JP2515449B2 - Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JP2515449B2
JP2515449B2 JP3204421A JP20442191A JP2515449B2 JP 2515449 B2 JP2515449 B2 JP 2515449B2 JP 3204421 A JP3204421 A JP 3204421A JP 20442191 A JP20442191 A JP 20442191A JP 2515449 B2 JP2515449 B2 JP 2515449B2
Authority
JP
Japan
Prior art keywords
oriented electrical
electrical steel
annealing
steel sheet
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3204421A
Other languages
Japanese (ja)
Other versions
JPH07173538A (en
Inventor
知二 熊野
猛 久保田
正 中山
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3204421A priority Critical patent/JP2515449B2/en
Priority to DE69230239T priority patent/DE69230239T2/en
Priority to KR1019920014546A priority patent/KR960011799B1/en
Priority to EP92113814A priority patent/EP0527495B1/en
Priority to AT92113814T priority patent/ATE186333T1/en
Priority to US08/213,999 priority patent/US5421912A/en
Publication of JPH07173538A publication Critical patent/JPH07173538A/en
Application granted granted Critical
Publication of JP2515449B2 publication Critical patent/JP2515449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁束密度が極めて高
く、鉄損が低い無方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a very high magnetic flux density and a low iron loss.

【0002】[0002]

【従来の技術】近年、小型回転機用磁芯材料としての無
方向性電磁鋼板に対する品質向上の要求は、省エネルギ
ーの観点から益々強くなってきている。電磁鋼板製造メ
ーカーの側においても、この要求に応えるべく鋭意無方
向性電磁鋼板の磁気特性の向上のための研究開発が進め
られてきており、工業的には、JISに規定されている
数々の所謂低級グレードの無方向性電磁鋼板が製造され
ている。
2. Description of the Related Art In recent years, demands for quality improvement of non-oriented electrical steel sheets as magnetic core materials for small rotating machines have become stronger from the viewpoint of energy saving. In order to meet this demand, the manufacturers of electromagnetic steel sheets are also conducting research and development to improve the magnetic properties of non-oriented electrical steel sheets, and industrially, a number of them are specified in JIS. So-called low grade non-oriented electrical steel sheets are manufactured.

【0003】この種の低級グレードの無方向性電磁鋼板
の製造プロセスにおいて、鉄損値が低い製品を得るため
には、従来、鋼をその溶製段階で高純化する、鋼中のS
i含有量を多くする、仕上焼鈍において温度・時間を十
分に採る等の手段が採られてきた。
In the manufacturing process of this kind of low grade non-oriented electrical steel sheet, in order to obtain a product with a low iron loss value, steel is conventionally highly purified in its melting stage.
Measures have been taken such as increasing the i content and sufficiently adjusting the temperature and time in finish annealing.

【0004】しかしながら、これらの技術的手段による
ときは、製品の鉄損値は低くなるけれども、磁束密度が
低くなるという問題がある。このため、近年要請されて
きている高効率(省エネルギー)化には限界があった。
However, when these technical means are used, the iron loss value of the product is low, but the magnetic flux density is low. Therefore, there has been a limit to the high efficiency (energy saving) demanded in recent years.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術における問題を解決し、鉄損が低くかつ、磁束密度が
高い無方向性電磁鋼板を供給することができる製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems in the prior art and provides a manufacturing method capable of supplying a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density. To aim.

【0006】[0006]

【課題を解決するための手段】本発明の特徴とする処
は、重量%で、Si≦2.5%、Al≦1.0%かつ
(Si+2Al)≦2.5%、残部:Feおよび不可避
的不純物からなる珪素鋼スラブを、熱間圧延して熱延板
とし、そのまま或は焼鈍を施した後1回若しくは中間焼
鈍を挟む2回以上の冷間圧延を施して最終板厚とし、次
いで、仕上焼鈍を施す無方向性電磁鋼板の製造方法にお
いて、最終冷間圧延の前段の熱処理で、材料をγ域まで
加熱してγ相に変態せしめ、然る後、Ar3→Ar1間の平
均冷却速度を50℃/以下として材料を冷却しα相に
再変態せしめることを特徴とする磁気特性が極めて優れ
た無方向性電磁鋼板の製造方法である。
The feature of the present invention is that, in weight%, Si ≦ 2.5%, Al ≦ 1.0% and (Si + 2Al) ≦ 2.5%, the balance: Fe and unavoidable. Steel slab consisting of mechanical impurities is hot-rolled into a hot-rolled sheet, and as it is or after being annealed, is cold-rolled once or twice or more with an intermediate anneal to obtain a final sheet thickness. In the method for manufacturing a non-oriented electrical steel sheet to be subjected to finish annealing, the material is heated to the γ region and transformed into the γ phase in the heat treatment before the final cold rolling, and then between A r3 → A r1 . This is a method for producing a non-oriented electrical steel sheet having extremely excellent magnetic properties, characterized by cooling the material at an average cooling rate of 50 ° C./second or less and retransforming it into an α phase.

【0007】以下、本発明を詳細に説明する。発明者等
は、本発明における技術的課題を解決すべく鋭意検討を
重ねた結果、変態を有する無方向性電磁鋼板にあって、
最終冷間圧延の直前の熱処理条件を適切に採ることによ
って仕上焼鈍後の製品の集合組織を制御し、磁束密度が
高く、鉄損が良好な(鉄損値が低い)無方向性電磁鋼板
を得ることに成功した。
Hereinafter, the present invention will be described in detail. The inventors, as a result of intensive studies to solve the technical problem in the present invention, in the non-oriented electrical steel sheet having transformation,
By controlling the heat treatment conditions just before the final cold rolling, the texture of the product after finish annealing is controlled, and the non-oriented electrical steel sheet with high magnetic flux density and good iron loss (low iron loss value) is produced. I got it successfully.

【0008】先ず、成分系について説明すると、製品の
機械的特性の向上、磁気的特性、耐錆性等の向上或はそ
の他の目的のために、Mn,P,B,Ni,Cr,S
b,Sn,Cuの1種または2種以上を鋼中に含有させ
ても本発明の効果は損なわれない。
First, the component system will be explained. For the purpose of improving the mechanical properties, magnetic properties, rust resistance, etc. of the product, or for other purposes, Mn, P, B, Ni, Cr, S.
The effect of the present invention is not impaired even if one or more of b, Sn, and Cu are contained in the steel.

【0009】Cは、0.0500%以下であれば、本発
明の目的を達することができる。低級グレードの無方向
性電磁鋼板の用途は主として小型回転機であり、磁気特
性の安定という観点からは、無方向性電磁鋼板の使用中
に磁気特性の劣化(磁気時効)を起こさないことが要求
される。
If C is 0.0500% or less, the object of the present invention can be achieved. Low grade non-oriented electrical steel sheets are mainly used in small rotating machines, and from the viewpoint of stable magnetic properties, it is required that magnetic properties do not deteriorate (magnetic aging) during the use of non-oriented electrical steel sheets. To be done.

【0010】本発明においては、最終冷間圧延工程の前
段の熱処理においてγ域まで材料を加熱した後冷却速度
を規定してα相へ再変態させる処理(γ処理)を施すか
ら炭化物は十分析出凝集し、従って、磁気時効現象は減
少する。而して、磁気時効を生起せしめないために極低
炭素とすることは要求されず、C≦0.0500%であ
ればよい。
In the present invention, in the heat treatment in the preceding stage of the final cold rolling step, the material is heated to the γ range, and then the cooling rate is specified to retransform it into the α phase (γ processing). Outcoagulation and therefore the magnetic aging phenomenon is reduced. Therefore, it is not required that the carbon content be extremely low in order to prevent the magnetic aging from occurring, and C ≦ 0.0500% is sufficient.

【0011】Sは、鋼の溶製段階で不可避的に混入する
元素である。従来、S≦0.0100%とすべきであっ
たが、本発明においてはγ処理を施すからSの無害化が
可能であり、従って、本発明においてはS≦0.020
%であればよい。
S is an element that is unavoidably mixed in at the stage of steel melting. Conventionally, it should have been S ≦ 0.0100%, but in the present invention, since γ treatment is performed, S can be rendered harmless. Therefore, in the present invention, S ≦ 0.020.
%.

【0012】Nは、0.010%以下であればよい。従
来の無方向性電磁鋼板の製造方法によれば、NはSと同
様にその含有量が多いと、熱間圧延工程におけるスラブ
加熱時に一時再固溶し、熱間圧延中にAlN等の析出物
を形成し、仕上焼鈍時に再結晶粒の成長を妨げたり、製
品が磁化されるときに磁壁の移動を妨げる所謂ピニング
効果を発揮し製品の低鉄損化を妨げる因子となる。従っ
て、N≦0.0050%とすべきであるが、本発明にお
いてはγ処理を施すことによってNの無害化が可能であ
るため、N≦0.010%であればよい。
N may be 0.010% or less. According to the conventional method for producing a non-oriented electrical steel sheet, when the content of N is large as in the case of S, N is temporarily re-dissolved during heating of the slab in the hot rolling process and precipitates AlN or the like during hot rolling. When a product is magnetized, a so-called pinning effect is formed to prevent the growth of recrystallized grains during the finish annealing and to prevent the movement of the domain wall when the product is magnetized, which is a factor that prevents the reduction of iron loss of the product. Therefore, N ≦ 0.0050% should be satisfied, but in the present invention, it is possible to render N harmless by performing γ treatment, so N ≦ 0.010% is sufficient.

【0013】Si,Alは、鋼板の固有抵抗を増大させ
渦流損を低減させるために添加される。C≦0.02%
の条件下では、(Si+2Al)が2.50%を超える
と、変態を生じなくなるので、(Si+2Al)≦2.
50%でなければならない。
Si and Al are added to increase the specific resistance of the steel sheet and reduce the eddy current loss. C ≦ 0.02%
Under the condition (1), if (Si + 2Al) exceeds 2.50%, no transformation occurs, so (Si + 2Al) ≦ 2.
Must be 50%.

【0014】Mnは、その含有量が0.1%より少ない
と製品の加工性が劣化するからまた、Sを無害化させる
ために添加される。しかしながら、Mnの添加量が2.
0%を超えると、製品の磁束密度が著しく劣化するから
Mn≦2.0%でなければならない。
If the content of Mn is less than 0.1%, the workability of the product deteriorates, and Mn is added to render S harmless. However, the addition amount of Mn is 2.
If it exceeds 0%, the magnetic flux density of the product is significantly deteriorated, so Mn ≦ 2.0% must be satisfied.

【0015】Pは、製品の打ち抜き性を良好ならしめる
ために、0.1%までの範囲内で添加される。P≦0.
2%であれば、製品の磁気特性の観点からは問題がな
い。
P is added within the range of up to 0.1% in order to improve the punchability of the product. P ≦ 0.
If it is 2%, there is no problem from the viewpoint of magnetic properties of the product.

【0016】Bは、Nを無害化させるために添加され
る。Nの量とのバランスが必要であるから最大含有量を
0.005%とする。本発明においてはγ処理を施すか
ら、Bの添加の必要性は少ない。
B is added to render N harmless. Since the balance with the amount of N is necessary, the maximum content is set to 0.005%. In the present invention, since the γ treatment is performed, it is not necessary to add B.

【0017】次に、本発明のプロセス条件について説明
する。従来、相変態を有する無方向性電磁鋼(以下、変
態鋼と略称する。)の熱延板を再加熱して変態させる
と、結晶粒の方位がランダムとなり、冷却変態(γ→
α)時に結晶粒径が小さくなるから製品の磁気特性の改
善には適していないとされ、顧みられなかった。
Next, the process conditions of the present invention will be described. Conventionally, when a hot-rolled sheet of a non-oriented electrical steel having phase transformation (hereinafter abbreviated as transformation steel) is reheated and transformed, the orientation of crystal grains becomes random and the cooling transformation (γ →
Since the crystal grain size becomes small at α), it is not suitable for improving the magnetic properties of the product and was not considered.

【0018】しかし、発明者等は鋭意研究を進めた結
果、前記変態経過時の冷却速度を制御することによっ
て、未だその理由は必ずしも明らかではないが、最終製
品における集合組織を改善することができることを見出
した。このことによって、仕上焼鈍時に、従来の仕上焼
鈍におけるよりも温度を高くまた、時間を長くして粒成
長をさせて製品の鉄損を改善しても、磁束密度を低下さ
せることがない。
However, as a result of intensive research conducted by the present inventors, it is possible to improve the texture of the final product by controlling the cooling rate during the transformation, although the reason is not always clear. Found. As a result, the magnetic flux density does not decrease during finish annealing even if the temperature is higher than in the conventional finish annealing and the time is lengthened to cause grain growth to improve the iron loss of the product.

【0019】また、γ処理において材料の冷却速度が低
いから、α相での溶解度が小さい不純物の析出が十分に
行われ、仕上焼鈍時の結晶粒成長を妨げなくなり(不純
物の無害化)、従来の条件で仕上焼鈍しても鉄損が低く
かつ磁束密度が高い無方向性電磁鋼板を得ることができ
る。
In addition, since the cooling rate of the material is low in the γ treatment, the impurities having a small solubility in the α phase are sufficiently deposited, and the grain growth during finish annealing is not hindered (detoxification of impurities). It is possible to obtain a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density even when finish annealing is performed under the conditions of.

【0020】次に、本発明のγ処理について、詳細に説
明する。本発明のγ処理は、連続焼鈍炉で行われてもよ
いしまた、箱型焼鈍炉でなされてもよい。何れにして
も、最終冷間圧延の前段の熱処理において、材料をγ域
まで加熱した後、平均冷却速度を50℃/以下として
材料を冷却してα相へ再変態させることが必要である。
Next, the γ processing of the present invention will be described in detail. The γ treatment of the present invention may be performed in a continuous annealing furnace or a box annealing furnace. In any case, in the heat treatment before the final cold rolling, it is necessary to heat the material to the γ region and then cool the material at an average cooling rate of 50 ° C./sec or less to retransform it into the α phase. .

【0021】従って、熱延板を1回の冷間圧延工程によ
って最終板厚とする場合は、熱延板焼鈍工程において、
材料をγ域まで加熱した後、平均冷却速度を50℃/
以下として材料を冷却してα相へ再変態させることが必
要となる。
Therefore, when the hot rolled sheet is made to have the final thickness by one cold rolling step, in the hot rolled sheet annealing step,
After heating the material to the γ range, it is necessary to cool the material at an average cooling rate of 50 ° C./sec or less to retransform it into the α phase.

【0022】一方、熱延板を中間焼鈍を挟む2回以上の
冷間圧延工程によって最終板厚とする場合は、最終冷間
圧延の前段の中間焼鈍において、材料をγ域まで加熱し
た後、平均冷却速度を50℃/以下として材料を冷却
してα相へ再変態させればよいから、熱延板焼鈍工程は
必須ではなくなる。
On the other hand, when the final thickness of the hot-rolled sheet is obtained by two or more cold rolling steps sandwiching the intermediate annealing, after the material is heated to the γ region in the intermediate annealing before the final cold rolling, The material may be cooled at an average cooling rate of 50 ° C./second or less and retransformed into the α phase, so that the hot rolled sheet annealing step is not essential.

【0023】連続焼鈍炉を用いて材料の平均冷却速度を
50℃/以下として冷却する手段それ自体は、たとえ
ば特開昭57−198214号公報に開示されている、
一方向性電磁鋼板の製造プロセスにおける二段均熱焼鈍
法を適用することができる。本発明のγ処理における均
熱条件は、材料をγ相とする温度(Ac3点以上)にする
ことであるが、これは鋼の成分によって異なる。実操業
における焼鈍(熱処理)条件は、Ac3点+50℃以上の
温度域に90秒間保持すれば十分である。また、材料の
γ域からα域までの冷却は、Ar3点からAr1点までを平
均50℃/以下で冷却すれば十分である。
The means itself for cooling the material at an average cooling rate of 50 ° C./sec or less using a continuous annealing furnace is disclosed in, for example, Japanese Patent Laid-Open No. 57-198214.
A two-step soaking annealing method can be applied in the manufacturing process of the unidirectional electrical steel sheet. The soaking condition in the γ treatment of the present invention is to bring the material into the γ phase at a temperature (A c3 point or higher), which varies depending on the steel composition. As for the annealing (heat treatment) condition in actual operation, it is sufficient to maintain the temperature range of A c3 point + 50 ° C. or higher for 90 seconds. Further, it is sufficient to cool the material from the γ region to the α region at an average of 50 ° C./sec or less from the Ar 3 point to the Ar 1 point.

【0024】[0024]

【実施例】【Example】

【0025】[0025]

【表1】 [Table 1]

【0026】上記表1の成分のスラブ(残部Feおよび
不可避的不純物からなる珪素スラブ)を通常の方法で熱
延し、2.5mm厚とし、条件1)つぎに熱延板焼鈍を連
続的に1100℃で2分間行い、便宜的に1000〜8
50℃間の平均冷却速度を500℃/秒(常温水に焼
き入れ)、50℃/秒(空冷)、10℃/秒(二段
均熱)、1℃/秒(二段均熱)、の各冷却速度で冷却
した。条件2)箱焼鈍で1100℃10分焼鈍後、切
電後炉中冷却した。この場合冷却速度は、0.07℃/
秒であった。その後、酸洗を施し、0.50mmの厚みに
冷間圧延をした。冷間圧延された鋼板を脱脂し、連続焼
鈍炉にて、800℃で30秒焼鈍した。その後、磁気特
性(L+Cの平均、L:圧延方向,C:Lの90°方
)を測定した。これらの値を、比較法であるa)熱延
板焼鈍無し、b)熱延800℃巻きとり後2時間保定の
いわゆる自己焼鈍(特開昭54−76422)材、
c)a)材を925℃で150秒の連続熱延板焼鈍した
材料と比較し、表2に示す。
A slab (a silicon slab consisting of the balance Fe and inevitable impurities) having the components shown in Table 1 above was hot-rolled by a conventional method to a thickness of 2.5 mm, and the condition 1) was followed by continuous hot-rolled sheet annealing. Performed at 1100 ° C for 2 minutes, and conveniently 1000-8
The average cooling rate between 50 ° C. is 500 ° C./sec (quenching in normal temperature water), 50 ° C./sec (air cooling), 10 ° C./sec (two-stage soaking), 1 ° C./sec (two-stage soaking), Was cooled at each cooling rate. Condition 2) After annealing at 1100 ° C. for 10 minutes by box annealing, it was cooled in a furnace after being cut off. In this case, the cooling rate is 0.07 ° C /
It was seconds. Then, it was pickled and cold-rolled to a thickness of 0.50 mm. The cold-rolled steel sheet was degreased and annealed at 800 ° C. for 30 seconds in a continuous annealing furnace. After that, magnetic properties (average of L + C , L: rolling direction, C: 90 ° direction of L)
Direction ) was measured. These values compare method is that a) hot-rolled sheet without annealing, b) so-called self-annealing of 2 hours retention after hot rolling 800 ° C. winding (JP 54-76422) material,
Table 2 shows the comparison of c) a) material with the material obtained by continuous hot-rolled sheet annealing at 925 ° C. for 150 seconds.

【0027】[0027]

【表2】 [Table 2]

【0028】最終焼鈍後の金相写真を図1および図2に
示す。同一ヒートで最終焼鈍条件が同じにも関わらず、
最終焼鈍後の結晶粒サイズがγ処理した材料が大きい
(図は材料4についてγ処理が(平均冷却速度500
℃/秒)を図1に、γ処理(0.07℃/秒)を図2
に示した。)。
Photographs of the metal phase after the final annealing are shown in FIGS. 1 and 2. Despite the same heat and final annealing conditions,
The crystal grain size after the final annealing is large for the γ-processed material (in the figure, for the material 4, the γ-processed (average cooling rate 500
Fig. 1 shows γ treatment (0.07 ° C / sec) and Fig. 2
It was shown to. ).

【0029】このように本発明の方法を用いると、磁束
密度、鉄損ともに優れた無方向性電磁鋼の製造が可能で
ある。
As described above, by using the method of the present invention, it is possible to produce a non-oriented electrical steel having excellent magnetic flux density and iron loss.

【0030】[0030]

【発明の効果】本発明によれば、鉄損が低くかつ、磁束
密度が高い無方向性電磁鋼板を安定して製造することが
でき、省エネルギー、電気機器の小型化の面で大きな効
果を奏する。
According to the present invention, it is possible to stably produce a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, which is very effective in terms of energy saving and miniaturization of electric equipment. .

【図面の簡単な説明】[Brief description of drawings]

【図1】比較材(平均冷却速度が500℃/)の最終
製品の結晶組織を示す写真である。
FIG. 1 is a photograph showing a crystal structure of a final product of a comparative material (average cooling rate: 500 ° C./second ).

【図2】本発明材(平均冷却速度が0.07℃/)の
最終製品の結晶組織を示す写真である。
FIG. 2 is a photograph showing a crystal structure of a final product of the material of the present invention (average cooling rate: 0.07 ° C./sec ).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 Si≦2.5%、 Al≦1.0% かつ (Si+2Al)≦2.5%、 残部:Feおよび不可避的不純物からなる珪素鋼スラブ
を、熱間圧延して熱延板とし、そのまま或は焼鈍を施し
た後1回若しくは中間焼鈍を挟む2回以上の冷間圧延を
施して最終板厚とし、次いで、仕上焼鈍を施す無方向性
電磁鋼板の製造方法において、最終冷間圧延の前段の熱
処理で、材料をγ域まで加熱してγ相に変態せしめ、然
る後、Ar3→Ar1間の平均冷却速度を50℃/以下と
して材料を冷却しα相に再変態せしめることを特徴とす
る磁気特性が極めて優れた無方向性電磁鋼板の製造方
法。
1. A silicon steel slab consisting of Si ≦ 2.5%, Al ≦ 1.0% and (Si + 2Al) ≦ 2.5% by weight, the balance: Fe and inevitable impurities, is hot-rolled. As a hot rolled sheet, and as it is or after being annealed, is subjected to cold rolling once or twice or more with intervening intermediate annealing to obtain a final sheet thickness, and then subjected to finish annealing. In the heat treatment before the final cold rolling, the material is heated to the γ region and transformed into the γ phase, and then the material is cooled by setting the average cooling rate between Ar 3 → A r1 to 50 ° C / sec or less. A process for producing a non-oriented electrical steel sheet having extremely excellent magnetic properties, which comprises retransforming into an α phase.
JP3204421A 1991-08-14 1991-08-14 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2515449B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3204421A JP2515449B2 (en) 1991-08-14 1991-08-14 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
DE69230239T DE69230239T2 (en) 1991-08-14 1992-08-13 Process for producing a non-oriented electrical steel sheet with good magnetic properties
KR1019920014546A KR960011799B1 (en) 1991-08-14 1992-08-13 Method of producing non-oriented electrical steel sheet having good magnetic properties
EP92113814A EP0527495B1 (en) 1991-08-14 1992-08-13 Method of producing non-oriented electrical steel sheet having good magnetic properties
AT92113814T ATE186333T1 (en) 1991-08-14 1992-08-13 METHOD FOR PRODUCING A NON-ORIENTED ELECTRICAL STEEL SHEET WITH GOOD MAGNETIC PROPERTIES
US08/213,999 US5421912A (en) 1991-08-14 1994-03-15 Method of producing non-oriented electrical steel sheet having good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204421A JP2515449B2 (en) 1991-08-14 1991-08-14 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH07173538A JPH07173538A (en) 1995-07-11
JP2515449B2 true JP2515449B2 (en) 1996-07-10

Family

ID=16490265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204421A Expired - Lifetime JP2515449B2 (en) 1991-08-14 1991-08-14 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2515449B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797895B1 (en) * 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same

Also Published As

Publication number Publication date
JPH07173538A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP2728112B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent iron loss
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
EP0503680B1 (en) Oriented silicon steel sheets and production process therefor
JPH0583612B2 (en)
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
KR960011799B1 (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2515449B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH0811810B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH09283316A (en) Non-oriented magnetic steel plate with high magnetic flux density/low iron loss, which is superior in heat conductivity, and its manufacture
EP4265744A1 (en) Non-oriented electrical steel sheet, and method for manufacturing same
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JPH11332183A (en) Method of annealing for eliminating distortion in laminated core
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 16