JPH0754044A - Manufacture of nonoriented silicon steel sheet extremely excellent in magnetic characteristics - Google Patents

Manufacture of nonoriented silicon steel sheet extremely excellent in magnetic characteristics

Info

Publication number
JPH0754044A
JPH0754044A JP5205193A JP20519393A JPH0754044A JP H0754044 A JPH0754044 A JP H0754044A JP 5205193 A JP5205193 A JP 5205193A JP 20519393 A JP20519393 A JP 20519393A JP H0754044 A JPH0754044 A JP H0754044A
Authority
JP
Japan
Prior art keywords
weight
steel sheet
annealing
cooling rate
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5205193A
Other languages
Japanese (ja)
Other versions
JP3387980B2 (en
Inventor
Tomoji Kumano
知二 熊野
Takeshi Kubota
猛 久保田
Ryutaro Kawamata
竜太郎 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20519393A priority Critical patent/JP3387980B2/en
Publication of JPH0754044A publication Critical patent/JPH0754044A/en
Application granted granted Critical
Publication of JP3387980B2 publication Critical patent/JP3387980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To add the specified elements for the treatment to secure the cooling speed in the gamma treatment of nonorientd silicon steel having transformation and for the prevention of nitriding in the atmosphere of gamma region annealing. CONSTITUTION:In the manufacturing process of the nonoriented silicon steel containing <=2.5% Si, <=1.0% Al and Si+Al:2.5%, the gamma treatment in the hot rolling, the gamma treatment to manufacture the steel strip by solidifying the molten steel by the moving and updating surface of a cooling body (where the cooling speed in gamma-alpha transformation <=50 deg.C/s), and the gamma treatment of the hot-rolled steel strip obtained by the hot rolling are excuted respectively, and at least one of Sn, Sb, P, Cr, Ge, Te, As, Ni, Cu and Se to be selected from 0.10-0.8% Sn, Sb, Ge, Te, As or Cu, or 0.02-0.15% P, As for Se, or 0.05-1.5% Cr or Ni is added in the stage of the molten steel for each case. Addition of the elements prevents the nitriding in the gamma treatment, the recrystallization and the grain growth in the finish annealing is fully achieved, and extremely excellent flux density and core loss are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁束密度が極めて高
く、鉄損が低い無方向性珪素鋼板(以下無方向性電磁鋼
板という)の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented silicon steel sheet (hereinafter referred to as a non-oriented electrical steel sheet) having a very high magnetic flux density and a low iron loss.

【0002】[0002]

【従来の技術】近年、小型回転機用電磁鋼板としての無
方向性電磁鋼板に対する品質向上の要求は省エネルギー
の観点から、益々強くなっている。鉄鋼メーカーの側で
もこの要望に応えるべく鋭意その研究開発が進められて
おり、工業的には、JISに規定されている数々のいわ
ゆる低級グレードの無方向性電磁鋼板の製造が行われて
いる。この種のグレードの無方向性電磁鋼板の製造にお
いては、低鉄損を得るためには、高純度鋼の溶製、珪素
の含有量を増加させる、最終焼鈍温度時間を十分に採る
こと等が従来行われてきているが、これらの方法では、
よく知られているように、鉄損は改善されるものの、磁
束密度は、一般に低下する。この解決方法として、いわ
ゆる熱間圧延での自己焼鈍、変態点以下での熱延板焼鈍
等が行われている。しかし、これらの方策を用いて製造
された無方向性電磁鋼板でもってしても、近年益々強く
要求されている、高効率化(省エネルギー化)には限界
があった。
2. Description of the Related Art In recent years, demands for quality improvement of non-oriented electrical steel sheets as electromagnetic steel sheets for small rotating machines have become stronger from the viewpoint of energy saving. Iron and steel manufacturers are also enthusiastically researching and developing the product in order to meet the demand, and industrially, a number of so-called low grade non-oriented electrical steel sheets specified in JIS are manufactured. In the production of this type of non-oriented electrical steel sheet, in order to obtain a low iron loss, it is necessary to melt high-purity steel, increase the silicon content, and sufficiently take the final annealing temperature time. Traditionally, these methods
As is well known, although iron loss is improved, magnetic flux density is generally reduced. To solve this problem, so-called self-annealing in so-called hot rolling, hot-rolled sheet annealing below the transformation point, and the like are performed. However, even with non-oriented electrical steel sheets manufactured using these measures, there has been a limit to the high efficiency (energy saving) that has been increasingly strongly demanded in recent years.

【0003】本発明者らは、鋭意検討を重ね、変態を有
する無方向性電磁鋼板において、最終冷延前の工程でγ
相を生じせしめ、冷却時のγ〜α変態時冷却速度を50
℃/秒以下とすることにより(以後の説明において、本
発明で示すγ〜α変態時の冷却速度を50℃/秒以下に
する処理をγ処理という。)、最終焼鈍後の製品板の集
合組織を制御して、磁束密度が極めて高く、鉄損が良好
な極めて優れた無方向性電磁鋼板が得られることを見出
した。
The inventors of the present invention have conducted extensive studies and, in a non-oriented electrical steel sheet having a transformation, in a step before final cold rolling, γ
Phase, and the cooling rate during the γ-α transformation during cooling is 50
C./sec or less (in the following description, the process of reducing the cooling rate during the .gamma. To .alpha. Transformation shown in the present invention at 50.degree. C./sec or less is referred to as .gamma. Treatment), and thus the assembly of the product sheets after the final annealing. It has been found that by controlling the structure, an extremely excellent non-oriented electrical steel sheet having a very high magnetic flux density and a good iron loss can be obtained.

【0004】しかし、この方法で、無方向性電磁鋼板を
製造する場合、一般的によく用いられる雰囲気ガスは、
安価な窒素である。窒素は、いわゆる発生期の窒素でな
くても、無方向性電磁鋼板のように、珪素、アルミニウ
ムを多く含有する鋼材では、窒化しやすい。このため、
γ処理により集合組織的に改善され磁束密度は著しく向
上するも、AlN,Si3 4 ,TiN,BN等の窒化
物を(特に表層部)に形成し、仕上げ焼鈍時の粒成長を
阻害するので、期待するほどの、鉄損の改善が生じない
場合があった。
However, when producing a non-oriented electrical steel sheet by this method, the atmosphere gas generally used is
It is cheap nitrogen. Even if nitrogen is not so-called nascent nitrogen, a steel material containing a large amount of silicon and aluminum such as a non-oriented electrical steel sheet is likely to be nitrided. For this reason,
γ treatment improves the texture as a whole and the magnetic flux density is remarkably improved, but nitrides such as AlN, Si 3 N 4 , TiN, and BN are formed on the surface (particularly the surface layer portion), which hinders grain growth during finish annealing. Therefore, in some cases, the improvement in iron loss did not occur as expected.

【0005】[0005]

【発明が解決しようとする課題】かかる観点から本発明
は、窒素雰囲気においても表面窒化を引き起こすことの
ないγ処理方法を提供するものである。
From this point of view, the present invention provides a γ treatment method which does not cause surface nitriding even in a nitrogen atmosphere.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、
(1)Si≦2.5重量%、Al≦1.0重量%で且
つ、Si+2Al:2.5重量%以下を含有する珪素鋼
スラブを通常の方法で溶製後、熱延し、1回の冷間圧延
で、所定の板厚とし、この鋼板を仕上げ焼鈍する工程を
経て得られる無方向性珪素鋼板の製造方法において、さ
らに添加元素として、Sn,Sb,P,Cr,Ge,T
e,As,Ni,Cu,Seのうちから選ばれる何れか
1つまたは2つ以上を、Sn,Sb,Ge,Te,Cu
にあっては、0.01〜0.8重量%、P,As,Se
にあっては、0.02〜0.15重量%、Cr,Niに
あっては、0.05〜1.5重量%添加した鋼材を使用
し、熱延でのコイルの巻き取り温度をAr3 以上とし、
その後冷却してα相に変態する時の冷却速度(Ar3
らAr1 間の平均冷却速度)を50℃/秒以下とするこ
とを特徴とする磁気特性が極めて優れた無方向性珪素鋼
板の製造方法。および(2)Si≦2.5重量%、Al
≦1.0重量%で且つ、Si+2Al:2.5重量%以
下を含有する溶鋼を、移動更新する冷却体表面により凝
固せしめて鋼帯を製造し、次いで前記鋼帯を冷間圧延
で、所定の板厚とし、仕上げ焼鈍する工程を経て得られ
る無方向性珪素鋼板の製造方法において、さらに添加元
素としてSn,Sb,P,Cr,Ge,Te,As,N
i,Cu,Seのうちから選ばれる何れか1つまたは2
つ以上を、Sn,Sb,Ge,Te,Cuにあっては、
0.01〜0.8重量%、P,As,Seにあっては、
0.02〜0.15重量%、Cr,Niにあっては、
0.05〜1.5重量%添加した鋼材を使用し、溶鋼よ
り凝固させ直接に鋼帯を製造する時の冷却過程における
γ→α変態時の冷却速度(Ar3 からAr1 間の平均冷
却速度)を50℃/秒以下とすることを特徴とする磁気
特性が極めて優れた無方向性珪素鋼板の製造方法、であ
り、(3)Si≦2.5重量%、Al≦1.0重量%で
且つ、Si+2Al:2.5重量%以下を含有する珪素
鋼スラブを通常の方法で溶製、熱間圧延して得られた熱
延鋼帯を必要に応じて焼鈍し、1回または、焼鈍を挟ん
で2回以上の冷間圧延で、所定の板厚とし、仕上げ焼鈍
する工程を経て得られる無方向性珪素鋼板の製造方法に
おいて、さらに添加元素としてSn,Sb,P,Cr,
Ge,Te,As,Ni,Cu,Seのうちから選ばれ
る何れか1つまたは2つ以上を、Sn,Sb,Ge,T
e,Cuにあっては、0.01〜0.8重量%、P,A
s,Seにあっては、0.02〜0.15重量%、C
r,Niにあっては、0.05〜1.5重量%添加した
鋼材を使用し、最終冷間圧延の前の熱処理で、γ域まで
加熱し、γ相に変態させ、その後、冷却させてα相に再
変態する時の冷却速度(Ar3 からAr1 間の平均冷却
速度)を50℃/秒以下とすることを特徴とする磁気特
性が極めて優れた無方向性珪素鋼板の製造方法である。
That is, the present invention is as follows.
(1) A silicon steel slab containing Si ≦ 2.5% by weight, Al ≦ 1.0% by weight, and Si + 2Al: 2.5% by weight or less is melted by a usual method, then hot rolled, and once. In the method for producing a non-oriented silicon steel sheet obtained by subjecting this steel sheet to a finish annealing process by cold rolling to obtain a predetermined sheet thickness, Sn, Sb, P, Cr, Ge, T
Any one or two or more selected from e, As, Ni, Cu, and Se are replaced with Sn, Sb, Ge, Te, Cu.
Then, 0.01 to 0.8% by weight, P, As, Se
In this case, a steel material added with 0.02 to 0.15 wt% and Cr and Ni with 0.05 to 1.5 wt% is used, and the coiling temperature of the coil in hot rolling is set to Ar. 3 or more,
A non-oriented silicon steel sheet having excellent magnetic properties, characterized in that the cooling rate (average cooling rate between Ar 3 and Ar 1 ) when it is cooled and transformed into α phase is 50 ° C./sec or less. Production method. And (2) Si ≦ 2.5% by weight, Al
Molten steel containing ≦ 1.0% by weight and containing Si + 2Al: 2.5% by weight or less is solidified by a moving and renewing surface of a cooling body to produce a steel strip, and then the steel strip is subjected to a predetermined rolling by cold rolling. In the manufacturing method of the non-oriented silicon steel sheet obtained through the step of finish annealing, the additional elements Sn, Sb, P, Cr, Ge, Te, As, N
Any one or two selected from i, Cu, and Se
For Sn, Sb, Ge, Te, Cu, three or more,
0.01 to 0.8% by weight, in P, As, Se,
0.02 to 0.15% by weight, for Cr and Ni,
Cooling rate during γ → α transformation (average cooling between Ar 3 and Ar 1 in the cooling process when directly manufacturing a steel strip by solidifying from molten steel using a steel material added by 0.05 to 1.5 wt% Speed) is 50 ° C./second or less, and (3) Si ≦ 2.5% by weight, Al ≦ 1.0% by weight. %, And Si + 2Al: 2.5% by weight or less of a silicon steel slab is melted and hot-rolled by an ordinary method, and the hot-rolled steel strip obtained is annealed, if necessary, once or In a method for producing a non-oriented silicon steel sheet obtained by performing a step of finish annealing by cold rolling two or more times with annealing between them to a predetermined sheet thickness, Sn, Sb, P, Cr,
Any one or two or more selected from Ge, Te, As, Ni, Cu, and Se are replaced with Sn, Sb, Ge, and T.
For e and Cu, 0.01 to 0.8 wt% P, A
For s and Se, 0.02 to 0.15% by weight, C
For r and Ni, a steel material added by 0.05 to 1.5 wt% is used, and it is heated to the γ region in the heat treatment before the final cold rolling, transformed into the γ phase, and then cooled. Method for producing a non-oriented silicon steel sheet with extremely excellent magnetic properties, characterized in that the cooling rate (average cooling rate between Ar 3 and Ar 1 ) at the time of retransforming into α phase is 50 ° C./sec or less Is.

【0007】以下に本発明を詳細に説明する。まず本発
明鋼に通常含有する成分および添加成分について説明す
る。機械特性の向上、磁性、耐錆性等の向上或いは、そ
の他の目的のために、Mn,Ni,Crを1種または2
種以上の含有量を増加させても本発明の効果は本質的に
は損なわれない。
The present invention will be described in detail below. First, the components and additive components usually contained in the steel of the present invention will be described. In order to improve mechanical properties, magnetism, rust resistance, etc., or for other purposes, one or two of Mn, Ni, and Cr are used.
The effect of the present invention is not essentially impaired even if the content of at least one species is increased.

【0008】(C)低級グレードの無方向性電磁鋼板の
用途は、主に小型回転機であり、特性の安定性の観点か
ら、その使用中に磁気特性の劣化(磁気時効)を起こさ
ないことが要求されるが、このγ処理により、炭化物
は、十分析出凝集するので、磁気時効現象は減少する。
このためには、従来いわれているように極低炭素である
必要はなく0.0500%以下であればよい。 (S)硫黄は、溶製時に不可避的に混入する元素であ
る。0.0100%以下とするのが望ましいのである
が、本発明のγ処理の適用により無害化が可能であり、
0.020%以下であればよい。
(C) The low grade non-oriented electrical steel sheet is mainly used for small rotating machines, and from the viewpoint of stability of characteristics, does not cause deterioration of magnetic characteristics (magnetic aging) during use. However, since the carbide is sufficiently precipitated and aggregated by this γ treatment, the magnetic aging phenomenon is reduced.
For this purpose, it is not necessary to have extremely low carbon as is conventionally said, and it may be 0.0500% or less. (S) Sulfur is an element that is inevitably mixed during melting. It is desirable that the content be 0.0100% or less, but it can be rendered harmless by applying the γ treatment of the present invention,
It may be 0.020% or less.

【0009】(N)従来の無方向性電磁鋼板の製造方法
では、窒素は、硫黄と同様にその含有量が多いと、熱延
のスラブ加熱時に一部再固溶し、熱延中にAlN等の析
出物を形成し、仕上げ焼鈍時に再結晶粒の成長を妨げた
り製品板磁化時に磁壁移動のピニング効果のため、製品
で、低鉄損が得られなかった。しかし、本発明のγ処理
により、析出物は粗大化し無害化が可能であり、溶鋼段
階では、0.010%以下であればよい。 (Si,Al)Si,Alは、鋼板の固有抵抗を増加さ
せ渦流損を低減するため添加されるが、炭素が0.02
%以下では、Si+Alが2.50%を超えると変態が
なくなるので、2.50%以下とする。
(N) In the conventional method for manufacturing a non-oriented electrical steel sheet, if the content of nitrogen is large like sulfur, it is partially re-dissolved during heating of the slab during hot rolling, and AlN is hot rolled during hot rolling. A low iron loss could not be obtained in the product due to the formation of precipitates such as and the like, which hinders the growth of recrystallized grains during finish annealing and the pinning effect of domain wall movement during product sheet magnetization. However, the gamma treatment of the present invention can coarsen the precipitates to render them harmless, and at the molten steel stage, it may be 0.010% or less. (Si, Al) Si, Al is added to increase the specific resistance of the steel sheet and reduce eddy current loss, but carbon is 0.02
%, The transformation disappears when Si + Al exceeds 2.50%, so the content is set to 2.50% or less.

【0010】(Mn)Mnは0.1%より少ないと加工
性が悪くなり、またSの無害化のため一般的に添加され
るが、2.0%を超えると磁束密度が著しく劣化するの
で最高2.0%を目安とする。 (B)Bは、Nの無害化のために、添加できる。Nの量
とのバランスが必要であるので最大0.005%とす
る。しかし、γ処理のため、添加の必要性は、少ない。
If the content of (Mn) Mn is less than 0.1%, the workability is deteriorated, and it is generally added to render S harmless. However, if it exceeds 2.0%, the magnetic flux density is significantly deteriorated. The maximum is 2.0%. (B) B can be added to render N harmless. Since the balance with the amount of N is necessary, the maximum amount is 0.005%. However, the need for addition is small due to the γ treatment.

【0011】本発明はさらにSn,Sb,P,Cr,G
e,Te,As,Ni,Cu,Se等の粒界偏析元素の
少なくとも1種を添加してγ処理時の窒化防止をする。 (P,As,Se)Pは、鋼板の打ち抜き性を高めるた
めにも添加する。0.2重量%以下であれば、磁気特性
の点では問題がない。しかし、効果とコストの兼ね合い
より、0.02〜0.15重量%とする。また、粒界偏
析元素であるので、吸窒を幾分防止する効果がある。A
s,Seは、0.01重量%未満では、窒化防止効果が
少なく、また、0.15重量%を超えると仕上げ焼鈍時
の粒成長を著しく阻害して、γ処理本来の効果を失わせ
しめる。このため0.02〜0.15重量%とする。
The present invention further includes Sn, Sb, P, Cr and G.
At least one of grain boundary segregation elements such as e, Te, As, Ni, Cu, and Se is added to prevent nitriding during the γ process. (P, As, Se) P is also added to enhance the punching property of the steel sheet. If it is 0.2% by weight or less, there is no problem in terms of magnetic properties. However, it is 0.02 to 0.15% by weight in consideration of the effect and the cost. Further, since it is a grain boundary segregation element, it has an effect of preventing nitrogen absorption to some extent. A
If s and Se are less than 0.01% by weight, the nitriding prevention effect is small, and if more than 0.15% by weight, grain growth during finish annealing is significantly inhibited, and the original effect of the γ treatment is lost. Therefore, the content is 0.02 to 0.15% by weight.

【0012】(Sn,Sb,Ge,Te,Cu)Sn,
Sb,Ge,Te,Cuは、古くから、粒界偏析元素と
して知られており、薄板鋼材の集合組織制御に用いられ
てきた。しかし、本発明の目的は、γ処理時の窒化防止
のためであり、このためには、0.01〜0.8重量%
の添加が望ましい。0.01重量%より少ないと窒化防
止の効果がなく、0.8重量%より多いとコストが著し
く上昇するし、熱間圧延時の表面疵の原因となる。特
に、Cu疵が有名である。このため、含有量は、0.0
1〜0.8重量%とする。
(Sn, Sb, Ge, Te, Cu) Sn,
Sb, Ge, Te, and Cu have long been known as grain boundary segregation elements, and have been used to control the texture of thin steel sheets. However, the object of the present invention is to prevent nitriding during the γ treatment, and for this purpose, 0.01 to 0.8% by weight is used.
Is desirable. If it is less than 0.01% by weight, the effect of preventing nitriding is not obtained, and if it is more than 0.8% by weight, the cost is significantly increased and it causes a surface flaw during hot rolling. In particular, Cu defects are famous. Therefore, the content is 0.0
1 to 0.8% by weight.

【0013】(Cr,Ni)Cr,Niは、ステンレス
鋼で含有されるように、表面に濃縮偏在し地金の保護の
効果がある。0.05重量%未満では効果が少ない。
1.5重量%を超えて添加してもγ処理時の窒化防止と
いう本来の目的は達成するが、コストが上昇するし、防
錆性無方向性電磁鋼板という他の目的材となる。このた
め、本発明では0.05〜1.5重量%とする。
(Cr, Ni) Cr and Ni are concentrated and unevenly distributed on the surface so as to be contained in stainless steel, and have an effect of protecting the metal. If it is less than 0.05% by weight, the effect is small.
Although the original purpose of preventing nitriding at the time of γ treatment can be achieved even if it is added in an amount of more than 1.5% by weight, the cost increases and it becomes another purpose material such as a rustproof non-oriented electrical steel sheet. Therefore, in the present invention, the amount is 0.05 to 1.5% by weight.

【0014】次に、γ処理条件について説明する。まず
熱間圧延時の場合について述べる。従来から、相変態を
有する無方向性電磁鋼(以下変態鋼と略す)の熱延条件
を制御することにより、熱延後の熱延板焼鈍がある場合
とない場合では、個別に熱延板の粒サイズを制御してい
たが、熱延仕上げ後に高温で巻き取りγ→α変態をさせ
ることは、今まで返り見られなかった。その理由は、冷
却時に変態(γ→α)させることにより、結晶粒の方位
がランダムになり、熱延板の結晶粒サイズが小さくなる
ため磁性の改善には適していないと考えられていたため
である。しかし、本発明者らが、鋭意研究をしたとこ
ろ、Ar3 点以上の高温で巻き取り、この変態通過時の
冷却速度を制御することにより、理由は明確ではない
が、最終製品板での集合組織が改善されることを発見し
た。このため、最終焼鈍時の焼鈍条件を従来より温度が
高く、時間を長くして粒成長をさせて鉄損を改善して
も、磁束密度が下がらず鉄損が改善される。また、γ処
理では、高温巻き取り後の冷却速度が遅いため、α相で
の溶解度が小さい不純物の析出が充分行われ凝集し、最
終焼鈍時の結晶粒成長が妨げられなくなり(不純物の無
害化)従来の条件で最終焼鈍しても鉄損も低く磁束密度
も高い無方向性電磁鋼が得られる場合が多い。
Next, the γ processing condition will be described. First, the case of hot rolling will be described. Conventionally, by controlling the hot rolling conditions of non-oriented electrical steels having phase transformation (hereinafter abbreviated as transformation steels), the hot rolled steel sheets can be individually treated with and without annealing after hot rolling. The grain size was controlled, but the γ → α transformation at high temperature after hot-rolling was not found to date. The reason is that it was considered not suitable for improving magnetism because the orientation of crystal grains becomes random by transformation (γ → α) during cooling and the crystal grain size of the hot rolled sheet becomes smaller. is there. However, the inventors of the present invention have conducted diligent research and as a result, by winding at a high temperature of Ar 3 or higher and controlling the cooling rate during this transformation, the reason is not clear, but the assembly in the final product plate It has been found that the organization is improved. Therefore, even if the annealing conditions during the final annealing are higher than those in the conventional case and the time is lengthened to grow the grains to improve the iron loss, the magnetic flux density is not lowered and the iron loss is improved. Further, in the γ treatment, since the cooling rate after high temperature winding is slow, precipitation of impurities with small solubility in the α phase is sufficiently performed and agglomeration occurs, and grain growth during the final annealing is not hindered (decontamination of impurities). ) In many cases, non-oriented electrical steel with low iron loss and high magnetic flux density can be obtained even after final annealing under conventional conditions.

【0015】次に実際について述べる。この処理は、熱
延で行われるので、変態点(Ar3)の低い材料が好ま
れるが、変態温度(Ar3 )が高い場合は、熱延仕上げ
スタンドの直後に巻き取り装置(リール)を設置するこ
とにより実現できる。ただし、平均冷却速度50℃/秒
以下を実現するためには、巻き取り後に保温カバーを設
置したり、弱い加熱装置を設置することによって達成で
きる。この場合、後工程の酸洗性を改善するため、カバ
ー内に、窒素等のガスを注入する。保定温度時間は、γ
相となる温度(Ar3 以上)であるが、これは、鋼の成
分で異なる。実際の条件は、Ar3 点+50℃以上で9
0秒程度で充分である。また、冷却速度の実際は、Ar
3 点からAr1 範囲を平均50℃/秒以下で冷却すれば
充分である。この時の窒化防止のために、添加元素すな
わちP,As,Se,Sn,Sb,Ge,Te,Cn,
Cr,Niの少なくとも1種を含有させたものである。
また、連続熱間圧延法のみでなく、可逆熱間圧延法(例
えばステッケルミルを用いる熱間圧延)でも、上記熱履
歴を確保できれば、γ処理は可能である。
Next, the actual situation will be described. Since this treatment is carried out by hot rolling, a material having a low transformation point (Ar 3 ) is preferred, but if the transformation temperature (Ar 3 ) is high, the winding device (reel) should be placed immediately after the hot rolling finishing stand. It can be realized by installing it. However, in order to achieve the average cooling rate of 50 ° C./second or less, it can be achieved by installing a heat insulating cover after winding and installing a weak heating device. In this case, a gas such as nitrogen is injected into the cover in order to improve the pickling property in the subsequent process. The holding temperature time is γ
It is a temperature (Ar 3 or more) which becomes a phase, but this differs depending on the composition of the steel. The actual condition is 9 at Ar 3 points + 50 ° C or higher.
About 0 seconds is sufficient. Also, the actual cooling rate is Ar
It is sufficient to cool the Ar 1 range from 3 points at an average of 50 ° C./sec or less. In order to prevent nitriding at this time, additional elements such as P, As, Se, Sn, Sb, Ge, Te, Cn,
It contains at least one of Cr and Ni.
Further, not only the continuous hot rolling method, but also the reversible hot rolling method (for example, hot rolling using a Steckel mill) is possible as long as the above-mentioned heat history can be secured.

【0016】次に移動更新する冷却体表面により凝固せ
しめる場合について述べる。従来から変態鋼の熱延板等
を、再加熱により変態させると、結晶粒の方位がランダ
ムになり、冷却変態時(γ→α)に結晶粒サイズが小さ
くなるため磁性の改善には適していないといわれ返り見
られなかった。また、このことは、直接溶鋼から鋼帯を
製造する場合も同様であった。しかし、本発明者らが、
鋭意研究をしたところ、この変態通過時の冷却速度を制
御することにより、理由は定かでないが、最終製品板で
の集合組織が著しく改善されることを見出した。このた
め、最終焼鈍時の焼鈍条件を従来より温度が高く、時間
を長くして粒成長をさせて鉄損を改善しても、磁束密度
が下がらず鉄損が改善される。また、先に記したがこの
場合のγ処理では冷却速度が遅いため、α相での溶解度
が小さい不純物の析出が充分行われ、最終焼鈍時の結晶
粒成長を妨げなくなり(不純物の無害化)従来の条件で
最終焼鈍しても鉄損も低く磁束密度も高い無方向性電磁
鋼板が得られる。すなわち本発明が移動更新する冷却体
表面に溶鋼を凝固させる方法を採用する場合には、この
γ処理は、直接溶鋼より得られる鋼帯(3.5〜0.5
mm)の冷却速度を制御するものであり、鋼帯がAr3
らAr1 間を徐冷する手段としては、前記した場合と同
様に加熱装置の設置、保温装置の設置、またはAr3
50℃以上の高温で巻き取り保温する方法等が考えられ
る。この時の雰囲気ガスに窒素を使う場合の窒化防止の
ために、本発明では添加元素が役立つものである。
Next, description will be made on the case where the moving and renewing surface of the cooling body is used for solidification. Conventionally, when hot-rolled sheets of transformation steel are transformed by reheating, the orientation of crystal grains becomes random and the crystal grain size decreases during cooling transformation (γ → α), which is suitable for improving magnetism. I was told that it was not possible and I couldn't look back. This also applies to the case where a steel strip is produced directly from molten steel. However, the present inventors
As a result of diligent research, it was found that controlling the cooling rate during this transformation significantly improves the texture in the final product sheet, although the reason is not clear. Therefore, even if the annealing conditions during the final annealing are higher than those in the conventional case and the time is lengthened to grow the grains to improve the iron loss, the magnetic flux density is not lowered and the iron loss is improved. In addition, as described above, since the cooling rate is slow in the γ treatment in this case, the precipitation of impurities with a small solubility in the α phase is sufficiently performed, and the grain growth during the final annealing is not hindered (decontamination of impurities). Non-oriented electrical steel sheets with low iron loss and high magnetic flux density can be obtained even after final annealing under conventional conditions. That is, when the present invention adopts the method of solidifying molten steel on the surface of a moving cooling body, this γ treatment is performed by a steel strip (3.5 to 0.5) obtained directly from molten steel.
mm) for controlling the cooling rate, and as a means for gradually cooling the steel strip between Ar 3 and Ar 1, as in the case described above, a heating device is installed, a heat retention device is installed, or Ar 3 +
A method of winding and retaining heat at a high temperature of 50 ° C. or higher is considered. In the present invention, the additional element is useful for preventing nitriding when nitrogen is used as the atmospheric gas at this time.

【0017】また、一度室温まで急冷して再びγ域まで
加熱して制御冷却をすることもコスト的な不利はある
が、技術的には可能である。
Further, it is technically possible to perform rapid cooling to room temperature and then heating to the γ range to perform controlled cooling, although there is a cost disadvantage.

【0018】さらに通常の熱間圧延にて得られた鋼帯の
最終冷間圧延前の焼鈍時の場合について述べる。前記し
たように、変態鋼の熱延板等に変態通過時の冷却速度を
制御する処理をすることにより、最終焼鈍時の焼鈍条件
を従来より温度が高く、時間を長くして粒成長をさせた
り、従来の条件で最終焼鈍しても鉄損も低く磁束密度も
高い無方向性電磁鋼が得られる。本発明において、この
γ処理を最終冷間圧延前の焼鈍工程で実施することによ
りこのような優れた特性付与が達成できる。このγ処理
は、連続焼鈍炉で行われてもよいし、箱型焼鈍炉のどち
らで行われてもよい。連続焼鈍炉でγ処理を行う場合
は、平均冷却速度を50℃/秒以下を実現するために
は、例えば特開昭57−198214号公報で規定され
ている、高磁束密度一方向性電磁鋼板の焼鈍条件(以下
二段均熱という)を適用してもよい。均熱条件は、γ相
とする温度(Ac3 以上)であるが、これは、鋼の成分
で異なる。実際の焼鈍条件は、Ac3 点+50℃以上で
90秒で充分である。また、冷却速度の実際は、Ar3
点からAr1 範囲を平均50℃/秒以下で冷却すれば充
分である。この時の雰囲気ガスに窒素を使う場合の窒化
防止のために、本発明の添加元素が役立つものである。
Further, the case of annealing the steel strip obtained by ordinary hot rolling before the final cold rolling will be described. As described above, by performing a process of controlling the cooling rate at the time of transformation on the hot rolled sheet of the transformation steel, the annealing condition at the time of the final annealing has a higher temperature than that of the conventional one, and the time is made longer to cause grain growth. Alternatively, non-oriented electrical steel with low iron loss and high magnetic flux density can be obtained even after final annealing under conventional conditions. In the present invention, such excellent characteristics can be achieved by carrying out this γ treatment in the annealing step before the final cold rolling. This γ treatment may be performed in either a continuous annealing furnace or a box-type annealing furnace. When performing γ treatment in a continuous annealing furnace, in order to achieve an average cooling rate of 50 ° C./sec or less, for example, a high magnetic flux density unidirectional electrical steel sheet defined in JP-A-57-198214. Annealing conditions (hereinafter referred to as two-step soaking) may be applied. The soaking condition is the temperature at which the γ phase is obtained (Ac 3 or higher), which differs depending on the composition of the steel. As a practical annealing condition, 90 seconds at Ac 3 point + 50 ° C. or higher is sufficient. Also, the cooling rate is actually Ar 3
From the point, it is sufficient to cool the Ar 1 range at an average of 50 ° C./sec or less. The additive element of the present invention is useful for preventing nitriding when nitrogen is used as the atmospheric gas at this time.

【0019】既に述べたように、γ処理の特徴は、γ相
からの冷却速度を規定するものであるが、γ域での窒素
の固溶度が大きく、冷却速度がかなり遅いため、さらに
無方向性電磁鋼板では、珪素、アルミニウムを多く含有
しているので、いわゆる発生期の窒素でなくでも、液化
窒素でもかなり容易に窒化される。そして、AlN,S
3 4 ,TiN,BN等の窒化物を特に表層部に形成
し、仕上げ焼鈍時の粒成長を阻害するので、期待するほ
どの、鉄損の改善が生じない場合があった。発明者ら
は、鋭意研究開発を行い、Sn,Sb,P,Cr,G
e,Te,As,Ni,Cu,Seの如くの粒界偏析元
素を添加して、これらの元素の界面(表面)偏析により
窒化防止層を形成せしめ、γ処理時の窒化防止に成功し
たものである。
As described above, the characteristic of the γ treatment is that it regulates the cooling rate from the γ phase. However, since the solid solubility of nitrogen in the γ region is large and the cooling rate is considerably low, there is no further effect. Since the grain-oriented electrical steel sheet contains a large amount of silicon and aluminum, nitriding with liquefied nitrogen is quite easy even if not so-called nascent nitrogen. And AlN, S
Since nitrides such as i 3 N 4 , TiN, and BN are formed particularly in the surface layer portion to hinder grain growth during finish annealing, the improvement in iron loss as expected may not occur. The inventors have conducted intensive research and development and conducted Sn, Sb, P, Cr, G
Grain boundary segregating elements such as e, Te, As, Ni, Cu, Se are added, and a nitriding prevention layer is formed by the interface (surface) segregation of these elements, and the nitriding prevention at the time of γ treatment is successful. Is.

【0020】[0020]

【実施例】【Example】

〔実施例1〕表1に示す成分のスラブ(残部Feおよび
不可避的不純物からなる珪素スラブ)を通常の方法で加
熱し、熱延で2.5mm厚とし、1050〜950℃で熱
延を終了し、1000〜900℃で巻き取り、便宜的に
1000〜850℃間の平均冷却速度を 500℃/秒(常温水に焼き入れ) 50℃/秒(強制空冷) 10℃/秒(空冷) 1℃/秒(保温カバー使用) 0.07℃/秒(保温カバー内で弱く加熱) の各冷却速度で冷却した。その後、酸洗を施し、0.5
0mmの厚みに冷間圧延をした。冷間圧延された鋼板を脱
脂し、連続焼鈍炉にて、850℃(材料1,2)および
800℃(材料3,4)で30秒焼鈍した。その後、磁
気特性(L+Cの平均)を測定した。これらの値を表2
に示す。表3は比較法(前記1000〜850℃間のγ
→α変態点における冷却調整なし)であるa)熱延板焼
鈍なし、b)熱延800℃巻き取り後2時間保定の自己
焼鈍材、c)a)材を925℃で150秒の連続熱延板
焼鈍した材料の測定値を比較のために示した。
[Example 1] A slab of the components shown in Table 1 (a silicon slab consisting of the balance Fe and unavoidable impurities) was heated by a usual method to a hot rolling thickness of 2.5 mm, and the hot rolling was completed at 1050 to 950 ° C. Then, the film is wound at 1000 to 900 ° C., and for convenience, the average cooling rate between 1000 and 850 ° C. is 500 ° C./sec (quenching in normal temperature water) 50 ° C./sec (forced air cooling) 10 ° C./sec (air cooling) 1 C./sec. (Using heat insulation cover) Cooling was performed at each cooling rate of 0.07.degree. C./sec. (Weakly heated in heat insulation cover). After that, pickling is applied to 0.5
Cold rolled to a thickness of 0 mm. The cold-rolled steel sheet was degreased and annealed at 850 ° C. (materials 1 and 2) and 800 ° C. (materials 3 and 4) for 30 seconds in a continuous annealing furnace. Then, the magnetic characteristics (average of L + C) were measured. Table 2 shows these values.
Shown in. Table 3 shows the comparative method (γ between 1000 and 850 ° C.
→ No cooling adjustment at α transformation point) a) No hot-rolled sheet annealing, b) Self-annealed material retained for 2 hours after hot-rolling at 800 ° C, and c) Continuous heat of a) material at 925 ° C for 150 seconds. The measured values of the rolled sheet annealed material are shown for comparison.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】このように本発明の方法を用いると、γ処
理条件、最終焼鈍条件が、同じにも関わらず、Sn,S
b,P,Cr,Asの添加により窒化が抑制され磁束密
度、鉄損ともに優れた無方向性電磁鋼板の製造が可能で
ある。また、材料1と2について熱延後1000〜85
0℃の平均冷却速度0.07℃/秒を採用したものの最
終焼鈍後の金属組織の写真の例を図1(a),(b)に
示す。Sbの添加により、結晶粒サイズ特に、表面層の
結晶粒サイズに著しい差異が生じていることがわかる。
As described above, when the method of the present invention is used, Sn, S and S
By adding b, P, Cr, and As, nitriding is suppressed, and it is possible to manufacture a non-oriented electrical steel sheet having excellent magnetic flux density and iron loss. In addition, regarding the materials 1 and 2, 1000-85 after hot rolling
1 (a) and 1 (b) show examples of photographs of the metal structure after the final annealing although the average cooling rate of 0 ° C. was 0.07 ° C./sec. It can be seen that the addition of Sb causes a remarkable difference in the crystal grain size, particularly in the surface layer.

【0025】〔実施例2〕表4に示す成分の溶鋼(残部
Feおよび不可避的不純物からなる珪素スラブ)を移動
更新する冷却体表面にて凝固せしめて、直接2.5mmの
鋼帯を得たが、Ar3 +50℃からAr1 −50℃間を
次の条件で冷却した。平均冷却速度を 500℃/秒(常温水を掛けて冷却) 50℃/秒(空冷) 10℃/秒(巻き取らず冷却時に保温カバー使用) 1℃/秒(Ar3 +50℃以上で巻き取りそのま
ま冷却) 0.07℃/秒(Ar3 +50℃以上で巻き取り保温
カバーを掛けて冷却)
Example 2 A molten steel having the components shown in Table 4 (a silicon slab consisting of the balance Fe and unavoidable impurities) was solidified on the surface of a moving cooling body to directly obtain a steel strip of 2.5 mm. There was cooled between Ar 1 -50 ° C. under the following conditions from Ar 3 + 50 ℃. Average cooling rate: 500 ° C / sec (cooling with normal temperature water) 50 ° C / sec (air cooling) 10 ° C / sec (use a heat-retaining cover when cooling without winding) 1 ° C / sec (winding at Ar 3 + 50 ° C or higher) Cool as it is) 0.07 ℃ / sec (Wind at Ar 3 + 50 ℃ or higher and cool with a heat insulation cover)

【0026】その後、酸洗を施し、0.50mmの厚みに
冷間圧延をした。冷間圧延された鋼板を脱脂し、連続焼
鈍炉にて、850℃(材料1,2)および800℃(材
料3,4)で30秒焼鈍した。その後、磁気特性(L+
Cの平均)を測定した。これらの値を表5に示した。表
6は表3と同様の比較法であるa)熱延板焼鈍なし、
b)熱延800℃巻き取り後2時間保定のいわゆる自己
焼鈍材、c)a)材を925℃で150秒の連続熱延板
焼鈍した材料の測定値を示す。
Then, it was pickled and cold-rolled to a thickness of 0.50 mm. The cold-rolled steel sheet was degreased and annealed at 850 ° C. (materials 1 and 2) and 800 ° C. (materials 3 and 4) for 30 seconds in a continuous annealing furnace. After that, the magnetic characteristics (L +
The average of C) was measured. These values are shown in Table 5. Table 6 is a comparison method similar to Table 3 a) without hot-rolled sheet annealing,
The following are the measured values of b) a so-called self-annealed material that is held for 2 hours after hot rolling at 800 ° C., and c) a material that is continuously hot-rolled at 925 ° C. for 150 seconds.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】このように本発明の方法を用いると、γ処
理条件、最終焼鈍条件が、同じにも関わらず、P,C
r,Te,Ni,Cu,Seの添加により、磁束密度、
鉄損ともに優れた無方向性電磁鋼板の製造が可能であ
る。また、材料1と2について鋳造後Ar3 +50℃か
らAr1 −50℃の平均冷却速度1.0℃/秒を採用し
たものの最終焼鈍後の金属組織写真を図2(a),
(b)に示す。γ処理条件、最終焼鈍条件が、同じにも
関わらずCrの添加により、結晶粒サイズ、特に表面層
の結晶粒サイズに著しい差異が生じている。
As described above, when the method of the present invention is used, although the γ treatment condition and the final annealing condition are the same, P, C
By adding r, Te, Ni, Cu, Se, the magnetic flux density,
It is possible to manufacture non-oriented electrical steel sheets with excellent iron loss. Further, for the materials 1 and 2, although the average cooling rate of 1.0 ° C./sec from Ar 3 + 50 ° C. to Ar 1 −50 ° C. was adopted after casting, a metallographic photograph after final annealing is shown in FIG.
It shows in (b). Although the γ treatment condition and the final annealing condition are the same, the addition of Cr causes a remarkable difference in the crystal grain size, particularly in the surface layer.

【0031】〔実施例3〕表7に示す成分のスラブ(残
部Feおよび不可避的不純物からなる珪素スラブ)を通
常の方法で加熱し、2.5mm厚とし次いで、 条件1)熱延板焼鈍を連続的に1100℃で2分間行
い、便宜的に1000〜850℃間の平均冷却速度を 500℃/秒(常温水に焼き入れ) 50℃/秒(空冷) 10℃/秒(二段均熱) 1℃/秒(二段均熱) の各冷却速度で冷却した。 条件2)箱焼鈍で1100℃10分焼鈍後、切電後炉
中冷却した。この場合冷却速度は、0.07℃/秒であ
った。その後、酸洗を施し、0.50mmの厚みに冷間圧
延をした。冷間圧延された鋼板を脱脂し、連続焼鈍炉に
て、850℃(材料1,2)および800℃(材料3,
4)で30秒焼鈍した。その後、磁気特性(L+Cの平
均)を測定した。これらの値を表8に示した。表9は表
3と同様に比較法であるa)熱延板焼鈍なし、b)熱延
800℃巻き取り後2時間保定のいわゆる自己焼鈍材、
c)a)材を925℃で150秒の連続熱延板焼鈍した
材料の測定値を比較のために示した。
[Example 3] A slab having the components shown in Table 7 (a silicon slab consisting of the balance Fe and inevitable impurities) was heated by a usual method to a thickness of 2.5 mm, and then condition 1) hot-rolled sheet annealing was performed. Continuously performed at 1100 ° C for 2 minutes, and for convenience, average cooling rate between 1000 and 850 ° C is 500 ° C / sec (quenched in normal temperature water) 50 ° C / sec (air cooling) 10 ° C / sec (two-stage soaking) ) It cooled at each cooling rate of 1 degree-C / sec (two-step soaking). Condition 2) After annealing at 1100 ° C. for 10 minutes by box annealing, it was cooled in a furnace after being cut off. In this case, the cooling rate was 0.07 ° C./sec. Then, it was pickled and cold-rolled to a thickness of 0.50 mm. The cold-rolled steel sheet is degreased and then in a continuous annealing furnace at 850 ° C (materials 1 and 2) and 800 ° C (materials 3).
Annealed in 4) for 30 seconds. Then, the magnetic characteristics (average of L + C) were measured. These values are shown in Table 8. Table 9 is a comparative method similar to Table 3, in which a) a hot rolled sheet is not annealed, b) a so-called self-annealed material that is held for 2 hours after hot rolling at 800 ° C.,
c) The measured values of the material obtained by continuously hot-rolling the a) material at 925 ° C. for 150 seconds are shown for comparison.

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【表8】 [Table 8]

【0034】[0034]

【表9】 [Table 9]

【0035】このように本発明の方法を用いると、γ処
理条件、最終焼鈍条件が、同じにも関わらず、Sn,S
b,P,Cr,Ge,Teの添加により、磁束密度、鉄
損ともに優れた無方向性電磁鋼板の製造が可能である。
また、材料1と2について1000〜850℃の平均冷
却速度10℃/秒を採用した場合の最終焼鈍後の金属組
織写真を図3(a),(b)に示す。γ処理条件、最終
焼鈍条件が、同じにも関らずGeの添加により、結晶粒
サイズ特に、表面層の結晶粒サイズに著しい差異が生じ
ている。
As described above, when the method of the present invention is used, Sn, S and S
By adding b, P, Cr, Ge, and Te, it is possible to manufacture a non-oriented electrical steel sheet having excellent magnetic flux density and iron loss.
3 (a) and 3 (b) are photographs of the metallographic structure after the final annealing when the average cooling rate of 1000 to 850 [deg.] C. for the materials 1 and 2 was 10 [deg.] C./sec. Although the γ treatment condition and the final annealing condition are the same, the addition of Ge causes a remarkable difference in the crystal grain size, particularly in the surface layer.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
γ処理時の窒化を防止することにより、磁束密度および
鉄損の極めて優れた無方向性電磁鋼板を得ることができ
る。
As described above, according to the present invention,
By preventing nitriding during the γ treatment, it is possible to obtain a non-oriented electrical steel sheet having extremely excellent magnetic flux density and iron loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は実施例1における材料1、(b)は同
材料2について、熱延巻き取り時のγ処理した製品の金
属組織を示す顕微鏡写真。
FIG. 1 (a) is a micrograph showing a metal structure of a material 1 in Example 1 and (b) the same material 2 in a γ-processed product at the time of hot rolling and winding.

【図2】(a)は実施例2における材料1、(b)は同
材料2について、移動更新する冷却体表面により急冷さ
れた材料の凝固直後の冷却過程でγ処理した製品の金属
組織を示す顕微鏡写真。
FIG. 2 (a) is a material 1 in Example 2 and FIG. 2 (b) is the same material 2 and shows a metallographic structure of a product γ-processed in a cooling process immediately after solidification of a material rapidly cooled by a moving and renewing cooling body surface. The micrograph shown.

【図3】(a)は実施例3における材料1、(b)は同
材料2について、最終冷延前の熱処理の冷却過程でのγ
処理した製品の金属組織を示す顕微鏡写真。
3 (a) is a material 1 in Example 3 and FIG. 3 (b) is the same material 2 in the cooling process of the heat treatment before the final cold rolling.
The micrograph which shows the metallographic structure of the processed product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si≦2.5重量%、Al≦1.0重量
%で且つ、Si+2Al:2.5重量%以下を含有する
珪素鋼スラブを通常の方法で溶製後、熱延し、1回の冷
間圧延で、所定の板厚とし、この鋼板を仕上げ焼鈍する
工程を経て得られる無方向性珪素鋼板の製造方法におい
て、さらに添加元素として、Sn,Sb,P,Cr,G
e,Te,As,Ni,Cu,Seのうちから選ばれる
何れか1つまたは2つ以上を、Sn,Sb,Ge,T
e,Cuにあっては、0.01〜0.8重量%、P,A
s,Seにあっては、0.02〜0.15重量%、C
r,Niにあっては、0.05〜1.5重量%添加し、
熱延でのコイルの巻き取り温度をAr3 以上とし、その
後冷却してα相に変態する時の冷却速度(Ar3 からA
1 間の平均冷却速度)を50℃/秒以下とすることを
特徴とする磁気特性が極めて優れた無方向性珪素鋼板の
製造方法。
1. A silicon steel slab containing Si ≦ 2.5% by weight, Al ≦ 1.0% by weight, and Si + 2Al: 2.5% by weight or less is melted by a usual method and then hot rolled, In a method for producing a non-oriented silicon steel sheet obtained by performing a step of finish annealing this steel sheet with a predetermined thickness by one cold rolling, Sn, Sb, P, Cr, G
Any one or two or more selected from e, Te, As, Ni, Cu, and Se are replaced with Sn, Sb, Ge, and T.
For e and Cu, 0.01 to 0.8 wt% P, A
For s and Se, 0.02 to 0.15% by weight, C
For r and Ni, add 0.05 to 1.5% by weight,
The coiling temperature in hot rolling is set to Ar 3 or higher, and the cooling rate (Ar 3 to A
The average cooling rate between r 1 ) is 50 ° C./sec or less, and a method for producing a non-oriented silicon steel sheet having extremely excellent magnetic properties.
【請求項2】 Si≦2.5重量%、Al≦1.0重量
%で且つ、Si+2Al:2.5重量%以下を含有する
溶鋼を、移動更新する冷却体表面により凝固せしめて鋼
帯を製造し、次いで前記鋼帯を冷間圧延で、所定の板厚
とし、仕上げ焼鈍する工程を経て得られる無方向性珪素
鋼板の製造方法において、さらに添加元素としてSn,
Sb,P,Cr,Ge,Te,As,Ni,Cu,Se
のうちから選ばれる何れか1つまたは2つ以上を、S
n,Sb,Ge,Te,Cuにあっては、0.01〜
0.8重量%、P,As,Seにあっては、0.02〜
0.15重量%、Cr,Niにあっては、0.05〜
1.5重量%添加し、溶鋼より凝固させ直接に鋼帯を製
造する時の冷却過程におけるγ→α変態時の冷却速度
(Ar3 からAr1 間の平均冷却速度)を50℃/秒以
下とすることを特徴とする磁気特性が極めて優れた無方
向性珪素鋼板の製造方法。
2. A steel strip is obtained by solidifying molten steel containing Si ≦ 2.5% by weight, Al ≦ 1.0% by weight and Si + 2Al: 2.5% by weight or less by a moving and renewing surface of a cooling body. In the method for producing a non-oriented silicon steel sheet, which is produced through a process of producing and then cold rolling the steel strip to a predetermined plate thickness and finish annealing, Sn, as an additional element,
Sb, P, Cr, Ge, Te, As, Ni, Cu, Se
Any one or two or more selected from among
For n, Sb, Ge, Te, Cu, 0.01-
0.8 wt%, P, As, Se, 0.02-
0.15% by weight, for Cr and Ni, 0.05-
Addition of 1.5% by weight, solidification from molten steel, cooling rate during γ → α transformation in the cooling process when directly manufacturing a steel strip (average cooling rate between Ar 3 and Ar 1 ) is 50 ° C / sec or less A method for producing a non-oriented silicon steel sheet having extremely excellent magnetic properties, characterized by:
【請求項3】 Si≦2.5重量%、Al≦1.0重量
%で且つ、Si+2Al:2.5重量%以下を含有する
珪素鋼スラブを通常の方法で溶製、熱間圧延して得られ
た熱延鋼帯を必要に応じて焼鈍し、1回または、焼鈍を
挟んで2回以上の冷間圧延で、所定の板厚とし、仕上げ
焼鈍する工程を経て得られる無方向性珪素鋼板の製造方
法において、さらに添加元素としてSn,Sb,P,C
r,Ge,Te,As,Ni,Cu,Seのうちから選
ばれる何れか1つまたは2つ以上を、Sn,Sb,G
e,Te,Cuにあっては、0.01〜0.8重量%、
P,As,Seにあっては、0.02〜0.15重量
%、Cr,Niにあっては、0.05〜1.5重量%添
加し、最終冷間圧延の前の熱処理で、γ域まで加熱し、
γ相に変態させ、その後、冷却させてα相に再変態する
時の冷却速度(Ar3からAr1 間の平均冷却速度)を
50℃/秒以下とすることを特徴とする磁気特性が極め
て優れた無方向性珪素鋼板の製造方法。
3. A silicon steel slab containing Si ≦ 2.5% by weight, Al ≦ 1.0% by weight and Si + 2Al: 2.5% by weight or less is melted and hot rolled by a usual method. Non-oriented silicon obtained through a step of annealing the obtained hot-rolled steel strip as needed and performing a final annealing by one or two or more cold rollings with annealing sandwiched to a predetermined plate thickness. In the method for manufacturing a steel sheet, Sn, Sb, P, C as additional elements are further added.
Any one or two or more selected from r, Ge, Te, As, Ni, Cu, and Se are replaced with Sn, Sb, and G.
In the case of e, Te and Cu, 0.01 to 0.8% by weight,
In P, As and Se, 0.02 to 0.15 wt% is added, and in Cr and Ni, 0.05 to 1.5 wt% is added. In the heat treatment before the final cold rolling, heating to the γ range,
The magnetic properties are characterized by a cooling rate (average cooling rate between Ar 3 and Ar 1 ) of 50 ° C./sec or less when transformed into the γ phase and then cooled and retransformed into the α phase. An excellent non-oriented silicon steel sheet manufacturing method.
JP20519393A 1993-08-19 1993-08-19 Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties Expired - Lifetime JP3387980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20519393A JP3387980B2 (en) 1993-08-19 1993-08-19 Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20519393A JP3387980B2 (en) 1993-08-19 1993-08-19 Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH0754044A true JPH0754044A (en) 1995-02-28
JP3387980B2 JP3387980B2 (en) 2003-03-17

Family

ID=16502949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20519393A Expired - Lifetime JP3387980B2 (en) 1993-08-19 1993-08-19 Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3387980B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291375A (en) * 1995-04-21 1996-11-05 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in film adhesion
JPH1171650A (en) * 1997-06-27 1999-03-16 Nkk Corp Nonoriented silicon steel sheet low in core loss
JPH11293338A (en) * 1998-04-15 1999-10-26 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in surface property
JP2001323351A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2001323345A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
WO2004059022A1 (en) * 2002-12-24 2004-07-15 Jfe Steel Corporation Fe-Cr-Si NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
JP2016211016A (en) * 2015-04-30 2016-12-15 新日鐵住金株式会社 Hot rolled sheet for nonoriented magnetic steel sheet and production method therefor, and nonoriented magnetic steel sheet excellent in magnetic property and production method therefor
WO2018117598A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor
JP2019026891A (en) * 2017-07-28 2019-02-21 新日鐵住金株式会社 Nonoriented magnetic steel sheet, and method of producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291375A (en) * 1995-04-21 1996-11-05 Kawasaki Steel Corp Nonoriented silicon steel sheet excellent in film adhesion
JPH1171650A (en) * 1997-06-27 1999-03-16 Nkk Corp Nonoriented silicon steel sheet low in core loss
JPH11293338A (en) * 1998-04-15 1999-10-26 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in surface property
JP2001323351A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2001323345A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and magnetic property after strain relieving annealing
WO2004059022A1 (en) * 2002-12-24 2004-07-15 Jfe Steel Corporation Fe-Cr-Si NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
CN100395365C (en) * 2002-12-24 2008-06-18 杰富意钢铁株式会社 Fe-cr-si based non-oriented electromagnetic steel sheet and process for producing the same
JP2016211016A (en) * 2015-04-30 2016-12-15 新日鐵住金株式会社 Hot rolled sheet for nonoriented magnetic steel sheet and production method therefor, and nonoriented magnetic steel sheet excellent in magnetic property and production method therefor
WO2018117598A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor
JP2020504787A (en) * 2016-12-19 2020-02-13 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
US11060170B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2019026891A (en) * 2017-07-28 2019-02-21 新日鐵住金株式会社 Nonoriented magnetic steel sheet, and method of producing the same

Also Published As

Publication number Publication date
JP3387980B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
US5164024A (en) Method of making non-oriented electrical steel sheets having excellent magnetic properties
JPH07116510B2 (en) Non-oriented electrical steel sheet manufacturing method
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
US5250123A (en) Oriented silicon steel sheets and production process therefor
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US5421912A (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
WO1998046802A1 (en) New process for the production of grain oriented electrical steel from thin slabs
JPS6254023A (en) Manufacture of high-grade nonoriented electrical steel sheet
US4371405A (en) Process for producing grain-oriented silicon steel strip
US5116436A (en) Method of making non-oriented electrical steel sheets having excellent magnetic properties
JPH06145799A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3993689B2 (en) Strain relief annealing method for laminated core
JPH0450380B2 (en)
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JP2515449B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06336609A (en) Production of non-oriented silicon steel sheet extremely excellent in magnetic property
JPH06240360A (en) Production of nonoriented silicon steel sheet extremely excellent in magneticc property
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3443150B2 (en) Method for producing grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

EXPY Cancellation because of completion of term