WO2018117562A1 - 유기 화합물 및 이를 이용한 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 이용한 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2018117562A1
WO2018117562A1 PCT/KR2017/014917 KR2017014917W WO2018117562A1 WO 2018117562 A1 WO2018117562 A1 WO 2018117562A1 KR 2017014917 W KR2017014917 W KR 2017014917W WO 2018117562 A1 WO2018117562 A1 WO 2018117562A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
organic
mol
mmol
Prior art date
Application number
PCT/KR2017/014917
Other languages
English (en)
French (fr)
Inventor
손효석
김충한
김영배
김회문
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2018117562A1 publication Critical patent/WO2018117562A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel organic compound and an organic electroluminescent device comprising the same, and more particularly, an organic compound having excellent electron injection and transport ability, light emitting ability, thermal stability, and the luminous efficiency, driving voltage of the device including the compound
  • the present invention relates to an organic electroluminescent device having improved lifespan.
  • an organic EL device In an organic EL device (hereinafter referred to as an 'organic EL device'), when a current or voltage is applied to two electrodes, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer at the cathode. When the injected holes and electrons meet, an exciton is formed, and the exciton falls to the ground and shines.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • Conventional electron transporting materials such as BCP and Alq 3 are widely known, and light emitting materials, in particular, CBP (4,4-dicarbazolybiphenyl), ADN and the like are known.
  • the conventional electron transport material or the light emitting material has an advantageous aspect in terms of light emission characteristics, the thermal stability is low due to the low glass transition temperature, which is not a satisfactory level in terms of lifespan in an OLED device. Therefore, the development of the material which is more excellent in performance is calculated
  • An object of the present invention is to provide a novel organic compound which can be used as an emission layer material or an electron transport auxiliary layer material of an organic electroluminescent device due to its excellent electron injecting ability, electron transporting ability and light emitting ability.
  • Another object of the present invention is to provide an organic electroluminescent device including the novel organic compound having a low driving voltage, high luminous efficiency, and an improved lifetime.
  • the present invention provides an organic compound represented by the following formula (1):
  • X 1 to X 3 are the same as or different from each other, and each independently N or C (R 1 ), provided that at least one of X 1 to X 3 is N,
  • R 1 when the C (R 1 ) is a plurality, a plurality of R 1 are the same or different from each other, each independently hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 60 aryl group, nuclear atom 5 To 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group, C 3 to C 40 alkylsilyl group, C 6 to C 60 arylsilyl group, C 1 to C 40 group of an alkyl boron, C 6 ⁇ C group 60 arylboronic of, C 6 ⁇ of the C 60 aryl phosphine group, C 6 ⁇ C 60 aryl Phosphinicosuccinic group and a
  • n is an integer from 0 to 10
  • L is selected from the group consisting of C 6 -C 60 arylene groups and heteroarylene groups having 5 to 60 nuclear atoms;
  • n is an integer from 0 to 4,
  • Ar 1 and Ar 2 are the same as or different from each other, and each independently an aryl group having 6 to 60 carbon atoms, a heteroaryl group having 5 to 60 nuclear atoms, an arylphosphinyl group having 6 to C 60 carbon atoms and C 6 to C 60 arylsilyl groups;
  • the aryl group, heteroaryl group, arylphosphinyl group and arylsilyl group of Ar 1 and Ar 2 are halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group and the number of nuclear atoms Substituted or unsubstituted with one or more substituents selected from the group consisting of 5 to 60 heteroaryl groups, wherein when the substituents are plural, they are the same or different).
  • the present invention is an organic electroluminescent device comprising an anode, a cathode and at least one organic material layer interposed between the anode and the cathode, at least one of the at least one organic material layer is an organic compound represented by the formula (1) It provides an organic electroluminescent device characterized in that it comprises a.
  • the at least one organic material layer may include a light emitting layer, and the light emitting layer may include a compound represented by Chemical Formula 1.
  • the at least one organic material layer may include an electron transport layer, and the electron transport layer may include a compound represented by Chemical Formula 1.
  • the compound according to the present invention Since the compound according to the present invention has excellent thermal stability, electron injection / transporting ability, and light emitting ability, it can be used as an organic material layer material of an organic EL device. Therefore, the organic electroluminescent device comprising the compound according to the present invention has a lower driving voltage, higher light emission and current efficiency, and a longer life compared to the organic electroluminescent device including the conventional host material or electron transport layer material, and thus has a full color. The performance and lifespan of the display panel can be improved.
  • the organic compound according to the present invention includes a core structure in which a 6-membered N-containing heterocyclic ring and a phenyl group are introduced together at the 9th carbon position (C9 position) of the fluorene moiety.
  • a structure in which various substituents preferably, an electron donating group (EDG) having a large electron donating group are introduced into one side of the benzene portion of the core structure) are introduced into the benzene portion of the core structure.
  • EDG electron donating group
  • the organic electroluminescent device includes the compound of Formula 1
  • the driving voltage of the device is low, the light emission and current efficiency are high, and long life, where the carbon position number of fluorene is as follows.
  • a fluorene-based compound in which hydrogen or a methyl group is introduced at the carbon position 9 is known.
  • the fluorene-based compound has a low glass transition temperature (Tg) and low thermal stability, there is a problem in that durability and lifespan characteristics of the organic EL device are lowered.
  • the present inventors intend to use a fluorene-based compound in which two phenyl groups are introduced instead of hydrogen or a methyl group at the carbon position 9 as an organic material layer material (eg, a host or an electron transport layer material) of an organic EL device.
  • the glass transition temperature (Tg) of the compound is higher than that of the conventional fluorene-based compound in which hydrogen or methyl group is introduced, thereby improving thermal stability, thereby improving durability and lifetime characteristics of the device.
  • the fluorene-based compound in which two phenyl groups are introduced has a higher or similar driving voltage to the organic EL device than the conventional organic material (Alq 3 or CBP).
  • the present invention by introducing a 6-membered N-containing heterocyclic ring with a phenyl group at the carbon position 9 of the fluorene moiety, not only thermal stability can be improved, but also electron transport characteristics can be improved. Therefore, when the compound according to the present invention is applied to the organic electroluminescent device, the driving voltage, light emission and current efficiency, durability, life characteristics of the device can be improved.
  • the 6-membered N-containing heterocycle eg, pyridine group, pyrimidine group, triazine group
  • EWG electron withdrawing group
  • the hetero The intermolecular hydrogen bonds can be induced by the nitrogen atom (N) in the ring.
  • the compound of the present invention wherein such a six-membered N-containing heterocyclic ring is introduced at position 9 of the fluorene moiety has a six-membered N-containing heterocyclic ring as compared to the compound having the heterocyclic ring introduced at another carbon position of fluorene. Intermolecular hydrogen bonding by rings can be better induced.
  • the compound of the present invention not only has a higher glass transition temperature (Tg) than the conventional fluorene-based compound in which two phenyl groups are introduced, but also the molecules are arranged more regularly, resulting in high crystallinity and packing density. Therefore, thermal stability and electron transportability can be further improved.
  • Tg glass transition temperature
  • the compound of the present invention has a phenyl group introduced into the carbon position of the fluorene moiety together with the six-membered N-containing heterocycle. Bonding dissociation of the containing heterocycle is prevented, and at the same time, the stacking is induced between the molecules by forming a plate-like structure, and thus the electron mobility can be increased to have better electron transportability.
  • EDG electron donating group
  • carbazole dibenzothiophene, dibenzofuran, or the like
  • the compound of the present invention is introduced into the benzene moiety of the core structure by introducing a variety of substituents (eg, aryl group, heteroaryl group, arylamine group, arylphosphinyl group, arylsilyl group), the molecular weight of the compound is significant Because of its high glass transition temperature (Tg), it shows higher thermal stability than conventional host materials such as CBP (4,4-dicarbazolybiphenyl).
  • substituents eg, aryl group, heteroaryl group, arylamine group, arylphosphinyl group, arylsilyl group
  • the compound of Formula 1 according to the present invention when used as the electron transport layer material of the organic electroluminescent device or a host material of blue, green and / or red color, the conventional organic material layer material (for example, CBP, BCP, Alq 3 Compared to), it is possible to further improve characteristics such as driving voltage, light emission and current efficiency, durability, and lifetime of the organic EL device.
  • the conventional organic material layer material for example, CBP, BCP, Alq 3 Compared to
  • X 1 to X 3 are the same as or different from each other, and each independently N or C (R 1 ), provided that at least one of X 1 to X 3 is N; Preferably, one of X 1 to X 3 may be N, and the others may be C (R 1 ). At this time, when the C (R 1 ) is a plurality, a plurality of R 1 is the same or different from each other.
  • R 1 is hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 Of cycloalkyl group, heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alkyloxy group of C 1 to C 40 , C 6 to C 60 Aryloxy group, C 3 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 An arylphosphine group, a C 6 -C 60 arylphosphinyl group, and a C 6 -C 60 arylamine group;
  • n is an integer of 0-10, Preferably it is an integer of 0-3. In this case, when m is 0, L means a single bond.
  • L is a divalent linker, selected from the group consisting of a C 6 ⁇ C 60 arylene group and a heteroarylene group having 5 to 60 nuclear atoms. It may be preferably selected from the group consisting of a C 6 ⁇ C 30 arylene group and a heteroarylene group having 5 to 30 nuclear atoms.
  • the heteroarylene group includes one or more heteroatoms selected from the group consisting of N, S, O and Se.
  • n is a integer of 0 to 4, when said n is 0, it means that a hydrogen substituent is not substituted with Ar 2.
  • the plurality of Ar 2 are the same as or different from each other.
  • Ar 1 and Ar 2 are the same as or different from each other, and each independently an aryl group having 6 to 60 carbon atoms, a heteroaryl group having 5 to 60 nuclear atoms, an arylphosphinyl group having 6 to 60 carbon atoms and a C 6 group; It is selected from the group consisting of ⁇ C 60 arylsilyl group, preferably an C 6 ⁇ C 30 aryl group, a heteroaryl group of 5 to 30 nuclear atoms, C 6 ⁇ C 30 arylphosphinyl group and C 6 ⁇ C It may be selected from the group consisting of 30 arylsilyl groups.
  • the heteroaryl group includes one or more heteroatoms selected from the group consisting of N, S, O and Se.
  • the aryl group, heteroaryl group, arylphosphinyl group and arylsilyl group of Ar 1 and Ar 2 are halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 6 -C 60 aryl group and nucleus Substituted or unsubstituted with one or more substituents selected from the group consisting of heteroaryl groups having 5 to 60 atoms, preferably cyano group, C 1 to C 20 alkyl group, C 6 to C 30 aryl group and 5 to 5 nuclear atoms It may be unsubstituted or substituted with one or more substituents selected from the group consisting of 30 heteroaryl groups. In this case, when there are a plurality of substituents, they may be the same or different.
  • Ar 1 may be a substituent selected from the group consisting of the following substituents S1 to S19, but is not limited thereto.
  • a is an integer from 0 to 4, preferably may be an integer from 0 to 2;
  • b is an integer from 0 to 3, preferably may be an integer from 0 to 2;
  • c is an integer from 0 to 2;
  • Y is an oxygen atom (O) or a sulfur atom (S);
  • a plurality of Rs are the same as or different from each other,
  • R is selected from the group consisting of hydrogen, deuterium (D), halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, and heteroaryl group having 5 to 60 nuclear atoms; , Preferably hydrogen, deuterium (D), an alkyl group of C 1 to C 20 , an aryl group of C 6 to C 30 , and a heteroaryl group of 5 to 30 nuclear atoms;
  • the alkyl group, aryl group and heteroaryl group of R are each independently deuterium (D), halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, and 5 to 5 nuclear atoms Substituted or unsubstituted with one or more substituents selected from the group consisting of 60 heteroaryl groups, preferably consisting of an alkyl group of C 1 ⁇ C 40 , an aryl group of C 6 ⁇ C 60 , and a heteroaryl group having 5 to 60 nuclear atoms Or unsubstituted with one or more substituents selected from the group, where the substituents are plural, they may be the same or different from each other).
  • Examples of the compound represented by Chemical Formula 1 according to the present invention include a compound represented by the following Chemical Formulas 2 to 4, but are not limited thereto.
  • X 1 to X 3 are as defined in formula (I).
  • Alkyl in the present invention means a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms. Examples thereof include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond. Examples thereof include vinyl, allyl, isopropenyl, and 2-butenyl, but are not limited thereto.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon triple bond. Examples thereof include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • Cycloalkyl as used herein means monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms. Examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • heterocycloalkyl monovalent substituents derived from non-aromatic hydrocarbons having 3 to 40 nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • Aryl in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may also be included.
  • Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • Heteroaryl as used herein means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and may also include a form in which the two or more rings are condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like, but is not limited thereto.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carb
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means an alkyl having 1 to 40 carbon atoms, linear, branched or cyclic structure It may include.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 5 to 40 carbon atoms.
  • R means aryl having 5 to 40 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • Alkylsilyl in the present invention means silyl substituted with alkyl having 1 to 40 carbon atoms and includes di-, tri-alkylsilyl as well as mono-.
  • Arylsilyl means silyl substituted with aryl having 5 to 60 carbon atoms and includes polyarylsilyl such as di- and tri-arylsilyl as well as mono-.
  • alkyl boron group means a boron group substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron group means a boron group substituted with aryl having 6 to 60 carbon atoms.
  • alkylphosphinyl group means a phosphine group substituted with alkyl having 1 to 40 carbon atoms and includes mono- as well as di-alkylphosphinyl groups.
  • arylphosphinyl group means a phosphine group substituted with monoaryl or diaryl having 6 to 60 carbon atoms, and includes mono- as well as di-arylphosphinyl groups.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 40 carbon atoms, and includes mono- as well as di-arylamine.
  • organic electroluminescent device (hereinafter referred to as "organic EL device") comprising the compound represented by the formula (1).
  • the organic electroluminescent device comprises an anode, a cathode and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic layer It includes a compound represented by the formula (1).
  • the compound may be used alone, or two or more may be used in combination.
  • the one or more organic material layers include a light emitting layer and optionally include any one or more of a hole injection layer, a hole transport layer, an electron transport layer and an electron injection layer.
  • the light emitting layer includes the compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 is included in the organic electroluminescent device as a light emitting layer material, preferably a blue, green and red host.
  • the organic electroluminescent device of the present invention includes the compound represented by Chemical Formula 1, it has excellent electron injection and transport ability in the light emitting layer, and thus has a high coupling force between holes and electrons in the light emitting layer, and therefore, the luminous efficiency, power efficiency, It has excellent life, brightness, driving voltage and thermal stability.
  • the one or more organic material layers include an electron transport layer, and optionally include any one or more of a hole transport layer, a hole injection layer, a hole hydrogen layer, a light emitting layer and an electron injection layer.
  • the electron transport layer includes a compound represented by the formula (1).
  • the compound represented by Chemical Formula 1 is included in the organic electroluminescent device as an electron transport layer material.
  • the organic electroluminescent device of the present invention includes the compound of Chemical Formula 1, electrons are easily injected from the cathode to the electron transport layer, and thus are rapidly moved from the electron transport layer to the light emitting layer, and thus the bonding force of holes and electrons in the light emitting layer Is high, and therefore, luminous efficiency, power efficiency, brightness, and the like are excellent.
  • the structure of the organic EL device of the present invention is not particularly limited.
  • the anode, one or more organic material layers and the cathode are sequentially stacked on the substrate, and an insulating layer or an adhesive layer is inserted at the interface between the electrode and the organic material layer.
  • an insulating layer or an adhesive layer is inserted at the interface between the electrode and the organic material layer.
  • the organic EL device may have a structure in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked on a substrate.
  • an electron injection layer may be positioned between the electron transport layer and the cathode.
  • the organic electroluminescent device of the present invention is an organic material layer and an electrode by materials and methods known in the art, except that at least one of the organic material layers (eg, the light emitting layer or the electron transport layer) includes the compound represented by Chemical Formula 1 above. It can be prepared by forming.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and non-limiting examples include silicon wafers, quartz, glass plates, metal plates, plastic films and sheets, and the like.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or alloys thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • the hole injection layer, the hole transport layer, the light emitting layer, the electron injection layer and the electron transport layer is not particularly limited, and conventional materials known in the art may be used.
  • Synthetic Compound A135 was subjected to high purity sublimation purification by a conventionally known method, and then a green organic electroluminescent device was manufactured as follows.
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing with distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and drying was carried out. The substrate was then transferred to a vacuum depositor.
  • ITO Indium tin oxide
  • DS-205 Doosan Electronics BG (80 nm) / NPB (15nm) / 95% by weight of ADN + 5% by weight DS-405 (Doosan Electronics BG) (30nm) / compound on the prepared ITO transparent electrode
  • An organic EL device was manufactured in the order of A135 (80 nm) / LiF (1 nm) / Al (200 nm).
  • the structures of NPB and ADN used at this time are as follows.
  • An organic EL device was manufactured in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of the compound A135 used as the electron transporting layer material when forming the electron transporting layer in Example A-1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of the compound A135 used as the electron transporting layer material in Example A-1.
  • the structure of Alq 3 and the compounds R1, R3 and R4 used are as follows.
  • Example A-1 A135 4.2 8.2 Example A-2 A137 3.7 8.5 Example A-3 A148 3.5 7.2 Example A-4 B163 3.5 8.8 Example A-5 B171 3.7 9.1 Example A-6 B174 3.8 8.5 Example A-7 A265 3.5 8.5 Example A-8 B289 3.7 7.8 Example A-9 B299 3.9 7.9 Example A-10 B302 3.6 8.2 Example A-11 B317 3.3 8.1 Comparative Example 1 Alq 3 4.7 5.6 Comparative Example 2 R1 4.8 6.7 Comparative Example 3 R3 5.2 5.8 Comparative Example 4 R4 4.5 5.2
  • the organic EL devices of Examples A-1 to A-11 using the compounds (A135 to B317) according to the present invention as the electron transport layer material include Alq 3 and compound R1, which are conventional electron transport layer materials, R3, R4 It was found that the organic EL device of Comparative Examples 1 to 4 each had better performance in terms of current efficiency and driving voltage.
  • Synthesized Compound A22 was subjected to high purity sublimation purification by a conventionally known method, and then a green organic electroluminescent device was manufactured as follows.
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then the substrate using UV for 5 minutes The substrate was cleaned and transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • a green organic EL device was manufactured in the same manner as in Example B-1, except that each of the compounds shown in Table 2 was used instead of the compound A22 used as the green light emitting material in the formation of the green light emitting layer in Example B-1. Prepared.
  • a green organic electroluminescent device was manufactured in the same manner as in Example B-1, except that the compounds shown in Table 2 were used instead of the compound A22 used in the formation of the green light emitting layer in Example B-1.
  • the structures of CBP and compounds R1 to R4 used at this time are as follows.
  • Example B-1 A22 6.7 41.9
  • Example B-2 A27 6.85 42.1
  • Example B-3 A31 6.8 44.8
  • Example B-4 A39 6.8 47.5
  • Example B-5 A56 6.85 41.5
  • Example B-6 A63 6.65 41.9
  • Example B-7 A133 6.01 42.4
  • Example B-8 A135 6.8 42.3
  • Example B-9 A137 6.9 45.2
  • Example B-10 A148 6.8 44.6
  • Example B-12 B171 6.65 43.6 Example B-13 A265 6.7 42.6
  • Example B-15 B299 6.8 42.8 Example B-16 B302 6.7 41.4
  • Example B-18 C68 6.65 45.3
  • Example B-20 C84 6.65 42.6 Comparative Example 5 CBP 6.93 38.2 Comparative Example 6 R1 7.4 35.5 Comparative Example 7 R2 7.0 35.8 Comparative Example 8
  • the green organic electroluminescent devices of Examples B-1 to B-20 which use the compounds (Compounds A22 to C84) according to the present invention as the host material of the light emitting layer, are conventional materials (CBP, Compared with the green organic electroluminescent elements of Comparative Examples 5 to 9 each using R1 to R4), it was found to exhibit better performance in terms of current efficiency and driving voltage.
  • Synthesized Compound A274 was a high purity sublimation tablet using a conventionally known method, and then a red organic electroluminescent device was manufactured according to the following procedure.
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • m-MTDATA 60 nm) / TCTA (80 nm) / 90% by weight of compound A274 + 10% by weight of (piq) 2 Ir (acac) (40nm) / BCP (10 nm) ) / Alq 3 (30 nm) / LiF (1 nm) / Al (200 nm) was laminated in order to prepare an organic EL device.
  • the structures of m-MTDATA, TCTA, and BCP used were as described in Example B-1
  • the structure of Alq 3 was as described in Comparative Example 1
  • the structure of (piq) 2 Ir (acac) was as follows. same.
  • Red organic EL was carried out in the same manner as in Example C-1, except for using the compounds shown in Table 3 below instead of the compound A-274 used as the red light emitting material in the formation of the red light emitting layer in Example C-1.
  • the device was manufactured.
  • a red organic electroluminescent device was manufactured in the same manner as in Example C-1, except that CBP was used instead of Compound A274 used in Example C-1.
  • the structure of CBP used at this time is as described in Comparative Example 1.
  • Example C-1 A274 4.9 11.9 Example C-2 A276 4.6 12.1 Example C-3 A278 4.7 14.8 Example C-4 A280 4.1 17.5 Example C-5 B354 4.2 11.5 Example C-6 B356 4.7 11.9 Example C-7 B358 5 12.4 Example C-8 B360 4.1 12.3 Comparative Example 10 CBP 5.2 8.2
  • the red organic electroluminescent device of Examples C-1 to C-8 using the compounds (A274 to B360) according to the present invention as a light emitting material is a comparative example using only conventional CBP as a material of the light emitting layer. Compared with the red organic electroluminescent device of 10, it was found to show better performance in terms of current efficiency and driving voltage.
  • Synthesized Compound A22 was a high purity sublimation tablet using a conventionally known method, and then a blue organic EL device was manufactured according to the following procedure.
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • DS-205 Doosan Electronics BG (80 nm) / NPB (15 nm) / 95% by weight of Compound A22 + 5% by weight of DS-405 (Doosan Electronics BG) ) (40 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / Al (200 nm) was laminated in order to prepare an organic EL device.
  • the structures of NPB and BCP used at this time are as described in Example A-1, and Alq 3 is as described in Comparative Example 1.
  • a blue organic EL device was manufactured in the same manner as in Example D-1, except for using the compounds shown in Table 4 below instead of the compound A22 used as the blue light emitting material in the formation of the blue light emitting layer in Example D-1. Prepared.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example D-1, except that ADN was used instead of Compound A22 used in Example D-1.
  • Example D-1 A22 4.3 9.2
  • Example D-2 A27 4.5 7.1
  • Example D-3 A31 4.6 8.3
  • Example D-4 A39 4.2 9.6
  • Example D-5 A56 4.7 6.5
  • Example D-6 A63 4.0 7.1
  • Example D-7 A265 4.5 8.6
  • Example D-8 C45 4.3 7.5
  • Example D-9 C47 4.4 7.6
  • Example D-10 C68 4.6 8.6
  • Example D-11 C83 5.2 Example D-12 C84 4.3 5.6 Comparative Example 11 ADN 5.6 4.8
  • the blue organic electroluminescent device of Examples D-1 to D-12 using the compounds (A22 to C84) according to the present invention as a light emitting material is a comparative example using only ADN as a material of the light emitting layer. Compared with the blue organic electroluminescent device of 11, it was found to exhibit better performance in terms of current efficiency and driving voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

본 발명은 전자 주입 및 수송능, 발광능 등이 우수한 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 대한 것으로서, 상기 유기 화합물이 유기 전계 발광 소자의 유기물층에 사용됨에 따라, 소자의 열적 안정성, 발광효율, 구동 전압, 수명 등을 향상시킬 수 있다.

Description

유기 화합물 및 이를 이용한 유기 전계 발광 소자
본 발명은 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 전자 주입 및 수송능, 발광능, 열적 안정성이 우수한 유기 화합물 및 상기 화합물을 포함하여 소자의 발광효율, 구동전압, 수명 등이 향상된 유기 전계 발광 소자에 관한 것이다.
유기 전계 발광 소자(이하, '유기 EL 소자'라 함)는 두 전극에 전류, 또는 전압을 인가해 주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어져 빛을 내게 된다. 이때, 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
종래 전자 수송 물질로는 BCP나 Alq3 등이 널리 알려져 있으며, 발광 물질, 특히 호스트로는 CBP(4,4-dicarbazolybiphenyl), ADN 등이 알려져 있다. 그러나, 종래 전자 수송 물질이나 발광 물질은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 떨어지기 때문에, OLED 소자에서의 수명 측면에서 만족할 만한 수준이 되지 못하는 실정이다. 따라서, 보다 성능이 뛰어난 재료의 개발이 요구되고 있다.
본 발명은 전자 주입능, 전자 수송능 및 발광능의 특성과 열적 안정성이 우수하여 유기 전계 발광 소자의 발광층 재료 또는 전자수송 보조층 재료로 사용될 수 있는 신규 유기 화합물을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 신규 유기 화합물을 포함하여 구동 전압이 낮고, 발광 효율이 높으며, 수명이 향상된 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 유기 화합물을 제공한다:
Figure PCTKR2017014917-appb-C000001
(상기 화학식 1에서,
X1 내지 X3는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 C(R1)이고, 다만 X1 내지 X3 중에서 적어도 하나는 N이며,
이때 상기 C(R1)이 복수인 경우, 복수의 R1은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며;
m은 0 내지 10의 정수이고,
L은 C6~C60의 아릴렌기 및 핵원자수 5 내지 60의 헤테로아릴렌기로 이루어진 군에서 선택되며;
n은 0 내지 4의 정수이고,
Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되며;
상기 Ar1 및 Ar2의 아릴기, 헤테로아릴기, 아릴포스피닐기 및 아릴실릴기는 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 동일하거나 상이함).
또한, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중에서 적어도 하나는 상기 화학식 1로 표시되는 유기 화합물을 포함하는 것이 특징인 유기 전계 발광 소자를 제공한다.
일례로, 상기 1층 이상의 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이 바람직하다.
다른 일례로, 상기 1층 이상의 유기물층은 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이 바람직하다.
본 발명에 따른 화합물은 열적 안정성, 전자 주입/수송능 및 발광능이 우수하기 때문에, 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있다. 따라서, 본 발명에 따른 화합물을 포함하는 유기 전계 발광 소자는 종래 호스트 재료나 전자수송층 재료를 포함하는 유기 전계 발광 소자에 비해 구동전압이 낮고, 발광 및 전류 효율이 높으며, 장수명을 갖기 때문에, 풀 칼라 디스플레이 패널의 성능 및 수명을 향상시킬 수 있다.
이하, 본 발명을 상세한 설명한다.
<신규 유기 화합물>
본 발명에 따른 유기 화합물은 플루오렌 모이어티(fluorene moiety)의 9번 탄소위치(C9 위치)에 6원(membered)의 N-함유 헤테로환과 페닐기가 함께 도입되어 이루어진 코어(core) 구조를 포함하며, 상기 코어 구조의 벤젠 부위에 다양한 치환기(바람직하게, 상기 코어 구조의 일측 벤젠 부위에 전자공여성이 큰 전자주개기(electron donating group, EDG)가 도입된 구조로서, 상기 화학식 1로 표시되는 것을 특징으로 한다. 이러한 화학식 1의 화합물을 유기 전계 발광 소자가 포함할 경우, 소자의 구동전압은 낮고, 발광 및 전류 효율이 높으며, 장수명을 갖는다. 여기서, 플루오렌의 탄소 위치 번호는 하기와 같다.
Figure PCTKR2017014917-appb-I000001
종래 유기 전계 발광 소자의 호스트로서, 9번 탄소 위치에 수소나 메틸기가 도입된 플루오렌계 화합물이 알려져 있다. 그러나, 상기 플루오렌계 화합물은 유리전이온도(Tg)가 낮아 열적 안정성이 낮기 때문에, 유기 전계 발광 소자의 내구성, 수명 특성이 저하되는 문제가 있었다.
이에, 본 발명자들은 9번 탄소 위치에 수소나 메틸기 대신 2개의 페닐기를 도입한 플루오렌계 화합물을 유기 전계 발광 소자의 유기물층 재료(예, 호스트나 전자수송층 물질)로 이용하고자 하였다. 이 경우, 상기 화합물의 유리전이온도(Tg)가 수소나 메틸기가 도입된 종래 플루오렌계 화합물에 비해 높아 열적 안정성이 향상됨으로써, 소자의 내구성이나 수명 특성은 개선되었다. 그러나, 2개의 페닐기가 도입된 플루오렌계 화합물은 종래 유기물층 재료(Alq3나 CBP)에 비해 유기 전계 발광 소자의 구동전압이 높거나 종래와 유사하였다.
따라서, 본 발명은 플루오렌 모이어티의 9번 탄소 위치에 페닐기와 함께 6원의 N-함유 헤테로환을 도입함으로써, 열적 안정성을 향상시킬 뿐만 아니라, 전자수송특성도 향상시킬 수 있다. 따라서, 본 발명에 따른 화합물을 유기 전계 발광 소자에 적용할 경우, 소자의 구동전압, 발광 및 전류효율, 내구성, 수명 특성 등이 향상될 수 있다.
구체적으로, 상기 화학식 1의 화합물에서, 6원의 N-함유 헤테로환(예컨대, 피리딘기, 피리미딘기, 트리아진기)은 전자 흡수성이 큰 전자 끌개기(electron withdrawing group, EWG)로서, 상기 헤테로환 내 질소 원자(N)로 인해서 분자 간 수소 결합이 유도될 수 있다. 이러한 6원의 N-함유 헤테로환이 플루오렌 모이어티의 9번 탄소위치에 도입된 본 발명의 화합물은 플루오렌의 다른 탄소위치에 상기 헤테로환이 도입된 화합물에 비해, 상기 6원의 N-함유 헤테로환에 의한 분자 간 수소 결합이 더 잘 유도될 수 있다. 그렇기 때문에, 본 발명의 화합물은 2개의 페닐기가 도입된 종래 플루오렌계 화합물에 비해 유리전이온도(Tg)가 높을 뿐만 아니라, 더 규칙적으로 분자들이 배열되어 높은 결정성 및 패킹 밀도(packing density)를 갖고, 따라서 열적 안정성 및 전자수송성이 더 향상될 수 있다.
또, 본 발명의 화합물은 상기 6원의 N-함유 헤테로환과 함께 페닐기가 상기 플루오렌 모이어티의 9번 탄소 위치에 도입됨으로써, 상기 헤테로환이 2개 도입된 경우와 달리, 상기 6원의 N-함유 헤테로환의 연결 분해(bonding dissociation)가 방지됨과 동시에, 판상구조를 이루어 분자 간의 스택킹(stacking)이 유도되고, 따라서 전자이동도가 증가되어 더 우수한 전자수송성을 가질 수 있다.
또한, 상기 코어 구조의 일측 벤젠 부위에 카바졸, 다이벤조사이오펜, 다이벤조퓨란 등과 같은 전자주개기(electron donating group, EDG)가 도입될 경우, 상기 화합물은 분자 전체가 바이폴라(bipolar) 특성을 갖게 된다. 따라서, EDG가 도입된 본 발명의 화합물은 정공과 전자의 결합력이 향상될 수 있고, 일중항 에너지(S1)와 삼중항 에너지(T1)의 차이(△Est=T1-S1)도 약 0.4 eV 이하(약 0.2~0.4 eV)로 좁기 때문에, 고효율의 발광특성을 발휘할 수 있다. 아울러, 본 발명의 화합물은 상기 코어 구조의 벤젠 부위에 다양한 치환기(예, 아릴기, 헤테로아릴기, 아릴아민기, 아릴포스피닐기, 아릴실릴기)가 도입됨으로써, 상기 화합물의 분자량이 유의적으로 증대되어 높은 유리전이온도(Tg)를 갖기 때문에, CBP(4,4-dicarbazolybiphenyl) 등의 종래 호스트 물질보다 더 높은 열적 안정성을 나타낸다.
따라서, 본 발명에 따른 화학식 1의 화합물을 유기 전계 발광 소자의 전자수송층 재료나, 청색, 녹색 및/또는 적색의 호스트 재료로 사용할 경우, 종래의 유기물층 재료(예를 들어, CBP, BCP, Alq3)에 비해 유기 전계 발광 소자의 구동전압, 발광 및 전류효율, 내구성, 수명 등의 특성을 더 향상시킬 수 있다.
상기 화학식 1에서, X1 내지 X3는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 C(R1)이고, 다만 X1 내지 X3 중에서 적어도 하나는 N이며; 바람직하게 X1 내지 X3 중에서 1개는 N이고, 나머지는 C(R1)일 수 있다. 이때 상기 C(R1)이 복수인 경우, 복수의 R1은 서로 동일하거나 상이하다. 상기 R1은 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고; 바람직하게 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기(더 바람직하게 C1~C12의 알킬기), C6~C60의 아릴기(더 바람직하게, C6~C20의 아릴기) 및 핵원자수 5 내지 60의 헤테로아릴기(더 바람직하게, 핵원자수 5 내지 20의 헤테로아릴기)로 이루어진 군에서 선택될 수 있다. 이때, 헤테로시클로알킬기 및 헤테로아릴기는 각각 N, S, O 및 Se로 이루어진 군에서 선택된 1개 이상의 헤테로원자를 포함한다.
또, m은 0 내지 10의 정수이고, 바람직하게 0 내지 3의 정수이다. 이때, 상기 m이 0인 경우, L은 단일결합인 것을 의미한다.
또, 상기 m이 1 내지 10의 정수인 경우, L은 2가(divalent)의 연결기(linker)로서, C6~C60의 아릴렌기 및 핵원자수 5 내지 60의 헤테로아릴렌기로 이루어진 군에서 선택되며, 바람직하게 C6~C30의 아릴렌기 및 핵원자수 5 내지 30의 헤테로아릴렌기로 이루어진 군에서 선택될 수 있다. 이때, 상기 헤테로아릴렌기는 N, S, O 및 Se로 이루어진 군에서 선택된 1개 이상의 헤테로원자를 포함한다.
또, n은 0 내지 4의 정수로, 상기 n이 0이면, 수소가 치환기 Ar2로 치환되지 않는 것을 의미한다. 이때, 복수의 Ar2는 서로 동일하거나 상이하다.
또, Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되며, 바람직하게 C6~C30의 아릴기, 핵원자수 5 내지 30의 헤테로아릴기, C6~C30의 아릴포스피닐기 및 C6~C30의 아릴실릴기로 이루어진 군에서 선택될 수 있다. 이때, 상기 Ar1 및 Ar2로 전자 공여성이 큰 전자주개기(electron donating group, EDG)를 선택하는 것이 바람직하다. 이 경우, 분자 전체가 바이폴라(bipolar) 특성을 갖기 때문에, 정공과 전자의 결합력을 높일 수 있다. 상기 헤테로아릴기는 N, S, O 및 Se로 이루어진 군에서 선택된 1개 이상의 헤테로원자를 포함한다.
또, 상기 Ar1 및 Ar2의 아릴기, 헤테로아릴기, 아릴포스피닐기 및 아릴실릴기는 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 바람직하게 시아노기, C1~C20의 알킬기, C6~C30의 아릴기 및 핵원자수 5 내지 30의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환될 수 있다. 이때 상기 치환기가 복수인 경우, 이들은 동일하거나 상이할 수 있다.
일례에 따르면, 상기 Ar1은 하기 치환체 S1 내지 S19로 이루어진 군에서 선택된 치환체일 수 있는데, 이에 한정되는 것은 아니다.
Figure PCTKR2017014917-appb-I000002
(상기 치환체 S1 내지 S19에서,
a는 0 내지 4의 정수이고, 바람직하게 0 내지 2의 정수일 수 있으며;
b는 0 내지 3의 정수이고, 바람직하게 0 내지 2의 정수일 수 있으며;
c는 0 내지 2의 정수이고;
Y는 산소 원자(O) 또는 황 원자(S)이며;
복수의 R은 서로 동일하거나 상이하고,
R은 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되며, 바람직하게 수소, 중수소(D), C1~C20의 알킬기, C6~C30의 아릴기, 및 핵원자수 5 내지 30의 헤테로아릴기로 이루어진 군에서 선택될 수 있고;
상기 R의 알킬기, 아릴기, 헤테로아릴기는 각각 독립적으로 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 바람직하게 C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있음).
본 발명에 따른 화학식 1로 표시되는 화합물의 예로는 하기 화학식 2 내지 4로 표시되는 화합물 등이 있는데, 이에 한정되지 않는다.
Figure PCTKR2017014917-appb-C000002
Figure PCTKR2017014917-appb-C000003
Figure PCTKR2017014917-appb-C000004
상기 화학식 2 내지 4에서,
X1 내지 X3, m, n, L, Ar1 및 Ar2는 각각 상기 화학식 1에서 정의한 바와 같다.
본 발명에 따른 화학식 1의 화합물의 구체적인 예로는 하기 화합물들이 있는데, 이에 한정되는 것은 아니다.
Figure PCTKR2017014917-appb-I000003
Figure PCTKR2017014917-appb-I000004
Figure PCTKR2017014917-appb-I000005
Figure PCTKR2017014917-appb-I000006
Figure PCTKR2017014917-appb-I000007
Figure PCTKR2017014917-appb-I000008
Figure PCTKR2017014917-appb-I000009
Figure PCTKR2017014917-appb-I000010
Figure PCTKR2017014917-appb-I000011
Figure PCTKR2017014917-appb-I000012
Figure PCTKR2017014917-appb-I000013
Figure PCTKR2017014917-appb-I000014
Figure PCTKR2017014917-appb-I000015
Figure PCTKR2017014917-appb-I000016
Figure PCTKR2017014917-appb-I000017
Figure PCTKR2017014917-appb-I000018
Figure PCTKR2017014917-appb-I000019
Figure PCTKR2017014917-appb-I000020
Figure PCTKR2017014917-appb-I000021
Figure PCTKR2017014917-appb-I000022
Figure PCTKR2017014917-appb-I000023
Figure PCTKR2017014917-appb-I000024
Figure PCTKR2017014917-appb-I000025
Figure PCTKR2017014917-appb-I000026
Figure PCTKR2017014917-appb-I000027
Figure PCTKR2017014917-appb-I000028
Figure PCTKR2017014917-appb-I000029
본 발명에서 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 40의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있는데, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴을 의미하며, 모노-뿐만 아니라 디-, 트리-알킬실릴을 포함한다. 또, "아릴실릴"은 탄소수 5 내지 60의 아릴로 치환된 실릴을 의미하고, 모노-뿐만 아니라 디-, 트리-아릴실릴 등의 폴리아릴실릴을 포함한다.
본 발명에서 "알킬보론기"는 탄소수 1 내지 40의 알킬로 치환된 보론기를 의미하며, "아릴보론기"는 탄소수 6 내지 60의 아릴로 치환된 보론기를 의미한다.
본 발명에서 "알킬포스피닐기"는 탄소수 1 내지 40의 알킬로 치환된 포스핀기를 의미하고, 모노- 뿐만 아니라 디-알킬포스피닐기를 포함한다. 또, 본 발명에서 "아릴포스피닐기"는 탄소수 6 내지 60의 모노아릴 또는 디아릴로 치환된 포스핀기를 의미하고, 모노- 뿐만 아니라 디-아릴포스피닐기를 포함한다.
본 발명에서 "아릴아민"은 탄소수 6 내지 40의 아릴로 치환된 아민을 의미하며, 모노-뿐만 아니라 디-아릴아민를 포함한다.
<유기 전계 발광 소자>
한편, 본 발명의 다른 측면은 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(이하, '유기 EL 소자')에 관한 것이다.
구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독으로 사용되거나, 또는 2 이상이 혼합되어 사용될 수 있다.
일례에 따르면, 상기 1층 이상의 유기물층은 발광층을 포함하고, 선택적으로 정공주입층, 정공수송층, 전자수송층 및 전자주입층 중 어느 하나 이상을 포함한다. 다만, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 발광층 물질, 바람직하게 청색, 녹색 및 적색의 호스트로서 유기 전계 발광 소자에 포함된다. 이 경우, 본 발명의 유기 전계 발광 소자는 상기 화학식 1로 표시되는 화합물을 포함함으로써, 발광층 내 전자 주입 및 수송 능력이 우수하여 발광층에서의 정공과 전자의 결합력이 높기 때문에, 발광효율, 전력효율, 수명, 휘도, 구동 전압, 열적 안정성 등이 우수하다.
다른 일례에 따르면, 상기 1층 이상의 유기물층은 전자수송층을 포함하고, 선택적으로 정공수송층, 정공주입층, 정공수소층, 발광층 및 전자주입층 중 어느 하나 이상을 포함한다. 다만, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 전자수송층 물질로 유기 전계 발광 소자에 포함된다. 이 경우, 본 발명의 유기 전계 발광 소자는 상기 화학식 1의 화합물을 포함함으로써, 전자가 음극에서 전자수송층으로 용이하게 주입되면서, 전자수송층에서 발광층으로 빠르게 이동되기 때문에, 발광층에서의 정공과 전자의 결합력이 높고, 따라서 발광효율, 전력효율, 휘도 등이 우수하다.
이러한 본 발명의 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 예컨대 기판 위에, 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층될 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
일례에 따르면, 상기 유기 전계 발광 소자는 기판 위에, 양극, 정공주입층, 정공수송층, 발광층, 전자수송층 및 음극이 순차적으로 적층된 구조를 가질 수 있다. 선택적으로, 상기 전자수송층과 음극 사이에 전자주입층이 위치할 수 있다. 본 발명의 유기 전계 발광 소자는 상기 유기물층 중 적어도 하나(예컨대, 발광층 또는 전자수송층)가 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법으로 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지는 않는다.
본 발명에서 사용 가능한 기판은 특별히 한정되지 않으며, 비제한적인 예로는 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 있다.
또, 양극 물질의 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지는 않는다.
또, 음극 물질의 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있는데, 이에 한정되지는 않는다.
또한, 정공주입층, 정공수송층, 발광층, 전자 주입층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질을 사용할 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 준비예 1]
<단계 1> (4'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -2- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000030
질소 기류 하에서 2-bromo-4'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반한 후, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml)을 천천히 적가하여 1시간 동안 반응하였다. 이후, 반응한 혼합물을 phenyl(pyridin-2-yl)methanone (13.70 g, 74.75 mmol) 혼합물(THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간 동안 교반한 다음, 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 2-(2- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000031
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산(10 ml)를 적가하고 100 ℃에서 5시간 동안 교반하였다. 이후, 고체 생성물을 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 18.52 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.50 (m, 10H), 7.70 (m, 3H), 7.79 (d, 2H), 7.95 (d, 1H)
<단계 3> 중간체-1의 합성
Figure PCTKR2017014917-appb-I000032
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고, 110 ℃에서 8시간 동안 교반하였다. 반응 종결 후, 다이클로로메탄으로 추출하고 MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 10.07 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.12 (m, 12H), 7.60 (t, 1H), 7.90 (d, 2H), 8.40 (d, 1H)
[ 준비예 2]
<단계 1> (4'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -3- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000033
질소 기류 하에서 2-bromo-4'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반한 후, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml )을 천천히 적가하여 1시간 동안 반응하였다. 이후, 반응한 혼합물을 phenyl(pyridin-3-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반한 다음, 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 3-(2- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000034
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100 ℃에서 5시간 동안 교반하였다. 이후, 고체 생성물을 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적` 화합물 16 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.40 (m, 9H), 7.70 (d, 2H), 7.90 (t, 1H), 7.95 (d, 2H), 8.40 (m, 2H)
<단계 3> 중간체-2의 합성
Figure PCTKR2017014917-appb-I000035
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출하고 MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후, 컬럼크로마토그래피를 이용하여 목적 화합물 10.07 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.30 (t, 1H), 7.90 (d, 2H), 8.40 (d, 1H), 8.55 (t, 1H)
[준비예 3]
<단계 1> (4'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -4- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000036
질소 기류 하에서 2-bromo-4'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반한 후, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml )을 천천히 적가하여 1시간 동안 반응하였다. 이후, 반응한 혼합물을 phenyl(pyridin-4-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반한 후, 여기에 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 4-(2- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000037
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100 ℃에서 5시간 동안 교반하였다. 이후, 고체 생성물을 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 18 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.50 (m, 10H), 7.70 (d, 2H), 7.90 (d, 2H), 8.50 (d, 2H
<단계 3> 중간체-3의 합성
Figure PCTKR2017014917-appb-I000038
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고, 110 ℃에서 8시간 동안 교반하였다. 반응 종결 후, 다이클로로메탄으로 추출하고 MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 10.7 g (yield: 85 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.06 (m, 11H), 7.90 (D, 2H), 8.50 (d, 2H)
[ 준비예 4]
<단계 1> (3'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -2- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000039
질소 기류 하에서 2-bromo-3'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반한 후, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml )을 천천히 적가하여 1시간 동안 반응하였다. 이후, 반응한 혼합물을 phenyl(pyridin-2-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반하였다. 이후, 반응물에 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 2-(3- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000040
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100 ℃에서 5시간 동안 교반하였다. 이후, 고체 생성물을 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 20 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.50 (m, 10H), 7.80 (m, 3H), 7.85 (d, 2H), 8.50 (d, 1H)
<단계 3> 중간체-4의 합성
Figure PCTKR2017014917-appb-I000041
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출하고 MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 10.07 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.20 (m, 12H), 7.60 (m, 2H), 7.90 (d, 1H), 8.45 (d, 1H)
[ 준비예 5]
<단계 1> (3'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -3- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000042
질소 기류 하에서 2-bromo-3'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반하고, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml )을 천천히 적가하여 1시간 동안 반응하였다. 이후, 반응한 혼합물을 phenyl(pyridin-3-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반하였다. 이어서, 상기 반응물에 염화암모늄 용액을 넣어 반응을 종결하고 다이클로로메탄으로 추출 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 3-(3- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000043
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100℃에서 5시간 동안 교반하였다. 생성된 고체를 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 17 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.30 (m, 9H), 7.10 (d, 2H), 7.20 (d, 1H), 7.95 (d, 2H), 8.30 (d, 2H)
<단계 3> 중간체-5의 합성
Figure PCTKR2017014917-appb-I000044
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출하고 MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 10.57 g (yield: 84 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.06 (m, 11H), 7.80 (m, 2H), 7.90 (d, 1H), 8.35 (d, 2H)
[ 준비예 6]
<단계 1> (3'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -4- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000045
질소 기류 하에서 2-bromo-3'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반한 후, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml )을 천천히 적가하여 1시간 동안 반응하였다. 이후, 상기 반응한 혼합물을 phenyl(pyridin-4-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반하였다. 이어서, 상기 반응물에 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 4-(3- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000046
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100℃에서 5시간 동안 교반하였다. 생성된 고체를 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 20 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.50 (m, 10H), 7.70 (d, 2H), 7.90 (d, 2H), 8.50 (d, 2H)
<단계 3> 중간체-6의 합성
Figure PCTKR2017014917-appb-I000047
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 11.33 g (yield: 90 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.06 (m, 11H), 7.82 (d, 1H), 7.90 (d, 1H), 8.45 (d, 2H)
[ 준비예 7]
<단계 1> (2'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -2- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000048
질소 기류 하에서 2-bromo-2'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반한 다음, 여기에 n-BuLi (2.5M in Hexane, 35.88 ml )을 천천히 적가하여 1시간 동안 반응하였다. 이후, 상기 반응한 혼합물을 phenyl(pyridin-2-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반하였다. 이어서, 상기 반응물에 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 2-(4- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000049
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100 ℃에서 5시간 동안 교반하였다. 생성된 고체를 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 15 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.50 (m, 14H), 7.70 (s, 1H), 7.79 (d, 1H), 7.95 (m, 2H), 8.30 (d, 2H)
<단계 3> 중간체-7의 합성
Figure PCTKR2017014917-appb-I000050
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane 100 ml를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 11.33 g (yield: 90 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.06 (m, 11H), 7.82 (d, 1H), 7.90 (d, 1H), 8.45 (d, 2H)
[ 준비예 8]
<단계 1> (2'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -3- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000051
질소 기류 하에서 2-bromo-2'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반하였다. 이후, n-BuLi (2.5M in Hexane, 35.88 ml )을 상기 반응기에 천천히 적가하여 1시간 동안 반응하고, 반응한 혼합물을 phenyl(pyridin-3-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반하였다. 이어서, 상기 반응물에 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 3-(4- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000052
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100℃에서 5시간 동안 교반하였다. 생성된 고체를 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 22 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.55 (m, 10H), 7.75 (d, 2H), 7.95 (d, 2H), 8.55 (d, 2H)
<단계 3> 중간체-8의 합성
Figure PCTKR2017014917-appb-I000053
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 12.5 g (yield: 86 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.06 (m, 11H), 7.82 (d, 1H), 7.90 (d, 1H), 8.45 (d, 2H)
[ 준비예 9]
<단계 1> (2'- chloro -[1,1'-biphenyl]-2- yl )(phenyl)( pyridin -4- yl )methanol의 합성
Figure PCTKR2017014917-appb-I000054
질소 기류 하에서 2-bromo-2'-chloro-1,1'-biphenyl (20.0 g, 74.75 mmol)에 무수 THF(200 ml)을 넣고 -78℃에서 교반하였다. 이후, n-BuLi (2.5M in Hexane, 35.88 ml )을 상기 반응기에 천천히 적가하여 1시간 동안 반응하고, 반응한 혼합물을 phenyl(pyridin-4-yl)methanone (13.70 g, 74.75 mmol) 혼합물 (THF, 100 ml, -78℃) 반응기에 적가하여 상온에서 2시간동안 교반하였다. 이어서, 상기 반응물에 염화암모늄 용액을 넣어 반응을 종결하고, 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물을 획득하였다.
GC-Mass (이론치: 371.86 g/mol, 측정치: 371 g/mol)
<단계 2> 4-(4- chloro -9-phenyl-9H- fluoren -9- yl )pyridine의 합성
Figure PCTKR2017014917-appb-I000055
상기 <단계 1>에서 얻은 화합물을 정제하지 않고, 여기에 황산 (10 ml)를 적가하고 100℃에서 5시간 동안 교반하였다. 생성된 고체를 필터로 여과하고 1M 수산화나트륨 수용액으로 씻어준 후 여과하여 목적 화합물 20 g을 획득하였다.
GC-Mass (이론치: 353.85 g/mol, 측정치: 353 g/mol)
1H-NMR: δ 7.50 (m, 10H), 7.70 (d, 2H), 7.90 (d, 2H), 8.50 (d, 2H)
<단계 3> 중간체-9의 합성
Figure PCTKR2017014917-appb-I000056
상기 <단계 2>에서 얻은 화합물 (10.0 g, 28.26 mmol), bis(pinacolato)diboron (8.61 g, 33.91 mmol), PdCl2(dppf) (0.19 g, 0.85 mmol), KOAc (5.55 g, 56.52 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 12.5 g (yield: 86 %)을 획득하였다.
GC-Mass (이론치: 445.37 g/mol, 측정치: 445 g/mol)
1H-NMR: δ 1.20 (s, 12H), 7.06 (m, 11H), 7.82 (d, 1H), 7.90 (d, 1H), 8.45 (d, 2H)
[ 합성예 1] 화합물 A22의 합성
Figure PCTKR2017014917-appb-I000057
질소 기류 하에서 중간체-4 (10.0 g, 22.45 mmol), 3-bromo-9-phenyl-9H-carbazole (7.23 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol)와 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고 100℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후 MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 9.44 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 560.70 g/mol, 측정치: 560 g/mol)
[ 합성예 2] 화합물 A27의 합성
Figure PCTKR2017014917-appb-I000058
3-bromo-9-phenyl-9H-carbazole 대신 9-(3-bromophenyl)-9H-carbazole (7.23 g, 22.45 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물 10.07 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 560.70 g/mol, 측정치: 560 g/mol)
[ 합성예 3] 화합물 A31의 합성
Figure PCTKR2017014917-appb-I000059
3-bromo-9-phenyl-9H-carbazole 대신 2-bromodibenzo[b,d]thiophene (5.91 g, 22.45 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물 9.91 g (yield: 88 %)을 획득하였다.
GC-Mass (이론치: 501.65 g/mol, 측정치: 501 g/mol)
[ 합성예 4] 화합물 A39의 합성
Figure PCTKR2017014917-appb-I000060
3-bromo-9-phenyl-9H-carbazole 대신 2-bromodibenzo[b,d]furan (5.91 g, 22.45 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일한 과정을 수행하여 목적 화합물 8.72 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 485.59 g/mol, 측정치: 485 g/mol)
[ 합성예 5] 화합물 A56의 합성
Figure PCTKR2017014917-appb-I000061
질소 기류 하에서 중간체-7 (10.0 g, 22.45 mmol), 2-bromotriphenylene (6.90 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol)와 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고 100 ℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 9.80 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 545.69 g/mol, 측정치: 545 g/mol)
[ 합성예 6] 화합물 A63의 합성
Figure PCTKR2017014917-appb-I000062
2-bromotriphenylene 대신 2-(3-bromophenyl)-9,9-diphenyl-9H-fluorene (10.63 g, 22.45 mmol)을 사용하는 것을 제외하고는, 합성예 5와 동일한 과정을 수행하여 목적 화합물 12.79 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 711.91 g/mol, 측정치: 711 g/mol)
[ 합성예 7] 화합물 A133의 합성
Figure PCTKR2017014917-appb-I000063
질소 기류 하에서 중간체-1 (10.0 g, 22.45 mmol), 2-bromo-4,6-diphenylpyridine (6.96 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol), 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고, 100 ℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 9.21 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 546.69 g/mol, 측정치: 546 g/mol)
[ 합성예 8] 화합물 A135의 합성
Figure PCTKR2017014917-appb-I000064
2-bromo-4,6-diphenylpyridine 대신 4-bromo-2,6-diphenylpyrimidine (6.96 g, 22.45 mmol)을 사용하는 것을 제외하고는, 합성예 7과 동일한 과정을 수행하여 목적 화합물 9.82 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 549.68 g/mol, 측정치: 549 g/mol)
[ 합성예 9] 화합물 A137의 합성
Figure PCTKR2017014917-appb-I000065
2-bromo-4,6-diphenylpyridine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine (6.01 g, 22.45 mmol)을 사용하는 것을 제외하고는, 합성예 7과 동일한 과정을 수행하여 목적 화합물 10.51 g (yield: 85 %)을 획득하였다.
GC-Mass (이론치: 550.67 g/mol, 측정치: 550 g/mol)
[ 합성예 10] 화합물 148의 합성
Figure PCTKR2017014917-appb-I000066
2-bromo-4,6-diphenylpyridine 대신 4-([1,1'-biphenyl]-4-yl)-6-chloro-2-phenylpyrimidine (7.70 g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 목적 화합물 11.94 g (yield: 85 %)을 획득하였다.
GC-Mass (이론치: 625.78 g/mol, 측정치: 625 g/mol)
[ 합성예 11] 화합물 B163의 합성
Figure PCTKR2017014917-appb-I000067
질소 기류 하에서 중간체-2 (10.0 g, 22.45 mmol), 4-(4-bromophenyl)-2,6-diphenylpyrimidine (8.70 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol), 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고, 100 ℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 10.96 g (yield: 78 %)을 획득하였다.
GC-Mass (이론치: 625.78 g/mol, 측정치: 625 g/mol)
[ 합성예 12] 화합물 B171의 합성
Figure PCTKR2017014917-appb-I000068
4-(4-bromophenyl)-2,6-diphenylpyrimidine 대신 4-(3-bromophenyl)-2,6-diphenylpyrimidine (8.70 g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물 11.24 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 625.78 g/mol, 측정치: 625 g/mol)
[ 합성예 13] 화합물 B174의 합성
Figure PCTKR2017014917-appb-I000069
4-(4-bromophenyl)-2,6-diphenylpyrimidine 대신 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (8.72 g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물 10.13 g (yield: 72 %)을 획득하였다.
GC-Mass (이론치: 626.76 g/mol, 측정치: 626 g/mol)
[ 합성예 14] 화합물 A265의 합성
Figure PCTKR2017014917-appb-I000070
질소 기류 하에서 중간체-4 (10.0 g, 22.45 mmol), diphenylphosphinic chloride (5.31 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol), 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고 100 ℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 8.17 g (yield: 70 %)을 획득하였다.
GC-Mass (이론치: 519.58 g/mol, 측정치: 519 g/mol)
[ 합성예 15] 화합물 A274의 합성
Figure PCTKR2017014917-appb-I000071
diphenylphosphinic chloride 대신 10-bromo-7-(2,6-diphenylpyrimidin-4-yl)-7H-benzo[c]carbazole (11.82 g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 14와 동일한 과정을 수행하여 목적 화합물 12.88 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 764.93 g/mol, 측정치: 764 g/mol)
[ 합성예 16] 화합물 A276의 합성
Figure PCTKR2017014917-appb-I000072
diphenylphosphinic chloride 대신 10-bromo-7-(4,6-diphenyl-1,3,5-triazin-2-yl)-7H-benzo[c]carbazole (11.84g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 14와 동일한 과정을 수행하여 목적 화합물 13.76 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 765.92 g/mol, 측정치: 765 g/mol)
[ 합성예 17] 화합물 A278의 합성
Figure PCTKR2017014917-appb-I000073
diphenylphosphinic chloride 대신 5-bromo-7-(4,6-diphenyl-1,3,5-triazin-2-yl)-7H-benzo[c]carbazole (11.84g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 14와 동일한 과정을 수행하여 목적 화합물 13.76 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 765.92 g/mol, 측정치: 765 g/mol)
[ 합성예 18] 화합물 A280의 합성
Figure PCTKR2017014917-appb-I000074
diphenylphosphinic chloride 대신 10-bromo-7-(4-phenylquinazolin-2-yl)-7H-benzo[c]carbazole (11.24g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 14와 동일한 과정을 수행하여 목적 화합물 12.61 g (yield: 76 %)을 획득하였다.
GC-Mass (이론치: 738.89 g/mol, 측정치: 738 g/mol)
[ 합성예 19] 화합물 B289의 합성
Figure PCTKR2017014917-appb-I000075
질소 기류 하에서 중간체-8 (10.0 g, 22.45 mmol), 2-chloro-4,6-diphenyl-1,3,5-triazine (6.01 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol), 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고 100 ℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 9.89 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 550.67 g/mol, 측정치: 550 g/mol)
[ 합성예 20] 화합물 B299의 합성
Figure PCTKR2017014917-appb-I000076
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 4-([1,1'-biphenyl]-4-yl)-6-chloro-2-phenylpyrimidine (7.70g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 12.13 g (yield: 85 %)을 획득하였다.
GC-Mass (이론치: 625.78 g/mol, 측정치: 625 g/mol)
[ 합성예 21] 화합물 B302의 합성
Figure PCTKR2017014917-appb-I000077
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (7.72g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 11.40 g (yield: 81 %)을 획득하였다.
GC-Mass (이론치: 626.76 g/mol, 측정치: 626 g/mol)
[ 합성예 22] 화합물 B317의 합성
Figure PCTKR2017014917-appb-I000078
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (8.72g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 10.55 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 626.76 g/mol, 측정치: 626 g/mol)
[ 합성예 23] 화합물 B354의 합성
Figure PCTKR2017014917-appb-I000079
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 10-bromo-7-(2,6-diphenylpyrimidin-4-yl)-7H-benzo[c]carbazole (11.84g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 12.02 g (yield: 70 %)을 획득하였다.
GC-Mass (이론치: 764.93 g/mol, 측정치: 764 g/mol)
[ 합성예 24] 화합물 B356의 합성
Figure PCTKR2017014917-appb-I000080
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 10-bromo-7-(4,6-diphenyl-1,3,5-triazin-2-yl)-7H-benzo[c]carbazole (11.84g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 12.02 g (yield: 70 %)을 획득하였다.
GC-Mass (이론치: 765.92 g/mol, 측정치: 765 g/mol)
[ 합성예 25] 화합물 B358의 합성
Figure PCTKR2017014917-appb-I000081
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 5-bromo-7-(4,6-diphenyl-1,3,5-triazin-2-yl)-7H-benzo[c]carbazole (11.84g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 12.88 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 765.92 g/mol, 측정치: 765 g/mol)
[ 합성예 26] 화합물 B360의 합성
Figure PCTKR2017014917-appb-I000082
2-chloro-4,6-diphenyl-1,3,5-triazine 대신 10-bromo-7-(4-phenylquinazolin-2-yl)-7H-benzo[c]carbazole (11.24g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 19와 동일한 과정을 수행하여 목적 화합물 13.27 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 738.89 g/mol, 측정치: 738 g/mol)
[ 합성예 27] 화합물 C45의 합성
Figure PCTKR2017014917-appb-I000083
질소 기류 하에서 중간체-9 (10.0 g, 22.45 mmol), 4-bromo-1,1'-biphenyl (5.23 g, 22.45 mmol), Pd(PPh3)4 (0.78 g, 0.67 mmol), K2CO3 (9.31 g, 67.36 mmol), 1,4-dioxane (100 ml) 및 H2O (25 ml)를 혼합하고 100 ℃에서 4시간 동안 교반하였다. 반응 종결 후 다이클로로메탄으로 추출한 후, MgSO4를 넣고 필터링하였다. 필터링된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 목적 화합물 7.94 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 471.60 g/mol, 측정치: 471 g/mol)
[ 합성예 28] 화합물 C47의 합성
Figure PCTKR2017014917-appb-I000084
4-bromo-1,1'-biphenyl 대신 5'-bromo-1,1':3',1''-terphenyl (6.94g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 27과 동일한 과정을 수행하여 목적 화합물 11.07 g (yield: 90 %)을 획득하였다.
GC-Mass (이론치: 547.70 g/mol, 측정치: 547 g/mol)
[ 합성예 29] 화합물 C68의 합성
Figure PCTKR2017014917-appb-I000085
4-bromo-1,1'-biphenyl 대신 3-(3-bromophenyl)-9-phenyl-9H-carbazole (8.94g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 27과 동일한 과정을 수행하여 목적 화합물 11.15 g (yield: 78 %)을 획득하였다.
GC-Mass (이론치: 636.80 g/mol, 측정치: 636 g/mol)
[ 합성예 30] 화합물 C83의 합성
Figure PCTKR2017014917-appb-I000086
4-bromo-1,1'-biphenyl 대신 2-bromodibenzo[b,d]furan (5.55g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 27과 동일한 과정을 수행하여 목적 화합물 8.72 g (yield: 80 %)을 획득하였다.
GC-Mass (이론치: 485.59 g/mol, 측정치: 485 g/mol)
[ 합성예 31] 화합물 C84의 합성
Figure PCTKR2017014917-appb-I000087
4-bromo-1,1'-biphenyl 대신 1-bromodibenzo[b,d]furan (5.55g, 22.45 mmol)을 사용하는 것을 제외하고는 합성예 27과 동일한 과정을 수행하여 목적 화합물 8.18 g (yield: 75 %)을 획득하였다.
GC-Mass (이론치: 485.59 g/mol, 측정치: 485 g/mol)
[ 실시예 A-1] 유기 EL 소자의 제조
합성된 화합물 A135를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 녹색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5 분간 세정한 후 진공 층착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에 DS-205(㈜두산 전자 BG)(80 nm)/ NPB(15nm)/ 95 중량%의 ADN + 5 중량% DS-405(㈜두산 전자 BG)(30nm)/ 화합물 A135(80nm)/ LiF(1nm) / Al(200nm) 순서로 유기 EL 소자를 제조하였다. 이때 사용된 NPB 및 ADN의 구조는 각각 하기와 같다.
Figure PCTKR2017014917-appb-I000088
Figure PCTKR2017014917-appb-I000089
[ 실시예 A-2 ~ A-11] 유기 EL 소자의 제조
실시예 A-1에서 전자 수송층 형성시 전자 수송층 물질로 사용된 화합물 A135 대신 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 유기 EL 소자를 제조하였다.
[ 비교예 1 ~ 4] 유기 EL 소자의 제작
실시예 A-1에서 전자 수송층 형성시 전자 수송층 물질로 사용된 화합물 A135 대신 표 1에 기재된 화합물을 각각 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 EL 소자를 제조하였다. 이때, 사용된 Alq3 및 화합물 R1, R3 및 R4의 구조는 하기와 같다.
Figure PCTKR2017014917-appb-I000090
Figure PCTKR2017014917-appb-I000091
Figure PCTKR2017014917-appb-I000092
Figure PCTKR2017014917-appb-I000093
[ 평가예 1]
실시예 A-1 내지 A-11 및 비교예 1 내지 4에서 각각 제조된 유기 EL 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압 및 전류효율를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
샘플 전자 수송층 구동전압(V) 전류효율(cd/A)
실시예 A-1 A135 4.2 8.2
실시예 A-2 A137 3.7 8.5
실시예 A-3 A148 3.5 7.2
실시예 A-4 B163 3.5 8.8
실시예 A-5 B171 3.7 9.1
실시예 A-6 B174 3.8 8.5
실시예 A-7 A265 3.5 8.5
실시예 A-8 B289 3.7 7.8
실시예 A-9 B299 3.9 7.9
실시예 A-10 B302 3.6 8.2
실시예 A-11 B317 3.3 8.1
비교예 1 Alq3 4.7 5.6
비교예 2 R1 4.8 6.7
비교예 3 R3 5.2 5.8
비교예 4 R4 4.5 5.2
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 화합물(A135~B317)을 전자수송층 물질로 사용한 실시예 A-1~A-11의 유기 EL 소자는, 종래 전자수송층 물질인 Alq3 및 화합물 R1, R3, R4 를 각각 사용한 비교예 1 ~ 4의 유기 EL 소자에 비해 전류효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.
[실시예 B-1] 녹색 유기 전계 발광 소자의 제조
합성된 화합물 A22를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 녹색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고, 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, m-MTDATA (60 nm)/TCTA (80 nm)/90중량%의 화합물 A22 + 10 중량%의 Ir(ppy)3 (40nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다. 이때 사용된 m-MTDATA, TCTA, Ir(ppy)3 및 BCP의 구조는 하기와 같고, Alq3의 구조는 비교예 1에 기재된 바와 같다.
Figure PCTKR2017014917-appb-I000095
[실시예 B-2 ~ B-20] 녹색 유기 전계 발광 소자의 제조
실시예 B-1에서 녹색 발광층의 형성시 녹색 발광 물질로 사용된 화합물 A22 대신 하기 표 2에 기재된 화합물 각각을 사용하는 것을 제외하고는, 실시예 B-1과 동일하게 수행하여 녹색 유기 EL 소자를 제조하였다.
[비교예 5 ~ 9] 녹색 유기 전계 발광 소자의 제조
실시예 B-1에서 녹색 발광층의 형성시 사용된 화합물 A22 대신 표 2에 기재된 화합물을 각각 사용한 것을 제외하고는, 실시예 B-1과 동일하게 수행하여 녹색 유기 전계 발광 소자를 제조하였다. 이때 사용된 CBP 및 화합물 R1 ~ R4의 구조는 하기와 같다.
Figure PCTKR2017014917-appb-I000096
Figure PCTKR2017014917-appb-I000097
Figure PCTKR2017014917-appb-I000098
Figure PCTKR2017014917-appb-I000099
Figure PCTKR2017014917-appb-I000100
[평가예 2]
실시예 B-1 내지 B-20, 및 비교예 5 내지 9에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 2에 나타내었다.
샘플 녹색 발광층 구동 전압 (V) 전류효율 (cd/A)
실시예 B-1 A22 6.7 41.9
실시예 B-2 A27 6.85 42.1
실시예 B-3 A31 6.8 44.8
실시예 B-4 A39 6.8 47.5
실시예 B-5 A56 6.85 41.5
실시예 B-6 A63 6.65 41.9
실시예 B-7 A133 6.01 42.4
실시예 B-8 A135 6.8 42.3
실시예 B-9 A137 6.9 45.2
실시예 B-10 A148 6.8 44.6
실시예 B-11 B163 6.7 44.1
실시예 B-12 B171 6.65 43.6
실시예 B-13 A265 6.7 42.6
실시예 B-14 B289 6.9 44.1
실시예 B-15 B299 6.8 42.8
실시예 B-16 B302 6.7 41.4
실시예 B-17 B317 6.7 41.8
실시예 B-18 C68 6.65 45.3
실시예 B-19 C83 6.7 45.1
실시예 B-20 C84 6.65 42.6
비교예 5 CBP 6.93 38.2
비교예 6 R1 7.4 35.5
비교예 7 R2 7.0 35.8
비교예 8 R3 7.2 40.2
비교예 9 R4 7.0 37.4
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 화합물(화합물 A22~C84)을 발광층의 호스트 재료로 사용한 실시예 B-1~B-20의 녹색 유기 전계 발광 소자는, 종래 발광층의 재료(CBP, R1~R4)를 각각 사용한 비교예 5~9의 녹색 유기 전계 발광 소자에 비해 전류효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.
[실시예 C-1] 적색 유기 전계 발광 소자의 제조
합성된 화합물 A274를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 적색 유기 전계 발광 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, m-MTDATA (60 nm)/TCTA (80 nm)/ 90 중량%의 화합물 A274 + 10 중량%의 (piq)2Ir(acac)(40nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다. 이때 사용된 m-MTDATA, TCTA, BCP의 구조는 실시예 B-1에 기재된 바와 같고, Alq3의 구조는 비교예 1에 기재된 바와 같으며, (piq)2Ir(acac)의 구조는 하기와 같다.
Figure PCTKR2017014917-appb-I000101
[실시예 C-2 ~ C-8] 적색 유기 전계 발광 소자의 제조]
실시예 C-1에서 적색 발광층의 형성시 적색 발광 물질로 사용된 화합물 A-274 대신 하기 표 3에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 C-1과 동일하게 수행하여 적색 유기 EL 소자를 제조하였다.
[비교예 10] 적색 유기 전계 발광 소자의 제작]
실시예 C-1 에서 사용된 화합물 A274 대신 CBP를 사용하는 것을 제외하고는, 실시예 C-1과 동일하게 수행하여 적색 유기 전계 발광 소자를 제조하였다. 이때 사용된 CBP의 구조는 비교예 1에 기재된 바와 같다.
[평가예 3]
실시예 C-1 내지 C-8, 및 비교예 10에서 각각 제조된 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 3에 나타내었다.
샘플 적색 발광층 구동 전압 (V) 전류효율(cd/A)
실시예 C-1 A274 4.9 11.9
실시예 C-2 A276 4.6 12.1
실시예 C-3 A278 4.7 14.8
실시예 C-4 A280 4.1 17.5
실시예 C-5 B354 4.2 11.5
실시예 C-6 B356 4.7 11.9
실시예 C-7 B358 5 12.4
실시예 C-8 B360 4.1 12.3
비교예 10 CBP 5.2 8.2
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 화합물(A274~B360)을 발광 재료로 사용한 실시예 C-1~C-8의 적색 유기 전계 발광 소자는, 종래 CBP만을 발광층의 재료로 사용한 비교예 10의 적색 유기 전계 발광 소자에 비해 전류효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.
[실시예 D-1] 청색 유기 전계 발광 소자의 제조
합성된 화합물 A22를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 청색 유기 전계 발광 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (㈜두산전자 BG) (80 nm)/NPB (15 nm)/ 95 중량%의 화합물 A22 + 5 중량%의 DS-405((주)두산전자 BG)(40nm) /BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제조하였다. 이때 사용된 NPB, BCP의 구조는 실시예 A-1에 기재된 바와 같고, Alq3은 비교예 1에 기재된 바와 같다.
[실시예 D-2 ~ D-12] 청색 유기 전계 발광 소자의 제조]
실시예 D-1에서 청색 발광층의 형성시 청색 발광 물질로 사용된 화합물 A22 대신 하기 표 4에 기재된 화합물을 각각 사용하는 것을 제외하고는, 실시예 D-1과 동일하게 수행하여 청색 유기 EL 소자를 제조하였다.
[비교예 11] 청색 유기 전계 발광 소자의 제작
실시예 D-1에서 사용된 화합물 A22 대신 ADN을 사용하는 것을 제외하고는, 실시예 D-1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제조하였다.
[평가예 4]
실시예 D-1 ~ D-12 및 비교예 11에서 제작한 각각의 청색 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압 및 전류효율을 측정하였고, 그 결과를 하기 표 4에 나타내었다.
샘플 청색발광층 구동 전압 (V) 전류효율(cd/A)
실시예 D-1 A22 4.3 9.2
실시예 D-2 A27 4.5 7.1
실시예 D-3 A31 4.6 8.3
실시예 D-4 A39 4.2 9.6
실시예 D-5 A56 4.7 6.5
실시예 D-6 A63 4.0 7.1
실시예 D-7 A265 4.5 8.6
실시예 D-8 C45 4.3 7.5
실시예 D-9 C47 4.4 7.6
실시예 D-10 C68 4.6 8.6
실시예 D-11 C83 5.2 7.1
실시예 D-12 C84 4.3 5.6
비교예 11 ADN  5.6 4.8
상기 표 4에 나타낸 바와 같이, 본 발명에 따른 화합물(A22~C84)을 발광 재료로 사용한 실시예 D-1~D-12의 청색 유기 전계 발광 소자는, 종래 ADN만을 발광층의 재료로 사용한 비교예 11의 청색 유기 전계 발광 소자에 비해 전류효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.

Claims (8)

  1. 하기 화학식 1로 표시되는 유기 화합물:
    [화학식 1]
    Figure PCTKR2017014917-appb-I000102
    (상기 화학식 1에서,
    X1 내지 X3는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 C(R1)이고, 다만 X1 내지 X3 중에서 적어도 하나는 N이며,
    이때 상기 C(R1)이 복수인 경우, 복수의 R1은 서로 동일하거나 상이하고,
    R1은 수소, 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며;
    m은 0 내지 10의 정수이고,
    L은 C6~C60의 아릴렌기 및 핵원자수 5 내지 60의 헤테로아릴렌기로 이루어진 군에서 선택되며;
    n은 0 내지 4의 정수이고,
    Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되며;
    상기 Ar1 및 Ar2의 아릴기, 헤테로아릴기, 아릴포스피닐기 및 아릴실릴기는 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 동일하거나 상이함).
  2. 제1항에 있어서,
    X1 내지 X3 중에서 1개는 N이고, 나머지는 C(R1)이며, 이때 상기 C(R1)이 복수인 경우, 복수의 R1은 서로 동일하거나 상이하고,
    R1은 제1항에 정의한 바와 같은 것이 특징인 유기 화합물.
  3. 제1항에 있어서,
    하기 화학식 2 내지 화학식 4 중 어느 하나로 표시되는 것이 특징인 유기 화합물:
    [화학식 2]
    Figure PCTKR2017014917-appb-I000103
    [화학식 3]
    Figure PCTKR2017014917-appb-I000104
    [화학식 4]
    Figure PCTKR2017014917-appb-I000105
    (상기 화학식 2 내지 4에서,
    X1 내지 X3, m, n, L, Ar1 및 Ar2는 각각 제1항에 정의한 바와 같음).
  4. 제1항에 있어서,
    상기 Ar1은 하기 치환체 S1 내지 S19로 이루어진 군에서 선택된 치환체인 것이 특징인 유기 화합물:
    Figure PCTKR2017014917-appb-I000106
    (상기 치환체 S1 내지 S19에서,
    a는 0 내지 4의 정수이고,
    b는 0 내지 3의 정수이며,
    c는 0 내지 2의 정수이고,
    Y는 O 또는 S이며,
    복수의 R은 서로 동일하거나 상이하고,
    R은 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되며,
    상기 R의 알킬기, 아릴기, 헤테로아릴기는 각각 독립적으로 중수소(D), 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기, 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환되거나 비치환되고, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있음).
  5. 제1항에 있어서,
    일중항 에너지와 삼중항 에너지의 차이(△Est)는 0.2~0.4 eV인 것이 특징인 유기 화합물.
  6. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,
    상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항 내지 제5항 중 어느 한 항에 기재된 화학식 1로 표시되는 유기 화합물을 포함하는 것이 특징인 유기 전계 발광 소자.
  7. 제6항에 있어서,
    상기 1층 이상의 유기물층은 발광층을 포함하고,
    상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 전계 발광 소자.
  8. 제6항에 있어서,
    상기 1층 이상의 유기물층은 전자수송층을 포함하고,
    상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 전계 발광 소자.
PCT/KR2017/014917 2016-12-20 2017-12-18 유기 화합물 및 이를 이용한 유기 전계 발광 소자 WO2018117562A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0175027 2016-12-20
KR1020160175027A KR102024421B1 (ko) 2016-12-20 2016-12-20 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Publications (1)

Publication Number Publication Date
WO2018117562A1 true WO2018117562A1 (ko) 2018-06-28

Family

ID=62626814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014917 WO2018117562A1 (ko) 2016-12-20 2017-12-18 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR102024421B1 (ko)
WO (1) WO2018117562A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210278766A1 (en) * 2020-03-05 2021-09-09 Shin-Etsu Chemical Co., Ltd. Coating-type composition for forming organic film, patterning process, polymer, and method for manufacturing polymer
US11299466B2 (en) * 2016-04-12 2022-04-12 Lg Chem, Ltd. Compound, and organic electronic element comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131782A (ja) * 2004-11-08 2006-05-25 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR20120060611A (ko) * 2010-12-02 2012-06-12 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
CN102977006A (zh) * 2012-12-21 2013-03-20 南京邮电大学 吡啶芴类有机电致磷光主体发光材料及其制备方法
WO2015152650A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017179883A1 (ko) * 2016-04-12 2017-10-19 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102467800B1 (ko) * 2014-12-30 2022-11-18 다우 글로벌 테크놀로지스 엘엘씨 전계발광 디바이스용 발광 요소로서의 플루오렌 유도체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131782A (ja) * 2004-11-08 2006-05-25 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR20120060611A (ko) * 2010-12-02 2012-06-12 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
CN102977006A (zh) * 2012-12-21 2013-03-20 南京邮电大学 吡啶芴类有机电致磷光主体发光材料及其制备方法
WO2015152650A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017179883A1 (ko) * 2016-04-12 2017-10-19 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299466B2 (en) * 2016-04-12 2022-04-12 Lg Chem, Ltd. Compound, and organic electronic element comprising same
US20210278766A1 (en) * 2020-03-05 2021-09-09 Shin-Etsu Chemical Co., Ltd. Coating-type composition for forming organic film, patterning process, polymer, and method for manufacturing polymer

Also Published As

Publication number Publication date
KR102024421B1 (ko) 2019-09-23
KR20180071892A (ko) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016089080A1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2020159019A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015060684A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018216921A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014010810A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111544A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111864A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133804A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015133808A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018212463A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015126156A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020130555A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020130660A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015046982A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018117562A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016105072A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17884836

Country of ref document: EP

Kind code of ref document: A1