19 2020-02-13 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
US11060170B2 (en) * 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
CN111527225A (en) * 2017-12-26 2020-08-11 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
EP3733916A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for preparing same
JP2021509447A (en) * 2017-12-26 2021-03-25 ポスコPosco Non-oriented electrical steel sheet and its manufacturing method
US11634786B2 (en) 2017-12-26 2023-04-25 Posco Co., Ltd Non-oriented electrical steel sheet and method for preparing same

Also Published As

Publication number Publication date
JP2636609B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
US9637812B2 (en) Non-oriented electrical steel sheet
JP2636609B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
EP0503680A2 (en) Oriented silicon steel sheets and production process therefor
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2701352B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JP2581335B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP3013961B2 (en) Non-oriented electrical steel sheet with little iron loss after magnetic annealing
JP3885450B2 (en) Non-oriented electrical steel sheet
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP2888229B2 (en) Non-oriented electrical steel sheet for high frequency
JPH0625381B2 (en) Method for producing grain-oriented electrical steel sheet
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
EP0796923B1 (en) Method of making a non-oriented magnetic steel sheet, and product
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2515146B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH0686648B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss